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Autoregressive Distributed Lag Models and
Cointegration

By Uwe Hassler and Jürgen Wolters∗

Summary: This paper considers cointegration analysis within an autoregressive dis-
tributed lag (ADL) framework. First, different reparameterizations and interpretations
are reviewed. Then we show that the estimation of a cointegrating vector from an ADL
specification is equivalent to that from an error-correction (EC) model. Therefore, asymp-
totic normality available in the ADL model under exogeneity carries over to the EC esti-
mator. Next, we review cointegration tests based on EC regressions. Special attention is
paid to the effect of linear time trends in case of regressions without detrending. Finally,
the relevance of our asymptotic results in finite samples is investigated by means of com-
puter experiments. In particular, it turns out that the conditional EC model is superior
to the unconditional one.

Keywords: Error-correction, asymptotically normal inference, cointegration testing.
JEL C22, C32.

1. Introduction

The autoregressive distributed lag model (ADL) is the major workhorse in
dynamic single-equation regressions. One particularly attractive reparame-
terization is the error-correction model (EC). Its popularity in applied time
series econometrics has even increased, since it turned out for nonstationary
variables that cointegration is equivalent to an error-correction mechanism,
see Granger’s representation theorem in Engle and Granger (1987). By dif-
ferencing and forming a linear combination of the nonstationary data, all
variables are transformed equivalently into an EC model with stationary
series only.

Working on feedback control mechanisms for stabilization policy, Phillips
(1954, 1957) introduced EC models to economics. Sargan (1964) used them
to estimate structural equations with autocorrelated residuals, and Hendry
popularized their use in econometrics in a series of papers1. According to
Hylleberg and Mizon (1989, p.124) “the error correction formulation pro-
vides an excellent framework within which it is possible to apply both the
data information and the information available from economic theory”. A
survey on specification, estimation and testing of EC models is given by
Alogoskoufis and Smith (1995). The present paper contributes to this liter-
ature in that it treats some aspects of testing cointegration and asymptotic
normal inference of the cointegrating vector estimated from an EC format.

Received: / Revised:
∗ We thank Vladimir Kuzin for excellent research assistance and Surayyo Kabilova for

skillful word processing.
1 Davidson et al. (1978), Hendry (1979), and Hendry et al. (1984). It is noteworthy

that A.W. Phillips, Sargan as well as Hendry were professors at the London School of
Economics. A personal view on the history of EC models is given in the interview of
Hendry by Ericsson (2004).
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The rest of the paper is organized as follows. The next section reviews
different reparameterizations and interpretations of ADL models. Then we
use that the cointegrating vector computed from the ADL model is equiv-
alent to the one estimated from EC in order to use results by Pesaran and
Shin (1998) on asymptotic normality. Section 4 turns to cointegration test-
ing from EC regressions. We review t-type and F-type test statistics, and
pay particular attention to the role of linear time trends. The relevance
of our asymptotic results in finite samples is investigated through Monte
Carlo experiments in Section 5. A detailled summary is contained in the
final section.

2. Assumptions and representations

The autoregressive distributed lag model of order p and n, ADL(p,n), is
defined for a scalar variable yt as

yt =
p∑

i=1

ai yt−i +
n∑

i=0

c′i xt−i + εt, (1)

where εt is a scalar zero mean error term and xt is a K-dimensional column
vector process. Typically, a constant is included in (1), which we neglect here
for brevity. The coefficients ai are scalars while c′i are row vectors. Using
the lag operator L applied to each component of a vector, Lk xt = xt−k, it
is convenient to define the lag polynomial a(L) and the vector polynomial
c(L),

a(L) = 1− a1L− . . .− ap Lp,

c(L) = c0 + c1L + . . . + cn Ln.

Now, it is straightforward to write (1) more compactly:

a(L)yt = c′(L)xt + εt.

In order to obtain dynamic stability, it is maintained that

a(z) = 0 ⇒ | z |> 1 for z ∈ C. (2)

Under this condition there exists an absolutely summable infinite expansion
of the inverted polynomial a−1(L):

a−1(L) =
1

a(L)
=

∞∑

j=0

a∗j Lj ,

∞∑

j=0

|a∗j | < ∞.

