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Autoregressive Representation of Seismic P-wave Signals
with an Application to the Problem of
Short-Period Discriminants
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Summary

It is shown that seismic P-wave signals can be represented by parametric
models of autoregressive type. These are models having the form

X(t)—a, X(t—1)—...—a, X(t—p) = Z(1)

where X(¢) is the digitized short-period data time series defined by the
P-wave signal, and Z(¢) is a white noise series. The autoregressive analysis
is undertaken for 40 underground nuclear explosions and 45 earthquakes
from Furasia. For each event a separate analysis of the noise preceding
the event as well as of the P-wave coda has been included. Itis found that
in most cases a reasonable statistical fit is obtained using a low order
autoregressive model. The autoregressive parameters characterize the
power spectrum (equivalently, the autocorrelation function) of the
P-wave signal and form a convenient basis for studying the possibilities of
short-period discrimination between nuclear explosions and earthquakes.
A preliminary discussion of these possibilities is included.

1. Introduction

With the increased use of digital processing of seismic data an increasing number
of problems in statistical seismology involve an analysis of discrete random time
series. In a number of cases the time series under study may be considered wide sense
stationary (wss) at least within certain time intervals. The second order (second
moment) statistical structure of such a time series can be examined using two different
methods. The first possibility is an analysis of the series in terms of its autocorrelation
function or equivalently its power spectral density. The second possibility consists in
trying to fit a parametric model to the given time series.

Lately the parametric method has become increasingly popular. Probably this is
due to the recent development of a more effective and systematic approach to para-
metric model building. We refer to Box & Jenkins (1970) which contain general
methods for identification, fitting, estimating and diagnostic checking of general
ARMA (autoregressive-moving average) time series models. ARMA models com-
prise those wss time series X (f) which can be represented as

X®—a, X(t—D—... —apX(t——p) =Z({O)~-b,Z(t—-1)—... -b,,Z(t-—q) )
* Received in original form 1975 February 13
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270 D. Tjostheim

where X (¢) is the observed time series, and Z(¢) is a white noise time series such that
E{X()Z(s)} =0 for s > t. Similar models exist (Box & Jenkins 1970) for certain
classes of non-stationary time series.

Up to now parametric models have mainly been applied in the general fields of
engineering and economics. With the exception of Tjestheim (1975) it appears that
no systematic use has been made of such models in statistical seismology. It was
demonstrated in Tjestheim (1975) that the digitized short-period noise at NORSAR
can be described with a satisfactory statistical fit by an autoregressive model
(by, by, ..., b, = 0 in equation (1)). It is natural to consider next the possibility of
fitting an autoregressive model to the discrete time series defined by a digitized P-wave
signal. This will be the main topic of this paper.

A parametric representation would be particularly advantageous in cases where
it is important to characterize the second-order (equivalently, the power spectral
density) properties of the data in terms of a few parameters. The problem of con-
structing effective short-period discriminants between underground nuclear explosions
and shallow earthquakes is such a case. Such discriminants are based on the informa-
tion contained in the short-period data of a seismic event. If the short-period data
time series can be characterized by a few parameters, these should form an ideal basis
for the construction of such discriminants. A preliminary study of these possibilities
is given in Sections 5 and 6 of this paper.

2. Autoregressive models

To make this paper self-contained, we include in this section a brief review of the
properties of autoregressive models. For more details we refer to Box & Jenkins
(1970) and Tjestheim (1975). Let X(#) be a real-valued wss random process in
discrete time. The process is said to be autoregressive of order p if X(r) is generated
by a difference equation having the form

X(O)~a, X(t—=1)—...—a, X(1—p) = Z(t). @

Here Z(t) is a wss white noise process, that is, E{Z(t)Z(s)} = 0,28,, (s = O for
t # s, 8, = 1 otherwise). Furthermore, it is assumed that E{X(¢)Z(s)} = O for s > ¢.
If the process X(#) has zero mean, the model (2) contains p+1 parameters, the
autoregressive coefficients a,, a,, ..., ¢, and the variance 6,2 = E{Z(s)}* of the residual
process Z(s). Once the order p has been determined, standard methods exist for
estimating these parameters. For an autoregressive process of order p, the theoretical
power spectrum is given (Box & Jenkins 1970) by

a.’lf.
[1—ayexp(—ni(f/f))—...~a,exp(—pri(f] fI)
for 0 < f < f,, where i is the imaginary unit, and f, = 34 is the cut-off frequency,
h being the time interval between samples. It is clear from equation (3) that the shape

of the power spectrum is completely determined by the autoregressive coefficients
ai, a, ..., a,. The parameter o, is merely entering as a scaling factor.

