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In other words, when(u,u(—N),---,u(—1)) belongs tol’, Autoregressive Model Order Selection by a Finite Sample
asymptotically periodic inputs produce asymptotically periodic out-  Estimator for the Kullback—Leibler Discrepancy
puts with the same period. The proof of this theorem makes use of
a contraction-mapping fixed-point argument. P. M. T. Broersen and H. E. Wensink

C. Quadratic Filters Abstract—T he finite sample information criterion (FSIC) is introduced
The techniques used in our omitted proofs are also useful 4a an estimator for the Kullback—Leibler discrepancy of an autoregressive

connection with related problems that are “more nonlinear.” [fime series. It is derived especially for order selection in finite samples,
' . where model orders are greater than one tenth of the sample size. It uses a

E)artlcula.r, reIaEed results are given in [9] f.or. the d'screte't'm@\eoretical expression for the ratio between the squared prediction error
quadratic filter” whose outpuy(0),y(1),- - - satisfies and the residual variance as the penalty factor for additional parameters
in a model. This ratio can be found with the finite sample theory for
N N autoregressive estimation, which is based on empirical approximations

y(n) = aiuln — i) + biy(n — i for the variance of parameters. It takes into account the different

y(n) Z ' Z iyl ) number of degrees of freedom that are available effectively in the various

=0 . =t algorithms for autoregressive parameter estimation. The performance
N N . = 8 LU
) . . of FSIC has been compared with existing order selection criteria in
+ Z Z cigy(n —i)y(n = j), n >0 (3  simulation experiments using four different estimation methods. In finite
i=1g=1 samples, the FSIC selects model orders with a better objective quality for
all estimation methods.
in which thea;, b;, and¢; ; are real coefficientsy(0),w(1),--- is
the input sequencg(—N),---,y(—1) andu(—N),---,u(—1) are I. INTRODUCTION

initial values, andV is a positive integer. The initial values and the . L .
elements of the inout and output sequences are real numbers Model order selection has been a topic in time series for more
P p q ’ atT]an two decades. The problem is best characterized by the difference

(1). In [10], conditions are presented under which bounded Ir]pmsbgtween the residual variance and the prediction error. The residual

quadratic filters produce bounded outptifBhere too, it is assumed . - A . S o
L variance is minimized in estimation, and it will always decrease
that the initial values of the output are zero. In [9], we show that . s
when more parameters are estimated, whereas the unknown prediction

the condition concerning initial values is not needed in the sense - S
error reaches a minimum when all significant parameters have been

that small values of the magnitudes of the initial conditions can be - Lo .
. o ncluded in the model, and it will increase for higher model orders.
accommodated by making a small reduction in the bound on t

. s ) . . o any criteria for order selection are transformations of the residual
allowed inputs. More significantly, in [9], we give simple conditions _ . . : o -
. . 2 . variance: AIC [1], consistent criteria [2], [3], and finite sample
(on the coefficients, input, and initial values) under which (3) has thee uivalents for those criteria [4]. The minimum description length
additional stability properties that ii)—iv) of Section | are met. ; ) P g

(MDL) criterion is equivalent with some consistent criteria [5]. Finite
sample criteria are necessary if the rati@V of model order and
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Il. FINITE SAMPLE THEORY log N [2], which is equal to MDL [5], and a minimal consistent
An autoregressive process of ord&Tis given by the parameters criterion with penalty2 log log N [3] followed. Those asymptotically
l.ai.---ax and independent, identically distributed zero mean if2@sed criteria can be described together as a generalized information
novationsz,, with variances? and with finite fourth-order moments. cfiterion GIQp. a) with o as penalty factor
An AR(p) model of an arbitrary ordep can be fitted to the data 2 p
5 . GIC(p, ) = log S7(} —. 3
generated by the ARY) process; the estimate; constitute the (p,a) = log S7(p) + N 3)

(p + 1) x 1 parameter vectoip. The residual varianc&”(p) is  Another correction to the AIC criterion withy = 2 is AICc,
defined as the mean square fit of the model to the data from whighich has been derived from the asymptotigdl distribution and
the parameters have been estimated. The forecasting quality Oéi\?es o = 2N/(N — p — 2) [7]. A generalized form of AIG is
model is expressed by the squared error of predictiotpREThe  found directly from the correspondence between the definitions of
value of 5*(p) decreases for each parameter included in the modgly|iback—Leibler information and maximum likelihood estimation
whereas the PE) of a model will only improve as long as the extrafor Gaussian processes [8]. It utilizes a relation between the log
included parameters are significant. likelihood L.. of dataz, that are used to estimate the parameters
In finite samples, where interesting model orders are greater thgiy the log likelihoodL, of an independent realizatiop, with the
aboutN/10, estimation results turn out to depend on the estimatigfyme statistical properties. The Kullback-Leibler discrepahcis
method [4]. Basic elements are the finite sample variance coefficiegtstined as the expectation ef log L, (@, 52), where the expectation
v;.., wherei denotes the model order, and the dot indicates one gftaken with respect to the true valuesiéfand the parameter vector.

