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Abstract

Purpose: This report presents the methods and results of the Thoracic Auto-Segmentation 

Challenge organized at the 2017 Annual Meeting of American Association of Physicists in 

Medicine. The purpose of the challenge was to provide a benchmark dataset and platform for 

evaluating performance of auto-segmentation methods of organs at risk (OARs) in thoracic CT 

images.

Methods: Sixty thoracic CT scans provided by three different institutions were separated into 36 

training, 12 offline testing, and 12 online testing scans. Eleven participants completed the offline 

challenge, and seven completed the online challenge. The OARs were left and right lungs, heart, 

esophagus and spinal cord. Clinical contours used for treatment planning were quality checked and 

edited to adhere to the RTOG 1106 contouring guidelines. Algorithms were evaluated using the 

Dice coefficient, Hausdorff distance, and mean surface distance. A consolidated score was 

computed by normalizing the metrics against inter-rater variability and averaging over all patients 

and structures.
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Results: The inter-rater study revealed highest variability in Dice for the esophagus and spinal 

cord, and in surface distances for lungs and heart. Five out of seven algorithms that participated in 

the online challenge employed deep learning methods. Although the top three participants using 

deep learning produced the best segmentation for all structures, there was no significant difference 

in the performance among them. The fourth place participant used a multi-atlas based approach. 

The highest Dice scores were produced for lungs, with averages ranging from 0.95–0.98, while the 

lowest Dice scores were produced for esophagus, with a range of 0.55–0.72.

Conclusion: The results of the challenge showed that the lungs and heart can be segmented 

fairly accurately by various algorithms, while deep learning methods performed better on the 

esophagus. Our dataset together with the manual contours for all training cases continues to be 

available publicly as an ongoing benchmarking resource.
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I. INTRODUCTION

Rapid advances in radiation therapy allow the radiation to be delivered to the target with a 

spatial dose distribution that minimizes radiation toxicity to the adjacent normal tissues. To 

achieve a favorable dose distribution, the targets and concerned organs at risk (OARs) should 

be defined accurately on the computed tomography (CT) scans used in treatment 

planning1,2. Traditionally, clinicians manually delineate these structures. This is time-

consuming, labor intensive, and subject to inter- and intra-observer variability3,4. In recent 

years, with the technology development in medical image analysis, computer-aided 

automatic segmentation has become increasingly important in radiation oncology to provide 

fast and accurate segmentation of CT scans for treatment planning. While many auto-

segmentation implementations are available, their use in clinic is limited. This is partly due 

to the lack of an effective approach for their evaluation, and partly due to a perception that 

they are of lower quality than human segmentation. Commissioning an auto-segmentation 

for clinical use is also difficult because of the lack of benchmark datasets and commonly 

agreed evaluation metrics.

One approach for unbiased evaluation is to conduct a “grand challenge”. The participants are 

invited to evaluate their algorithms using a common benchmark dataset, with the algorithm 

performance being scored by an impartial third party. This framework allows the different 

segmentation approaches to be evaluated more evenly and reduces the risk of evaluation 

error due to overfitting and case selection. Previous “grand challenges” have demonstrated 

the success of this approach, including segmentation challenges for radiotherapy planning 

held in 20095, 20106, and 20157. Grand challenges attract some of the best academic and 

industrial researchers in the field. The competition is friendly and stimulates scientific 

discussion among participants, potentially leading to new ideas and collaboration.

This paper presents the results from the Thoracic Auto-segmentation Challenge held as an 

event of the 2017 Annual Meeting of American Association of Physicists in Medicine 

(AAPM). The overall objective of this grand challenge was to provide a platform for 
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comparison of various auto-segmentation algorithms, a guideline for the selection of auto-

segmentation algorithms for clinical use, and the benchmark data for evaluating auto-

segmentation algorithms in thoracic radiation treatment planning. This grand challenge 

invited participants from around the globe to apply their developed algorithms to perform 

auto-segmentation of OARs from real patient CT images, including esophagus, heart, lung, 

and spinal cord.

The grand challenge consisted of two phases: an offline contest and a online contest. The 

offline contest was conducted in advance of the AAPM 2017 Annual Meeting. The training 

data consisting of planning CT scans from 36 different patients were made available to the 

participants prior to the offline contest through The Cancer Imaging Archive (TCIA)8. The 

training data were made available in DICOM format with radiation therapy (RT) structures. 

The RT structures were reviewed and manually edited if needed to adhere to the RTOG 1106 

contouring atlas guidelines9,10. The participants were given one month to train their 

algorithms using the training data. An additional 12 test cases were distributed to the 

participants for the offline contest. Participants were given 3 weeks to evaluate their 

algorithm performance using these test cases and submitted the segmentation results to the 

grand challenge website11, which were then analyzed by the organizers of the grand 

challenge. More than 100 participants registered on the challenge website by the time the 

offline contest concluded, and 11 participants submitted their offline contest results. Seven 

participants from the offline contest participated in the online challenge with three remote 

and four on-site participants. The online contest was held at the AAPM 2017 Annual 

Meeting followed by a symposium focusing on the challenge. During the online contest, the 

participants had two hours to analyze 12 previously unseen test cases. The results were 

analyzed and the challenge results were announced at the symposium the day after the 

online competition. This grand challenge provided a unique opportunity for participants to 

compare their automatic segmentation algorithms with those of others from academia, 

industry, and government in a structured, direct way using the same data sets.