G(N) = ©)

3. Data

The list of presumed explosions and earthquakes used in this study is given in
Tables 1 and 2. See also Fig. 1. We have chosen to include only events reported by
both NORSAR and NOAA (National Oceanic and Atmospheric Administration).
All of the events are Eurasian. A large data base with a large variation in epicentre
location of presumed explosions is available at NORSAR for this geographical area.
Also, the P-wave signals from this area (as recorded by NORSAR) have a large
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FiG. 1. Ceographical distribution of the explosions (crosses) and earthquakes
(open circles) of Table 1.

proportion of their energy in the higher frequency bands. This fact results in complex
and varied power spectral shapes, thus making them especially interesting for para-
metric model studies.

The short-period seismic data as processed by NORSAR for the events listed in
Tables 1 and 2 are contained on high rate digital tapes, so-called event tapes. To
explain the data organization used on these tapes, we have to define first some simple
concepts used in the description of a seismic array. The NORSAR seismic array
comprises altogether 132 short-period seismometers which are organized in 22 so-called
subarrays each containing six seismometers. The seismic data are measured in
quantum units, where one quantum unit represents a ground motion of 0-0427 nano-
metres at 1 Hz. A subarray beam is a phased sum of the six short-period sensors,
while an array beam is a phased sum of subarray beams. Using appropriate time
delays the subarray (array) beam can be pointed towards the presumed epicentre of
a seismic event. For each seismic event the event tape contains the non-filtered
subarray beam traces as well as the array beam trace associated with the estimated
epicentre of this particular event. The sampling rate is 10 Hz, and each beam trace
has a length of 2 mins, that is, each beam trace contains 1200 samples. It should be
noted, however, that (approximately) the first 300 samples consist of noise preceding
the event. For a more detailed description of the NORSAR array system we refer to
Bungum, Husebye & Ringdal (1971).

For the purposes of our analysis we have found it convenient to split each beam
trace into five sections; a noise portion, a signal portion and a coda portion which in
its turn has been subdivided into three parts. The length of each time window is
given in Table 3.

4. Fitting an autoregressive model

The data analysing procedure has been as follows. Each seismic event as recorded
digitally is assumed to describe a discrete random time series. Furthermore, within
each time window the series is assumed to be wss, and we attempt to fit a model of
form (2). In this paper, therefore, the process X (¢) of equation (2) will represent the
non-filtered seismic data as measured for a certain beam trace and within a particular
time window.

To illustrate the analysis we will go through the estimating/fitting procedure in
some detail for one ‘typical’ presumed explosion; no. 22 in the list of presumed
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276 D. Tjsstheim

Table 3

Number of samples for the five sections of the beam trace obtained by splitting the trace
into a noise section, a signal section and three coda sections. The sampling rate is 10 Hz

Sample
N Noise 0-250
S Signal 300-365
C1 Coda 1 365-600
C2 Coda 2 600-900
C3 Coda 3 900-1200

explosions, and one ‘typical’ presumed earthquake; no. 10 in the list of presumed
earthquakes (the word “ presumed’ will be omitted in the sequel). The time series
for one particular subarray (subarray 10C) will be used. We refer to Fig. 2 for a plot
of the subarray beam traces. The time series generated by the noise, signal and various
coda parts as defined in Table 3 will be referred to as the N, S, C1, C2 and C3 time
series respectively. Thus we are trying to fit 10 time series altogether.

The first problem consists in estimating the order p of the time series involved. Let

X(O)~ay X(t=1)—...—ay X(t—K) = Z(t)

be an autoregressive process of order k, where k is allowed to vary. Denote by
p(t) the autocorrelation function of X(¢). It is not difficult to show that the co-
efficients a4, a5, ..., @y satisfy the Yule~-Walker equations

[ 1 p(1) p(2) o pk=DT T @y T p(1) 7]
p(D) 1 p(1) v pk=2) @y, p(2)
Lptk—=1) p(k=2) pk-3) .. 1 J Law 1 L ptk) ]

It should be noted that these equations also enter in the construction of the first order
prediction error filter, Peacock & Treitel (1969), and in the construction of Burg’s
¢ maximum entropy ’ spectrum, Lacoss (1971).

The coefficient A(¢) = a,, considered as a function of ¢ is called the partial auto-
correlation function. An estimate A(¢f) = 4, is obtained from

LA A AE=DT [l [ A ]
U e k- | |4 | | @
o Sl "
Low-n p6e-2 s 1 L Lau ) Lw ]

where

N-k N
p6) = %, XX+ [ 3 xop ©

and N is the total number of observations, that is, N = 250, 65, 235, 300 and 300 for
the N, S, Cl1, C2 and C3 time series respectively. It can be shown (Box & Jenkins
1970) that A(f) (and &;;, i = 1,2, ..., k) is a good approximation to the maximum
likelihood estimate of A(¢) (ay;, i = 1, 2, ..., k) if the sample is large.

For an autoregressive process of order p, A(f) = 0 for t > p. Then the standard
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EX10

EX 22

EX 30

AWMW&WW&WW»WWWW
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EQ 3

F1G. 2. Subarray beam traces for a selection of explosions and earthquakes. The

identification at the extreme left refers to Tables 1 and 2. The vertical lines indicate

the splitting of each beam trace into the N, S, C1, C2 and C3 time series as defined
in Table 3.

error of the partial autocorrelations of order p+1 and higher is
G[AMNI~ Nt  t>p.

