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Abstract We have shown that the cellular process of

macroautophagy plays a protective role in HL-1 cardio-

myocytes subjected to simulated ischemia/reperfusion (sI/

R) (Hamacher-Brady et al. in J Biol Chem 281(40):29776–

29787). Since the nucleoside adenosine has been shown to

mimic both early and late phase ischemic preconditioning, a

potent cardioprotective phenomenon, the purpose of this

study was to determine the effect of adenosine on auto-

phagosome formation. Autophagy is a highly regulated

intracellular degradation process by which cells remove

cytosolic long-lived proteins and damaged organelles, and

can be monitored by imaging the incorporation of micro-

tubule-associated light chain 3 (LC3) fused to a fluorescent

protein (GFP or mCherry) into nascent autophagosomes.

We investigated the effect of adenosine receptor agonists on

autophagy and cell survival following sI/R in GFP-LC3

infected HL-1 cells and neonatal rat cardiomyocytes. The

A1 adenosine receptor agonist 2-chloro-N(6)-cyclopentyl-

adenosine (CCPA) (100 nM) caused an increase in the

number of autophagosomes within 10 min of treatment; the

effect persisted for at least 300 min. A significant inhibition

of autophagy and loss of protection against sI/R measured

by release of lactate dehydrogenase (LDH), was demon-

strated in CCPA-pretreated cells treated with an A1 receptor

antagonist, a phospholipase C inhibitor, or an intracellular

Ca(?2) chelator. To determine whether autophagy was

required for the protective effect of CCPA, autophagy was

blocked with a dominant negative inhibitor (Atg5K130R)

delivered by transient transfection (in HL-1 cells) or protein

transduction (in adult rat cardiomyocytes). CCPA attenu-

ated LDH release after sI/R, but protection was lost when

autophagy was blocked. To assess autophagy in vivo,

transgenic mice expressing the red fluorescent autophagy

marker mCherry-LC3 under the control of the alpha myosin

heavy chain promoter were treated with CCPA 1 mg/kg i.p.

Fluorescence microscopy of cryosections taken from the

left ventricle 30 min after CCPA injection revealed a large

increase in the number of mCherry-LC3-labeled structures,

indicating the induction of autophagy by CCPA in vivo.

Taken together, these results indicate that autophagy plays

an important role in mediating the cardioprotective effects

conferred by adenosine pretreatment.
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Introduction

The induction of ischemic tolerance in the heart to prevent

and treat myocardial infarction in the setting of ischemia/

reperfusion (I/R) injury continues to be an area of intense

investigation. Many of these efforts have centered around

the elucidation of the mechanisms underlying the

phenomenon of ischemic preconditioning with the intent

to develop new therapies based on the identification of

endogenous triggers and putative mediators. One agent that

has been shown to mimic both acute (early) and delayed
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(late phase) preconditioning is the nucleoside adenosine

[2, 3]. Purportedly, the cardioprotective effects of the agent

are mediated via activation of various adenosine receptor

subtypes, the primary one being the A1 receptor [3]. Liga-

tion of the adenosine A1 receptor is followed by activation

of phospholipase C (PLC) and protein kinase C (PKC) [2].

These, in turn, have been reported to confer protection by

activation of an ATP-sensitive K? (KATP) channel within

mitochondria (mKATP) prior to the onset of prolonged

ischemia [4, 5]. Although it has been suggested that the

mKATP channel is the end effector of ischemic precondi-

tioning, just how activation of the mKATP channel results in

cardioprotection is unknown, although our understanding

continues to grow [6]. A number of other potential effectors

have been studied including anion channels, the cytoskele-

ton, and the closure of gap junctions [3, 7]. Our previous

work in HL-1 cells indicated that suppressing autophagy in

the context of simulated I/R (sI/R) increased cell death,

suggesting the possibility that autophagy was part of a

cellular protective response [1]. For that reason we

hypothesized that autophagy might be involved in ischemic

or pharmacologic preconditioning. Pharmacologic inhibi-

tors of autophagy have off-target side effects that may

confound interpretation of the results [8, 9]. For that reason

we used a point mutation of the essential autophagy gene

Atg5. Mutation of lysine 130 on Atg5 prevents conjugation

of ubiquitin-like Atg12 onto the acceptor lysine by Atg7

[10]. We and others have shown that Atg5K130R functions as

a potent dominant negative, inhibiting autophagy at the

earliest stage [1, 11, 12]. Atg5 is not known to participate in

other pathways besides autophagy, and therefore Atg5K130R

is the most specific inhibitor available.

