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Abstract
The regulation of both mRNA transcription and translation by down-stream gene
products allows for a range of rich dynamical behaviours (e.g. homeostatic, oscilla-
tory, excitability and intermittent solutions). Here, qualitative analysis is applied to
an existing model of a gene regulatory network in which a protein dimer inhibits its
own transcription and upregulates its own translation rate. It is demonstrated that the
model possesses a unique steady state, conditions are derived under which limit cycle
solutions arise and estimates are provided for the oscillator period in the limiting case
of a relaxation oscillator. The analysis demonstrates that oscillations can arise only if
mRNA is more stable than protein and the effect of nonlinear translation inhibition
is sufficiently strong. Moreover, it is shown that the oscillation period can vary non-
monotonically with transcription rate. Thus the proposed framework can provide an
explanation for observed species-specific dependency of segmentation clock period on
Notch signalling activity. Finally, this study facilitates the application of the proposed
model to more general biological settings where post transcriptional regulation effects
are likely important.

Keywords Translation · Molecular oscillator · Relaxation oscillator · Transcription ·
Notch signalling

1 Introduction

The design principles that underpin oscillations in biological systems are naturally
described using mathematical approaches (Alon 2019; Winfree 2001; Novák and
Tyson 2008; Tyson andNovák 2010). There are nownumerouswell establishedmodels
across a range of cellular oscillators [e.g. cell cycle, circadian cycle, cardiac cycle, gly-
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colysis (Sel’Kov 1968), NFκb (Gonze and Abou-Jaoudé 2013), p. 53, (Geva-Zatorsky
et al. 2006)].

A conserved principle of the Hes/Her oscillator, now known to be present in many
different cell types (Kageyama et al. 2007), is that dimerised members of the basic
Helix-loop-helix family of transcription factors (e.g. Hes7, Hes1, Her7) inhibit their
own transcription and therefore provide a negative feedback loop. TheNotch signalling
pathway, which plays a crucial role in embryo development, tissue homeostasis (van
Es et al. 2005) and cancer (Mollen et al. 2018; Allenspach et al. 2002; Siebel and
Lendahl 2017), can activate the transcription of Hes/Her genes. During canonical in
transNotch signalling, a Notch ligand in a signalling cell activates a Notch receptor in
a neighbour, resulting in the release of the Notch intracellular domain (NICD) in the
receiver, which regulates the transcription of Notch target genes. As at least in some
biological contexts, such as the segmentation clock, Notch receptors are themselves
a target of Notch signalling and levels of the Delta ligand can be regulated by Hes7
(Bone et al. 2014), the study of Notch signalling is a highly nonlinear problem.

Upon inclusion of time delays that represent processes such as transcription, splic-
ing, transport and translation, it has been shown that negative feedback of transcription
is sufficient to give rise to oscillations (Lewis 2003; Monk 2003). Moreover, it has
been shown that the spatial diffusion ofmRNAand protein is a sufficientmechanism to
give rise to oscillations in a negative feedback system (Sturrock et al. 2011; Chaplain
et al. 2015). Each of the above models makes the assumption that the translation of
mRNA is linear, and thus unregulated.

Recent experimental observations challenge, at least in specific biological contexts,
many existing models of the Notch signalling pathway. Oates and coworkers have
demonstrated that when levels of Delta ligand are increased in presomitic mesoderm
(PSM) cells, the tissue scale oscillator period decreases (Liao et al. 2016). Moreover,
when levels of Notch signalling are reduced via treatment with the gamma secretase
inhibitor DAPT, which blocks the release of NICD, the tissue scale oscillator period
increases (Herrgen et al. 2010). Thus in the zebrafish embryo, the tissue-scale oscilla-
tor period appears to be anticorrelated with Notch signalling activity. In contrast, Dale
and coworkers have demonstrated that when mouse and chick embryos are exposed
to pharmacological treatments that increase levels of NICD, the tissue scale period
increases (Wiedermann et al. 2015). Notably, a prediction of the delayed feedback
models of the Her oscillator (Lewis 2003) is that the clock period has a strong depen-
dence on the mRNA and protein half lives and time delays but not on transcription or
translation rates (Lewis 2003).

Suggestions that mouse PSM tissue behaves like an excitable medium are also
difficult to reconcile with delayed negative feedback models of the Notch signalling
pathway. It has been identified that NICD is necessary for the oscillations of the seg-
mentation clock in the presence of mechanosensitive Yap signalling (Hubaud et al.
2017). However, when Yap signalling is pharmacologically inhibited, oscillations
could still proceed in the absence ofNotch signalling. The presence of aYap-signalling
dependent threshold led the authors to conclude that the system under study behaved
like an excitable medium. However, there is currently no molecular scale model of
Hes7 dynamics that can account for such excitability.
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In the Hes1 oscillator in mouse neural cells, the miRNA mir-9 has been identified
(Bonev et al. 2012; Goodfellow et al. 2014) as a part of a double negative (i.e. positive)
feedback loop in which mir-9 is under the same transcriptional control as the Hes1
gene but serves to inhibit translation. Together, these observations indicate that, at
least in some specific biological contexts, the negative feedback model of the Notch
signalling pathway is incomplete.