Thus if A(¢) is close to zero for all lags ¢ > p, one may tentatively conclude that the
process X (t) is autoregressive of order p.

Using equations (4) and (5) A(f) was computed up to lag 18 for each of the 10 time
series. The results are given in the leftmost parts of Figs 3 and 4, where the 24-error
limits have been drawn in. It appears that as far as the properties of the partial
autocorrelation function are concerned, a low order autoregressive model is suggested
for all time series. The estimated order varies from 1 for the Cl explosion time series
up to 5 for the Cl earthquake time series.

In Tables 4 and 5 are tabulated the estimates @;q, 8,5, ..., 4, of the autoregressive
coefficients, these estimates being obtained from equations (4) and (5). The estimate
¢, of the variance 6,2 of the residual process is obtained from

82 == T ROP ©

with
2() = X() = X(t—1)—...— 8 X (1 —k). 0

The parametrization of X(¢) obtained in this way is of rather limited value if the
residual process Z(¢) of equation (7) is non-white. If Z(z) is non-white, we face a
separate parametrization problem for Z(z), and we are back to where we started. On
the other hand, if Z(¢) is white, its second order properties are completely determined
by the single parameter ¢,>. Thus the fit of the autoregressive model is measured by
the whiteness of Z(¢). The autocorrelation function of Z(¢) was estimated using the
formula of equation (5) for Z(¢). If the residual process is white, the standard error
of the autocorrelation function of order one and higher is

8(ps(t)) » N7+,
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F1G. 3. Estimated partial autocorrelations A(¢f) and autocorrelations 3.(¢) of the

residudl process Z(¢) for the N, S, C1, C2 and C3 subarray time series of explosion

22. The leftmost part of the figure shows estimated partial autocorrelations. The

rightmost part of the figure shows estimated autocorrelations of the residual

process using an autoregressive model of order &, where k is given in column 2 of
Table 4.

The estimated autocorrelation function of the residual process is plotted with 28-limits
in the rightmost parts of Figs 3 and 4. The fit of the estimated models appears to be

quite satisfactory.

The estimating/fitting procedure was repeated for the remaining events listed in
Tables 1 and 2. In the large majority of cases it was found that the events are described
to a good approximation by low order autoregressive models, the order varying in
most cases between 2 and 6, with the lower order coefficients being significantly
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FiG. 4. Same as in Fig. 3 but with data from earthquake 10.

smaller in absolute value than the two higher order coefficients. Also, when succes-
sively fitting higher order models, the two higher order autoregressive coefficients
were found to be approximately constant from iteration 3 on.

Let 4 = a,,, 4y, ..., 4, be the vector of estimated coefficients for a particular
time series. Then an estimate (see Box & Jenkins 1970) of the covariance matrix is
given by

k
P =N (1= 3 a0 P
t=1
where P is the k x k matrix given on the left-hand side of equation (4). Typically we

found that 8(a) takes its values in the range from 0-04 to 0-10 for the N, C1, C2 and
C3 series and from 0-08 to 0:17 for the S series.
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Table 4

Estimated autoregressive parameters for the N, S, C1, C2 and C3 time series of explosion
22. The order of the autoregressive model for each of the time series involved is deter-
mined from the corresponding partial autocorrelations as given in Fig. 3

Order Ay dia dis 3.2

N 2 1-47 —0-52 — 8308

S 3 0-84 —-0-83 0-66 199692

Cl 1 0-73 — f— 86000

C2 2 1-08 —0-22 _— 33467

C3 2 1-24 —0-34 —_— 22083

Table 5
Same as in Table 4, but with data from earthquake 10

Order ﬁ“ du (ik;; dk4 dks ;zz
N 2 1-41 —0-64 — — — 8464
S 3 1-34 —1-19 0-38 - — 80846
Cl1 5 1-64 —1-31 0-29 0-21 —0-20 27387
Cc2 2 1-33 —0-63 — —_ — 13007
C3 2 1-42 —0-64 — —_ _— 13310

5. Reduction to a 3rd order model and the problem of shert-period discriminants

In the remaining part of this work we will look more closely at eventual differences
in second-order structure for nuclear explosions and earthquakes. For matters of
comparison and computation it is convenient to have a standard model for all events.
An attempt was therefore made to fit a 3rd order autoregressive model to all events.
The autoregressive coeflicients a5, &5,, 434 were estimated using equations (4) and (5)
with k = 3. The results are given for the N, S and CI series (using data from the same
subarray as in Section 4) in Tables 6 and 7.