Macroautophagy (referred to hereafter as autophagy) is the

only means to remove dysfunctional organelles such as

mitochondria and insoluble protein aggregates [13]. The

process is initiated by a number of stressors including star-

vation, oxidative stress, lipopolysaccharide exposure, and sI/

R injury. Many studies of autophagy now rely on scoring the

number of autophagosomes, which can be detected in trans-

fected cells or transgenic animals expressing GFP (or the red

fluorescent protein mCherry) fused to the protein LC3, which

is incorporated into nascent autophagosomes [14]. In the

setting of myocardial sI/R injury, an increased prevalence of

autophagosomes has been documented [1]. In an in vivo

model of myocardial ischemia, a reduction in stunning cor-

related with increased expression of Beclin1 (an autophagy

gene) [15]. Moreover, this group observed that within the

tissue, cells with numerous autophagosomes were not

TUNEL positive, suggesting that upregulating autophagy

might prevent apoptosis. Since the end-effector(s) of adeno-

sine-mediated protection is unknown, the purpose of this

study was to test the hypothesis that adenosine-mediated

cardioprotection requires activation of autophagy, and that

autophagy is necessary and sufficient for achieving cardio-

protection. To test these hypotheses, we subjected the HL-1

myocyte cell line to simulated I/R and treated mCherry-LC3

transgenic mice with 2-chloro-N(6)-cyclopentyladenosine

(CCPA), a selective adenosine A1 receptor agonist.

Experimental procedures

Reagents

BAPTA-AM and Bafilomycin A1 (Baf) were purchased

from EMD Biosciences (San Diego, CA, USA); CCPA,

DPCPX and thapsigargin (TG) were purchased from Sigma

(St. Louis, MO, USA).

Cell culture

Cells of the murine atrial-derived cardiac cell line HL-116

were plated in gelatin/fibronectin-coated culture vessels

and maintained in Claycomb medium [16] (JRH Biosci-

ences, Lenexa, KS) supplemented with 10% fetal bovine

serum, 0.1 mm norepinephrine, 2 mm l-glutamine, 100 U/

mL penicillin, 100 U/mL streptomycin, and 0.25 lg/mL

amphotericin B.

Freshly isolated adult rat cardiomyocytes were prepared

from 200 to 250 g male Sprague Dawley rats, following

standard methods. The animals were anesthetized with

sodium pentobarbital, and all animal procedures were in

accordance with institutional guidelines and approved by the

Institutional Animal Care and Use Committee. After an

injection of heparin (100 U/kg) into the hepatic vein, the heart

was excised and the aorta was cannulated. The heart was

perfused retrogradely with a Ca2?-free buffer followed by

perfusion with 0.6 mg/mL collagenase (CLS 2, Worthington

Biochemical Corporation, USA) and 8.3 lM CaCl2 in per-

fusion buffer. After perfusion with collagenase solution for

15 min, the heart was minced in the same collagenase solution

and the myocytes were filtered through a fine gauze. A stop-

ping buffer containing 5% bovine calf serum and 12.5 lM

CaCl2 was added to the cells, followed by calcium stepwise

reintroduction up to a concentration of 1 mM. The cells were

centrifuged at 1009g for 1 min, and the pellet was washed in

M199 medium (Invitrogen), containing 10 mM HEPES,

5 mM taurine, 5 mM creatine, 2 mM carnitine, 0.5% free

fatty acid BSA and 100 U/mL penicillin-streptomycin.

