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In other words, when(u; u(�N); � � � ; u(�1)) belongs toU ,
asymptotically periodic inputs produce asymptotically periodic out-
puts with the same period. The proof of this theorem makes use of
a contraction-mapping fixed-point argument.

C. Quadratic Filters

The techniques used in our omitted proofs are also useful in
connection with related problems that are “more nonlinear.” In
particular, related results are given in [9] for the discrete-time
“quadratic filter” whose outputy(0); y(1); � � � satisfies

y(n) =

N

i=0

aiu(n� i) +

N

i=1

biy(n� i)

+

N

i=1

N

j=1

ci;jy(n� i)y(n� j); n � 0 (3)

in which theai; bi; and ci;j are real coefficients,u(0); u(1); � � � is
the input sequence,y(�N); � � � ; y(�1) andu(�N); � � � ; u(�1) are
initial values, andN is a positive integer. The initial values and the
elements of the input and output sequences are real numbers, as in
(1). In [10], conditions are presented under which bounded inputs to
quadratic filters produce bounded outputs.4 There too, it is assumed
that the initial values of the output are zero. In [9], we show that
the condition concerning initial values is not needed in the sense
that small values of the magnitudes of the initial conditions can be
accommodated by making a small reduction in the bound on the
allowed inputs. More significantly, in [9], we give simple conditions
(on the coefficients, input, and initial values) under which (3) has the
additional stability properties that ii)–iv) of Section I are met.
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Autoregressive Model Order Selection by a Finite Sample
Estimator for the Kullback–Leibler Discrepancy
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Abstract—The finite sample information criterion (FSIC) is introduced
as an estimator for the Kullback–Leibler discrepancy of an autoregressive
time series. It is derived especially for order selection in finite samples,
where model orders are greater than one tenth of the sample size. It uses a
theoretical expression for the ratio between the squared prediction error
and the residual variance as the penalty factor for additional parameters
in a model. This ratio can be found with the finite sample theory for
autoregressive estimation, which is based on empirical approximations
for the variance of parameters. It takes into account the different
number of degrees of freedom that are available effectively in the various
algorithms for autoregressive parameter estimation. The performance
of FSIC has been compared with existing order selection criteria in
simulation experiments using four different estimation methods. In finite
samples, the FSIC selects model orders with a better objective quality for
all estimation methods.

I. INTRODUCTION

Model order selection has been a topic in time series for more
than two decades. The problem is best characterized by the difference
between the residual variance and the prediction error. The residual
variance is minimized in estimation, and it will always decrease
when more parameters are estimated, whereas the unknown prediction
error reaches a minimum when all significant parameters have been
included in the model, and it will increase for higher model orders.
Many criteria for order selection are transformations of the residual
variance: AIC [1], consistent criteria [2], [3], and finite sample
equivalents for those criteria [4]. The minimum description length
(MDL) criterion is equivalent with some consistent criteria [5]. Finite
sample criteria are necessary if the ratiop=N of model order and
sample size is greater than 0.1 because for those model orders, the
empirical statistics of the AR parameters and model fit depend on the
estimation method. Another type of selection criterion that is adapted
to the estimation statistics is the predictive least squares (PLS)
criterion [6], which calculates an estimate for the true prediction
error by using only estimated models based on the past observed
values. However, that method of separating data for estimation and
for prediction requires many observations. It loses its accuracy for
finite samples, and it cannot be used if the maximum order is as
high asN=2: Small sample selection results have also given rise
to a corrected AIC criterion: AICC [7]. The correction term is an
asymptotical bias term in the derivation of the Kullback–Leibler
discrepancy.

In this correspondence, the Kullback–Leibler concept is combined
with the finite sample theory to define the finite sample information
criterion (FSIC). It uses an approximation for the ratio of prediction
error and residual variance. A study of the penalty as a function of the
model order reveals that FSIC is very similar to AIC for Yule–Walker
estimates and similar to AICC for Burg estimates. Typical simulation
examples will show the favorable properties of FSIC.
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II. FINITE SAMPLE THEORY

An autoregressive process of orderK is given by the parameters
1; a1; � � � aK and independent, identically distributed zero mean in-
novations"n with variance�2" and with finite fourth-order moments.
An AR(p) model of an arbitrary orderp can be fitted to the data
generated by the AR(K) process; the estimateŝaaaiii constitute the
(p + 1) � 1 parameter vector̂aaappp: The residual varianceS2(p) is
defined as the mean square fit of the model to the data from which
the parameters have been estimated. The forecasting quality of a
model is expressed by the squared error of prediction PE(p): The
value ofS2(p) decreases for each parameter included in the model,
whereas the PE(p) of a model will only improve as long as the extra
included parameters are significant.