We recently developed an ordinary differential equation model that postulates that
an intermediary, X , that is under the same transcriptional control asmRNA,M, inhibits
translation [see Fig. 1a (Murray et al. 2021)]. Assuming quasi equilibrium for X ,
these assumptions introduce a positive feedback loop such that the translation rate
increases sigmoidally with protein concentration (see Fig. 1b). Letting M = M(t)
and P = P(t) represent the concentrations of mRNA and its corresponding protein
at time t , respectively, the governing ODEs are

dM

dt
= k1

1 +
(

P
P0

)2 − k2M,

dP

dt
= M

⎛
⎜⎜⎜⎝k3 + k4

1 + α

X0

1(
1+

(
P
P0

)2)

⎞
⎟⎟⎟⎠ − k5P, (1)

where k1 is the maximal transcription rate, P0 is the protein concentration at which
transcription rate is half maximal, k2 is the mRNA degradation rate, k3 is the basal
translation rate, k4 is a translation rate that is inhibited by X , α is maximal level of X
at steady state, X0 is an IC50 constant for translational activation and k5 is the protein
degradation rate.

Using parameter values based on the zebrafish Her oscillator, it was shown, using
numerical exploration, that Eq. (1) can possess excitable, homeostatic or oscillatory
solutions (Murray et al. 2021). Using numerical continuation it was shown that Eq. (1)
possess a subcritical Hopf bifurcation such that, in a particular region of parameter
space, unstable limit cycle, stable limit cycle and stable steady state solutions coexist.
In this case a stochastic implementation of the model is capable of exhibiting inter-
mittent oscillations whereby noise switches the dynamics between a stable limit cycle
and a stable steady state. Finally, it was shown that the oscillator period has, for the
considered parameters, an inverse dependence on the transcription rate k1. Hence the
proposal that regulation of translation, aswell as transcription, rates provides aminimal
framework that yields phenomena consistent with recent experimental observations.

Whilst the previouswork used numerical solutions to demonstrate interestingmodel
behaviours, a qualitative analysis of the model behaviour is required in order that the
model can be explored inmore general biological contexts.Here this issue is addressed.
The approach taken allows one to relate different Notch signalling behaviours in
species-specific contexts (e.g. in which reaction rates may differ significantly). Param-
eter regimes are identified in which one expects to find different modes of behaviour
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Fig. 1 aA schematic illustration of the model. Active/Inactive denote transcriptional states of gene. mRNA
is transcribed when the gene is active and degrades. Protein is translated from mRNA and degrades. b
Translation and transcription rates plotted against protein levels, P

(e.g. excitability, homeostasis, oscillations). Finally, an estimate is derived for the
oscillator period and amplitude in the relaxation oscillator limit.

2 Nondimensionalisation

Consider the dimensionless variables

m = M

M̃
, p = P

P̃
and τ = t

T̃
.

Letting

M̃ = k5P0
k3

(
1 + α

X0

) 1
2

(
1 + k4

k3

) , P̃ = P0

(
1 + α

X0

) 1
2

and T̃ = 1

k5
,

Equation (1) transforms to the nondimensional form

dm

dτ
= η1

1 + p2

η2

− η3m,

dp

dτ
= m

(η4 + p2)

1 + p2
− p, (2)

where

η1 = k1(k3 + k4)

k25P0
√
1 + α

X0

, η2 = 1

1 + α
X0

, η3 = k2
k5

, η4 = 1 + k4
k3

+ α
X0(

1 + k4
k3

) (
1 + α

X0

) .

(3)
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Table 1 A table of
dimensionless parameter values

Parameter Description Value

η1 mRNA transcription 0.76

η2 Transcriptional inhibition IC50 0.008

η3 mRNA degradation 0.02

η4 Translation 0.01

Note that time has been nondimensionalised on the protein degradation timescale, the
parameter η4 represents the strength of the sigmoidal effect on translation rate and that
η3 is the ratio of mRNA to protein degradation rates. See Table 1 for typical values.

3 Nullclines

The p nullcline, given by

m̄2(p) = p(1 + p2)

η4 + p2
, (4)

has two distinct real positive turning points if the condition

η4 <
1

9

holds (see Appendix A). The turning points occur at approximately

(p1,m1) =
(√

η4,
1

2
√

η4

)
,

and

(p2,m2) = (1, 2),

(see Fig. 2). Note that the condition η4 < 1/9 implies that m1 > m2 and p1 < p2.
Hence (p1,m1) is a local maximum and (p2,m2) is a local minimum.

The m nullcline, given by

m̄1(p) = η1

η3

1

1 + p2

η2

, (5)

is monotonically decreasing for p > 0 with an IC50 at p = √
η2 and local maximum

of η1/η3. In order that nondimensional parameters correspond to positive dimensional
parameters, the condition

η2 < η4
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Fig. 2 The p nullcline [see
Eq. (4)] is plotted against p for
different values of the parameter
η4. Markers denote coordinates
of the extrema. Other parameters
as in Table 1

must hold (see Appendix A). Hence the IC50 for transcriptional inhibition must be
at least an order of magnitude less than the IC50 for the translational switch (which
occurs at approximately p = 1).