Cardiomyocytes were plated with laminin (Roche) (20 lg/

mL laminin for glass, or 10 lg/mL for plastic dishes) at

5 9 104 cells per dish. The cells were incubated in a 5% CO2

incubator at 37�C for 2 h, then the medium was replaced with

the same fresh medium, and the experiments were performed

24 h later. Cell viability based on rod-shaped morphology at

the outset of the experiment was routinely[90%.
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Transfections, infections, and protein transduction

HL-1 cells were transfected with the indicated vectors using

the transfection reagent Effectene (Qiagen, Valencia, CA,

USA), according to the manufacturer’s instructions,

achieving at least 40% transfection efficiency. For experi-

ments aimed at determining autophagic flux, HL-1 cells were

transfected with GFP–LC3 and the indicated vector at a ratio

of 1:3 lg DNA. For infections, HL-1 cells or adult rat

cardiomyocytes were infected with GFP-LC3 adenovirus for

2 h, washed in PBS and re-fed with the Claycomb medium or

M199 medium, respectively. All the experiments were per-

formed 20 h after infection. The dominant negative

pmCherryAtg5K130R was previously described [1] and has

been deposited with Addgene. For adult cardiomyocytes,

GFP-LC3 infected cells were incubated with recombinant

Tat-Atg5K130R for 30 min before adding CCPA. Tat-

Atg5K130R was prepared by cloning Atg5K130R into the pHA-

TAT construct previously described [17]. Recombinant

protein was purified as previously described [11, 17, 18].

High- and low-nutrient conditions

Cells were plated in 14-mm-diameter glass bottom micro-

well dishes (MatTek, Ashland, MA, USA). For high-nutrient

conditions, experiments were performed in fully supple-

mented Claycomb medium. For low-nutrient conditions,

experiments were performed in modified Krebs-Henseleit

buffer (MKH) (in mM: 110 NaCl, 4.7 KCl, 1.2 KH2PO4, 1.25

MgSO4, 1.2 CaCl2, 25 NaHCO3, 15 glucose, 20 HEPES, pH

7.4) and incubation at 95% room air and 5% CO2.

Simulated ischemia/reperfusion (sI/R)

Cells were plated in 14-mm diameter glass bottom microwell

dishes (MatTek), and ischemia was introduced by a buffer

exchange to ischemia-mimetic solution (in mM: 20 deoxy-

glucose, 125 NaCl, 8 KCl, 1.2 KH2PO4, 1.25 MgSO4, 1.2

CaCl2, 6.25 NaHCO3, 5 sodium lactate, 20 HEPES, pH 6.6)

and placing the dishes in hypoxic pouches (GasPak
TM

EZ, BD

Biosciences) equilibrated with 95% N2, 5% CO2. After 2 h of

simulated ischemia, reperfusion was initiated by a buffer

exchange to normoxic MKH buffer and incubation at 95%

room air, 5% CO2. Controls incubated in normoxic MKH

buffer were run in parallel for each condition for periods of

time that corresponded with those of the experimental groups.

Wide-field fluorescence microscopy

Cells were observed through a Nikon TE300 fluorescence

microscope (Nikon, Melville, NY, USA) equipped with a

910 lens (0.3 NA, Nikon), a 940 Plan Fluor and a 960 Plan

Apo objective (1.4 and 1.3 NA oil immersion lenses; Nikon),

a Z-motor (ProScanII, Prior Scientific, Rockland, MA, USA),

a cooled CCD camera (Orca-ER, Hamamatsu, Bridgewater,

NJ, USA) and automated excitation and emission filter wheels

controlled by a LAMBDA 10-2 (Sutter Instrument, Novato,

CA, USA) operated by MetaMorph 6.2r4 (Molecular Devices

Co., Downington, PA, USA). Fluorescence was excited

through an excitation filter for fluorescein isothiocyanate

(HQ480/940), and an emission filter (HQ535/50 m).