In most cases the residual process was found to be approximately white when a
3rd order model was used. As explained in Section 2 the variance parameter ¢,”
describes a scaling factor in the spectrum only and is not very useful for discrimination
purposes. It is interesting to plot the power spectrum (see Figs 5 and 6) as computed
from the formula (3) with p = 3 for the N, S and C1 series of the explosion and earth-
quake considered in the preceding section. Also, in Figs 5 and 6 we have plotted the
power spectrum as computed in the ¢ ordinary > way using a Fast Fourier Transform
algorithm. The two curves representing the two different power spectral estimates are
seen to agree fairly well in the frequency range from 0-2 Hz up to the cut-off frequency
f. = 5Hz, showing that a 3rd order model is capable of reproducing quite well the
essential power spectral features in this frequency range. For frequencies lower than
0-2 Hz, when using a 3rd order model, the formula of equation (3) seems to resuilt in
larger values for the power spectrum than the estimate of the power spectrum com-
puted from the Fast Fourier Transform. It is difficult to evaluate the significance of
this difference, since the power spectrum estimates are not too reliable for such low
frequencies, and the effect of a finite sample size starts to make itself felt here. This is
especially true for the S series containing only 65 samples.

Before discussing the problem of discrimination, it is interesting to look at the time
evolution of a typical explosion and a typical earthquake as described by the auto-
regressive coefficients. This roughly corresponds to a time-frequency diagram show-
ing the evolution in time of the power spectrum of the event. Time-frequency diagrams
have been used by a number of scientists, but they are difficult to interpret and use for
discrimination purposes because of their complexity. The time evolution plot of
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Table 6

281

Estimated autoregressive coefficients for the N, S and Cl time series of the subarray
beam traces for the explosions of Table 1. A 3rd order model has been assumed for
each event. The mean value and standard deviation is obtained by averaging over the
40 events of Table 1

Noise

No. diy dsz
1 1-51 —0-86
2 1-39 —0-51
3 1-24 —0-50
4 1-59 —0-79
5 1-73 —1-16
6 1-26 —0-43
7 1-39 —0-63
8 1-72 —0-98
9 1-19 —0-19
10 1-64 —0-81
11 1-84 —1-10
12 1-86 ~1-15
13 1-56 —0-56
14 1-40 —0-47
15 1-69 —0-95
16 1-7 —1-02
17 2-01 —1-17
18 1-00 —0-11
19 1-15 —0-33
20 1-62 —0-98
21 1-36 —0-56
22 1-46 -0-49
23 1-22 —0-34
24 1-56 —0-60
25 1-50 —0-63
26 0-78 —0-24
2 1-69 —-0-86
28 1-54 —0-83
29 1-59 —0-95
30 1-38 —0-48
31 1-49 —-0-71
32 1-30 —0-38
33 1-80 —1:30
34 1-37 —0-33
35 1-69 -0-79
36 1-57 —0-57
37 1-62 —0-75
38 1-76 —0-98
39 1-18 —0-21
40 1-47 —0-61
Mean 1-50 -0+ 68
Sta, 0-25 0-31

dev.

33

0-10
—0-05
—0-05

0-30
—0-04
0-04
0-16
—0-09
0-07
0-20

—0-09
—0-12
0-15
0-11

—0-08
—0-05

0-19
~0-05
—0-02
—0-01
—0-07

- —0-01

—~0-03

0-10
0-20
-0-08
0-02
—0-15
—0-34
—0-18
0-05
—0-06
0-01
0-16
—~0-18
—0-00
0-02
0-13

Presumed explosions

d31

0-99

0-93

0-63

1-09
—0-13

0-72
‘12
54
64
80
79
15
60
52
13
69
-67
.57
-84
80
-50
-84
49
85
52
36
57
-53
18
54
-95
-97
78
1-22
0-77
0-46
077
067
0-59
0-94
0-81
0-33

CoOO=rOCC—0~000000O—00—~00Q0

Signal
432
—0-80
—0-77
—0-72
—0-85
—0-40
—0-21
—0-53
—0-95
—0-97
—0Q-52
—0-47
—1-04
—0-18
—0-98
—1-05
—0-91
—0-93
-0-78
—-0-86
—0-93
—0-91
—0-83
—0-94
—0-60
—0-81
—0-10

43
0-82
0-81
0-48
0-82

—0-09
073

0-86
0-77
0-60
1-03

0-93
0-64
G-85
0-49

0-28
1-02
0-70
0-45

1-57
0-89
0-47
0-46
0-70
07
1-22
1-25
0-78
0-22
0-96
0-79
0-93
0-28
0-69
0-80
0-47
1-16
0-74
0-34

Coda 1
ﬁSZ
—0-72
—0-55
—0-68

—0-27
—0-40
~0-75
—0-74
—0-22
—0-70
—0-56
—0-66
-~0-75
—0-79
—0-58
—1-39
—0-53
—0-70
—0-43
—0-70
—0-19
—1-07
—0-78
—0-38
—0-23
—0-63
—0-44
—0-74
~—0-67
—0-60
—0-02
—0-81
—0-43
—0-39
—0-15
—0-75
—0-37
-0-77
—0-95
—0-59