In finite samples, where interesting model orders are greater than
aboutN=10, estimation results turn out to depend on the estimation
method [4]. Basic elements are the finite sample variance coefficients
vi;�, wherei denotes the model order, and the dot indicates one of
four estimation methods:

1) Yule–Walker (YW) method;
2) method of Burg;
3) least squares method that minimizes forward and backward

residuals (LSFB);
4) least squares method that minimizes forward residuals only

(LSF).

The vi;� replace the asymptotical variance1=N for parameters
estimated in a white noise process. They can be considered as
expressions for the degrees of freedom as a function of the model
order i and of the estimation method and are given by

vi;YW =(N � i)=N(N + 2)

vi;BURG =1=(N + 1� i)

vi;SFB =1=(N + 1:5� 1:5i)

vi;LSF =1=(N + 2� 2i): (1)

For all methods,v0;� is defined to be1=N if the mean of the obser-
vations is subtracted; otherwise, it is zero. The variance coefficients
vi;� are approximations for the variance of the last parameter in an
AR(i) model estimated in a white noise process. Likewise, they are
good approximations for the variance of the last parameter in all AR
processes above the true order. Fori much smaller thanN , all vi;� are
about1=N , which is the single value that is found in the asymptotical
theory for all parameters and all estimation methods.

Simulation results and theoretical support has been given for the
main formulae of the finite sample theory [4] for ordersp � K

EfS2(p)g =�2"

p

i=0

(1� vi;�)

EfPE(p)g =�2"

2

i=0

(1 + vi;�) (2)

where forvi;� the expressions defined in (1) are substituted, depending
on the estimation method. Those multiplicative formulae give an ac-
curate description of the residual variance and of the prediction error
for orderK and higher in simulations of autoregressive processes.
The accuracy of (2) is very good if the time delay with significant
correlation is not greater than about half the observation lengthN:
The products in (2) reduce to the values of the asymptotical theory
1� p=N and1 + p=N , respectively, ifp is less thanN=10:

III. T HE FINITE SAMPLE INFORMATION CRITERION FSIC(p)

Elements of information theory have been used by Akaike to derive
the order selection criterion AIC. A consistent criterion with penalty

log N [2], which is equal to MDL [5], and a minimal consistent
criterion with penalty2 log logN [3] followed. Those asymptotically
based criteria can be described together as a generalized information
criterion GIC(p; �) with � as penalty factor

GIC(p; �) = logS2(p) + �
p

N
: (3)

Another correction to the AIC criterion with� = 2 is AICC ,
which has been derived from the asymptotical�2 distribution and
gives � = 2N=(N � p � 2) [7]. A generalized form of AICC is
found directly from the correspondence between the definitions of
Kullback–Leibler information and maximum likelihood estimation
for Gaussian processes [8]. It utilizes a relation between the log
likelihood Lx of dataxn that are used to estimate the parameters
and the log likelihoodLy of an independent realizationyn with the
same statistical properties. The Kullback–Leibler discrepancy� is
defined as the expectation of�2 logLy(âaa; �̂2), where the expectation
is taken with respect to the true values of�2 and the parameter vector.
As the independent realization will not be available, an estimate of
� will be made with the given dataxn: Suppose thatN normally
distributed datax1; � � � ; xN are available with the estimatêa for
the parameters and̂�2 for the residual variance. Then, the relation
between the likelihood ofyn andxn is given by [8]

�2 logLy(â; �̂
2)

= �2 logLx(â; �̂
2) +

N

n=1

(yn � ŷn)
2=�̂2 �N: (4)

This relation is valid for ordersK and higher because true parameters
zero can be added beyond orderK: The first term on the right-hand
side can be written as

�2 logLx(â; �̂
2) =N log 2� +N log �̂2

+

N

n=1

(xn � x̂n)
2=�̂2

=N log 2� +N log �̂2 +N:

This term can be approximated by substituting the residual variance
S2(K) for �̂2: A new approximation for the expectation for the
second right-hand term in (4) can be found with the finite sample
theory. Using only the first term of a Taylor expansion approximates
the expectation of a quotient of two stochastic variables by the
quotient of their expectations. Hence, the numerator becomes the
expectation of the prediction error, and the denominator yields the
residual variance; therefore, substitution of (2) gives

E

N

n=1

(yn � ŷn)
2=�̂2 � N

K

i=0

1 + vi;�
1� vi;�

:

Together, the expectation of (4) can be approximated with

Ef�2 logLy(â; �̂
2)g

� N log 2� +N logS2(k) +N

K

i=0

1 + vi;�
1� vi;�

:

Subtracting from this estimated Kullback–Leibler discrepancy the
constantsN log 2� + N , dividing by N , and generalizing to an
arbitrary model orderp, we define the finite sample information
criterion for autoregressive order selection as:

FSIC(p) = logS2(p) +

p

i=0

1 + vi;�
1� vi;�

� 1: (5)

By subtracting 1 in (5), an asymptotical series expansion of FSIC
approaches AIC forN ! 1 and p<N=10:
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Fig. 1. Penalty for FSIC with four estimation methods and for AIC and
AICC , as a function of the relative model order p/N.