This paper is organized as follows. A detailed description of challenge data and the 

evaluation approach is presented in Sections II A and II B. Section II C describes briefly the 

segmentation algorithms from each online contest participants. Section III shows the offline 

and online contest results from participating teams. We then discuss the findings of the 

challenge and other scientific questions and the lessons learned from organizing the 

challenge in Section IV followed by the conclusions.

II. MATERIALS AND METHODS

A. Benchmarking datasets

Datasets for the grand challenge were made available from three different institutions: MD 

Anderson Cancer Center (MDACC), Memorial Sloan-Kettering Cancer Center (MSKCC) 

and the MAASTRO clinic, with 20 cases from each institution. The datasets were divided 

into three groups, stratified per institution, with 36 training cases, 12 offline test cases, and 

12 online test cases. The simulation CT scans for patients treated with thoracic radiation 

were included in the study. Depending on the institution’s clinical practice, mean intensity 

projection of the 4DCT (MDACC), exhale phase of 4DCT (MAASTRO), or free-breathing 
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(MSKCC) contrast-enhanced CT scans were provided for evaluation. All scans have a field-

of-view of 50 cm and a reconstruction matrix of 512 × 512. Slice spacing varies among 

institutions, with 1 mm (MSKCC), 2.5 mm (MDACC), and 3 mm (MAASTRO). All CT 

scans cover the entire thoracic region, with number of slices ranging from 103 to 279. Cases 

with collapsed lungs owing to extensive disease and cases with the esophagus terminating 

superior to the lung lower lobes were excluded.

1. Organs at risk used for segmentation—The following organs at risk (OARs) are 

used in this challenge: esophagus, heart, left and right lungs, and spinal cord (Figure 1). The 

manual contours of these structures were drawn following the RTOG 1106 contouring atlas 

guideline9, detailed as below.

Esophagus: RTOG 1106 description: The esophagus should be contoured from the 

beginning at the level just below the cricoid to its entrance to the stomach at GE junction. 

The esophagus will be contoured using mediastinal window/level on CT to correspond to the 

mucosal, submucosa, and all muscular layers out to the fatty adventitia.

Additional notes: The superior-most slice of the esophagus is the slice below the first slice 

where the lamina of the cricoid cartilage is visible (+/− 1 slice). The inferior-most slice of 

the esophagus is the first slice (+/− 1 slice) where the esophagus and stomach are joined, and 

at least 10 square cm of stomach cross section is visible.

Heart: RTOG 1106 description: The heart will be contoured along with the pericardial sac. 

The superior aspect (or base) will begin at the level of the inferior aspect of the pulmonary 

artery passing the midline and extend inferiorly to the apex of the heart.

Additional notes: Inferior vena cava is excluded or partly excluded starting at the slice where 

at least half of the vessel circumference is separated from the right atrium. Contouring of the 

pericardial sac remains inconsistent for some cases.

Lungs: RTOG 1106 description: Both lungs should be contoured using pulmonary windows. 

The right and left lungs can be contoured separately, but they should be considered as one 

structure for lung dosimetry. All inflated and collapsed, fibrotic and emphysematic lungs 

should be contoured, small vessels extending beyond the hilar regions should be included; 

however, gross tumor volume (GTV), hilars and trachea/main bronchus should not be 

included in this structure.

Additional notes: Tumor is excluded in most data, but size and extent of excluded region are 

not guaranteed. Hilar airways and vessels greater than 5 mm (+/− 2 mm) diameter are 

excluded. Main bronchi are always excluded, secondary bronchi may be included or 

excluded. Small vessels near hilum are not guaranteed to be excluded and were generally left 

as found in the original clinical contours. Collapsed lung may be excluded in some scans.

Spinal cord: RTOG 1106 description: The spinal cord will be contoured based on the bony 

limits of the spinal canal. The spinal cord should be contoured starting at the level just below 
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cricoid (base of skull for apex tumors) and continuing on every CT slice to the bottom of L2. 

Neuroforamina should not be included.

Additional notes: Spinal cord may be contoured beyond cricoid superiorly and beyond L2 

inferiorly. Contouring to base of skull is not guaranteed for apical tumors.

2. Quality assurance—The clinical contours from all institutions were quality checked 

prior to making data available, by one of the challenge organizers (GS), and edited to 

eliminate major deviations from RTOG 1106 contouring guidelines. For the lungs, images 

were edited to exclude main bronchi. In some cases, small vessels within lungs that were 

excluded in the original contours were edited to include them. The superior border of the 

heart was edited in some cases to comply with the RTOG guidelines. In some cases, the 

inferior and superior aspects of the esophagus and spinal cord were extended.