4 Steady State Analysis

Suppose that (m∗, p∗) is a steady state of Eq. (2). Upon elimination ofm∗, p∗ satisfies
the fifth order polynomial

h(p∗) = p∗5 + p∗3(η2 + 1) − p∗2 η1η2

η3
+ η2 p

∗ − η1η2η4

η3
= 0. (6)

Recalling that η j > 0 ∀ j , application of Descartes’ rule of signs implies that there
are at most three real positive solutions of Eq. (6). Moreover, as

h(0) = −η1η2η4

η3
< 0 and h(p∗) → ∞ as p∗ → ∞,

Equation (6)must have at least one real positive solution. Applying a graphical method
(see Appendix B) it can be shown that, for biologically relevant parameter values,
Eq. (6) possesses exactly one solution. This result precludes the possibility of bista-
bility.
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5 Linear Stability Analysis

After substitution for the identity

m∗ = p∗(1 + p∗2)
η4 + p∗2 ,

the Jacobian matrix of equations (2) takes the form

J =

⎛
⎜⎜⎜⎝

−η3 −2 η1
η2

p(
1 + p2

η2

)2

η4 + p2

1 + p2
− p4+p2(3η4−1)+η4

(η4+p2)(1+p2)

⎞
⎟⎟⎟⎠

(m∗,p∗)

. (7)

Given that Eq. (3) possesses a unique steady state in the positive quadrant, the sign
structure of the Jacobian matrix is given by

(− −
+ ±

)
. (8)

5.1 Intersections on the Left and Right Branches are Linearly Stable

Negativity of the (2, 2) entry of the Jacobian matrix implies that

p∗4 + p∗2(3η4 − 1) + η4 > 0, (9)

the left-hand side of which has previously been used to compute the turning points
of the p nullcline (labelled as p1 and p2, see Eq. (19) in Appendix A). Hence when
p∗ < p1 or p∗ > p2, such that the intersection between them and p nullclines occurs
on the left- or right-most branches of the p nullcline, respectively, the (2, 2) entry
of the Jacobian matrix is negative and the steady state of Eq. (2) is therefore linearly
stable.

5.1.1 The Steady State on the Central Branch of the p Nullcline is Conditionally
Linearly Stable

The determinant of the Jacobian matrix is positive definite (see Appendix C). Hence
the unique steady state of Eq. (2) is linearly unstable if and only if

tr(J ) = −η3 − p4 + p2(3η4 − 1) + η4

(η4 + p2)(1 + p2)
> 0. (10)

This inequality can be expressed as

p∗4(1 + η3) − p∗2 (1 − 3η4 − η3(1 + η4)) + η4(1 + η3) < 0, (11)

123



57 Page 8 of 27 P. J. Murray

with the boundaries of the solution interval given by

pc = ±
⎛
⎝1 − 3η4 − η3(1 + η4) ± (

(1 − 3η4 − η3(1 + η4))
2 − 4η4(1 + η3)

2
) 1
2

2(1 + η3)

⎞
⎠

1
2

.

(12)

For a real and positive solution interval it is therefore required that

1 − 3η4 − η3(1 + η4) > 0 �⇒ η3 <
1 − 3η4
1 + η4

�⇒ η3 < 1,

and
(
(1 − 3η4 − η3(1 + η4))

2 − 4η4(1 + η3)
2
)

> 0,

which can, upon rearrangement, be written as

η4 <

(
η3 − 1

3 + η3

)2

.

Considering the case where η3 < 1, a necessary (but not sufficient) condition for
instability of the steady state is

η3 <
1 − 3

√
η4

1 + √
η4

. (13)

In summary, when the conditions

η2 < η4 <
1

9
, η3 <

1 − 3
√

η4

1 + √
η4

(14)

hold, there is always a real interval of p∗ within which tr(A) is positive and the steady
state is therefore linearly unstable. As p∗ is a monotonically increasing function of η1
(see Appendix B) a corresponding interval of the parameter η1 can always be found
such that the unique steady state (p∗, m∗) is linearly unstable. This result implies that
too little or too much basal transcription (i.e. k1) will result in the disappearance of
oscillatory solutions.

6 Limit Cycle Solutions

A confined set can be defined for Eq. (2) (see Appendix D). Given the existence of a
unique steady state, the Poincare Bendixson theorem can be applied in order to show
that there is an interval of the parameter η1 for which Eq. (2) have limit cycle solutions.
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Fig. 3 Planar projections of Hopf bifurcation surface. aA family of Hopf bifurcation points are represented
by the red curve in the η1 − η3 plane. The dotted horizontal line represents condition (14). Dashed lines
represent equations (15). b Each loop in the η1 − η3 plane represents a family of Hopf bifurcations at a
different fixed value of the parameter η4. c Each loop in the η1 − η3 plane represents a family of Hopf
bifurcations at a different fixed value of the parameter η2. Parameter values as in Table 1 unless otherwise
stated (Color figure online)

6.1 Numerical Continuation

Numerical continuation was performed (Dankowicz and Schilder 2013) to confirm
the presence of a family of Hopf bifurcations in the η1 − η3 plane (see Fig. 3a).
These numerical results indicate that, given that inequalities (14) hold, one can find
an interval of the parameter η1 in which there are limit cycle solutions. Note that the
derived upper bound on η3, given by inequality (13), is consistent with the upper bound
estimated using continuation. Moreover, by imposing the conditions

m2(p1) > m1(p1) and m2(p2) < m2(p1),

such that the nullclines intersect in the middle branch of the p nullcline, a necessary
condition for limit cycle solutions is

1 + η4

η2

2
√

η4
<

η1

η3
< 2

(
1 + 1

η2

)
. (15)

These bounds are presented in Fig. 3a. In Fig. 3b, c the Hopf bifurcation surface is
projected onto the η1 − η3 plane for different values of η4 and η2, respectively. Note
that, as expected, themaximum value of η3 for which oscillatory solutions are possible
varies with the parameter η4 (see Fig. 3b) but not η2 (see Fig. 3c).