Invertibility of a(L) hence yields the following representation:

yt =
c′(L)
a(L)

xt + et, a(L) et = εt,
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where et has a stable autoregressive structure of order p. Expanding a−1(L)
provides an infinite distributed lag representation,

yt =




∞∑

j=0

a∗jL
j







n∑

j=0

cj Lj



′

xt + et =
∞∑

j=0

b′j xt−j + et, (3)

where bj are the vectors of dynamic multipliers derived by the method of in-
determined coefficients. The vector of long-run multipliers of the ADL(p, n)
model may therefore be easily computed from:

β :=
c(1)
a(1)

=
∞∑

j=0

bj . (4)

It is worth mentioning that (1) is suitable for estimation but in order to
obtain an economic interpretation of the parameters one has to consider a
transformation like (3).

Different reparameterizations have been discussed in the literature, see
e.g. Wickens and Breusch (1988). By re-arranging the x’s one obtains with
∆ = 1− L:

yt =
p∑

i=1

aiyt−i + a(1)β′xt −
n−1∑

i=0




n∑

j=i+1

cj



′

∆xt−i + εt, (5)

where yt is related to its own past, to contemporaneous xt and differ-
ences ∆xt−i. The use of this specification has been suggested for cointe-
gration analysis by Pesaran and Shin (1998). A further variant relates yt

to xt and differences of both variables. By subtracting (
∑p

i=1 ai) yt and
re-normalizing, (5) yields:

yt =
−1
a(1)

p−1∑

i=0




p∑

j=i+1

aj


∆yt−i + β′xt − 1

a(1)

n−1∑

i=0




n∑

j=i+1

cj



′

∆xt−i + εt.

This representation due to Bewley (1979) has the advantage that the long-
run multipliers β are the coefficients of xt. However, the contemporaneous
∆yt on the right-hand side is correlated with εt, which renders OLS invalid.
Nevertheless, the use of yt−1, . . . , yt−p−1 and xt, . . . , xt−n+1 as instruments
allows for consistent instrumental variable estimation.

One further transformation will turn out to be fruitful for cointegration
testing and estimation. Notice that

p∑

i=1

aiyt−i − yt−1 = −a(1)yt−1 −
p−1∑

i=1




p∑

j=i+1

aj


 ∆yt−i .
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Using this result and xt = xt−1+∆xt, (5) yields the error-correction format:

∆yt = −a(1) (yt−1 − β′xt−1)−
p−1∑

i=1




p∑

j=i+1

aj


∆yt−i

+


a(1)β −

n∑

j=1

cj



′

∆xt −
n−1∑

i=1




n∑

j=i+1

cj



′

∆xt−i + εt.

The interpretation relies on a long-run equilibrium relation, y = β′x. The
error-correction mechanism is the adjustment of yt via a(1) to equilibrium
deviations in the previous period, yt−1−β′xt−1. In the following, this equa-
tion will often be rewritten as

∆yt = γ yt−1 + θ′xt−1 +
p−1∑

i=1

αi∆yt−i +
n−1∑

i=0

φ′i∆xt−i + εt, (6)

where
γ = −a(1), θ = a(1) β = −γ β, (7)

and αi as well as φi are defined in an obvious manner.
Since the work by Engle and Granger (1987), cointegration of nonstation-

ary processes is known to be equivalent to a data generating error-correction
process. For the rest of the paper we assume that yt and xt are integrated
of order one, I(1), i.e. differencing is required to obtain stationarity. When
there exists a linear combination of the nonstationary processes, yt − β′xt,
β 6= 0, which is stationary, then yt and xt are called cointegrated. The coin-
tegration rank is at most one, and xt does not adjust towards equilibrium.

Assumption 1: (i) The vector (yt, x
′
t)′ of length K + 1 is I(1). (ii) The

vector xt alone is not cointegrated. (iii) In case of cointegration, xt does not
adjust to past equilibrium deviations (yt−1 − β′ xt−1).

Further, we assume a correctly specified error-correction equation in the
following sense.

Assumption 2: (i) The errors εt are serially independent with variance σ2,
εt ∼ iid(0, σ2). (ii) The errors are uncorrelated with ∆ xt+h, for all h ∈ Z.