Prior to releasing the data, the challenge organizers discussed at length the degree to which 

data should be edited for quality assurance. Our consensus was that extensive editing of 

contouring was undesirable, because inter-observer variability present in the original 

contours would be lost. For this reason, the data includes several areas of inconsistency.

3. TCIA data curation—TCIA is a service for investigators who wish to share and 

download cancer imaging data for research purposes8. The archive hosts data from a number 

of clinical trials and other NCI/NIH data collection initiatives, but also allows the 

community to contribute data sets by filling out an application form12. After receiving 

approval to submit the data set to TCIA, a quality check of all manual contours and CT 

images was performed. TCIA staff then provided customized versions of the Clinical Trial 

Processor software13 to de-identify and transfer the challenge data set to TCIA servers. 

TCIA curators performed extensive review of both DICOM headers and pixel data to ensure 

full removal of patient identifiers in compliance with HIPAA regulations, while also taking 

care not to remove critical information necessary for analysis by challenge participants14. 

The resulting data set with detailed description can be obtained at http://doi.org/10.7937/K9/

TCIA.2017.3r3fvz0815.

4. Inter-rater variability in the segmentation—Inter-rater variability refers to the 

variation in segmentation between multiple human operators. To be able to evaluate the 

automatic algorithms with respect to the inter-rater variability in human manual contouring, 

three cases were selected to be re-contoured multiple times. The first training case from each 

of the contributing institutions was manually contoured by three of the authors (MG,GS,JY) 

according to the contouring guidelines. These additional contours were created without 

reference to the original contours submitted, or to each other. Each quantitative measure 

used in the challenge was calculated pairwise between the three observers for each structure. 

Inter-rater variability was computed as the mean score between observers for each measure 

and for each organ, and was used as a reference value to evaluate the performance of various 

algorithms for each structure.
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B. Quantitative evaluation metrics

Submitted contours were compared against the manual contours, which serve as the ground 

truth, for all test datasets using the following evaluation metrics as implemented in 

Plastimatch16. The RT structures were voxelized to CT resolution for all calculations which 

means that accuracy evaluation is at the voxel level, and sub-voxel differences between 

algorithms are not captured. Evaluation was performed in 3D. To prevent uncertainty with 

regard to the extent to which the spinal cord and esophagus should be contoured, both 

ground-truth and submitted contours were cropped 1 cm superior to the inferior border, and 

1 cm inferior to the superior border. Therefore, participants would not be penalized for 

contouring too great an extent of these structures in the inferior-superior direction, but would 

be penalized for a substantial under-segmentation.

1. Dice Coefficient—Dice coefficient is a measure of relative overlap, where 1 

represents perfect agreement and 0 represents no overlap.

D =
2 X ∩ Y

X + Y
, (1)

where X and Y are the ground truth and the submitted contours, respectively.

2. Mean surface distance (MSD)—The directed mean surface distance is the average 

distance of a point in X to its closest point in Y. That is:

d H, avg(X, Y) =
1

X
x ∈ X

min
y ∈ Y

d (x, y) (2)

The mean surface distance is the average of the two directed mean surface distances:

dH, avg(X, Y) =
d H, avg(X, Y) + d H, avg(Y , X)

2
(3)

3. 95% Hausdorff distance (HD95)—The directed percent Hausdorff measure, for a 

percentile r, is the rth percentile distance over all distances from points in X to their closest 

point in Y. For example, the directed 95% Hausdorff distance is the point in X with distance 

to its closest point in Y greater or equal to exactly 95% of the other points in X. In 

mathematical terms, denoting the rth percentile as Kr, this is given as:

d H, r(X, Y) = Kr min
y ∈ Y

d (x, y) ∀x ∈ X (4)

The (undirected) percent Hausdorff measure is defined again with the mean:
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dH, r(X, Y) =
d H, r(X, Y) + d H, r(Y , X)

2
(5)

4. Score normalization—Different organs and measures have different ranges of scores 

for the three metrics, therefore it is not meaningful to average them to get an overall score. 

Thus, the scores were normalized with respect to inter-rater variability values generated 

from the three cases contoured by multiple raters. The mean score of these raters was used 

as a reference measure against which submitted contours was compared. For any organ/

metric a perfect value was given a score of 100. A value equivalent to the mean inter-rater 

reference was given a score of 50. A linear scale was be used to interpolate between these 

values, and extrapolate beyond them, such that a score of 0 was given to any result below the 

reference by more than the perfect score is above the reference. Mathematically,

score = max 50 +
(T − R)

(P − R)
× 50 , 0 (6)

where T is the test contour measure, P is the perfect measure (Dice = 1, MSD/HD95 = 0), 

and R is the reference measure for that organ/measure. For example, given a reference Dice 

of 0.85; a test contour with a Dice of 0.9 against the “ground truth” will score 66.6, where as 

a test contour with a Dice of 0.72 against the “ground truth” would score 7. Overall score of 

each participant was computed by averaging over all metrics, all structures, and all patients.