Determination of autophagic content and flux

To analyze autophagic flux, GFP–LC3-expressing cells were

subjected to the indicated experimental conditions with and

without a cell-permeable lysosomal inhibitor Bafilomycin A1

(50 nm, vacuolar H?-ATPase inhibitor) to inhibit auto-

phagosome–lysosome fusion [19], for an interval of 3 h. Cells

were fixed with 4% formaldehyde in PBS (pH 7.4) for 15 min.

To analyze the number of GFP–LC3 puncta in popula-

tion, cells were inspected at 609 magnification and

classified as: (a) cells with predominantly diffuse GFP–

LC3 fluorescence; or as (b) cells with numerous GFP–LC3

puncta ([30 dots/cell), representing autophagosomes. At

least 200 cells were scored for each condition in three or

more independent experiments.

Experiments with preconditioning agents

2-Chloro-N(6)-cyclopentyladenosine (CCPA) at concen-

trations of 0.001–0.1 nM was applied to the cell cultures

for 15 min following a 15 min preincubation with various

inhibitors (Sigma): 8-cyclopentyl-1,3-dimethylxanthine

(DPCPX, 1 lM), BAPTA-AM (25 lM), U73122 (2 lM)

or thapsigargin (TG, 1 lM). The cell cultures were washed

with PBS prior to the experimental treatment.

Release of LDH

Protein content and LDH activity were determined

according to El-Ani et al. [20]. Briefly, 25 lL supernatants

from 35 mm dishes were transferred into wells of a 96-well

plate, and the LDH activities were determined with an

LDH-L kit (Sigma), according to the manufacturer. The

product of the enzyme was measured spectrophotometri-

cally at 30�C at a wavelength of 340 nm as described

previously [21]. The results were expressed relative to the

control (X-fold) in the same experiment. Each experiment

was done in triplicate and was repeated at least three times.

Nuclear staining

Cells were stained immediately after sI/R with propidium

iodide (5 lg/mL), which stains nuclei of cells whose

plasma membranes have become permeable because of cell
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damage. The assay was performed according to Nieminen

et al. [22]. For counterstaining we used Hoechst 33342

(10 lM), which stains the nuclei of all cells.

Transgenic mCherry-LC3 mice-Cardiac-specific expres-

sing mCherry-LC3 transgenic mice were created in the FVB/

N strain by pronuclear injection of murine alpha myosin

heavy chain promoter driven mCherry-LC3 transgene in

front of the human growth hormone poly adenylation signal

[23]. Mice were injected with saline or CCPA (1 mg/kg,

i.p.), and 30 min later they were euthanized with pentobar-

bital and the hearts excised and embedded in Optimal

Cutting Temperature medium for cryosectioning and fluo-

rescence microscopy. All animal procedures were carried

out in accordance with institutional guidelines and approved

by the Institutional Animal Care and Use Committee.

Statistics

The probability of statistically significant differences

between two experimental groups was determined by

Student’s t-test. Values are expressed as mean ± SEM of

at least three independent experiments unless stated

otherwise.

Results

Adenosine receptor-selective effects on autophagy

We assessed the role of the adenosine A1 receptor

using the selective agonist CCPA. As shown in Fig. 1,

CCPA induced autophagy in a dose-dependent fashion.

Autophagy was upregulated within 10 min after the

addition of CCPA, and was sustained for several hours,

consistent with the kinetics of the preconditioned state.

We observed an increase in the number of autophago-

somes in response to CCPA in HL-1 cells (1C), neonatal

rat cardiomyocytes (1D), adult cardiomyocytes (1E), and

in vivo in the hearts of mCherry-LC3 transgenic mice

(1F).
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Fig. 1 Adenosine receptor-selective effects on autophagy. a GFP–