four estimation methods: As the independent realization will not be available, an estimate of
1) Yule-Walker (YW) method; A will be made with the given data,,. Suppose thafV normally
2) method of Burg; distributed datac,---,xx are available with the estimaté for
3) least squares method that minimizes forward and backwatw parameters anéf® for the residual variance. Then, the relation
residuals (LSFB); between the likelihood of,, andz,, is given by [8]
4) least squares method that minimizes forward residuals only .
(LSF). —2log Ly(a,é”)
N
The v;. replace the asymptotical variance/ N for parameters . 5 22 fN2 A2 a7
S . . ) = —2log L.(a, n = Un - N. 4
estimated in a white noise process. They can be considered as og L.(a.0 )+;(y i)' /e @)
expressions for the degrees of freedom as a function of the model o ) i )
orderi and of the estimation method and are given by This relation is valid for order& e}nd hlgher because true parameters
zero can be added beyond ord€r The first term on the right-hand
viyw = (N —i)/N(N +2) side can be written as
viure =1/(N +1—1) —2log L.(4,6%) = Nlog 27 + N log 6
visFB =1/(N + 1.5 — 1.5¢) N
Vi LSF :1/(.N+2—2i). (1) + Z(«ln _i'n)z/a'z
n=1
For all methodsyy,. is defined to bel /N if the mean of the obser- = Nlog2x + Nlog” + N.

vations is subtracted; otherwise, it is zero. The variance coefficients

v;.. are approximations for the variance of the last parameter in aRiS term can be approximated by substituting the residual variance
AR(i) model estimated in a white noise process. Likewise, they afé (K) for 6. A new approximation for the expectation for the
good approximations for the variance of the last parameter in all Afecond right-hand term in (4) can be found with the finite sample
processes above the true order. Fonuch smaller thatV, all v; . are  theory. Using only the first term of a Taylor expansion approximates
aboutl /N, which is the single value that is found in the asymptoticdhe expectation of a quotient of two stochastic variables by the

theory for all parameters and all estimation methods. quotient of their expectations. Hence, the numerator becomes the
Simulation results and theoretical support has been given for tgpectation of the prediction error, and the denominator yields the
main formulae of the finite sample theory [4] for orders K residual variance; therefore, substitution of (2) gives
p N K 140
2 | _ 2 S 5 2,2 ~ 7,
E{S°(p)} =0: lr[()(l —v;.) E{Z(yn Un) /G } ~N 1:[0 T
2
- Together, the expectation of (4) can be approximated with
E{PEp)) =02 [[(1+v:0) @ P @ PP
i=o E{-2log L,(a,6”)}
where foru; . the expressions defined in (1) are substituted, depending i ) Ky v .
on the estimation method. Those multiplicative formulae give an ac- ~ Nlog2m + Nlog §7(k) + N T
curate description of the residual variance and of the prediction error =0 "

for order K* and higher in simulations of autoregressive processeSubtracting from this estimated Kullback—Leibler discrepancy the

The accuracy of (2) is very good if the time delay with significangonstantsN log 2z 4+ N, dividing by N, and generalizing to an

correlation is not greater than about half the observation length arbitrary model ordep, we define the finite sample information

The products in (2) reduce to the values of the asymptotical theaspiterion for autoregressive order selection as:

1—-p/N andl + p/N, respectively, ifp is less thanV/10. oy
Vs,

1—wv;,.

FSIQ(p) = log S*(p) + - 1. (5)

IIl. THE FINITE SAMPLE INFORMATION CRITERION FSIC(p) i=0

Elements of information theory have been used by Akaike to deriBy subtracting 1 in (5), an asymptotical series expansion of FSIC
the order selection criterion AIC. A consistent criterion with penaltgpproaches AIC folN — oc andp <N/10.
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FSIC for 4 estimation methods, AIC and AICC TABLE |

