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ABSTRACT Neural Architecture Search (NAS) has drawn significant attention as a tool for automatically

constructing deep neural networks. The generated neural networks are mainly applied for image classifica-

tion, and natural language processing. However, there are increasing demands for image segmentation in

various areas, such as medical image processing, satellite image object location, and autopilot technology.

We propose a NAS method called Automated Segmentation Network (AutoSegNet), targeting industrial and

medical image segmentation. The search architectures are constructed by stacking the downsampling layer,

the bridge layer, and the upsampling layer, which are explored by a recurrent neural network. Compared with

other related methods for image segmentation, the proposed method has a small search space but can explore

most of the-state-of-the-art supervised image segmentation models. We perform verification on two datasets,

and the results show that AutoSegNet achieves superior segmentation results with clear and continuous

segmented edges, as well as better image details.

INDEX TERMS Neural architecture search, image segmentation, deep neural network.

I. INTRODUCTION

Neural Architecture Search (NAS) aims to search for the

best neural network architecture, given the learning dataset.

Currently, it has been successfully applied for image classifi-

cation and language modeling [1]–[4]. NAS mainly consists

of two parts: a controller for generating architecture param-

eters of the neural network and a validation neural network

for validating the given architecture parameters by construct-

ing, training, and testing the network. The optimization of

controller and validation network is based on reinforcement

learning [5]. The accuracy of the trained network will be fed

back to the controller as a reward and guide the controller

to optimize continuously. Such a process will repeat for

fixed epochs or stop while a specific parameter reaches a

particular value.

Efficient Neural Architecture Search (ENAS) [3], targeting

on image classification, generates the best neural network

architecture with a fixed structure. The fixed structure is a

traditional convolutional network with pooling layers. The

ENAS generates the optimized neural network in two ways:

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohammad Shorif Uddin .

figuring out the best component of each layer and searching

the best combination of a layer, and generating the architec-

ture by stacking layers.

To improve efficiency and reduce the amount of cal-

culation, we generate the best architecture differently.

As AutoSegNet for image segmentation, we have a

fixed encoder-decoder structure, which is considered

one of the most classic network structures for image

segmentation [6]–[8]. The structure includes three types of

layers: the downsampling layer, the bridge layer, and the

upsampling layer. The downsampling layer reduces the input

size so that the network can learn from the more signif-

icant receptive field. The upsampling layer works oppo-

sitely. Based on the features from the downsampling layer,

the upsampling layer reconstructs the input image. A bridge

layer lies in the middle of the whole network and connects the

downsampling layers and the upsampling layer. Each layer

includes several cells, and the number of cells can vary. The

components of the cells are the parameters that need to be

searched.

Unlike ENAS, which includes five operations for search-

ing, AutoSegNet has a smaller search space, which

significantly improves efficiency. As we have a fixed
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encoder-decoder network structure with the downsampling

layers reducing the input size, the pooling operation is

removed from the search space. Instead, a new hybrid dilated

convolution [9], [10] operation is added to the search space.

The hybrid dilated convolution is a kind of dilated convo-

lution without the gridding effect. It processes the input with

several convolution rates at the same time. In our cast, a group

of rates is set to 1, 2, and 3. By doing so, the network can

learn the input features from previous layers in a different

receptive field without resolution reduction as well as grill

effect. Consequently, compared with other NAS methods,

we have a rather small search space with only four operations:

• 3 × 3 depthwise-separable convolution

• 5 × 5 depthwise-separable convolution

• 3 × 3 hybrid dilated convolution with rate 1, 2, 3

• Identity

Besides, skip connection plays a significant role in image

segmentation. However, instead of manually adding the skip

connection empirically [11], the proposed method searches

both intra-cell skip connections and inter-cell skip connec-

tions, resulting in a more automated search network.

Meanwhile, unlike image classification, the features map

for image segmentation task should not be too small. Other-

wise, some details of the input image are difficult to recon-

struct. To avoid too small feature size due to a deep network,

the input feature is reduced to a fixed size. To achieve this,

hybrid dilated convolution [10] is added to combine with

the downsampling layers. An example of a fixed network

structure is shown in Fig. 1. The proposed method is tested on

an industrial segmentation dataset as well as a medical seg-

mentation dataset, and the results show quality segmentation

with clear and continuous segmented edges and better details

in the segmentation.

II. RELATED WORK

The proposed NASmethod, as well as hyper-parameters opti-

mization, are related to the previous work [1], [3]. The main

challenges of neural architecture search can be divided into

three parts: search space, searching strategies and evaluation

methods.

