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Abstract

We describe a simple but effective way of using multi-frame

targets to improve the accuracy of Artificial Neural Network-

Hidden Markov Model (ANN-HMM) hybrid systems. In this

approach a Deep Neural Network (DNN) is trained to predict

the forced-alignment state of multiple frames using a separate

softmax unit for each of the frames. This is in contrast to the

usual method of training a DNN to predict only the state of the

central frame. By itself this is not sufficient to improve accuracy

of the system significantly. However, if we average the predic-

tions for each frame - from the different contexts it is associated

with - we achieve state of the art results on TIMIT using a fully

connected Deep Neural Network without convolutional archi-

tectures or dropout training. On a 14 hour subset of Wall Street

Journal (WSJ) using a context dependent DNN-HMM system

it leads to a relative improvement of 6.4% on the dev set (test-

dev93) and 9.3% on test set (test-eval92).

Index Terms: product models, DNN-HMM, ANN-HMM

1. Introduction

The use of forced alignments from Gaussian Mixture Model

- Hidden Markov Models (GMM-HMM) for training neural

networks suffers from several drawbacks. Firstly, the quality

of the GMM-HMM system itself affects the quality of align-

ments generated. GMM-HMM systems make strong assump-

tions about the data generation process, such as independence

of acoustic frames given states, that are not quite true. As a

result the GMM-HMM model suffers from weird artifacts [1].

In figure 1 we present results of an experiment that shows that

forced alignments may not provide the best data to train neu-

ral networks with. For this, we used the forced alignments

from a simple GMM-HMM system and corrupted the bound-

aries between phone internal states. To be more specific, we

generated forced alignments from a tri-state monophone GMM-

HMM system trained on TIMIT. For each segment correspond-

ing to a phoneme we re-segmented the internal state boundaries

by distributing them equally within the three internal states.

Thus each segment between the start frame and the end frame

assigned to a phoneme was split into three subsegments, and

these were assigned the start state, the middle state and the end

state of the triphone HMM. The effect of this is to generate an

alignment that is smoothed out. Note that the amount of data

presented to the DNN models is the same in both cases - the

procedure does not augment that training data with different,

fuzzy examples each iteration and the smoothing is done only

at the start of the training. So it should not lead to better DNN

models through regularization. Figure 1 shows the results of

training models of different depths using the smoothed align-

ments for TIMIT. Clearly, the phone recognition accuracy of

the models trained with the corrupted boundaries is as good as,

if not actually better than that the models trained with the forced

alignments. The reason for these potential improvements is be-

yond the scope of this paper, but might be explained by more

robust estimates of rare states or better matching the equal tran-

sition probability of the HMM.

Figure 1: Phone and Word Error rates (PER, WER) obtained with

models trained on correct and smoothed alignments

.

It has been shown that discriminative training of GMM-

HMMs leads to qualitatively different type of forced alignments

that can lead to improved phone accuracy without improvding

the frame classification error [2]. Gillick [2] suggests that this

must mean that discriminative training’s (they used MPE) ‘ben-

efit only appears across sequences of frames’. It is natural to

ask if neural networks trained even on forced alignments (not

just in discriminative training) could leverage some sequential

information.

Another main drawback of this neural network training

for ANN-HMM systems is that each data case only provides

log2 M bits of information through the state labels (where M is

the number of distinct states). While this drawback is shared by

all classification algorithms, speech is a very structured modal-

ity and this structure is ignored in the neural network training.

Recurrent neural network methods trained on forced alignments

(such as [3, 4]) do not suffer from this problem since the entire

sequence of targets is trained together and thus structure outputs

are implicitly modelled by these methods.
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Figure 2: Auto-regressive product model for speech recognition. Left: During training the neural network uses an input context of K′

at each time point t to predict all the states within a context of K around t. In this example K,K′ = 2. Right: During decoding the

autoregressive scores for time point t from all contexts is averaged.