C. Algorithms used in online contest

We reported both offline and online competition results from 7 teams who participated in 

both contests. A brief description of the segmentation algorithm used by each team is 

presented as below with a summary of these methods shown in Table I.

Method 1 - Team Elekta—This approach used a deep convolutional neural network 

(DCNN) for thoracic CT image segmentation. The DCNN model was modified from the U-

Net architecture17, with 27 convolutional layers in total and with the sequential 

convolutional layers at each resolution level being combined into a residual block18. To 

improve computation efficiency, two models were trained and applied in sequence. A fast 

2.5D model with an input size of 5 × 360 × 360 voxels was trained to segment the lungs, the 

results of which were also used to automatically define a bounding box for the other 

structures. A 3D model with an input size of 32 × 128 × 128 voxels was trained and applied 

within the smaller ROI to get the final segmentation of the heart, the esophagus, and the 

spinal cord. The models were implemented using the Caffe package19 and trained from 

scratch using the 36 AAPM training datasets.

Method 2 - Team University of Virginia—This method used a two-step deep learning 

model based on 3D U-Net for thoracic segmentation. Preprocessing included intensity 

normalization and image resizing to unify pixel spacing and slice thickness. In the first step 

a 3D U-Net model was trained to segment all ROIs from down-sampled images. The 
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network structure contained three encoding layers and three decoding layers based on 

VGGNet20 and the weighted cross entropy was used as the loss function. Bounding boxes 

for each ROI were then extracted as the input for the second step and one network is trained 

per ROI to segment background and foreground pixels. The final contours were cleaned to 

remove small non-connected regions in automatic post-processing.

Method 3 - Team Mirada—This approach employed convolutional networks to learn 

features in the input images that can be used to generate a dense (semantic) segmentation. A 

2D multi-class network with 14 layers was first used to predict all OARs at a coarse 

resolution. The weighting of the loss function for the different classes was set empirically to 

favor smaller structures to improve their accuracy. The output of the initial network together 

with the full-resolution image data formed the inputs to a series of organ-specific ten-layer 

networks that performed binary classification for each organ. Connected components and 

hole-filling were used to correct discontinuities in the final segmentation. The networks were 

trained using the 36 training cases provided to refine the parameters that had been previously 

trained on 450 clinical patient cases. The network architectures were designed so that the 

processing of test cases could be carried out on a GPU with 2GB of RAM. Training was 

performed using a 8GB GPU.

Method 4 - Team University of Minho—A multi-atlas segmentation approach with two 

conceptual steps, namely registration and label fusion, was applied21. Concerning the 

registration step, for each atlas, after an initial full-image alignment, each organ was 

independently masked and aligned through an affine model. Next, the affine transformations 

of individual organs were fused into a single transformation using a dense deformation field 

reconstruction strategy, guaranteeing the spatial coherence among organs. Next, a full non-

rigid image registration was applied to refine the atlas to the patient anatomy. Concerning 

the label fusion step, an initial statistical selection was performed. Here, for each organ, the 

Dice coefficient was used to compute the overlap between each atlas segmentation and a 

reference segmentation, i.e., a local weighted sum of all segmentations based on the cross-

correlation between image/atlases22. Next, the final segmentation was acquired by fusing the 

9 best-ranked candidate segmentations using the joint label fusion strategy23.

Method 5 - Team Beaumont—A fully automated deep learning approach was used, 

using a pre-trained network previously developed for general OAR segmentation that was 

fine-tuned on the provided training cases. Input was individual CT slices and voxel labels. A 

residual network design was used, with multiple downsampling steps. At each resolution 

level, deconvolution was used to upsample to input resolution. The resulting maps were 

summed to make the final voxel labels. The initial network was trained on 2867 plans 

approved for treatment. Pre-processing of input was an initial downsampling to half-

resolution and mean voxel subtraction. There was no significant post-processing beyond 

upsampling.

Method 6 - Team Maastro—An organ-based multiatlas segmentation (MABS) approach 

was developed by the Maastro Clinic Physics research team. First, a multistage deformable 

image registration algorithm calculated the affine and B-spline deformation fields between 
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all atlases and the patient with unknown contours. The obtained deformation fields were 

then applied on all atlas CT images and structures to calculate patient-like geometries and 

structures. Bounding boxes around every organ were determined and used to crop the atlas 

and patient CT data. For every organ, the normalized cross-correlation coefficient was 

calculated between all cropped deformed atlas CT images and the patient CT image. The 

highest-scoring cropped atlas CT images were used as input for the simultaneous truth and 

performance level estimation (STAPLE) algorithm, which calculated the automatic 

generated contour that was smoothed in a final step.To segment the OARs of one patient, 

about 5 minutes of computing time was required using a 400 core HTCondor CPU cluster.

Method 7 - Team WUSTL—Depending on the size of the organs, two different U-net 

networks17 were used. For larger organs like lung and heart, a 3D U-net was used. In 

particular, the whole CT scan was down sampled to a size of 224 × 224 × 224 by 3D 

interpolation. The same size binary mask for each organ was used as output to the 3D U-net. 