LC3 transfected HL-1 cells were treated for 120 min in full medium

(FM) with various concentrations (0.001–10 lM) of CCPA. b GFP-

LC3-transfected HL-1 cells were treated with 100 nM CCPA for the

indicated time, then fixed with paraformaldehyde and scored by

fluorescence microscopy. c Representative images of HL-1 cells

expressing GFP-LC3, which is diffuse in quiescent cells and punctate

in CCPA-treated cells (PC). d Representative images of neonatal

cardiomyocytes under control conditions or 10 min after administra-

tion of 100 nM CCPA. e Representative images of adult

cardiomyocytes under control conditions or 10 min after administra-

tion of 100 nM CCPA. f Transgenic mice expressing mCherry-LC3

under the aMHC promoter received an i.p. injection of saline or

1 mg/kg CCPA, then were sacrificed 30 min later and heart tissue was

processed for fluorescence microscopy. The increase in fluorescent

red puncta reflects upregulation of autophagy
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Effect of CCPA on autophagic flux under conditions

of starvation or sI/R

An increase in the number of autophagosomes can be due to

increased formation of autophagosomes or a decrease in their

clearance through lysosomal degradation. To measure flux,

we inhibited autophagosomal degradation with Bafilomycin

A1: an increase in the abundance of autophagosomes com-

pared with steady state conditions (no Bafilomycin) reflects

increased production. As shown in Fig. 2, CCPA increased

the percentage of cells with numerous autophagosomes

under both steady-state and cumulative conditions, indicat-

ing that CCPA increases autophagy rather than interfering

with degradation. CCPA has no effect on the extent of

autophagy induced by starvation. Simulated ischemia and

reperfusion (sI/R) results in an increase in the percentage of

cells with numerous autophagosomes seen under steady state

conditions, but this is due to impaired clearance rather than

increased formation, as there is no significant increase in the

number in the presence of Bafilomycin. Fewer autophago-

somes were observed after sI/R in CCPA-treated cells. Since

CCPA did not reduce autophagic flux induced by starvation,

it likely does not interfere with formation of autophagosomes

in response to sI/R. If autophagy is upregulated during sI/R in

an attempt to respond to the stress of nutrient deprivation and

oxidants, then the diminished autophagy seen in CCPA-

treated cells after sI/R may indicate that the cells experienced

less stress, and therefore less autophagy is required during

reperfusion (reparative autophagy).

Receptor-selective effect of CCPA on autophagy

and cytoprotection

To confirm that the effects of CCPA were mediated through

the adenosine A1 receptor, HL-1 cells were treated with

CCPA in the presence or absence of the A1 receptor

antagonist DPCPX under conditions of normoxia or sI/R.

As shown in Fig. 3, the upregulation of autophagy by

CCPA under normoxic conditions was partially blocked by

DPCPX. As expected, CCPA protected cells against sI/R as

indicated by diminished LDH release and uptake of propi-

dium iodide. Cytoprotection was abolished by DPCPX and

the amount of autophagy during reperfusion, which we

interpret to mean that there was more damage—hence more

repair autophagy needed during reperfusion. These results

suggest that the effects of CCPA on autophagy and cyto-

protection are mediated through the adenosine A1 receptor.

CCPA signals autophagy through PLC and a rise

in intracellular calcium

The adenosine A1 receptor is a G-protein-coupled receptor

that activates phospholipase C (PLC) [24]. To determine if

PLC signaling was upstream of autophagy induction by

CCPA, we used the PLC inhibitor U73122 and assessed

effects on autophagy and cytoprotection. As shown in

Fig. 4, PLC is required for CCPA stimulation of autophagy

before ischemia; blockade of the CCPA signal through

PLC results in an increase in autophagy after sI/R (repair

autophagy) as well as an increase in LDH release at end of

simulated ischemia.

Autophagy (induced by starvation or rapamycin) is

dependent upon on the release of calcium from the sarco-

endoplasmic reticulum (S/ER) [25] as is adenosine

preconditioning [26]. As shown in Fig. 5, we confirmed

that chelation of cytoplasmic calcium with BAPTA-AM, or

depletion of S/ER calcium stores by thapsigargin pre-

treatment, suppressed the induction of autophagy by

CCPA, suggesting a convergence of the two processes.