These assumptions summarize (A1) through (A5) in Pesaran and Shin
(1998, p.375). The case of several linearly independent cointegrating vec-
tors or the situation where ∆xt adjusts to lagged deviations, too, is beyond
the scope of a single-equation framework, see e.g. Lütkepohl (2005) in this
volume.

Assumption 2 (ii) was made to ensure exogeneity of ∆xt. It may seem
very restrictive for applied work. Working with normally distributed data,
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however, we do not need it because Johansen (1992) proved assuming a
Gaussian vector EC model for (yt, x

′
t)
′ that Assumption 1 (iii) alone is

sufficient for weak exogeneity of ∆xt, cf. also Urbain (1992. Prop.1). In
fact, he thus showed that under Assumption 1 (iii) alone the single-equation
analysis is equivalent to maximum likelihood estimation of the full system
(Johansen, 1992, Corollary 1).

3. Inference about the cointegrating vector

In this section we assume that yt and xt are cointegrated, and the inter-
est focusses on estimating and testing β given T observations. It is well
known since Phillips and Durlauf (1986) or Stock (1987) that the static
OLS estimator,

ŷt = α̂ + β̂′ xt, t = 1, . . . , T,

is super-consistent. Under exogeneity, it further holds (cf. Phillips and Park,
1988) that T (β̂− β) converges to a normal distribution, where the variance
depends on the long-run variance (or spectral density at frequency zero) of
yt − β′ xt. This parameter may be difficult to estimate in finite samples.
Moreover, already Banerjee et al. (1986) observed that static OLS may be
biased in finite samples due to ignoring short-run dynamics. An alternative
approach dating back to Stock (1987) relies on estimating (6):

∆yt = ĉ + γ̂ yt−1 + θ̂′ xt−1 +
p−1∑

i=1

α̂i ∆yt−i +
n−1∑

i=0

φ̂′i ∆xt−i + ε̂t . (8)

A natural candidate for estimating β is now from (8) because of (7)

β̂EC = − θ̂

γ̂
. (9)

Further down we will obtain limiting normality of T (β̂EC − β) under exo-
geneity by drawing upon results by Pesaran and Shin (1998), who consider
the OLS estimation of (5):

yt = c̃ +
p∑

i=1

ãi yt−i + θ̃′xt +
n−1∑

i=0

φ̃′i ∆xt−i + ε̃t. (10)

As estimator for β they propose because of (7):

β̂PS =
θ̃

1−∑p
i=1 ãi

. (11)

Pesaran and Shin (1998, Theorem 2.4 or 3.2) establish limiting normality
under the stated assumptions.
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Proposition 1: Under Assumptions 1 and 2 and under cointegration it
holds as T →∞:

[
T∑

t=1

(xt − x̄) (xt − x̄)′
]0.5 (

β̂PS − β
)
∼ NK

(
0,

σ2

(a(1))2
IK

)
,

where IK denotes the identity matrix.

Remark A Notice that
∑

(xt − x̄)(xt − x̄)′ diverges with T 2, so that β̂PS

converges with the expected super-consistent rate T . Moreover, σ2 and a(1)
may be estimated consistently:

σ̃2 =
1

T −m

T∑
t=1

ε̃2
t , ã(1) = 1−

p∑

i=1

ãi ,

where m = K(n + 1) + p + 1 denotes the number of estimated parameters
including a constant. Finally, by demeaning xt in Proposition 1, we assume
that the regression equation contains an intercept. The result continues to
hold, if a linear time trend as additional regressor is allowed for.

Remark B In practice, Assumption 2 (ii) may be too restrictive, and
(lagged values of) ∆xt may be correlated with εt. To account for that,
Pesaran and Shin (1988) propose to simply include the corresponding dif-
ference ∆xt−k as additional regressor in (10) in case that k ≥ n.

Since (6) is a linear transformation of (5), it turns out that the regression
(8) is a linear transformation of (10). Using the techniques by Wickens and
Breusch (1988) we can establish the following result. The proof is tedious
but not difficult, details are available upon request.

Proposition 2: For the OLS regressions (10) and (8) it holds:

γ̂ =
p∑

i=1

ãi − 1, θ̂ = θ̃, ε̂t = ε̃t,

and consequently: β̂EC = β̂PS.