0-26

das
0-18
0-10
0-19
0-12
—0-26
—0-17
0-08
0-57
0-45
—0-21
0-28
0-14
0-01
0-17
0-36
0-10

—0-05
0-43
0-05
0-20
0-17
0-18
0-14
6-01
0-01
0-43

—0-08

—0-04

—0-01
0-20
0-15
0-25

-0-07
0-30
0-17
0-26
0-25
0-16
0-24
0-15
0-18

Fig. 7 concentrates the information of spectral shape changes into the autoregressive
parameters. More detailed information of the changes of the autoregressive para-
‘meters can of course be obtained by further subdividing each event into a much
larger number of (overlapping) sections. For our purposes the crude picture of Fig. 7

will be sufficient.

In Fig. 7 we have plotted the two high order autoregressive coefficients for the
earthquake and explosion studied in Section 4. While the autoregressive coefficients
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Table 7

Estimated autoregressive coefficients for the N, S and Cl time series of the subarray

beam traces for the explosions of Table 2. A 3rd order model has been assumed for

each event. The mean value and standard deviation is obtained by averaging over the
45 events of Table 2.

Presumed earthquakes

Noise Signal Coda 1
No. a3y ds; dss day ds; dsz dsy da; dss
1 1-30 —0-36 —0-16 1-45 —~0-87 0-02 1-70 —1-27 0-30
2 2-00 —1-43 0-37 1-57 —0-94 0-07 173 —1-38 0-42
3 1-41 —0:52 —0-05 1-91 -1-61 0-51 1:68 —1:37 0-37
4 1-52 —0-81 0-08 2-07 —177 0-54 1-87 —1-40 0-39
5 1-00 —-0-25 —0:06 1-31 - 0-93 0-13 1-37 —1-05 0-24
6 1-26 —0-51 --0-06 1-22 —0-62 —0-09 1-42 —0-77 0-01
7 1-32 —0-51 -0-08 1-55 —1-33 0-44 1-78 —1-39 0-37
8 1-30 —0-53 0-05 1-51 -—1-19 0-30 1-79 —1-438 0-45
9 1-15 —0-31 —0-11 1-59 —1-02 0-11 1-11 —0-54 —0-06
10 1-38 —0-58 —0-04 1-34 —1-19 0-37 1-62 —1-26 0-37
it 1-33 -0-43 —0-05 1-46 —1-06 0-27 1-42 —0-86 0-05
12 1-16 —0-33 —0-20 1-29 —0-81 0-02 1-60 —1-16 0-25
13 1-16 —0-39 0-02 1-78 —1-28 0-26 1-48 —1-06 0-24
14 1-13 —0-26 —0-05 1-57 —1-11 0-24 1-47 —1-19 0-44
15 1-41 —0-68 0-05 1-69 —1-01 0-10 1-34 -0-92 0-30
16 1-32 —0-45 —0-03 1-52 —1-00 0-23 1-60 —1-03 0-22
17 0-87 0-21 —0-24 1-93 —1-46 0-38 1-80 -—1-31 0-29
18 1-77 —1-04 0-15 0-70 —0-57 0-16 1-14 —0-65 0-08
19 1-35 —0-31 —-0-14 1-40 —0-77 0-06 1-61 —1-08 0-26
20 1-85 -—1-17 0-24 1-78 —1-29 0-29 1-93 —1-46 0-4]
21 1-88 —1-17 0-23 1-43 —0-93 0-02 1-77 —1-39 0-39
22 1-46 —0-89 0-19 1-52 -1-09 0-25 1-48 —-1-02 0-18
23 1-27 —0-41 —0-05 1-60 —1-20 0-38 1-74 —1-35 0-46
24 1-24 —0-63 0-10 1-50 —1-30 0-44 1-39 —1-09 0-27
25 0-67 0-40 —0-53 0-99 0-34 —0-55 1-04 —0-07 —0-34
26 1-35 —0-58 0-04 1-40 -0-67 -~0-03 1-44 —0-71 0-01
27 1-38 —0-70 0-04 1-15 --0-74 0-16 1-25 -0-77 0-15
28 1-61 —0-88 0-14 0-95 —0-82 0-36 1-13 -0-93 0-19
29 1-50 —0-74 0-09 1-47 —1-00 0-29 1-45 -Q-75 0-03
30 1-79 —1-20 0-29 0-67 —0-78 0-21 0-71 —0-71 0-03
31 1-68 —0-85 0-08 0-87 —0-40 0-04 1-12 -0-71 0-32
32 2-01 —1-53 0-43 1-61 —1-14 0-28 2:02 -1-67 0-53
33 1-88 —1-29 0-35 1-99 —1-63 0-47 1-72 —1-25 0-25
34 1-48 —0-76 0-07 2-09 —1-76 0-52 1-59 —1-04 0-12
35 1-84 —1-22 0-25 1-91 —1-64 0-59 1-90 —1-56 0-55
36 1-49 —~0-44 —0-12 1-39 -—0-78 0-17 1-62 -0-97 0-25
37 1-90 —1-02 0-09 1-43 —0-64 0-11 1-91 —1-16 0-21
38 1-18 —0-12 -0-16 1-26 —~0-41 —0-13 1-02 —0-16 —0-09
39 1-59 —0-83 0-08 1-57 —1-41 0-47 1-71 —1-41 0-50
40 1-66 —1-08 0-26 1-64 —1-39 0-45 1-65 —1-23 0-37
41 1-10 —0-31 —0-06 2-05 —1-77 0-59 1-74 —1-25 0-28
42 1-54 —0-85 0-11 1-46 —0-93 0-14 1-61 —1-08 0-27
43 1:34 —0-38 —0-13 1-76 —1-44 0-45 1-90 —1-48 0-41
44 1-45 —0-57 —0-09 1-60 -1-02 0-18 1-55 —0-93 0-17
45 1-51 —0-66 —0-04 1-97 —1-68 0-48 1-75 ~—1-46 0-41
Mean 1-44 —0:65 0-03 1-51 —1-07 0-24 1-55 —1-08 0-25
Sta. 0-30 0-40 0-18 0-34 0-42 0-22 0-28 0-35 0-18
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FiG. 5. Estimated power spectral densitics of the N, S and CI subarray time series
of explosion 22. The solid lines represent power spectral estimates using a Fast
Fourier Transform algorithm with subsequent smoothing, The dashed lines
represent power spectral estimates based on equation (3). The dashed curves have
been shifted 3 DB units upwards relative to the solid curves to get the estimates
well separated.
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FiG. 6. Same as in Fig. §, but with data from earthquake 10.
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Fic. 7. Time evolution in terms of estimated autoregressive coefficients d;; and
ds, for explosion 22 and earthquake 10. A 3rd order model
X(t)—asy X(t—1)—as, X(t—2)—as3; X(t—3) = Z({t)
has been assumed. The symbols N, S, C1, C2 and C3 are used to denote the values
of ds; and ds, for the N, S, C1, C2 and C3 subarray time series.