Numerical continuation also indicates that the classification of the Hopf bifurcation
that arises for smaller η1 is dependent on the parameter η3. For larger η3, there are two
supercritical Hopf bifurcations. Here the amplitude of oscillations increases close to
both bifurcation points (see Fig. 4a–c). However, for smaller η3 the Hopf bifurcation
is subcritical and one observes the emergence of a saddle node bifurcation of the
limit cycle. In this case there is an interval of the parameter η1 in which there is an
unstable limit cycle, a stable steady state and a stable limit cycle (see Fig. 4d–f). In
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Fig. 4 Hopf bifurcations for different values of the parameter η3. Top row, η3 = 0.6. Middle row, η3 = 0.2.
Bottom row, η3 = 0.02. Left column, steady state levels of protein, p, plotted against η1 (blue dashed
line, unstable; red line, stable). Solid black lines represent maxima/minima of the p component of limit
cycle solutions. Middle column—inset for left column. Right column—oscillator period is plotted against
η1. Red markers—stable limit cycle. Blue markers—unstable limit cycle. Parameters as in Table 1 unless
otherwise stated (Color figure online)

the limiting case, where both η1 and η3 are small, the time scale of mRNA production
and degradation are relatively long and the system behaves like a relaxation oscillator
(see Fig. 4g–i). Notably, the dependence of the oscillator period on the parameter η1
is in general not monotonic.
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6.2 Period and Amplitude Estimate in the Relaxation Oscillator Limit

Under the assumption that inequalities (14) hold, an estimate for the oscillator period
can be derived. Consider the case where the time scale of mRNA transcription and
degradation is much longer than that of translation. After applying a fast-slow time
scale analysis, where the mRNA is the slow variable, the limit cycle is approximated
by a trajectory ABCD (see Fig. 5b) with coordinates

(mA, pA) = (2 − 2η4, 2η4), (mB , pB) =
(

1

2
√

η4
(1 + η4),

√
η4(1 + 2η4)

)
,

(mC , pC ) =
(

1

2
√

η4
(1 + η4),

1

2
√

η4
(1 + η4)

)
and (mD, pD) = (2 − 2η4, 1 − 2η4).

(16)

A lower bound for the oscillator period (see Appendix E) is given by

T ∼ TAB + TCD = 1

2η1
√

η4
+ 1

η3
ln

(
1

4
√

η4

)
. (17)

Thus in the relaxation oscillator limit the period varies inversely with the parameter
η1. The amplitudes of protein and mRNA oscillation are approximated by

AP = pC − pA = 1

2
√

η4
− 2η4 ∼ 1

2
√

η4
and AM = mB − mA ∼ 1

2
√

η4
,

respectively. In Fig. 5c–f the derived estimates for the oscillator period are compared
with numerical estimates. It is noted that as the oscillator is made less stiff, a correction
is needed to Eq. (17) that accounts for time spent close to the local maximum of the p
nullcline (see Appendix E). In this case the estimate of the oscillator period no longer
depends monotonically on the parameter η1.

6.3 Dimensional Parameters

6.3.1 The Oscillatory Region

Returning to dimensional parameters, the condition η4 < 1/9 (see Appendix A)
implies that

k4
k3

> 8 and
α

x0
> 8.

Thus for the p nullcline to have two turning points there must be a significant upreg-
ulation of the net translation rate and the maximal level of X must be much larger
than the IC50 for the upregulation of the translation rate. Upon expansion in the small
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Fig. 5 Estimation of the oscillator period in the relaxation oscillator limit. am and p are plotted against time,
τ . b Phase plane trajectory. p nullcline (blue line).m nullcline (red line). Solution trajectory (solid magenta
line). c–f The approximate oscillator period, T , is plotted against c η1, d η2, e η3 and f η4. Numerical
estimates (dashed lines) were obtained by solving Eq. (2) numerically. Dotted lines [Eq. (17)]. η1 = 0.009,
η3 = 0.0003. Other parameter values as in Table 1 (Color figure online)

parameter η4, condition (13) can be approximated by

k2
k5

< 1 − 4

√
X0

α
+ k3

k4
. (18)

These conditions imply the more restrictive bounds

α

X0
> 16 and

k4
k3

> 16.