IV. SIMULATION RESULTS AND DISCUSSION

A first investigation of the properties of FSIC can be made by
comparing the penalty2p=N of AIC with those of FSIC for the four
estimation methods for which thevi;� are given in (1). The penalty
in Fig. 1 is defined as what is added to logS2(p) in the selection
criterion; therefore,�p=N for GIC(p; �) in (3). It has been computed
for N = 100, but it is only a function ofp=N effectively. It is seen
that the penalty of FSIC for the Yule–Walker method is very similar
to that of AIC. The penalty function determines which order will be
selected; therefore, the performance of AIC and FSIC will be similar
for Yule–Walker estimation. Likewise, FSIC has some similarity with
AICC for the Burg method. For the least squares methods LSFB and
LSF, higher penalty functions are found. It is clear that the probability
of selecting a very high order will be much greater for AIC than
for the criteria FSIC and AICC that have been derived from the
finite sample Kullback–Leibler information. The higher penalties for
increasing model orders of the latter methods create an insensitivity
of the selection result for the maximum candidate order for selection,
whereas GIC(p; �) with penalty�p is sensitive for that maximum, at
least for values of� in the range from 1–5. All six penalty functions in
Fig. 1 are very close for relative ordersp=N less than 0.1. Differences
are moderate for relative orders less than 0.2 and deviate more for
still higher orders. The performance of FSIC, AICC , and AIC will
almost be the same if the maximum candidate model order is less than
aboutN=10: According to the finite sample formulae, the difference
between FSIC and AIC is the greatest for the LSF estimation method.

A quality measure for evaluation of the difference between criteria
is a normalized prediction error, which is denoted the model error
ME(p) and defined as [9]

ME(p) = N
PE(p)

�2"
� 1 = N

âaaTpR(p)âaap � �2"
�2"

: (6)

R(p) is the(p+ 1)� (p+ 1) submatrix of the infinite dimensional
Toeplitz matrixR that describes the true covariance of the process that
generates the data and is known only in simulations. The(p+1)�1
parameter vector̂aaap is estimated in each run. The multiplication with
N gives the asymptotical value ME(p) = p for p � K independent
of the sample sizeN:

TABLE I
PERCENTAGE OFSELECTED TRUE ORDERK AND AVERAGE

MODEL ERROR ME(p) WITH DIFFERENT SELECTION

CRITERIA FOR AN AR(2) PROCESS WITHa1 = 0:56 AND

a2 = 0:4; N = 30; L = 15, AVERAGE OF 5000 SIMULATION RUNS

Table I gives a comparison between FSIC, AICC , and GIC(p; �)
for N = 30 in an AR(2) process withL = N=2 as the maximum
candidate order. The first column for every estimation method gives
the model error ME as a measure for the predictive accuracy of
the selected model. The second column gives the percentage of
simulation runs%K in which the true order of the data generating
process was selected. In both columns, the best result for each method
is always found with FSIC, which demonstrates that the good quality
of FSIC is established with any sensible way of comparison. As
could be expected from Fig. 1, AIC is second best for Yule–Walker,
and AICC is second best for Burg. This conclusion has also been
found in simulations for many different processes with different
numbers of observations. The differences between FSIC and the other
methods become smaller if the maximum candidate orderL is made
less than 15 in this example and disappear almost completely for
L equal to 2 or 3. The result for FSIC remains almost the same
by taking as maximum order 8 instead of 15. AICC for the Burg
method was also not sensitive for the maximum candidate order.
Yule–Walker estimates are only slightly sensitive to that maximum
order because the finite sample variance coefficients (1) are smaller
than1=N: FIC(p; 2) is slightly worse than the asymptotical AIC or
GIC(p; 2) for the Yule–Walker method but much better for all other
methods. The same pattern is found in a comparison of GIC(p; �)
with FIC(p; �) for different values for the penalty� like 3, 4,
2 log logN or logN , which is 3.40 forN = 30: Therefore, the
finite sample criteria [4] improve the performance in comparison
with their asymptotical equivalents, but they remain sensitive to the
highest candidate order for selection. Table I gives the methods in
the sequence of increasingvi;� and decreasing quality. All criteria
GIC(p; �) gave for all methods a worse result than FSIC if higher
maximum orders are candidate for selection. Therefore, FSIC has
some advantages. The finite sample selection result is the best for each
estimation method, and it is independent of the maximum candidate
order that is considered, which makes the selection result independent
of the experimenter’s prejudice.