for the noise preceding the two events are almost identical, the coefficients for the
earthquake sharply increase in absolute value when the signal arrives, the opposite
being the case for the explosion. Maximum separation is seen to occur for the C1
portion of the events. Moving further back into the coda (the C2 and C3 coefficients)
it is clear that most of the separation effect has disappeared, and we are rapidly
approaching the state where the coefficients take the value they had for the noise time
series. On the basis of this plot we infer that the C2 and C3 time series are of limited
importance for discrimination purposes, and that the CI series and its autoregressive
coefficients appear to be best suited for obtaining a good discriminant.

Unfortunately, but not unexpectedly, the rather dramatic separation of the two
events of Fig. 7 is not universal. This is immediately revealed by a quick inspection
of Tables 6 and 7. However, what is clear from these tables and the mean values
computed there, is that the plots of Fig. 7 represent some sort of average time evolu-
tion behaviour for the explosion and earthquake data set considered. From the
computed mean values and standard deviations one may conclude that the Cl1 time
series and its autoregressive coefficients are slightly better suited for discrimination
than the S time series. Another strong argument supporting this conclusion is that
the S series has a relatively small sample size (65 samples as compared to 235 samples
for the C1 series), this resulting in a larger uncertainty in the estimation procedure as
is clear from the plots of the error limits in Figs 3 and 4.

From a study of the Cl coefficients of Tables 6 and 7 it is clear that the lower
order coefficient 455 is of limited value for discrimination purposes. An eventual
discriminant would therefore to a large extent have to be based on the two higher
order coefficients 45, and d;,. A plot of these coefficients is given in Fig. 8. It appears
from the plot that a complete separation of explosions and earthquakes contained
in our data set cannot be obtained using these coefficients.
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IFic. 8. Estimated 3rd order autoregressive coefficients ds; and ds, for the C1
subarray beam time series for the events of Tables 1 and 2.

Unfortunately, the atypical events of Fig. 8 cannot simply bte ignored because the
fit to a 3rd order model is poor. Consider for example earthquake 18 (from Northern
Sinkiang), earthquake 31 (Iran) and explosion 30 (Tadzhik). For all of these events
the fit to a 3rd order model varies from good to excellent. However, in terms of
autoregressive cocfficients the earthquakes tend to behave like explgsions and vice
versa. It should be noted also that with the possible exception of earthquake 31 these
events have a low value for the coefficient 4,5 not used in Fig. 8. A plot of the sub-
array beam traces for these events is given in Fig. 2.