Due to the large size of the input, each group layer of the encoding branch of the U-net had 

only one convolutional layer with a 3 × 3 × 3 kernel and the size of the input was reduced by 

half. Similarly, on the decoding, each layer had only one de-convolutional layer to double 

the size of the input that was then merged with the corresponding layer from the encoding. 

Although the architecture was simple, this approach worked surprisingly well for lung and 

heart due to the amount of information and the size of these organs. For the smaller organs 

like spinal cord and esophagus, a 2D U-net was used. A patch of 224 × 224 pixels 

containing the organ was extracted from the original 512 × 512 image based on the location 

distribution of that organ in the training set. The 2D U-net was modified from the original U-

Net17 by replacing the convolution layer with a Google Inception layer24 to increase the 

ability of feature learning of the network. Both models were trained with the Dice coefficient 

as the loss function with Adam optimization, early stopping, and learning decay on a Nvidia 

Pascal GPU.

III. RESULTS

A. Inter-rater variability in the segmentation

The inter-rater variabilities for three raters on three training cases for the various structures 

are summarized in Table II. These numbers were used as the reference measure for score 

normalization. The qualitative differences among raters are shown in Fig. 2.

B. Challenge results

The overall scores achieved by the seven methods are summarized in Figure 3. Overall 

scores were computed by averaging the normalized scores over all measures, all structures, 

and all patients as described in subsection “Score normalization” of Section II B.

Segmentation results for each organ, metric, and method for the online challenge are 

summarized in Fig. 5, Fig. 6, Fig. 7, Fig. 8 and Table III. In general, the deep learning 

methods outperformed the multi-atlas based methods. There was little difference in the 

performance among the various methods, namely, deep learning or atlas-based, on 

generating a segmentation for large structures such as the lungs; larger performance 
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differences were evident for narrow and long structures with poor soft-tissue contrast such as 

the esophagus. It is interesting to note that both multi-atlas methods, Method 4 and Method 

6, slightly outperformed Method 5 and Method 7, both of which were deep learning 

algorithms for segmenting esophagus. Fig. 4 shows an example segmentation generated by 

each method. The overall score achieved by those methods for segmenting the various 

structures is also shown. Referring to Fig. 8, it can be seen that performance of the methods 

varies according to the image on which assessment is performed. For example, in case 

LCTSC-Test-S2–203 there is substantial tumor burden at the edge of the right lung. All 

methods perform uncharacteristically poorly for this organ in this case, highlighting impact 

of how the tumor is treated by such autocontouring methods.

Offline performance of the methods was similar to their online performance with the deep 

learning methods outperforming the multi-atlas based methods (with the exception of slice-

based Unet in Method 7). Detailed results were provided in a supplementary document.

IV. DISCUSSION

A. Findings of the challenge

The results of this challenge follow a similar pattern to that found in many other computer-

assisted tasks; deep learning appears to outperform established methods. Atlas-based auto-

contouring could be considered the established method for the task of automatic contouring 

of OARs, with the majority of vendors using this approach in their clinically available 

products25. However, the highest-placed atlas-based method in the challenge came in fourth 

place, with the top three entries all using deep-learning contouring (DLC).

Specific implementation differences among the various methods is summarized in Table I. 

On average, the DLC methods were computationally faster than the multi-atlas contouring 

despite differences in the hardware. The slowest DLC method is from Team 3 that used a 

GTx 1050 2GB GPU, which can certainly achieve much faster segmentation with a faster 

GPU, and the fastest DLC is the method 2 (around 10 seconds on a Titan Xp GPU). It is 

interesting to note that Method 1 did training from scratch as opposed to all other DLC 

methods but yet achieved the best results possibly due to the hierarchical segmentation 

approach where the lung segmentation was used to reduce the search space for the remaining 

structures. Methods 2 and 3 used multi-scale approach to locate the structures followed by 

refining the segmentation of those structures within the detected regions.

Many of the DLC methods were based on variations U-net architectures. The architecture 

modifications included residual connections used in the Unet (Method 1), VGG-net layers 

used for convolutional layers (Method 2), and Google Inception layers used for performing 

convolutions in the 2D Unets (Method 7). While all methods opted to use a two step 

approach, with initial coarse segmentation being performed prior to a higher resolution 

refinement, variations exist how this was done and the dimensionality (with 2D, 3D, and 

2.5D all represented) of the layers. However, analysis of the impact of architecture alone is 

not possible from the results of the challenge, since the method of training also differed with 

some using only the challenge data, and others pre-training on alternative data first.
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It is worth noting that DLC is not guaranteed to be better; Method 7 did not perform as well 

as more conventional approaches. As with all methods there are better and worse 

implementations, and deep learning in this context is a new and evolving technology. 

Furthermore, there were no participants who submitted results using shape models, a method 

that demonstrated high accuracy in the 2015 head and neck challenge7.