As a corollary to Propositions 1 and 2, β̂EC follows a limiting normal dis-
tribution. Consider a t type statistic testing for the kth component β(k),
k = 1, 2, . . . , K:

τk =
|γ̂| (β̂(k)

EC − β(k))
σ̂
√

[(
∑

(xt − x̄)(xt − x̄)′)−1]kk

,

where [·]kk denote the entries on the principal diagonal of a matrix, and,
obviously: σ̂2 = 1

T−m

∑T
t=1 ε̂2

t where again m = K(n + 1) + p + 1.
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Corollary 1: Under the assumptions of Proposition 1 it holds for k =
1, . . . , K:

τk ∼ N (0, 1),

as T →∞.

Concluding this section it should be noticed that estimation of and inference
about β from linear or nonlinear dynamic regressions similar to (8) and (10)
has been discussed by Stock (1987), Phillips (1988), Phillips and Loretan
(1991), and Boswijk (1995), too.

4. Cointegration testing

We consider tests for the null hypothesis of no cointegration building on
the error-correction equation (6) augmented by a constant intercept and
estimated by OLS, t = 1, 2, . . . , T,

∆yt = ĉ + γ̂µ yt−1 + θ̂′µxt−1 +
p−1∑

i=1

α̂i∆yt−i +
n−1∑

i=0

φ̂′i∆xt−i + ε̂t. (12)

Sometimes empirical researchers wish to work with detrended series, which
amounts to adding a linear time trend to the set of regressors:

∆yt = ĉ + δ̂ t + γ̂τ yt−1 + θ̂′τxt−1 +
p−1∑

i=1

α̂i∆yt−i +
n−1∑

i=0

φ̂′i∆xt−i + ε̂t. (13)

Clearly, the linear trend will change all parameter estimates. For that rea-
son γ and θ are now indexed with τ , while all other estimates are denoted
by the same symbols as in (12) for convenience. Sometimes, (12) and (13)
are called conditional (or structural) error-correction models, while uncon-
ditional (reduced form) models are obtained by restricting φ0 = 0 and
excluding contemporaneous differences, ∆xt.

Given Assumption 1, the null hypothesis of no cointegration may be
parameterized as follows:

H0 : γµ = 0 or γτ = 0.

Under the alternative of cointegration equilibrium adjustment implies

H1 : γµ < 0 or γτ < 0.

Therefore, Banerjee, Dolado and Mestre (1998) proposed the use of the
conventional studentized t statistic relying on an OLS estimation of (12) or
(13):

ECtµ = tγµ=0 or ECtτ = tγτ=0.

The null hypothesis is rejected for too small (negative) values.
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Similarly, Boswijk (1994) suggested an F type test for

H0 : γµ = 0, θµ = 0 or γτ = 0, θτ = 0.

Let Fγ,θ denote the conventional F statistics from (12) or (13) testing for
lack of significance. Then Boswijk (1994) considered

ECFµ = (K + 1)Fγµ,θµ or ECFτ = (K + 1)Fγτ ,θτ .

Here, the null hypothesis is rejected for too large values. Boswijk (1994)
suggested a further variant for (13), where the linear trend is restricted
under H0:

H0 : γτ = 0, θτ = 0, δ = 0.

The corresponding F type statistic tests for K + 2 restrictions:

ECF ∗τ = (K + 2)Fγτ ,θτ ,δ.

In many economic applications it may occur that xt is I(1) with drift,

E(∆xt) = d 6= 0.

Still, empirical workers often wish to regress without detrending. However,
the linear trend in the data,

xt = d + xt−1 + I(0)
= x0 + d t + I(1),

dominates the stochastic trend and hence affects the limiting distribution of
ECtµ from (12). Fortunately, critical values are nevertheless readily avail-
able.

Proposition 3: Under Assumptions 1 and 2 and the null hypothesis of no
cointegration, it holds as T →∞:

a) ECtτ
d→ BDMτ (K) for any E(∆xt);

b) ECtµ
d→ BDMµ(K) for E(∆xt) = 0;

c) ECtµ
d→ BDMτ (K − 1) for E(∆xt) 6= 0, where BDMτ (0) stands for

the detrended Dickey-Fuller distribution.