Also for the Eastern Kazakh area atypical events do occur, see for example
explosion 12. Though this event has values for 4,, and 4;, that tend to be centred
away from the explosion population, the time evolution of the coefficients resembles
that of an explosion, the S and Cl coefficients having lower absolute value than the
coefficients for the noise preceding the event. This fact might suggest that the high
absolute value of @5, and 2, is due to an extreme noise situation influencing the
estimation procedure. One way of avoiding part of this effect would be to study
instead the differences b;; = 3;,(C1)—2;;(N); i = 1,2. The parameters b3, and b,,
have been plotted in Fig. 9. It is clear, however, that the overall situation is not
markedly improved from that of Fig. 8.

It is widely accepted that the my(M,) method comparing the relative excitation of
body and surface waves is the most effective discriminant of shallow earthquakes and
underground nuclear explosions. However, this method has its limitations, the most
serious one possibly being the difficulty of measuring M, for events of low magnitude.
These difficulties have led a number of researchers (e.g. Weichert 1971; Anglin 1972;
Israelson 1972) to consider discriminants based solely on short-period data. It seems
fair to state that the short-period discriminants considered this far have been inferior
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Fi1G. 9. Estimated parameters b3; = d3,(Cl)—ds(N), i = 1, 2, for the events of
Tables 1 and 2. A 3rd order model has been assumed for each event, and the data
are from subarray 10C.

to the m,(M,) discriminant in overall performance. However, it has not been entirely
clear how much of the information inherent in the short-period structure of the data
has actually been utilized using discriminants such as complexity and third moment
of frequency (see Israelson 1972, for definitions). Thus, given these two discrimination
parameters for a particular event, it is not clear to what degree it would be possible
to reconstruct for example the power spectrum of the event.

On the basis of the evidence in this section it is tempting to conclude (see also
Section 6, however) that an effective discriminant cannot be obtained using all avail-
able second-order information, that is, using properties of the autocorrelation function
or equivalently the power spectrum of the short-period data. It is the autoregressive
analysis which permits us to form this conclusion. This analysis concentrates the
second-order information in a few parameters, and in principle therefore the study of
discriminants using second-order properties should reduce to a study of these para-
meters, that is, essentially to a study of the plots in Figs 8 and 9. Though these plots
do not necessarily represent the optimal use of the autoregressive parameters, it appears
that no reasonable transformation or combination of @5, and a5, will result in any-
thing resembling a complete separation for the considered data set.

6. Discussion

In this section some of the assumptions and approximations used in the preceding
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analysis will be re-examined. Some of the possibilities that exist for improving our
methods will also be briefly discussed.

(a) Random signal model

In developing the autoregressive scheme a random signal (time series) model was
assumed for each event. This assumption is not absolutely essential since the auto-
regressive coefficients as computed using equation (4) depend on the autocorrelation
function only, and this concept is well defined for a deterministic signal as well.
However, it may be worthwhile stressing that our model is entirely based on second-
order properties. All phase information is lost. Two events having the same amplitude
spectrum (same autocorrelation function) but different phase spectra will have the
same set of autoregressive parameters. So strictly speaking our study does not cover
eventual discriminants based on phase spectrum information. Similarly for a random
signal model all probabilistic information not pertaining to second moment structure
is lost.

(b) Analysis on the array beam

For some of the weaker events (earthquakes nos 22 and 26 are good examples)
the coefficients for the N, S and Cl1 series are virtually identical. This is due to the
fact that the signal is almost completely masked by noise. The study of Section 5
was carried out on subarray beam level. This means that we have not utilized the full
noise suppressing power of the array. The reason for working on the subarray beam
rather than on the array beam was that array beam forming leads to a suppression
of the coda, as well as a loss of higher frequency energy, it being anticipated this
might result in loss of information. To check this argument, the analysis of Sections
4 and 5 was repeated on the array beam. Again the fit to a 3rd order model was
found to be fairly good for most of the events. A selection of 3rd order autoregressive
coeflicients are given in Tables 8 and 9. Even though the coeflicients for a particular
event may vary considerably from those of Tables 6 and 7, the general explosion/
earthquake trends are approximately the same. As indicated by the plot (see Fig. 10)
of the two most significant coefficients of the C1 series, the situation with respect to
discrimination is roughly the same as for the subarray beam analysis. Differences
by, = 8,3(Cl)—a3;(N); i = 1, 2, were formed also for the array beam, but did not
lead to significant improvements.

Table 8

Estimated 3rd order autoregressive coefficients for the N, S and Cl time series of the
array beam trace for a selection of events from Table 1. The mean value and standard
deviations are obtained by averaging over the 40 events of Table 1.