Of course, a maximum candidate order can be prescribed for
computational reasons. Although FSIC requires no maximum order,
specific limits exist for each method of estimation. It is, as an
example, impossible to estimate more thanN=2 parameters from
N observations with the LSF method. A simple and practical way to
deal with those limits is to restrict order selection to those candidate
orders for whichvi;� is less than 0.25. This value for the finite sample
variance coefficient agrees with a standard deviation of 0.5 for the
last parameter, which has a possible range of�1 to +1: Estimating
parameters with so mucha priori inaccuracy will not contribute
significantly to the accurate description of the process.

Table II gives a comparison of ME for models selected with AIC,
MDL, and FSIC for a number of different AR(4) processes that have
been generated with four reflection coefficients� that are equal in
magnitude; the parameters for the AR(4) processes are determined
with the Levinson recursion. For high negative values of�, the



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 7, JULY 1998 2061

TABLE II
ME(p) FOR SELECTION WITH AIC, MDL, AND FSIC FOR YULE–WALKER, BURG, LSFB, AND LSF ESTIMATES AS A FUNCTION OF �.

N = 30; L = 15, AVERAGE OF 2000 RUNS OF AR(4) PROCESSES WITHPARAMETERS COMPUTED FROM THEREFLECTION COEFFICIENTS��, �, ��, �

effective correlation length is much longer than 30 observations;
therefore, the accuracy of the formulae (2) for residual variance and
prediction error will be poor. As a consequence, for� = �0:8,
models of the true order 4 also have a high ME: 260.3, 60.1, 60.5,
and 71,1 for Yule–Walker, Burg, LSFB, and LSF, respectively. Hence,
the quality of selected models also has to be poor. However, even
in those difficult circumstances, the performance of FSIC remains
good in comparison with AIC and MDL. The difference between
the criteria is smallest for Yule–Walker estimates and most important
for LSF estimates, as can be understood with the differences in the
penalty function of Fig. 1. Many more processes and selection criteria
have been included in the simulations, but the performance of FSIC
over a range of different processes, different sample sizes, and various
estimation methods is mostly the best and otherwise close to that.

Artifacts are found if the best model order is near zero or near
the highest candidate orderL or if the last parameter value is very
significant. Order zero is best in the AR(4) processes of Table II
for approximately�0:19<� < 0:19 because for those processes,
E[ME(0)] is less thanE[ME(4)], which is four, asymptotically.
Taking GIC(p;1) would give the best result then. The MDL columns
in Table II show that GIC(p; logN) has a higher ME value than FSIC
for all valuesj�j � 0:2: On the other side of the range, the lowest
penalty functions give the best results ifE[ME(p)] has the minimum
value for the highest order that is candidate for selection, because
GIC(p; 0) with zero penalty will always select the highest order.
Finally, if the last parameter is very significant, the highest penalty
factor that does not lead to an underfitted model might be the best
because it reduces the risk of overfit [9]. Apart from these artifacts,
the performance of FSIC was always, for all estimation methods,
all sample sizes, all our simulated processes, and all our maximum
candidate orders, better than or the same as the performance of all
GIC(p; �) for every value of�:

V. CONCLUDING REMARKS

The single order selection criterion FSIC performs the best for
all four autoregressive estimation methods. FSIC is almost equal to
AIC for Yule–Walker estimates and to AICC for Burg. The finite
sample theory extends the good performance of those two combi-
nations of selection criterion and estimation method to the LSF and
LSFB estimation methods as well, for which no particularly adapted
criterion had been reported. The finite sample theory clarifies why an
accurate estimate for the Kullback–Leibler discrepancy depends on
the estimation method. Moreover, it gives some theoretical basis for
the good performance of FSIC.
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Azimuth and Elevation Direction Finding
Using Arbitrary Array Geometries

Tsung-Hsien Liu and Jerry M. Mendel

Abstract—An ESPRIT-based algorithm is proposed to estimate the
azimuth and elevation angles of multiple independent sources. The algo-
rithm uses cumulants and imposes no geometric constraint on the array.
Only one third of the hardware is needed for our algorithm as compared
with covariance-based two-dimensional (2-D) ESPRIT. Our algorithm
can estimate azimuth and elevation angles ofM � 1 sources usingM
sensors. Simulation results show that for several array configurations,
our algorithm works well.

Index Terms—Azimuth, cumulant, direction of arrival, elevation, ES-
PRIT, VESPA.
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