Convergence in distribution is denoted by d→. The random variables BDMµ(K)
and BDMτ (K) represent functionals of vector standard Brownian motions
of length K, which are demeaned and detrended, respectively. K denotes
the number of variables contained in the vector xt. Detailed expressions
of those limiting distributions and simulated critical values can be found
in Banerjee, Dolado and Mestre (1998), who prove a) and b). The third
result was established by Hassler (2000), and by detrended Dickey-Fuller
distribution we mean the limit of τ̂τ in the notation by Dickey and Fuller
(1979).
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Similar results are available for the F type statistics.

Proposition 4: Under Assumptions 1 and 2 and the null hypothesis of no
cointegration, it holds as T →∞:

a) ECFτ
d→ Bτ (K) for any E(∆xt);

b) ECF ∗τ
d→ B∗τ (K) for any E(∆xt);

c) ECFµ
d→ Bµ(K) for E(∆xt) = 0.

Boswijk (1994) characterized the stochastic limits of the type B depending
again on the number of I(1)-variables xt and on the deterministics (with or
without linear trend). However, there remains one question. How do linear
trends in the data affect the limiting distribution of the F type test ECFµ

without detrending? Without proof we state motivated by Proposition 3 c)
the following conjecture.

Conjecture When E(∆xt) 6= 0, we conjecture under the assumptions of
Proposition 4 for the regression without detrending:

ECFµ
d→ B∗τ (K − 1), (14)

where in case of K = 1, B∗τ (0) is understood to be twice the limiting distri-
bution of the Φ3 statistic from Dickey and Fuller (1981); see Table VI in
Dickey and Fuller (1981) for percentiles: Φ3

d→ 1
2B∗

τ (0).

The applicability of (14) in finite samples will be established by computer
experiments in Section 5. The intuition behind this claim is the following.
Under E(∆ xt) 6= 0, the process xt follows one common linear time trend
and K stochastic I(1) trends. The linear trend dominates one stochastic
trend,

xt = x0 + d t + I(1)
= Op(1) + Op (T ) + Op (T 0.5).

Therefore, in case of linear trends it holds the following asymptotically:
testing for θµ = 0 in (12) with θµ being of length K amounts to the same
as if we tested for δ = 0 and θτ = 0 where θτ was only (K − 1)-dimensional
in (13).

Examples of critical values of the distributions encountered in this section
are given in Table 1.
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Table 1: Critical values

BDMµ(K) BDMτ (K − 1) Bµ(K) B∗τ (K − 1)

K = 1

1 % -3.78 -3.96 15.22 16.54

5 % -3.19 -3.41 11.41 12.50

10 % -2.89 -3.13 9.54 10.68

K = 2

1 % -4.06 -4.27 18.68 19.30

5 % -3.48 -3.69 14.38 15.24

10 % -3.19 -3.39 12.22 13.22

K = 3

1 % -4.46 -4.51 21.43 22.50

5 % -3.74 -3.91 17.18 18.03

10 % -3.42 -3.62 14.93 15.85

K = 4

1 % -4.57 -4.72 24.63 25.46

5 % -3.97 -4.12 19.69 20.66

10 % -3.66 -3.82 17.38 18.45

K = 5

1 % -4.70 -4.89 27.11 28.51

5 % -4.27 -4.30 22.48 23.33

10 % -3.82 -4.00 19.87 20.76

Note: The asymptotic critical values of BDMµ(K) and BDMτ (K−1) are taken from

Banerjee et al. (1998, Table I), except for BDMτ (0) from Fuller (1996, Table 10.A.2).

The percentiles of Bµ(K) and B∗τ (K− 1) are from Tables B.2 and B.5 in Boswijk (1994),

except for B∗τ (0). The latter quantiles are twice the values found in Dickey and Fuller

(1981, Table VI).

5. Monte Carlo Evidence

For simulation purposes we generated a bivariate process (K = 1) as
(

∆yt

∆xt

)
=

(
−γ1

γ2

) (
yt−1− xt−1

)
+

(
1
2

1
4

0 1
2

)(
∆yt−1

∆xt−1

)
+ εt , (15)

εt ∼ iiN
((

0

0

) (
1 ρ

ρ 1

))
, t = 1, 2, . . . , T . (16)

We consider the conditional error-correction regression,

∆yt = ĉ + γ̂ yt−1 + θ̂ xt−1 + α̂1 ∆yt−1 + φ̂0∆xt + φ̂1 ∆xt−1 + ε̂t, (17)
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as well as the unconditional one without contemporaneous ∆xt:

∆yt = c̃ + γ̃ yt−1 + θ̃ xt−1 + α̃1 ∆yt−1 + φ̃1 ∆xt−1 + ε̃t. (18)

Clearly, the unconditional regression (18) is only appropriate when ρ =
0; when ρ 6= 0, however, the inclusion of ∆xt is required to account for
simultaneous correlation.