The search space defines what operations will be searched

and what kinds of networks can be generated. Theoretically,

a larger search space covers more neural architectures. How-

ever, there is a trade-off between search space and efficiency

- a vast search space results in longer searching time as

well as more resource requirements. If the neural network

is searched from scratch, for example, the height and width

of kernel and stride and the number of filters, it would take

around 800 GPU for 28 days to generate a convolutional

neural network [1] given a CIFAR-10 [12] dataset. From the

perspective of efficiency, some researchers limited the search

space to a fixed number of operations. These operations are

selected from the components of the-state-of-the-art models.

Such a method significantly reduces the searching time and

also achieves promising results on the same dataset [3], [13].

FIGURE 1. An example of a fixed network structure of the proposed
method. The searched downsampling layer is followed by pooling layers.
Upsampling is implemented before the searched upsampling layers.
A searched bridge layer is added to connect the downsampling part and
upsampling part and a softmax layer is added after the last searched
upsampling layer for segmentation. The HDC layer will be added after the
downsampling layers if the input of the block reaches the smallest
acceptable size (such as 8 × 8) for preventing the resolution of the input
being too small.

Meanwhile, the construction of the searched neural net-

work architecture is different. At the beginning stage, the neu-

ral networks are searched layer by layer [1], which means

each layer of the searched network might be different. How-

ever, from the perspective of efficiency, the entire network is

constructed using a pre-defined pattern without the network

level architecture search. Most of the pre-defined network

patterns are simple. Taking NASNet as an example, only

two types of cells needed to be searched: reduction cell,

which downsizes the image resolution by two, and a nor-

mal cell, which keeps the resolution of the features. The

final searched network is constructed by stacking the reduc-

tion cell and the normal cell. Targeting on image segmenta-

tion, the AutoDeepLab [14] proposed a network-level search

space. In AutoDeepLab, L layer is needed to be searched in a

limited search space, which includes the downsampling layer,

the upsampling layer, and the standard layer (for retaining the

resolution of the features).
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The searching strategy defines how to search through the

search space and faces the exploration/exploitation trade-off

during the searching stage. When choosing the next opti-

mization step, on the one hand, a well-performing neural

network architecture is expected to be found as quickly as

possible. On the other hand, we should also avoid sinking in

a suboptimal architecture. Some conventional searchmethods

include random search, Bayesian optimization, evolutionary

algorithms, reinforcement learning, and gradient-based algo-

rithms. Among them, the reinforcement learning has become

a competitive option since the proposal of NASNet [1].

NASNet achieved outstanding results on both CIFAR-10 and

Penn Treebank benchmarks [15] with the search strategy

based on reinforcement learning. In the NAS task, the gen-

eration of the architecture is treated as an agent. In the action

selection phase, the reward is obtained through the prediction

function on a test set and promotes the action selection.

Almost all of the overall frameworks for problems related to

NAS are based on such a strategy, but with different strategy

representations and optimization algorithms.

An alternative way to use reinforcement learning is neu-

ral evolutionary that depends on evolutionary algorithms for

the optimization of neural architecture. Such methods first

randomly generate a population (with N sets of solutions).

Then, they start to repeat the following steps: select, cross and

mutate until the terminal condition is met. In Liu et al. [2],

the generation starts from a small set of primitives such as

convolutional and pooling operations at the bottom level of

the hierarchy. Higher-level computation graphs, or motifs, are

mutated from the lower-level motifs. Bayesian optimization

is a common method for hyper-parameter optimization. In

Jin et al. [16], Bayesian optimization is used with the help

of the proposed neural network kernel and a tree-structured

acquisition function optimization algorithm to accelerate the

selection process of morph operation of neural architectures.

The performance of the deep learning model is highly

dependent on the scale of the training data. However, model

training and evaluation of the optimization results on large-

scale data can be time-consuming. Consequently, evaluation

methods are needed to make an approximate estimation. One

popular method is estimating network performance with low

fidelity results. For example, instead of using the full dataset

with high resolution for architecture searching, a subset of the

given dataset can be selected for architecture searching [17].

Also, training time and less filter can be applied in the search-

ing stage [13].

The semantic segmentation of images is also an essential

issue in computer vision. Its goal is to classify each pixel in

the image. If image segmentation can be performed swiftly

and precisely, it will be a significant step in areas like auto-

matic driving, image beautification, and 3D reconstruction.