Presumed explosions

Noise Signal Coda 1

No. dsy dsz dss dsy dsz das ds dsz dss
1 1-24 —0-47 —0-02 1-21 —1-16 0-33 1-09 —0-95 0-28
10 1-52 —0-44 —0-13 0-94 —0-62 —0-02 0-89 —0-58 0-00
12 1-43 -—0-34 —0-15 1-19 —1:22 0-68 1-48 —0-82 0-29
13 1-63 —0-68 —0-02 1-16 —0-69 —0-00 0-99 —~0-66 0-08
22 1-55 —0-57 —0-03 0-80 —0-74 0-04 1-06 —0-57 0-23
30 1-54 —0-70 0-08 1-30 —0-71 0-01 1-58 —1-13 0-20
Mean 1-37 —0-48 —0-02 1-00 —0-74 0-13 0-96 —0-73 0-14
Sta. 0-28 0-29 0-12 0-29 0-34 0-22 0-32 0-26 0-15
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Table 9

Estimated 3rd order autoregressive coefficients for the N, S and C1 time series of the
array beam trace for a selection of events from Table 2. The mean value and standard
deviations are obtained by averaging over the 45 events of Table 2.

Presumed earthquakes

Noise Signal Coda 1
No. day ds, dsa dsy ds; dss dsy daz das
10 1-23 —0-30 —-0-11 1-57 —1-36 0-47 1-32 —0-91 0-12
18 1-43 —0-43 —0-12 1-19 —1-16 0-48 1-55 —1-26 0-34
22 2-04 -—1-66 0-48 0-93 —0-32 —0-11 1-87 —1-43 0-36
26 1-28 —0-50 0-11 1-16 —0-42 —0-13 1-40 —0-64 0-05
31 1-44 —0-55 —0-03 0-80 —0-02 -0-04 1-46 —0-89 0-06
33 1-66 —0-86 0-09 1-78 —1-51 0-51 1-81 —1-52 0-47
Mean 1-32 —0-49 - 0-01 1-44 —1-00 0-24 1-64 —1-24 0-32
Sta. 0-32 0-41 0-17 0-31 0-42 0-24 0-25 0-32 0-18
dev.

(c) Other means of noise reduction

It is not clear how much of the noise is actually removed by computing b;;. The
time series obtained by taking the differences of the Cl and N series, if autoregressive
at all, in general will have autoregressive coefficients completely different from the
coefficients by;. In general the noise and the signal may be assumed to be uncorrelated
so that the autocorrelation functions are related by

Pr+s(t) = py()+ps(0).

What has been used in equations (4) and (5) is fy +5(f). One may think that a possible
method of adjusting for the noise is to use instead pg(f) = Py .s(t) — fy(t) and similarly
for the Cl, C2 and C3 series. In practice it turns out that this does not work (possibly
the difficulties may be due to non-stationarities of the noise). For some of the events
the function gy, s(f) — px(¢) does not even define a legitimate autocorrelation function
(it does not have its maximum at zero lag). The computations based on equation (4)
then immediately break down.

We have used non-filtered data in our investigation, the motivation again being
that we do not want to lose any information. Applying an appropriate band pass
filter leads to improvements of the signal-to-noise ratio. However, the results of our
test runs indicated that the filtered process is much more difficult to fit to an auto-
regressive scheme, both in terms of order of the model and whiteness of the residual
process.

As a general comment to noise suppression techniques, we remark that although
they may ultimately lead to some improvements with respect to discrimination, we
consider it extremely unlikely that they will remove all difficulties. This is because
several of the atypical events of Figs 8, 9 and 10 have a very high signal-to-noise ratio,
indicating that the identification problems associated with these events are due to their
particular second-order structure rather than being due to a low signal-to-noise ratio.

(d) Possible improvements using a larger data base and combined criteria

We have used the short-period data from NORSAR only. It is not unlikely that
improvements of discrimination capability can be obtained by fitting autoregressive
models to data from other stations and combining them into a multivariate discrimin-
ant. Combining short-period discrimination data from different stations has been
considered by Anglin & Israelson (1973). A more effective discriminant may also
result if autoregressive parameters were combined with M (m,) data. Using short-

220z 1snBny 0z uo 1senb Aq 08595/692/2/€ p/olome/lB/woo dno-olwepese)/:sdyy Woly papeojumoq



290 D. Tjestheim

"2-0 ' T T T T I T T T T ' T T T T ‘ T L T l T T T T
o o _‘
s e J
asd .4, .
- co -y
A%
1 o gbO% o -
]
L ° B
R * 4
@ Xy o.% o
=104+ —
'Z-, x: x : o -1
3 I X x° 8
=4 x
™ - x XX ° o OX g
\‘t Xx X x*
o 8 E
O X x °
= o .
X x x
| 50.5+_ o ..J
o X X e
X
1 x * XEXPLOSION ]
! X 0 EARTHQUAKE
~0.04 o
bt 1 £ ! U W S T I T S ! PRI Y S B N W
o0 0.5 10 1.5 2.0 25

~— COEFFICIENT {3y} —=

F16. 10. Estimated 3rd order autoregressive coefficients ds; and ds; for the Cl array
beam time series for the events of Tables 1 and 2.

period discriminant data as a supplement to the M (im,) discriminant has been sug-
gested before among others by Basham & Anglin (1973) and Dahlman ez al. (1974).
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