In this paper we present a method that attempts to incor-

porate these insights into neural network training from forced

alignments. We train a neural network to predict the phone

states of all the frames within a context window of a central

frame using the acoustic data around the same central frame

with the same (or larger) context window as input. At test time

we take a geometric average (product model) of the predictions

for each frame from all the acoustic contexts that model the state

of that frame in their output layer. Using this method we achieve

state of the art results on TIMIT using a vanilla fully connected

DNN - without any special techniques such as Convolutional

neural network architectures or dropout training [5, 6, 7]. On a

14 hour subset of WSJ using a context dependent DNN-HMM

system it leads to a relative improvement of 6.4% on the dev set

(test-dev93) and 9.3% on test set (test-eval92).

Our approach to predicting multiple frames of outputs is

hardly the first one. Recently Vanhoucke [8] trained a DNN

to predict the output labels for multiple frames. However, no

averaging of predictions was performed - instead the method

was used to speed up decoding by performing a forward pass

through the DNN’s at a slower frame rate. Product models are

not new to the hybrid speech recognition community either. Sim

[9] shows an interesting application of product models to cross-

lingual phone recognition by training a phone recognizer for

English phones using a product model of ANN-HMM recogniz-

ers in Czech, Hungarian and Russian. Our approach is different

from this in that we form a product from the same model ap-

plied convolutionally. In addition, at least for this paper, we do

not learn the weights of the distributions making up the product

and simply use the geometric mean of the distributions.

2. Methods

Here we describe the training of the neural networks and the

decoding. Figure 2 presents an overview of the method.

2.1. Multi-frame Target Training

We train a neural network to predict the phone labels for mul-

tiple output frames given the acoustic data. The inputs to

the neural networks are 2K′ + 1 frames of acoustic vectors

xt−K′ · · ·xt+K′ and the targets are the 2K + 1 one-hot en-

coded phone labels st−K · · · st+K associated with K context

frames around the center frame at time t1. The output layer

is a set of 2K + 1 independent softmax units, each with M

phoneme label classes. Thus the conditional distribution of the

1We use bold-face st for one-hot encoded labels and st for the class
label that it is assigned to.

output labels around time t is given by:

p
(

s(t−K)···(t+K)|x(t−K′)···(t+K′)

)

=

t+K
∏

t′=t−K

p(t′−t)(st′ |x(t−K′)···(t+K′))
(1)

where p(t′−t)(st′ |x(t−K′)···(t+K′)) is the softmax associated

with a delay of (t′ − t) frames from the central frame.

The gradients with respect to the parameters of the neural

network can be computed by backpropagating the the softmax

gradients at the the output layer. Learning is done using stochas-

tic gradient descent (more details can be found in section 3).

2.2. Decoding with Autoregressive Targets (DART)

Once a model been trained to perform multi-frame target pre-

diction all the predictions for the states of an individual frame

can be combined together. Specifically, we take a geometric

average of all the predictions for each time point t:

p(st|X) ∝

t+K
∏

t′=t−K

p
1/K

t−t′(st|x(t′−K′)···(t′+K′)) (2)

This is easily accomplished by averaging the activations of

the softmax units (i.e. the logit values) associated with time

t from the application of the neural networks to all time points

t−K to t+K. Extra inputs are appended to the start and end of

the utterances for boundary cases - we simply repeat the input

at the first frame for prefix frames and the last frame for suf-

fix frames. DART does not need to average over all K frames

but experiments suggest that using all the frames leads to better

results (see table 1).

Instead of product averaging we could use a mean of all the

predictions at each time point t, i.e.:

p(st|X) =
1

K

t+K
∑

t′=t−K

pt−t′(st|x(t′−K′)···(t′+K′)) (3)

3. Experiments and Discussion

We used TIMIT [10] and the 14 hour subset of WSJ [11] (si-84)

for this paper. For TIMIT a bi-phone language model trained

on TIMIT training utterances was used. For WSJ we used the

big dictionary setup in Kaldi that adds common pronouncia-

tion variants to the default dictionary used for WSJ experiments

(cmudict). A trigram language model was trained on the corpus



provided with the WSJ CD. More details can be found in the s5

recipe - model tri4b - of Kaldi which we used for this [12].