The first paper that successfully applied deep learn-

ing into image segmentation is fully convolutional net-

works (FCN) [18]. It introduced the fully convolutional

network and applied deconvolution to map the feature map of

the neural network to the original image size. In 2014, the first

paper of Deeplab series Deeplab-V1 [9] came out. It has

brought two essential methods: dilated convolution and fully

connected conditional random fields (CRF) [19]. The dilated

convolution can be considered as a traditional convolution

with holes. It increases the receptive field without resolution

reduction. The CRF is added in the final part of the network

to improve details segmentation. U-Net [6] is also a classic

segmentation model that performs feature fusion in a new

way. Unlike FCN fusing features by element-wise addition,

U-Net performs feature fusion by stitching in channel dimen-

sion. Another example is SegNet [11]. In 2017 and 2018,

DeepV2 [9], DeepV3 [20] even DeepV3+ [8] have been

proposed. One of the critical contributions is that it proposed

an Atrous spatial pyramid pooling (ASPP) to obtain more

robust segmentation results withmulti-scale information. The

PSPNet [21] also applied a similar idea to the network.

Another significant model is Mask R-CNN [22], which

combines object detection and semantic segmentation. The

Mask R-CNN has multiple branches for outputs of different

tasks. The neural network learns two tasks at the same time

and promotes each other. Furthermore, Mask R-CNN pro-

posed RoiAlign to replace RoiPooling in Faster R-CNN [23].

The idea of RoiPooling is to map any piece of the input image

to the corresponding area in the neural network feature map.

RoiPooling utilizes a rounded approximation to discover the

corresponding area, causing the correspondence to be offset

from the actual situation. To solve this problem, instead of

employing rounded approximation, RoiAlign applies linear

interpolation to gain a more accurate corresponding area.

In the meantime, there are also some neural architec-

ture search methods applied to image segmentation that

have achieved superior segmentation results, especially for

medical image segmentation. NAS-Unet [24] searches a

U-like backbone network for medical image segmentation,

and V-NAS [25] formulates the structure learning as dif-

ferentiable neural architecture search, allowing the network

to choose among 2D, 3D or Pseudo-3D (P3D) convolutions

at each layer. Also, structures such as densely connected

encoder-decoder CNN [26] are searched for medical image

segmentation. Besides, there are also neural architecture

search methods targeting 3D medical image, for example,

SCNAS [27] with components of 3D convolution and 3D

pooling.

III. METHODS

The key idea of the proposed method is by searching the

downsampling layer, the bridge layer, and the upsampling

layer with an recurrent neural network(RNN) controller,

and the best neural network architecture targeting on image

segmentation given learning data can be discovered by the

AutoSegNet. Examples of the downsampling layer, the bridge

layer, and the upsampling layer are shown in Fig. 2, Fig. 3

and Fig. 4, respectively. Meanwhile, whether to apply skip

connections or not can also be searched by the RNN con-

troller mentioned above. The skip connections include intra-

cell connections and inter-cell connections.
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FIGURE 2. An example of searching the downsampling layer with three
cells. h[t − 1] and h[t ] represent the two previous cells, and the number in
the block represents the order of the operation.

FIGURE 3. An example of searching the bridge layer with three cells.
h[t − 1] and h[t ] represent the two previous cells and the number in the
block represents the order of the operation.

Like ENAS [3], AutoSegNet includes two main

components: an RNN controller for searching the network

structure and a validation network for validating the search-

ing architecture from the RNN controller. The RNN is a

two-layer long short-term memory (LSTM) [28] network.

The reason for choosing the RNN as a controller is that a

variable-length output is needed from the controller. As the

neural network architectures become different, the number of

search parameters will be different. Since the output length

of the RNN can vary, it is selected as the controller for

FIGURE 4. An example of searching the upsampling layer with three cells.
h[t − 1] and h[t ] represent the two previous cells, and the number in the
block represents the order of the operation.

neural network architectures searching. An example of how

the RNN controller searches each layer is shown in Fig. 5.

After the neural network architectures have been generated,

the validation network will be applied to generate the net-

work based on the search architectures, and then trains and

validates the searched networks.

A. CONTROLLER

In AutoSegNet, the task of the RNN controller includes

three parts: architecture search for the downsampling layer,

architecture search for the bridge layer, architecture search

for the upsampling layer, and architecture search for the

long skip connection (short skip connection search is part

of the layer search). As often noted, the choice of the layer

structure of the previous layers may affect the choice of the

succeeding layers. To better perform this, an LSTM module

has been added to the RNN controller. The LSTM module

records the state of the structure of the previous layers. Thus,

when we select the layer components of the bridge layer,

the structure of the downsampling layer is examined. Besides,

when we determine the components of the upsampling layer,

the structure of the downsampling layer and the bridge layer

can also be acknowledged.