This is consistent with our previous findings that starva-

tion-induced autophagic flux is also suppressed by BAPTA

or thapsigargin [25].
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Fig. 2 Effect of CCPA on autophagic flux under conditions of

starvation or sI/R. HL-1 cells were infected with adv-GFP-LC3,

treated with or without 100 nM CCPA in full medium (FM) for

10 min, then subjected either to starvation (amino acid deprivation in

MKH) (Stv) for 3 h, or simulated I/R (2 h sI, 3 h R). Steady-state and

cumulative conditions were assessed by incubating cells with or

without the lysosomal inhibitor Bafilomycin during the starvation or

reperfusion phase. The extent of autophagy was assessed by the

intracellular distribution of GFP-LC3 by fluorescence microscopy.

The experiments were done at least three times and results shown are

mean ± SEM
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Fig. 3 Receptor-selective

effect of CCPA on autophagy

and cytoprotection. Adv-GFP-

LC3 infected HL-1 cells were

treated in full medium with the

selective A1 receptor antagonist

DPCPX for 30 min, followed by

100 nM CCPA for 10 min, and

then cells were subjected to sI/R

(2 h sI, 3 h R). The extent of

autophagy was assessed by the

intracellular distribution of

GFP-LC3 by fluorescence

microscopy (a), and cell death

was measured by LDH release

at the end of simulated ischemia

(b) or by propidium iodide

uptake at the end of

reperfusion (c)

U73122

Vehicle

CCPA+sI/R

CCPA+sI/R

%
 c

el
ls

 w
ith

 n
um

er
ou

s 
G

F
P

-L
C

3 
P

un
ct

a

0
10
20
30
40
50
60
70
80
90

LD
H

  r
el

ea
se

 (
%

)

0
10
20
30
40
50
60
70

Normoxia CCPA

Normoxia CCPA

p<0.001

p<0.001 p<0.01 p<0.01 p<0.05

sI/R

sI/R

p<0.05

A

B

Fig. 4 CCPA signals

autophagy through PLC. HL-1

cells infected with Adv-GFP-

LC3 were treated with the PLC

inhibitor U73122 (2 lM) for

15 min followed by CCPA for

10 min, then incubated in

normoxic conditions or

subjected to sI/R (2 h sI, 3 h R).

Autophagy was scored by

fluorescence microscopy (a).

The amount of LDH released to

the medium was determined

immediately after ischemia and

compared to the total activity of

control homogenate (100%) (b)
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Cytoprotection by CCPA is dependent upon autophagy

The foregoing results were consistent with the notion that

the CCPA-mediated induction of autophagy before sI/R

was cytoprotective and resulted in a diminished need for

autophagy after sI/R. We have previously shown that

mitochondrial damage induces autophagy as part of a

repair response [11, 27]. To determine whether autophagy

is required for protection mediated by CCPA, we trans-

fected HL-1 cells with a dominant negative inhibitor of

autophagy (Atg5K130R) or with empty vector. We con-

firmed that Atg5K130R effectively suppressed autophagy

(Fig. 6). Importantly, the dominant negative inhibitor of

autophagy eliminated the protective effects of CCPA after

sI/R. Direct suppression of autophagy was not cytopro-

tective, arguing against a deleterious role for autophagy, as

has been suggested by some investigators. To further val-

idate these findings, we performed this study in adult

cardiomyocytes, using cell-permeable recombinant Tat-

Atg5K130R to inhibit autophagy. As shown in Fig. 7, CCPA

induced autophagy in adult cardiomyocytes and conferred

cytoprotection. Administration of Tat-Atg5K130R sup-

pressed autophagy and eliminated the protection by CCPA.

It is important to note that inhibiting autophagy in the

absence of CCPA did not increase LDH release under

normoxic conditions nor did it exacerbate injury from sI/R,

indicating that the recombinant protein is not directly

cytotoxic. It also indicates that inhibiting autophagy is not

protective in this cell culture model. These results provide

clear and compelling evidence in support of the notion that

CCPA mediates its cytoprotective effect through the

induction of autophagy.