A region of parameter space inwhich oscillations are possible is depicted in Fig. 6. The
results imply that an experimental perturbation that independently either: (i) decreases
the translation rate ratio; (ii) decreases the steady state level of X; or (iii) decreases
mRNA stability relative to protein stability could be sufficient to move the system out
of the oscillatory regime. Moreover, mRNA must be more stable the protein in order
for oscillatory solutions to be possible.
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Fig. 6 Necessary conditions for instability of the unique steady state.Values of k2/k5 belowwhich instability
is possible are plotted against k4/k3 and α/X0 [see Eq. (18)] (Color figure online)

Upon redimensionalising Eq. (17), an estimate for the oscillator period in the relax-
ation oscillator limit is given by

T = k5P0

2k1k4
√
1 + α

X0

k3
k4

α

X0
+ 1

k2
ln

⎛
⎜⎝

√
k4
k3

√
α
X0

4
√

k4
k3

+ α
X0

⎞
⎟⎠ .

Notably, whilst the oscillator period increases linearly with the mRNA half-life
(ln 2/k2), it has an inverse dependence on the protein half life (ln 2/k5). It is also
inversely dependent on the transcription rate, k1, and there is a strong nonlinear depen-
dence on translation rates (k3 and k4). The dimensional protein and mRNA oscillator
amplitudes are given at leading order in the relaxation oscillator limit by

AP = P0
2

α

X0

(
1

1 + α
X0

k3
k4

) 1
2

and AM = P0
2

k5
k4

α

X0

(
1

1 + α
X0

k3
k4

) 1
2

,

respectively. Notably, the amplitude of protein andmRNAoscillations are independent
of mRNA production and degradation rates. Moreover, the ratio of protein to mRNA
amplitudes can be approximated by

AP

AM
= k4

k5
.
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7 Discussion

A model of the Notch signalling pathway was recently developed in which it was
assumed that an intermediate factor that is under the same transcriptional regulation
as Hes/Her genes inhibits the translation rate of transcribed mRNA (Murray et al.
2021). Numerical simulations were previously used to explore model behaviour and
a number of experimentally testable hypotheses were defined. However, qualitative
analysis of the proposedmodel is required in order to better characterise its behaviours
and allow it to be applied in other contexts.

In this study the previous model was nondimensionalised. It was shown that the p
nullcline had biologically relevant extrema if the parameter η4 is sufficiently small.
The biological interpretation of this result is that for nontrivial behaviours levels of
X must be sufficiently high so as to significantly downregulate the translation rate. In
order that model parameters are biologically relevant it was also found that η2 < η4,
i.e. the effective IC50 for transcriptional repression is an order of magnitude smaller
than the IC50 for the switch of translation from low to high rates.

After performing a steady state analysis, it was shown that the model possesses a
unique steady state for biologically relevant parameter values. Linear stability analysis
demonstrated that the unique steady state was linearly stable when the intersection of
the nullclines occurs on either the left- or right-most branches of the p nullcline.
In the case where the steady state arises on the middle branch of the p nullcline, it
is conditionally stable. If the mRNA is more stable than the protein (η3 < 1) one
can always identify an interval of the parameter η1 such that the unique steady state
is unstable. Upon application of the Poincare Bendixson theorem, there is therefore
always a range of η1 that yields oscillatory solutions given (provided η3, η4 and η2
are sufficiently small).

Application of numerical continuation confirmed that there is a minimal value
of the parameter η3 below which oscillatory solutions can be found. Moreover, as η1
increases from below there is Hopf bifurcation that is either subcritical or supercritical.
Notably, a previous study of isolated zebrafish PSM cells has postulated a Stuart
Landau model which has a supercritical Hopf bifurcation, behaviour that is consistent
with the proposed model (Webb et al. 2016).

In the limit where the rate constants associated with mRNA (η1 and η3) are chosen
to be relatively small, the model behaves like a relaxation oscillator. In this case the
period is approximated by assuming that the trajectory is in quasi-equilibrium on
the left- and right branches of the p nullcline. Close to the local maximum of the p
nullcline dynamics are relatively slow and an extra term must be accounted for that
describes the time taken for protein levels to increase sufficiently so as to upregulate
the translation rate.

The dimensionless equations (2) have previously been proposed as an illustrative
model that describes how coupled positive and negative feedback loops give rise to
‘frustrated bistability’ (Krishna et al. 2009). The analysis performed heres generalises
the work of Krishna et al. (2009) by considering dependence of model behaviour on
the parameter η4 as well as deriving explicit formulae for the oscillator period and
bounds for the domain of oscillatory solutions. Moreover, the derivation of the model
in this study differs from that of Krishna et al. (2009); here we consider regulation
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of the transcriptional and translational products of a single gene whilst Krishna et al.
(2009) consider a model for protein-protein interaction.

The role of Notch signalling in regulating the period of the segmentation clock
oscillator appear to be species dependent. In the zebrafish embryo it has been shown
that levels of Notch signalling are anticorrelated with the oscillator period. When
Notch signalling is increased via overexpression of Delta ligand the period decreases
(Liao et al. 2016). Moreover, when levels of Notch signalling are reduced via gamma
secretase treatment the period of the segmentation clock increases (Herrgen et al.
2010). In contrast, when mouse and chicken embryos are pharmaceutically treated
with compounds that increase levels of the Notch intracellular domain, the period of
the segmentation clock is increased (Wiedermann et al. 2015). In the proposed model
intercellular coupling is not explicitly accounted for. Rather, the parameter k1 (and
hence η1) can act as a proxy for levels of Notch signalling (assuming that levels of
NICD regulate the maximal transcription rate). In this study it has been shown that
the oscillator period can either increase or decrease with η1. Thus the proposed model
supports the hypothesis that species-specific differences in rate constants could explain
the contrasting observation of the dependence of oscillator period on levels of Notch
signalling.