3 T T T T PERCENTAGE OF SELECTED TRUE ORDER /' AND AVERAGE

= MobEL ERROR M E(p) WiTH DIFFERENT SELECTION

CRITERIA FOR AN AR(2) Process WiTHa; = 0.56 AND

FSIC-YW i # as = 0.4, N = 30,L = 15, AVERAGE OF 5000 SMULATION RUNS

FSIC-BURG ; g v

FSIC-LSFB oy ¢ YW BURG LSFB LSE

FSIC-LSF I r;‘ * ME P K ME DK ME %K ME %K

AICC i = ¢ AIC=GIC(p,2) 37 614 156 398 313 235 1617 5.5

ot AlC g 0 o & FIC(p,2) 4.1 574 8.6 520 105 468 814 301
e 0 o OO GIC(p,2loglogN} 38 620 109 503 235 354 1556 9.0

R © MDL=GIC(p,logN) 47 541 59 564 115 498 1288 18.1

o ks ¢ AlICc(p) 39 594 44 594 84 556 324 375

FSIC(p) 36 618 43 619 44 581 50 536

S Ee s
[ = B2 )

Table | gives a comparison between FSIC, AlGand GIGp, «)
w**"“‘ for N = 30 in an AR(2) process with. = N/2 as the maximum
ﬂ,,,w** candidate order. The first column for every estimation method gives
the model error ME as a measure for the predictive accuracy of
i §gw* ] the selected model. The second column gives the percentage of
E@ﬁggﬁ » simulation runs’% K" in which the true order of the data generating
# process was selected. In both columns, the best result for each method
opsl® L L ! L is always found with FSIC, which demonstrates that the good quality
0 0.1 0.2 0.3 0.4 05 . ) . . .

relative model order b/ N of FSIC is established Wlth any sgnsmle way of comparison. As

could be expected from Fig. 1, AIC is second best for Yule—Walker,

Fig. 1. Penalty for FSIC with four estimation methods and for AIC anénd AIC: is second best for Burg. This conclusion has also been

penalty on log(RES)
&
jm
<
<>
<

—-
T
0w
[
=2

AICc, as a function of the relative model order p/N. found in simulations for many different processes with different
numbers of observations. The differences between FSIC and the other
IV. SIMULATION RESULTS AND DISCUSSION methods become smaller if the maximum candidate ofder made

A first investigation of the properties of FSIC can be made blgss than 15 in this example and disappear almost completely for
comparing the penalt¥p/N of AIC with those of FSIC for the four L equal to 2 or 3. The result for FSIC remains almost the same
estimation methods for which the . are given in (1). The penalty by taking as maximum order 8 instead of 15. AlGor the Burg
in Fig. 1 is defined as what is added to I6§(p) in the selection method was also not sensitive for the maximum candidate order.
criterion; thereforeqp/N for GIC(p, ) in (3). It has been computed Yule—Walker estimates are only slightly sensitive to that maximum
for N = 100, but it is only a function ofp/N effectively. It is seen order because the finite sample variance coefficients (1) are smaller
that the penalty of FSIC for the Yule-Walker method is very similahan1/N. FIC(p,2) is slightly worse than the asymptotical AIC or
to that of AIC. The penalty function determines which order will b&SIC(p, 2) for the Yule—Walker method but much better for all other
selected; therefore, the performance of AIC and FSIC will be similanethods. The same pattern is found in a comparison of( B
for Yule—Walker estimation. Likewise, FSIC has some similarity withvith FIC(p, «) for different values for the penalty like 3, 4,
AIC for the Burg method. For the least squares methods LSFB aditbg log N or log IV, which is 3.40 forN = 30. Therefore, the
LSF, higher penalty functions are found. It is clear that the probabilifinite sample criteria [4] improve the performance in comparison
of selecting a very high order will be much greater for AIC thamvith their asymptotical equivalents, but they remain sensitive to the
for the criteria FSIC and AIG that have been derived from thehighest candidate order for selection. Table | gives the methods in
finite sample Kullback—-Leibler information. The higher penalties fahe sequence of increasing,. and decreasing quality. All criteria
increasing model orders of the latter methods create an insensitiv@/C(p, «) gave for all methods a worse result than FSIC if higher
of the selection result for the maximum candidate order for selectionaximum orders are candidate for selection. Therefore, FSIC has
whereas GICp, «) with penaltyap is sensitive for that maximum, at some advantages. The finite sample selection result is the best for each
least for values of: in the range from 1-5. All six penalty functions in estimation method, and it is independent of the maximum candidate
Fig. 1 are very close for relative orderéN less than 0.1. Differences order that is considered, which makes the selection result independent
are moderate for relative orders less than 0.2 and deviate more dbrthe experimenter’s prejudice.
still higher orders. The performance of FSIC, AlCand AIC will Of course, a maximum candidate order can be prescribed for
almost be the same if the maximum candidate model order is less tigamputational reasons. Although FSIC requires no maximum order,
aboutN/10. According to the finite sample formulae, the differencepecific limits exist for each method of estimation. It is, as an
between FSIC and AIC is the greatest for the LSF estimation meth@kample, impossible to estimate more th&i{2 parameters from