Effect of CCPA on delayed preconditioning

There are two windows of preconditioning: one is induced

within minutes and lasts several hours, and the second

window of protection is observed 16–24 h after the pre-

conditioning stimulus (delayed or late phase). We treated

HL-1 cells with CCPA for 10 min in the presence or

absence of DPCPX, then 24 h later assessed autophagy and

cytoprotection. As shown in Fig. 8, we found that

autophagy is upregulated 24 h after treatment with CCPA;

as previously noted for immediate preconditioning, the

amount of repair autophagy seen at reperfusion is less in

CCPA-treated cells, reflecting less damage. The A1

antagonist blocked the effects of CCPA on autophagy and

also abolished the cytoprotection by CCPA in the second

window of protection. To determine if autophagy was

required for the second window of protection, we trans-

fected HL-1 cells with Atg5K130R, the dominant negative

inhibitor of autophagy. Atg5K130R suppressed autophagy in

the second window of protection and abolished the cyto-

protective effect of CCPA (Fig. 9). Taken together, these

results indicate that CCPA mediates delayed precondi-

tioning by a mechanism that requires autophagy.
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of GFP-LC3 was assessed by fluorescence microscopy
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Fig. 6 Cytoprotection by CCPA is dependent upon autophagy. HL-1

cells were co-transfected with GFP–LC3 and the dominant negative

autophagy protein Atg5K130R. After 24 h cells were treated for 10 min

with CCPA followed by sI/R (2 h sI, 3 h R). The extent of autophagy

was assessed by the intracellular distribution of GFP-LC3 by

fluorescence microscopy (a). Cytoprotection was assessed by mea-

suring LDH released into the media at the end of ischemia (b) or by

propidium iodide uptake (c)
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Discussion

The role of autophagy in the heart is controversial, with

some findings suggesting it may be deleterious while other

studies suggest a clear protective role. Ischemic and

pharmacologic preconditioning are recognized as the most

potent and reproducible cardioprotective interventions yet

identified, but the precise intracellular mechanism remains

elusive. Based on our previous observation that autophagy

is upregulated during reperfusion and serves a cytopro-

tective role in HL-1 cells, we hypothesized that autophagy

might represent a component of the mechanism of
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Cell death was measured by
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preconditioning. To test this, we relied on the HL-1 myo-

cyte cell line, which we have evaluated in a number of

studies and have found to behave nearly identically to

neonatal rat cardiomyocytes with respect to the autophagic

response to sI/R [1], hydrogen peroxide [28], lipopoly-

saccharide [28], and pharmacologic preconditioning agents

including CCPA. We also showed for the first time that

CCPA upregulated autophagy in adult rat cardiomyocytes

and in vivo in aMHC-mCherry-LC3 transgenic mice.

In HL-1 cells, we found that CCPA upregulated

autophagy within 10 min, and conferred cytoprotection

against sI/R in the same time frame. Interestingly, the

amount of autophagy observed during the reperfusion

phase was less than in untreated cells subjected to sI/R.

This seemingly paradoxical effect can be explained if one

considers autophagy part of a repair response. In precon-

ditioned cells, less damage occurs during ischemia, so less

repair autophagy is required during the reperfusion phase.

If CCPA directly suppressed autophagy, one would expect

it to suppress starvation-induced autophagy, but in that

setting, it has no effect. Previous studies examining the

abundance of autophagosomes in tissue have failed to take

into account the turnover of these transient organelles.

However, an increase in autophagosomes could be due to

increased production or diminished clearance through the

lysosomal pathway. We used comparisons of autophagy in

the absence (steady-state) and presence (cumulative) of

bafilomycin A1, which prevents autophagosome-lysosome

fusion, in order to assess flux. Notably, the increase in

autophagy observed after sI/R is largely due to impaired

clearance (no increase in the presence of Baf). CCPA

increases flux before sI/R, but appears to diminish auto-

phagosome formation after sI/R without improving

clearance (no increase after Baf).