One possible explanation of why DLC outperforms atlas-based segmentation comes from 

the greater number of degrees of freedom with DLC. Assuming a dense deformation 

registration for single atlas contouring, it can be expected that there are three degrees of 

freedom per CT image voxel. Therefore for the typical image size in this challenge (512 × 

512 × 150), such a single atlas contouring method would have approximately 120 million 

degrees of freedom. However, voxels related to the structures to be contoured are a small 

portion of the entire image. In addition, in practice deformable image registration is 

regularized to prevent unrealistic deformation and often constrained to a deformation model 

to make the solution computationally tractable. Thus, even if there is apparently one vector 

per voxel, they are constrained to behave in a dependent fashion such that the relative 

anatomical location of the object is preserved, and the effective number of degrees of 

freedom is substantially reduced in practice. In contrast, DLC has many more degrees of 

freedom, with Methods 1, 2 and 3 reporting approximately 27 million, 66 million, and 14 

million free parameters in their models, respectively. Therefore, DLC should be able to 

capture more anatomical variation than atlas-based contouring with its many more degrees 

of freedom. It should be noted that the results-focused nature of this challenge means that 

this explanation remains a conjecture that has not been fully researched.

B. Implications for clinical practice

Following the online challenge results presentation at AAPM, a round table discussion 

considered implications in clinical practice. The discussion focused on three key aspects: the 

utility of such challenges for informing clinical practice, the adoption of autocontouring into 

clinical practice, and the open challenges in autocontouring for the future.

1. Are challenges useful for informing clinical practice?—Assessment of 

autocontouring within the context of a challenge must be quantitative; the challenge seeks to 

rank participating approaches in an objective fashion. To this end, quantitative measures 

such as Dice and Hausdorff distance as a gold standard are used. However, it has been 

observed that there is only weak correlation between such quantitative assessment and the 

editing time required to adapt contours to a clinically acceptable standard26, and this 

quantitative assessment is more affected by inter-observer agreement27. While alternative 

qualitative assessment approaches have been proposed to overcome this limitation28–30, such 

methods do not lend themselves to the challenge scenario. This raises the question as to 

whether such challenges are useful to inform clinical practice.

While not fully informing the resultant impact on clinical practice, such quantitative 

assessment is a useful gatekeeper prior to clinical impact investigation. To properly 

investigate the clinical impact through editing studies will require clinical time, and clinical 

time is a valuable commodity. Performing such an investigation on a poorly performing 

Yang et al. Page 11

Med Phys. Author manuscript; available in PMC 2019 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



method is a waste of effort and risks alienating clinical staff against future investigation. 

Therefore, it is better to prove new approaches in such a quantitative comparison prior to 

clinical investigation, both as risk mitigation against wasting clinical effort and as a 

motivation tool for participating clinicians.

A noted limitation of such challenges is the limited pool of data and its restriction to 

“typical” cases. Although a single case with a partially collapsed lung was included in this 

challenge, poorly acquired and extreme pathological cases were excluded. Would it be fair to 

compare methods for their ability to segment a lung that is not present in a case where it had 

been surgically removed? What should be considered the right answer in such a context? 

However, autocontouring systems must be robust to such cases in a clinical context. While it 

is trivial to delete a structure returned for an organ that is not present in the image, such an 

abnormality may also impact the contouring quality of other organs that are present. In 

future challenges, it would be useful to consider this scenario with a broader range of 

training and test cases. Careful consideration would need to be given to assessing 

performance of methods according to the degree of abnormality to avoid biasing the overall 

conclusion to a single pathological case.

2. What limits use of autocontouring in clinical practice?—Commercial 

autocontouring systems have been available for 10 years. However, in an audience poll at 

AAMD 2017, while approximately 80% of clinical institutions reported having 

autocontouring systems, only about 30% routinely use them. Anecdotally, the discontinued 

use may be attributed to two principal reasons: poor quality of results and poor workflow 

integration.

While current available model-based and atlas-based systems have been shown to reduce 

contouring time in clinical studies31–36, such studies often exclude cases with large 

abnormalities. Thus, although time may be saved in routine clinical practice for many cases, 

even a moderate number of “failure” cases that require more time to edit than would be 

required for manual contouring can lead to frustration and discontinuation of use by the 

clinical end-user.

Some existing solutions may suffer from poor workflow integration; any additional demands 

on clinical users to navigate menus, to select, or to wait for autocontouring can be perceived 

as an additional time burden compared with manual contouring that outweighs any perceived 

benefit. Furthermore, most manual contouring tools are better suited to initial manual 

contouring than they are to editing of auto-generated structures. This, in turn, can lead to a 

poor perception of autocontouring, even if it is the editing tools that are the limiting factor.

3. Future directions for autocontouring—The drawbacks limiting the use in clinical 

practice naturally highlight potential directions for autocontouring research. Autocontouring 

challenges, such as this one, do not reward “I don’t know” as an answer. Users may prefer a 

system that does not return a contour where it has low confidence and indicates where 

manual intervention is most likely to be required. Future challenges should consider 

integrating the level of confidence into the scoring system or the automated detection of 

slices for editing. If some amount of manual editing is to be accepted as necessary, then 
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there is also potential for innovation around the manual editing of existing structures in a 

more efficient manner. Evaluating and comparing such manual tools in an unbiased way 

presents a challenge of its own.