Throughout we present rejections at the nominal 5 % level that are ob-
tained from 50000 replications. All programming2 was done in Ox Profes-
sional 3.30.

Table 2: Asymptotically normal cointegration vector

T = 100 T = 250 T = 1000

γ1 = 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

γ2 = 0 Conditional regression (17)

ρ = 0 11.4 9.0 7.8 7.2 6.4 6.1 5.5 5.3 5.2

ρ = 0.3 11.1 9.1 8.0 7.3 6.5 6.2 5.6 5.3 5.3

ρ = 0.6 11.1 8.8 8.3 7.3 6.4 6.1 5.7 5.3 5.2

γ2 = 0 Unconditional regression (18)

ρ = 0 10.9 8.5 7.4 7.0 6.2 5.9 5.5 5.3 5.1

ρ = 0.3 12.2 10.2 9.4 9.2 8.3 8.1 7.5 7.3 7.4

ρ = 0.6 17.8 16.0 15.4 15.1 14.2 14.1 13.8 13.9 13.7

γ2 = γ1 Conditional regression (17)

ρ = 0 22.6 20.9 21.0 19.0 18.3 18.4 17.9 17.6 17.5

ρ = 0.3 18.1 16.9 16.3 15.1 14.6 14.6 13.8 13.8 13.9

ρ = 0.6 13.7 12.7 12.5 11.4 10.7 10.5 10.2 10.0 10.1

Note: The true DGP is (15) with (16). We report the frequency of rejection of a

two-sided test as in Corollary 1 at the 5 % significance level.

Table 2 contains results for the asymptotically normal cointegration esti-
mator β̂EC , see Corollary 1. For the upper and the middle panel we assume
γ2 = 0 and γ1 ∈ {0.2, 0.4, 0.6}. With growing γ1 (i.e. error-correction ad-
justment) the experimental size improves. For T = 100 the test is oversized.
With T = 250, the experimental level of the conditional regression is fairly
close to the nominal one, and the correspondence is very good for T = 1000.
Moreover, for ρ > 0, Assumption 2 (ii) is violated because ∆xt and the re-
gression error are correlated. This turns the unconditional regression (18)
invalid, while the conditional regression is not affected by ρ. This supports
the proposal by Pesaran and Shin (1998) to add (lags of) ∆xt in case that
Assumption 2 (ii) does not hold in order to maintain limiting normality,
cf. Remark B. In the lower panel Assumption 1 (iii) is violated because

2 We thank Vladimir Kuzin for computational help.
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γ2 = γ1 6= 0. In this situation ∆xt is not exogeneous as proven by Jo-
hansen (1992). Therefore, even the conditional regression does not result in
a limiting N (0, 1) distribution as is well demonstrated for T = 1000.

Table 3: Cointegration tests

γ = 0 γ1 (γ2 = 0) γ2 (γ1 = 0) γ1 = γ2

H0 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2

Conditional regression (17)

ρ = 0

ECtµ 6.1 30.0 75.4 99.6 2.7 1.5 0.7 22.1 48.1 79.8

ECFµ 6.4 29.2 71.6 99.2 5.5 4.3 4.1 20.4 45.4 80.0

ρ = 0.3

ECtµ 5.7 26.2 68.0 98.9 6.6 7.7 8.5 32.0 67.7 94.0

ECFµ 6.4 23.9 64.0 98.4 8.6 10.0 13.1 30.6 66.6 94.1

ρ = 0.6

ECtµ 5.8 25.6 67.3 98.8 14.6 26.7 45.1 48.2 87.3 99.2

ECFµ 6.7 23.3 63.0 98.2 17.7 31.3 51.1 47.4 86.9 99.2

Unconditional regression (18)