Adenosine receptor signaling has been studied exten-

sively and a variety of selective agonists and antagonists

have been developed. CCPA is generally regarded as an

A1-selective agonist, and DCPCX an A1-selective antag-

onist. We confirmed that the effects of CCPA on autophagy

and on cytoprotection were mediated through the A1

receptor. We also confirmed that the downstream activation

of phospholipase C and release of S/ER Ca?2 were

required for the effects on autophagy and cytoprotection.

Previous efforts to understand the role of autophagy in

the heart have used Atg5(-/-) mice or Beclin1(?/-) mice.

The Atg5(-/-) mice develop a dilated cardiomyopathy,

suggesting that autophagy plays an important role in nor-

mal cardiac homeostasis. The Beclin1(?/-) mice have

diminished autophagy, and a previous study by Sadoshi-

ma’s group indicated that these mice had smaller infarcts

than their wild type littermates [29]. However, this result

must be interpreted with caution. It is unknown whether

other compensatory pathways are upregulated in these

animals; for instance, Atg5(-/-) mice show upregulation of

ERK phosphorylation that is the basis for cytoprotection

[30]. Furthermore, Beclin1 contains a BH3 domain which

is postulated to function as a pro-apoptotic molecule.

Reduction in the abundance of a proapoptotic protein may

confer protective benefit independent of effects of

autophagy. However, autophagy may not be universally

protective, and its connection to innate immunity implies

that perturbations to autophagy (up or down) may have

pleiotropic effects [28, 31, 32].

As noted earlier, pharmacologic inhibitors of autophagy

(3-MA and wortmannin) are nonspecific and may lead to

confounding results. To overcome these concerns, we used

a dominant negative inhibitor of autophagy, Atg5K130R. We

found that transient transfection of Atg5K130R potently

reduced autophagy and blocked the cytoprotective effect of

CCPA in HL-1 cells subjected to sI/R. In the present study,

cell death after sI/R was not increased by Atg5K130R, in

contrast to our previous findings [1]. However, the studies

differ with respect to readout (LDH release of both trans-

fected and non-transfected cells versus Bax translocation

scored only in transfected cells), and sensitivity (detection

of small differences in cell viability is better in the Bax

assay). However, the present results suggest that opera-

tional autophagy may not be essential to the basal/innate
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Fig. 9 Role of autophagy in delayed preconditioning. HL-1 cells

were co-transfected with GFP–LC3 and dominant negative

Atg5K130R. Cells were treated with CCPA for 10 min, followed by

washout. 20 h later, cells were subjected to sI/R (2 h sI, 3 h R). The

extent of autophagy was assessed by the intracellular distribution of

GFP-LC3 by fluorescence microscopy (a) and cell death was

measured by LDH release into the medium at the end of ischemia (b)
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resilience to cardiomyocyte ischemia, but is important to

the enhanced cytoprotection mediated by CCPA.

CCPA also elicits delayed preconditioning; we found

upregulation of autophagy at 24 h after a 10 min exposure

to CCPA followed by washout. The effects on autophagy

and cytoprotection against sI/R were receptor dependent, as

they were blocked by DPCPX. The protective effects of

CCPA in delayed preconditioning also depended on

autophagy, as suppression of autophagy by Atg5K130R

abolished the cytoprotection.

Further studies will be necessary to determine whether

other preconditioning agents also elicit autophagy, and

whether autophagy is universally required for cardiopro-

tection. These studies are based on pre-treatment; thus it is

not yet clear whether autophagy plays a protective role

during reperfusion. However, evidence supports the notion

that the effects of preconditioning are mediated during

reperfusion [33]. Postconditioning appears to involve the

same signaling pathways as preconditioning [34, 35].

Although we have shown that CCPA induces autophagy in

the hearts of mCherry-LC3 mice, additional studies are

necessary to elucidate the role of autophagy in vivo, as well

as to determine why autophagy is protective. However, the

present study demonstrates, for the first time, that autoph-

agy serves as a key mediator of protection by the adenosine

A1 receptor agonist CCPA. We suggest that interventions

which directly target autophagy may represent new thera-

peutic modalities.
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