While the majority of contouring for radiotherapy is currently performed on CT imaging, the 

increasing use of MRI is on the horizon. MRI presents an additional challenge for 

autocontouring. Autocontouring systems would need to adapt to variations in acquisition 

between institutions or even between different patients.

C. Limitations of the challenge

Although the challenge largely succeeded in bringing together researchers to discuss and 

learn about the state-of-the-art in autocontouring on thoracic CT, there were technical 

limitations in the data and methods that should be considered when interpreting the results.

The total size of the data was limited to 60 subjects, split between training and evaluation. 

Given the dependence of machine learning approaches on a broad dataset, it is possible that 

some of the methods would have been able to perform even better with a larger data pool. 

However, arranging a large well-curated dataset is difficult and perhaps a limitation of these 

approaches.

Although an attempt was made to clearly define a contouring standard for the challenge, 

various aspects of the scoring of the autocontouring may have unfairly penalized some of the 

methods in the evaluation. The evaluation of left and right lung was based on the clinical 

judgment of the boundaries between healthy lung and tumor. Methods that extended the 

contour into the target volume were penalized, despite the fact that this could be easily 

excluded by a boolean operation after segmentation. Also for the lungs, it was hard to ensure 

consistency in the exclusion or inclusion of small vessels in the ground truth data. 

Additionally, the patient inclusion/exclusion criteria were not firmly defined, for example 

the collapsed lung and esophageal extent were based on visual judgment instead.

The challenge also was limited in how it can be interpreted in a clinical context. Several 

structures of clinical interest were not evaluated, such as brachial plexus, heart chambers, 

coronary vessels, and bronchial tree. Furthermore, the relationship between the quantitative 

measures used in the challenge and their normalized summary scores has not been clearly 

demonstrated to correlate well with clinical utility.

V. CONCLUSIONS

The 2017 AAPM Thoracic Auto-Segmentation Challenge provided a standardized dataset 

and evaluation platform for testing and discussing the state-of-the art automatic 

segmentation methods for radiotherapy. The benchmarking datasets were made available to 

the public through TCIA15 and the evaluation platform was made available at our challenge 

website11. In line with current trends, we observed that deep learning approaches 

outperformed the multi-atlas segmentation approaches. Round-table discussion identified 

lack of good segmentation validation tools integrated into the clinical workflow as a main 
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limiting factor for clinical implementation of auto-segmentation methods and suggested 

segmentation self-evaluation as a possible solution for clinical integration.
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FIG. 1: 
Organs used in the challenge: esophagus, heart, left and right lungs, and spinal cord. Bony 

structures are shown as the background.

Yang et al. Page 17

Med Phys. Author manuscript; available in PMC 2019 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 2: 
Qualitative display of inter-rater differences in organ-at-risk segmentations.
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FIG. 3: 
Overall scores for each method for both offline and online evaluations. Box plots are 

generated from 12 offline and online test cases, respectively. Dots in the box are the mean 

scores of each method. A score of 50 is equivalent to average inter-rater variation.
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FIG. 4: 
Example segmentations generated by the seven methods for the organs under evaluation (left 

and right lungs, heart, esophagus, and spinal cord) shown in axial, sagittal, and coronal 

views. First row shows the manual contours. The overall score achieved by each method in 

segmenting these structures for this example patient is also shown.
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FIG. 5: 
The Dice values achieved by the seven methods for the evaluated organs in the online 

contest. The reference Dice value computed from the inter-rater variability in manual 

segmentation, for which the normalized score is 50, is shown as the dashed line. (A) left and 

right lungs; (B) heart; (C) spinal cord; and (D) esophagus.
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FIG. 6: 
The 95% Hausdorff distance (HD95) achieved by the seven methods for the evaluated 

organs in the online contest. The reference HD95 value computed from the inter-rater 

variability in manual segmentation, for which the normalized score is 50, is shown as the 

dashed line. (A) left and right lungs; (B) heart; (C) spinal cord; and (D) esophagus. NOTE: 

In plot (C), method 3 has an outlier of 5.3 mm that does not show within the plot area.

Yang et al. Page 22

Med Phys. Author manuscript; available in PMC 2019 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 7: 
The mean surface distance (MSD) achieved by the seven methods for the evaluated organs in 

the online contest. The reference MSD value computed from the inter-rater variability in 

manual segmentation, for which the normalized score is 50, is shown as the dashed line. (A) 

left and right lungs; (B) heart; (C) spinal cord; and (D) esophagus.
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FIG. 8: 
The normalized score, averaged over all organs reported by CT for the online test data.
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TABLE I:

Summary of specific implementation details of various segmentation methods used in the contest. Testing time 

is the segmentation time for one patient.