A quality measure for evaluation of the difference between criter@¥ observations with the LSF method. A simple and practical way to
is a normalized prediction error, which is denoted the model errdeal with those limits is to restrict order selection to those candidate

ME(p) and defined as [9] orders for whichv; . is less than 0.25. This value for the finite sample
PE(p) a R(p)a, — o2 variance coefficient agrees with a standard deviation of 0.5 for the
ME(p) = N{—2 — 1} = \piz”“ (6) last parameter, which has a possible range-dfto +1. Estimating
oz i parameters with so much priori inaccuracy will not contribute

R(p) is the(p + 1) x (p + 1) submatrix of the infinite dimensional significantly to the accurate description of the process.

Toeplitz matrixR that describes the true covariance of the process thatTable Il gives a comparison of ME for models selected with AIC,
generates the data and is known only in simulations. (phe1) x 1 MDL, and FSIC for a number of different AR(4) processes that have
parameter vectag, is estimated in each run. The multiplication withbeen generated with four reflection coefficiegtdhat are equal in

N gives the asymptotical value ME) = p for p > K independent magnitude; the parameters for the AR(4) processes are determined
of the sample sizeV. with the Levinson recursion. For high negative valuesfthe
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TABLE I
A/IE(p) FOR SELECTION WITH AIC, MDL, AND FSIC FOR YULE-WALKER, BURG, LSFB, AND LSF ESTIMATES AS A FUNCTION OF 3.
N =30, L = 15, AVERAGE oF 2000 RUNs oF AR(4) PROCESSES WITHPARAMETERS COMPUTED FROM THEREFLECTION COEFFICIENTS — 3, 3, — 13, 3

Yw BURG LSFB LSE

B_AIC MDL FSIC AIC MDL FSIC AIC MDL FSIC AIC MDI  FSIC
-0.8 3004 3862 3005 1033 853 733 2143 9Ll 662 712.1 6269  80.1
-06 367 530 365 350 275 207| 578 384 225 305.6 2737 282
-0.4 14.5 19.9 142 233 174 135 403 243 134} 2250 1896 150
-0.2 5.8 5.8 58 16.4 7.3 6.5 322 123 65| 1669 1343 7.2

0 1.3 0.4 1.5 12.3 1.4 2.0] 285 59 2.0 1885 1387 2.6
0.2 55 5.6 54| 165 7.1 6.4 326 123 63| 1535 1184 6.7
0.4 8.1 11.6 8.0 18.7 108 7.8 352 185 8.0 1756 1517 9.3
06 212 256 211 197  10.6 8.0] 383 19.4 79| 2537 2283 9.9
0.8 179.6 1940 1795| 223 12.1 10.2| 514 265 94| 854.8 807.1 14.8
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in Table Il show that GICp, log V) has a higher ME value than FSIC

for all values|3| > 0.2. On the other side of the range, the lowest

penalty functions give the best resultZifME(p)] has the minimum

value for the highest order that is candidate for selection, because

GIC(p,0) with zero penalty will always select the highest order. Azimuth and Elevation Direction Finding

Finally, if the last parameter is very significant, the highest penalty Using Arbitrary Array Geometries
factor that does not lead to an underfitted model might be the best ) )
because it reduces the risk of overfit [9]. Apart from these artifacts, Tsung-Hsien Liu and Jerry M. Mendel

the performance of FSIC was always, for all estimation methods,
all sample sizes, all our simulated processes, and all our maximunAbstract—An ESPRIT-based algorithm is proposed to estimate the

candidate orders, better than or the same as the performance ofzifhuth and elevation angles of multiple independent sources. The algo-
GIC(p, o) for every value ofa. rithm uses cumulants and imposes no geometric constraint on the array.
’ Only one third of the hardware is needed for our algorithm as compared
with covariance-based two-dimensional (2-D) ESPRIT. Our algorithm
can estimate azimuth and elevation angles of/ — 1 sources usingM
V. CONCLUDING REMARKS sensors. Simulation results show that for several array configurations,

. . L our algorithm works well.
The single order selection criterion FSIC performs the best for

all four autoregressive estimation methods. FSIC is almost equalptgrl‘_l‘_jef/gg;“:—"mmum’ cumulant, direction of arrival, elevation, ES-

AIC for Yule—Walker estimates and to A¥Cfor Burg. The finite ' '

sample theory extends the good performance of those two combi-
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