ρ = 0

ECtµ 6.0 30.4 76.1 99.6 2.7 1.7 0.7 24.1 55.1 89.0

ECFµ 6.4 29.1 72.3 99.3 5.7 4.3 4.2 22.0 51.8 88.4

ρ = 0.3

ECtµ 5.5 22.9 60.8 96.3 2.3 1.4 0.7 16.1 35.7 70.8

ECFµ 6.8 21.8 58.1 95.9 5.6 4.5 3.9 17.0 37.3 72.6

ρ = 0.6

ECtµ 4.4 13.6 34.1 76.0 1.8 1.1 0.5 8.0 17.0 39.7

ECFµ 6.4 15.3 38.7 80.9 5.5 4.5 4.1 12.4 24.4 48.4

Note: The true DGP is (15) with (16) and T = 100. We report the frequency of

rejection at the 5 % significance level.

Table 3 displays findings for the cointegration tests ECt and ECF with
T = 100 only. In the column “γ = 0” it holds γ1 = γ2 = 0, and the
null hypothesis is true. The next three columns assume γ2 = 0 and γ1 ∈
{0.05, 0.1, 0.2}. The power increases with γ1, and the t and F tests behave
very similarly. The conditional regression including ∆xt produces tests that
are robust with respect to ρ, while (18) results in dramatic power losses as ρ
grows. In the next three columns (γ1 = 0, γ2 ∈ {0.05, 0.1, 0.2}) we do have
cointegration but yt does not adjust. Hence, the unconditional regression
provides no power, while (17) still allows to reject, as long as ρ 6= 0. Only
here it turns out that the F type test is slightly more powerful. In the last
three columns Assumption 1 (iii) does not hold (γ2 = γ1 ∈ {0.05, 0.1, 0.2}).
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If ρ 6= 0, this increases the power of the tests based on conditional regressions
compared with γ2 = 0, while in case of unconditional regressions the power
is reduced.

Finally, Table 4 supports our Conjecture. Here, we simulated (K + 1)-
dimensional random walks (yt, x

′
t)
′ independent of each other. Moreover, xt

contains a drift, which is identical in all components:

xt =




1
...

1


 t +

t∑

i=1

εi.

Application of ECFµ from (17) with critical values from B∗τ (K−1) provides
a valid approximation as T increases.

Table 4: Conjecture

T = 100 T = 250 T = 1000

K = 1 K = 2 K = 3 K = 1 K = 2 K = 3 K = 1 K = 2 K = 3

1 % 1.35 1.84 1.89 1.06 1.49 1.46 0.98 1.34 1.26

5 % 5.40 6.18 6.60 5.17 5.80 5.77 4.89 5.50 5.47

10 % 10.37 11.45 11.78 9.96 11.04 11.18 9.72 10.70 10.53

Note: The true DGP is a random walk with drift. We report rejection frequencies of

the F test applied to (17) with critical values from B∗τ (K − 1).

6. Summary

We reviewed different parameterizations of the autoregressive distributed
lag (ADL) model and stressed the equivalence with error-correction (EC)
mechanisms. This motivates the following finding: the cointegrating vector
and the residuals computed from the EC model are numerically identical
to the ones constructed from the ADL regression. Therefore, under the ex-
ogeneity conditions of Pesaran and Shin (1998) the limiting normality of
the estimated cointegrating vector carries over to the EC model. Next, we
review t-type and F-type test for the null hypothesis of no cointegration
proposed in an EC framework by Banerjee, Dolado and Mestre (1998) and
Boswijk (1994), respectively. Hassler (2000) treated the t-type test in the
presence of linear trends in the data when regressions are run without de-
trending. Here, we treat the F-type test in the same situation. We refrain
from proving the limiting distribution but support a conjecture by means
of simulation evidence instead.

The main results of our Monte Carlo study are the following. First, in
most cases the the t-type cointegration test is just as powerful as the F-type
one. Second, we investigate the case that is of particular interest in applied
work where ∆xt is correlated with the regression error. In this situation,
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the conditional regression (including contemporaneous ∆xt as regressor)
still provides valid inference about the cointegration vector relying on the
normal approximation. For this result to hold true it is crucial that ∆xt is
exogenous in the sense that it does not adjust to past equilibrium deviations.
Moreover, cointegration tests from the conditional regression are more pow-
erful than those from unconditional ones. A general finding hence is that the
conditional error-correction regression outperforms the unconditional one.
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