It is notable that oscillatory solutions of the model are permitted only if mRNA is
more stable than protein. Whilst in mouse fibroblasts mRNAs have been measured to
be on average approximately fives times less stable than the protein that they encode,
this is not true for approximately 10% of mRNAs (Schwanhäusser et al. 2011). Gene
ontology analysis associates genes that encode relatively stable mRNAs with bio-
logical processes such as tissue morphogenesis, cell proliferation, phosphorylation
and positive regulation of signal transduction (Schwanhäusser et al. 2011). Moreover,
direct measurement of Hes1 mRNA and protein in mouse PSM tissue yielded half
lives of 24.1 and 22.3min, respectively (Hirata et al. 2002). Additionally, in zebrafish
the half life of Her7 protein has been measured to be to 3.5min at 24◦ and it has been
inferred using simulations that the mRNA half life is between 2 and 6min (Ay et al.
2013). Together, these measurements suggest that Hes1/Her7 genes encode mRNA
and proteins that have similar half lives.

The relaxation oscillator analysis yields a number of experimentally testable pre-
dictions. For example, a decrease in the parameter k5 (i.e. more stable protein) would
result in a smaller oscillatory period and an increase in the amplitude of protein oscilla-
tion relative to that of the mRNA. In contrast, a decrease in parameter k2 (i.e. making
the mRNA more stable) would result in a larger period of oscillation but with an
unchanged oscillation amplitude. These predictions allow for the proposed model to
be distinguished from delayed negative feedback models where the oscillator period is
predicted to increase linearly with both the protein andmRNA half lives Lewis (2003).

In this study a qualitative analysis has been performed on a model of a gene regu-
latory network in which translation as well as transcription rates are regulated by the
product of a pathway. The main finding is that oscillatory solutions are possible only
when: the regulation of translation rate is sufficiently large and mRNA is sufficiently
more stable than protein. The qualitative analysis allows for the previous model to be
applied in different biological contexts.
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Appendix A Nullclines

For small p the asymptote of the p nullcline is given by the line m = p/η4 whilst
for large p it is given by the line m = p. To identify turning points of the p nullcline
m2(p), Eq. (4) is differentiated with respect to p and the equation

dm̄2

dp
= p4 + p2(3η4 − 1) + η4

(η4 + p2)2
= 0, (19)

is solved. Turning points thus occur at

pc = ±
(
1 − 3η4 ± √

(1 − 9η4)(1 − η4)

2

) 1
2

. (20)

A necessary condition for unique real turning points is that

(1 − 9η4)(1 − η4) > 0,

an inequality that is satisfied in the intervals

η4 <
1

9
and η4 > 1.

For pc ∈ �+, a further requirement is that

η4 <
1

3
.

Hence there are two unique real positive turning points if

η4 <
1

9
.
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A.1 An Approximation for the Turning Points of the pNullcline

Given that η4 < 1/9 then, upon applying the binomial expansion to Eq. (20), the local
maximum and minimum are approximated by

(p1,m1) =
(√

η4(1 + 2η4 + O(η24)),
1

2
√

η4

(
1 + η4 + O(η24)

))
,

and

(p2,m2) = (1 − 2η4 + O(η24), 2 − 2η4 + O(η24)),

respectively. Note that (p1,m1) is a local maximum and (p2,m2) a local minimum
of the p nullcline.

A.2 Parameter Constraints in the Case of a NonMonotonic pNullcline

Consider the definitions of η2 and η4 given in Eq. (3). The parameter ratio k4
k3

can be
expressed in terms of dimensionless parameters in the form

k4
k3

= 1 − η4

η4 − η2
. (21)

Hence in the case η4 < 1, the assumption that the parameters k3 and k4 are positive
implies that

η2 < η4.

Moreover, the constraints η2 < η4 < 1/9 imply that

k4
k3

> 8.

Hence the translation rate that is nonlinearly regulatedmust be significantly larger than
the background rate k3 in order for the p nullcline to be non-monotonic. Furthermore,
using the definition of η2 in Eq. (3) together with the constraint η2 < η4 < 1/9 implies
that

α

X0
> 8.

Recall that the quasi steady state approximation for X yields

X =
α
X0

1 +
(

P
P0

)2 .
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Hence for the p nullcline to be non-monotonic, X must be sufficiently large in mag-
nitude such that it can have a a strong effect on the net translation rate.

Appendix B Steady State Analysis

Suppose that (p∗,m∗) is a steady state solution of equations (2). p∗ satisfies the fifth
order polynomial

h(p∗) = p∗5 + p∗3(η2 + 1) − p∗2 η1η2

η3
+ η2 p

∗ − η1η2η4

η3
= 0. (22)

The m nullcline [Eq. (5)] is bounded above by m = η1/η3. Hence m∗ < η1/η3.
The p nullcline [Eq. (4)] is bounded below by the linem = p ∀p > 0. Hencem∗ > p∗
and therefore

p∗ ∈ [0, η1/η3].