For the DNN-HMM models we used 15 frames of 40 di-

mensional filterbanks with deltas and accelerations as inputs.

All the neural networks using the same inputs were pretrained

with the same Deep Belief Network [13, 14]. We trained the

deep neural networks using the annealing schedule and learn-

ing rates described in [15] with a small but critical change -

the learning rates for the bottom two layers were reduced to

0.005 and 0.02 respectively. For TIMIT we used DNNs with

sevel hidden layers of sigmoid units; for WSJ we used six lay-

ers as a compromise between depth and computational time.

The TIMIT recipe had 180 output labels so the output layer was

a set of 2K +1 softmax units of 180 dimensions each - leading

to output dimensions of (2K+1) ∗ 180. For WSJ we had 3385

states so the output layer was a set of (2K+1) softmax units of

3385 dimensions each. Because of the large output dimensions,

training was slower. Note that even though we average multi-

ple predictions there is only one DNN system, so the number of

parameters is almost the same as the number of parameters in

a vanilla DNN-HMM system. The only difference is the extra

parameters at the output layer, where we have as many softmax

distributions as we have number of target frames, instead of a

single softmax distribution. When K = 0, i.e. we only predict

the central state, these two are equivalent.

3.1. Effect of context window sizes

Table 1 shows the Phone Error Rate (PER) achieved on TIMIT

using DNNs with five hidden layers of sigmoid units trained to

predict different context sizes of outputs. We trained four sets

of triplicate models to predict the labels of 1, 3, 7 and 15 frames

respectively (i.e. K = 0, 1, 3, 7) using 15 frames of input (i.e.

K′ = 7)2. For each model we averaged over different context

window sizes to explore the impact of averaging. It can be seen

that for each of these models averaging over multiple contexts

improved the results. Also it can be seen that larger output win-

dow sizes lead to impoved results (larger values of K,K′ did

not appear to produce significant gains). Interestingly, all mod-

els had comparable accuracy when they used the same DART

context size for averaging. This leads us to conclude that gains

are not achieved by some regularization effect, but instead be-

cause of model averaging.

3.2. Frame Error Rate of Models

We found that in addition to improved phone recognition re-

sults, the models also achieved much better frame error rates

(FER) and log probabilities (which were computed using the ge-

ometrically averaged probability distributions). Figure 3 shows

a comparison of the FER for three different runs of multi-frame

DNN training (K=7) and the FER for three different runs of

vanilla DNN training (K=0). Clearly, the multi-frame strategy

leads to much better FER.

3.3. Impact of Depth of DNNs

Using K,K′ = 7 we then trained three DNN’s of depths two

to seven hidden layers on TIMIT. Figure 4 shows the PER

achieved for different depths and compares it to the baseline

with K = 0. It can be seen that DART leads to a significant

gain in accuracy over the baselines for both the dev set and the

test set.

2K = 0 is the baseline representing the vanilla DNN training for
hybrid models.

Table 1: DART results on TIMIT from five layer DNNs trained

on different output context window sizes. For each context win-

dow size we decoded using different window sizes of autoregres-

sive output targets. In each case 15 frames of acoustic inputs

(i.e. K′ = 7) was used; each hidden layer had 2000 sigmoid

units. Results are averages over three runs.

training context DART context PER
(K) dev test

0 0 19.2 20.8

1
0 18.9 20.6
1 18.9 20.3

3
0 18.5 20.4
1 18.3 20.3
3 18.0 20.0

7

0 18.7 20.8
1 18.5 20.5
3 18.0 20.0
7 17.6 19.5

Figure 3: Frame Error Rate (FER) of DART on TIMIT using

DNNs with five hidden layers of 2000 units each. Each model

used +/-7 frames of context. The DNN’s were trained to predict

+/-7 frames of context for the multi-frame models (K = 7) and

only the central frame for the non-multi-frame models (K = 0).