Method Approach Unique implementation features Training 
time

Testing 
time

Run-time 
GPU

1 DLC • Hierarchical segmentation: use lung to constrain location of other 
structures
• 2.5D (lung) and 3D (others) residual Unets
• Training from scratch

3days 30secs Titan X 
12GB

2 DLC • Two-step segmentation: first step to locate structures and second 
step to segment structures
• 3D Unet
• Separate networks trained for each structure

2days 10secs Titan Xp 
12GB

3 DLC • 2D Multi-class network to reduce the demand for a high spec 
graphics card at run time
• Fine tuning of pre-trained network
• Loss function penalizing small structures

>7days 6mins GTx 1050 
2GB

4 MAC • Structure-specific label fusion - 8hrs -

5 DLC • 2D ResNet
• Fine tuning of pre-trained network
• Use un-curated and un-preprocessed training data from an operating 
clinic; no post-processing

14days 2mins K40

6 MAC • Organ-based STAPLE fusion - 5mins -

7 DLC • 3D (lung, heart) and 2D(others) Unets
• Google Inception layers for convolution

4hrs 2mins Pascal

DLC: Deep learning contouring; MAC - Multi-atlas contouring.
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TABLE II:

Inter-rater differences in organ-at-risk (OAR) segmentation for the analyzed metrics.

OAR Dice HD95 (mm) MSD (mm)

Lung left 0.956 ± 0.019 5.17 ± 2.73 1.51 ± 0.67

Lung right 0.955 ± 0.019 6.71 ± 3.91 1.87 ± 0.87

Heart 0.931 ± 0.015 6.42 ± 1.82 2.21 ± 0.59

Esophagus 0.818 ± 0.039 3.33 ± 0.90 1.07 ± 0.25

Spinal cord 0.862 ± 0.038 2.38 ± 0.39 0.88 ± 0.23

HD95: 95% Hausdorff distance; MSD: mean surface distance.
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TABLE III:

Segmentation performance of the seven methods for the evaluated organs in the online contest. The results are 

expressed as mean ± standard deviation for metrics including Dice coefficient, 95% Hausdorff distance 

(HD95), and mean surface distance (MSD).

Metric Method Organ

Left lung Right lung Heart Esophagus Spinal cord

Dice 1 0.97 ± 0.02 0.97 ± 0.02 0.93 ± 0.02 0.72 ± 0.10 0.88 ± 0.037

2 0.98 ± 0.01 0.97 ± 0.02 0.92 ± 0.02 0.64 ± 0.20 0.89 ± 0.042

3 0.98 ± 0.02 0.97 ± 0.02 0.91 ± 0.02 0.71 ± 0.12 0.87 ± 0.110

4 0.97 ± 0.01 0.97 ± 0.02 0.90 ± 0.03 0.64 ± 0.11 0.88 ± 0.045

5 0.96 ± 0.03 0.95 ± 0.05 0.92 ± 0.02 0.61 ± 0.11 0.85 ± 0.035

6 0.96 ± 0.01 0.96 ± 0.02 0.90 ± 0.02 0.58 ± 0.11 0.87 ± 0.022

7 0.95 ± 0.03 0.96 ± 0.02 0.85 ± 0.04 0.55 ± 0.20 0.83 ± 0.080

HD95 (mm) 1 2.9 ± 1.32 4.7 ± 2.50 5.8 ± 1.98 7.3 ± 10.31 2.0 ± 0.37

2 2.2 ± 0.79 3.6 ± 2.30 7.1 ± 3.73 19.7 ± 25.90 1.9 ± 0.49

3 2.3 ± 1.30 3.7 ± 2.08 9.0 ± 4.29 7.8 ± 8.17 2.0 ± 1.15

4 3.0 ± 1.08 4.6 ± 3.45 9.9 ± 4.16 6.8 ± 3.93 2.0 ± 0.62

5 7.8 ± 19.13 14.5 ± 34.4 8.8 ± 5.31 8.0 ± 3.80 2.3 ± 0.50

6 4.5 ± 1.62 5.6 ± 3.16 9.2 ± 3.10 8.6 ± 3.82 2.1 ± 0.35

7 4.4 ± 3.41 4.1 ± 2.11 13.8 ± 5.49 37.0 ± 26.88 8.1 ± 10.72

MSD (mm) 1 0.74 ± 0.31 1.08 ± 0.54 2.05 ± 0.62 2.23 ± 2.82 0.73 ± 0.21

2 0.61 ± 0.26 0.93 ± 0.53 2.42 ± 0.82 6.30 ± 9.08 0.69 ± 0.25

3 0.62 ± 0.35 0.91 ± 0.52 2.89 ± 0.93 2.08 ± 1.94 0.76 ± 0.60

4 0.79 ± 0.27 1.06 ± 0.63 3.00 ± 0.96 2.03 ± 1.94 0.71 ± 0.25

5 2.90 ± 6.94 2.70 ± 4.84 2.61 ± 0.69 2.48 ± 1.15 1.03 ± 0.84

6 1.16 ± 0.43 1.39 ± 0.61 3.15 ± 0.85 2.63 ± 1.03 0.78 ± 0.14

7 1.22 ± 0.61 1.13 ± 0.49 4.55 ± 1.59 13.10 ± 10.39 2.10 ± 2.49
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