Consider the steady state Eq. (22). Define

g1(p
∗) = p∗2

(
p∗3 + p∗(1 + η2) − η1η2

η3

)
, (23)

and

g2(p
∗) = η2

(
η1η4

η3
− p∗

)
, (24)

such that Eq. (6) can be expressed as g1(p∗) = g2(p∗).
The function g2(p∗) is linear in p∗ with the intercept at

g2(0) = η2η1η4

η3
,

and root at

p∗ = η1η4

η3
.

g1(p∗) is a fifth order polynomial. Note that

g1(0) = 0, g′
1(0) = 0 and g′′

1 (0) < 0.

As the leading order term at p∗ = 0 is negative and g1 → ∞ as p∗ → ∞, g1 has at
least one real positive root. Moreover, applying Descartes’ rule of signs, g1 has at most
one real positive root. Hence g1 has a unique real positive root at p∗ = δ ∈ [0, η1/η3].
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Fig. 7 a h [Eq. (6)] is plotted against p∗. b g1 [Eq. (23), solid blue line] and g2 [Eq. (24), dashed red line]
are plotted against p∗ (Color figure online)

Turning points of g1 satisfy

g′
1 = 5p∗4 + 3p∗2(1 + η2) − 2p∗ η1η2

η3
= 0

Application of Descartes rule of signs implies that g1 has at most one turning point for
p∗ > 0. Hence in the interval p∗ ∈ [0, δ], g1 < 0 and g1 has a unique turning point
(see Fig. 7).

Consider the interval [0, δ]. As g1 < 0 and g2 > 0, the steady state solution p∗
does not lie in the interval [0, δ].

Now consider the interval
[
δ,

η1
η3

]
. At η1/η3

g1

(
η1

η3

)
> 0,

and

g2

(
η1

η3

)
= 0.

Hence

g1

(
η1

η3

)
> g2

(
η1

η3

)
.

At p∗ = δ, g1(δ) = 0 and g2(δ) > 0. Thus

g1 (δ) < g2 (δ) .

As in the interval
[
δ,

η1
η3

]

g′
2(p

∗) < 0
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and

g′
1(p

∗) > 0,

there is one intersection γ ∈ [
δ,

η1
η3

]
. Hence Eq. (22) has a unique steady state in

[δ, η1/η3].

B.1 p∗ is a Monotonically Increasing Function of�1

Differentiating Eq. (6) with respect to η1 yields

dp∗

dη1
=

η2
η3

(p∗2 + η4)

5p∗4 + 3p∗2(1 + η2) − 2p∗ η1η2
η3

+ η2
.

As the numerator is positive, the derivative is positive if the condition

5p∗4 + 3p∗2(1 + η2) − 2p∗ η1η2

η3
+ η2 > 0

holds for any p∗ that is a solution of Eq. (22). This inequality holds in the case of a
unique bounded solution to the steady state problem.

In the case where η2 < 1/9 this inequality is satisfied for p∗ > 2
27

η1
η3
. Hence the

inequality is satisfied for all p∗ ∈ [0, η1/η3]. Hence p∗ is an increasing function of
the parameter η1.

Appendix C Linear stability analysis

Positivity of the determinant of the Jacobian matrix requires

−η3(m
∗ f ′(p∗) − 1) + 2pη1

η2

f (p∗)
(1 + p∗

η2
)2

> 0,

where

f (p∗) = η4 + p∗2

1 + p∗2 .

Substituting for

m∗ =
η1
η3(

1 + p∗2
η2

) ,
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Fig. 8 a A confined set is depicted in the mp phase plane. p nullcline (solid red line) m nullcline (dashed
blue line). The confined set is given by A′B′C ′D′A′. b Inset for a (Color figure online)

yields, after rearrangement and simplification,

p∗4 + η4 p
∗2 + (η4 − η2) > 0.

Noting that

η2 < η4,

the inequality is therefore satisfied ∀p > 0. Hence the Jacobian determinant is positive
definite.

Appendix D Poincare Bendixson

A confined set of Eq. (2) is given by A′B′D′C′A′ (see Fig. 8). Let A’ represent the
origin and B′ represent the point (0, η1/η3). The outward unit normal on A’B’ is
nA′B′ = [−1, 0]. On this line segment

nA′B′ ·
[
dp

dτ
,
dm

dτ

]
= −dp

dτ
< 0.

Let C′ represent the point (p†, η1/η3) such that

p†(1 + p†
2
)

η4 + p†2
= η1

η3
.
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p† is uniquely defined so long as η1/η3 > m1. The outward unit normal on B′C′ is
nB′C ′ = [0, 1]. On B′C′

nB′C ′ ·
[
dp

dτ
,
dm

dτ

]
= −dm

dτ
< 0.

Let D′ represent (p†, 0). The outward unit normal on C’D’ is nC ′D′ = [1, 0]. On C’D’

nC ′D′ ·
[
dp

dτ
,
dm

dτ

]
= −dp

dτ
< 0.

Finally, on D’A’ the outward unit normal is nD′A′ = [0,−1]. On D’A’

nD′A′ ·
[
dp

dτ
,
dm

dτ

]
= −dm

dτ
< 0.