Note that we used fully connected deep neural network

(DNN) models for this and achieved accuracy significantly bet-

ter than those reported for simple Convolutional Neural Net-

work - Deep Neural Network (CNN-DNN) - HMM systems

([5, 6]) and comparable to carefully crafted CNN-DNN-HMM

model with heterogeneous pooling in [16] that was trained with

dropout. It is our expectation that the gains are complemen-

tary, and similar gains would be produced when these ideas are

applied to convolutional and other discriminative models.

3.4. WSJ Results

For WSJ, K,K′ = 7 was used. Figure 5 shows the FER for

triplicate runs of multi-frame target models and compares it to

the FER for three runs of single target models. Clearly a much

better FER is achieved once more.

Table 2 shows a numerical summary of the results. Since,

K = 7 was used for these models, the output dimensionality

was 3385x15. It can be seen that for WSJ-si84 a relative im-



Figure 4: PER of DART on TIMIT using DNNs of differ-

ent depths. Each model used +/-7 acoustic frames of context

(K′ = 7). The DNN’s were trained to predict +/-7 frames of

context for the multi-frame models (K = 7) and only the cen-

tral frame for the regular models (K = 0).

provement of 6.4% was seen on the development set test-dev93

and a relative improvement of 9.3% was seen on the test set test-

eval92, over the baseline system. Further improvements may be

possible by experimenting with the parameters of the decoder

but we did not explore this avenue.

Table 2: DART results using context window of +/-7 in input

data and output states. Results are averages over three runs.

dataset architecture product
PER / WER
dev test

TIMIT
(2K)7 − 180 N 19.1 20.9

(2K)7 − (180x15) Y 17.3 19.0

WSJ-si84
(2K)6 − 3385 N 9.4 5.4

(2K)6 − (3385x15) Y 8.8 4.9

3.5. Geometric Averaging Compared to Arithmetic Averag-

ing

We decoded each of the models trained on TIMIT in section 3.3

using geometric and arithmetic averaging. Table 3 shows a

comparison of the average PER over three runs. It is clear that

geometric averaging consistently outperforms arithmetic aver-

aging here. Also, the trend with depth is much more consistent

for geometric averaging. A possible explanation for why geo-

metric averaging outperforms arithmetic averaging is that geo-

metric averaging acts like constraints - solutions that violate any

one of the predictions sharply are discouraged under this model.

Arithmetic averaging, on the other hand leads, accepts solutions

as long as one of the models is quite happy with the solution;

thus it is susceptible to bad decision boundaries of models that

have been overfit significantly.

4. Conclusions

We have shown that using an autoregressive product of a DNN-

HMM system trained to predict the phone labels of multiple

frames can improve speech recognition accuracy. The autore-

Figure 5: Frame Error Rate (FER) of DART on WSJ using

DNNs with six hidden layers of 2000 units each. Each model

used +/-7 frames of context. The DNN’s were trained to predict

+/-7 frames of context for the multi-frame models (K = 7)and

only the central frame for the non-multi-frame models (K = 0).

Table 3: A comparison of the geometric average to the arith-

metic average of the autoregressive distributions on TIMIT test

set using models of different depths. Results are averages over

three runs.

# of layers of hidden units
averaging type 2 3 4 5 6 7

geometric 20.6 20.0 19.9 19.5 19.4 19.0

arithmetic 20.8 20.3 20.4 19.9 19.6 19.4

gressive model bears a resemblance to RNN’s because it at-

tempts to predict states over a range of frames. These connec-

tions need to be further explored. In this paper the predictions

at multiple time points were trained independently and a simple

geometric average was used at test time. Model combination

approaches frequently benefit by using weighted combinations.

In the future we will explore these avenues further. Lastly, it is

interesting to note that geometric averaging outperforms arith-

metic averaging here; it will be interesting to see if this observa-

tion can be applied to training ensembles of models for speech

recognition in new ways.

While we trained these models on forced alignments, it is

likely that sequential training methods (such as [17]) could also

benefit from this approach.
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