Hence A′B′C′D′A′ defines a confined set. Therefore, by the Poincare Bendixson
theorem, when the unique steady state is linearly unstable, the solution is a stable limit
cycle.

Appendix E Period estimate

Let

η1 = εη̂1 and η3 = εη̂3,

where

ε � √
η4 <

1

9
.

Equations (2) transform to

dm

dτ
= ε

⎛
⎝ η̂1

1 + p2

η2

− η̂3m

⎞
⎠ ,

dp

dτ
= m

(η4 + p2)

1 + p2
− p, (25)

and an oscillatory solution can be approximated using a slow-fast timescale analysis.
Consider the trajectory ABCDA with coordinates

(mA, pA) = (2 − 2η4, 2η4), (mB , pB) =
(

1

2
√

η4
(1 + η4),

√
η4(1 + 2η4)

)
,
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(mC , pC ) =
(

1

2
√

η4
(1 + η4),

1

2
√

η4
(1 + η4)

)
and (mD, pD) = (2 − 2η4, 1 − 2η4).

(26)

On the segment AB p is assumed to be in quasi-equilibrium, i.e.

m = p(1 + p2)

η4 + p2

and the ODE

dp

dτ
= dp

dm

dm

dτ
= ε

(η4 + p2)2

p4 + p2(3η4 − 1) + η4

⎛
⎝ η̂1

1 + p2

η2

− η̂3
p(1 + p2)

η4 + p2

⎞
⎠ .

is integrated from pA to pB . After applying separation of variables the time spent on
the segment AB is

TAB = 1

ε

∫ pB

pA

dm
dp
dm
dτ

dp = 1

ε

∫ pB

pA

p4 + p2(3η4 − 1) + η4

(η4 + p2)2

(
η̂1

1+ p2
η2

− η̂3
p(1+p2)
η4+p2

)dp. (27)

The integral in Eq. (27) is approximated as follows. As the term

g(p) =
⎛
⎝ η̂1

1 + p2

η2

− η̂3
p(1 + p2)

η4 + p2

⎞
⎠

is a decreasing function of p for p ∈ [pA, pB] it is bounded in the interval [g(pB),
g(pA)].

Hence

TAB ∈
[

1

g(pA)
,

1

g(pB)

]
1

ε

∫ mB

mA

dm

�⇒ TAB ∈ 1

ε

[
1

g(pA)
,

1

g(pB)

](
1

2
√

η4
− 2 +

√
η4

2
+ 2η4 + O(η

3
2
4 )

)
. (28)

At point B

dm

dτ
∼ O(ε) and

dp

dτ
∼ O(

√
η4).

Given that ε � √
η4, on the segment BC m is a slow variable, approximated by

m ∼ mB,
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and p rapidly increases until the trajectory reaches the point C on the right branch of
the p nullcline.

On the segment CD, p is assumed to be in quasi-steady state. As p > 1 � η2, the
m dynamics are approximated by

dm

dτ
= −η3m.

Thus the time spent on the segment CD is

TCD = 1

εη̂3
ln

(
mC

mD

)
.

On the segment DA, dynamics are fast. m is is approximated by

m = MD

and

dp

dτ
= O(1).

Thus the period is approximately given by

T = TAB + TCD . (29)

Considering the upper bound g = g(pA) yields the estimate

TAB = 1

ε

(
1

g(pA)

(
1

2
√

η4
− 2 +

√
η4

2
+ 2η4 + O(η

3
2
4 )

))
.

Hence the period is approximated by

T = 1

ε

(
1

g(pA)

(
1

2
√

η4
− 2 +

√
η4

2
+ 2η4 + O(η

3
2
4 )

)
+ 1

η̂3
ln

(
1

4
√

η4

1 + η4

(1 − η4)

))
.

(30)

Finally, it is noted that g < η1. For simplicity g is represented by the upper bound η1.
Considering leading order in η4 yields Eq. (17).

At the local maximum of the p nullcline dp/dτ is O(
√

η4). Hence for ε ∼ √
η4

the fast-slow analysis will become inaccurate. The time for p to increase from the
local maximum of the p nullcline (p = √

η4) to the IC50 for the translation switch is
approximately

TBB′ = 1

2
√

η4
− 1
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Fig. 9 Estimation of the oscillator period in the relaxation oscillator limit. η1 = 0.09, η3 = 0.003. (c-f)
Dot-dashed line [Eq. (31)]. Other details as in Fig. 5 (Color figure online)

Linearising about the local maximum of the p nullcline, m increases by amount

	m = ε

(
η̂1

1 + η4
η2

− η̂3
1

2
√

η4

)
TBB′

in time TBB′ . On the descent this increase in m requires an additional time

TB′C = 1

η3
ln

(
1 + 	m

mC

)
.

Thus the period is approximately given by

T = TAB + TBB′ + TB′C + TCD. (31)

In Fig. 9 the derived estimates for the oscillator period are compared with numerical
estimates. In this case η1 ∼ O(

√
η4). Note that the dependence of oscillator period

on η1 is no longer monotonic. For small η1 the period increases as η1 decreases as a
result of the progression of the solution along AB (transcription is a limiting step).
However, for larger η1 the period increases with η1. This effect is due to the overshoot
at the local maximum of the p nullcline.
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