Due to the network structure (an encoder-decoder-based

neural network), the searching order of the RNN controller

is the downsampling layer, the bridge layer, the upsampling

layer, and the long skip connection. The main reason is

that the components of the later layers largely depend on

the previous layers. Also, the long skip connection con-

nects different layers of the neural network, which should

be based on the whole network structure but not just parts

of it. After selecting the components of the downsampling

layer, the bridge layer, and the upsampling layer, whether

the skip connection is needed will be decided by the RNN

controller. Based on the information recorded by the LSTM
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FIGURE 5. The structure of the RNN controller. The RNN controller is a 2-layer LSTM network. The operation selection will be based
on the selection of the previous layer. The long skip connection search will be based on all previous layers.

module, the RNN controller will decide if skip connection is

needed by a certain cell or layer. Since the hidden state of the

LSTM module records the network structure information of

the downsampling layer, the bridge layer, and the upsampling

layer, the decision will be more reasonable. If the skip con-

nection of a particular layer or certain cell is needed, the RNN

controller will output value 1; otherwise, 0 will be the output.

A structure of the RNN controller can be seen in Fig. 5.

For each layer, it might include several cells. A cell is

a combination of several operations from the search space.

The number of cells and operations of each cell are various,

and they largely depend on the tasks or the given data. The

specific task of RNN is to choose every operation of each cell

based on the feedback of the validation network. The feed-

back is the accuracy of the result. For example, if each layer

contains three cells, and each cell includes two operations,

the RNN controller needs to choose a total of six operations

for the layer. The encoder part is constructed by stacking

the downsampling layer, and the decoder part is constructed

by stacking the upsampling layer. An example of searched

network architecture is shown in Fig. 7, which includes the

downsampling layer, the hybrid dilated convolution layer,

the bridge layer, the upsampling layers, and the skip connec-

tion. The detail architecture parameters of the downsampling

layer, the bridge layer, and the upsampling layer are shown

in Fig. 2, Fig. 3 and Fig. 4, respectively.

As the number of cells increases, the network will become

more widespread, and the final neural network searched by

the proposed networkwill appear similar to aGoogleNet [29].

The structures of layers based on the RNN controller shown

in Fig. 5 can be found in Fig. 2, Fig. 3 and Fig. 4. By stacking

these three types of layers, a completed neural network based

on proposed methods is generated.

B. VALIDATION OF THE NETWORK

As mentioned above, based on the research, the mainstream

network structures for image segmentation can be concluded

as the encoder-decoder structure. An encoder learns the input

images in different resolutions with a different receptive

field while the decoder reconstructs the features learned

from the encoder [6], [11]. For better representing the image

features and decoding, additional optimization methods are

introduced into the network, such as conditional random

field (CRF) for better image details segmentation [9], [30],

fusion of features in different scale using feature pyra-

mids to merge shallow features and the global fea-

tures [21] or dense skip connections to provide more shallow

features [31].

Inspired by those state-of-the-art models, the main struc-

ture of the whole searching network is an encoder-decoder

framework, a bridge layer connects the downsampling layers

and the upsampling layers. The downsampling layers are con-

sidered as an encoder, which downsizes the spatial resolution

of the input and develops a low-resolution feature map. The

searched optimized network will be symmetric. This means

that if the total number of the neural network layer is nine,

there will be four downsampling layers, four upsampling lay-

ers, and a bridge layer connecting the downsampling layers

and the upsampling layers.

During the downsampling phase, the neural network learns

the input features from different receptive fields. However,

to preserve the resolution, the hybrid dilated convolution is

introduced. With a reduction of input size, some details of

the original image might be lost. For example, when the input

images reduce to 1/32 of the original image size, the original

information with size 32 × 32 will disappear. Even with a

decoder, it is hard to perform reconstruction from the given

features. Consequently, as the size of the features reaches

a specific value (for example, 16 × 16), a hybrid dilated

convolution layer will replace the downsampling layer auto-

matically for resolution preservation (as shown in Fig. 1). In

this case, the searched neural network architecture turns into

one of the state-of-the-art models [8].

The skip connections play an important role in image

segmentation. Inter-cell skip connections (long skip connec-

tion) restore full spatial resolution while short skip con-

nections can speed up the network convergence during the

training stage [32]. As mentioned above, instead of manually

adding skip connections (intra-cell and inter-cell) empiri-

cally, we prefer the RNN controller to select the skip con-

nection by itself. The automation of the proposed method

is maximized by reducing human disturbance. An example

of the search neural network’s architecture with long skip

connections is shown in Fig. 6.
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FIGURE 6. An example of a 10-layer neural network searched by the AutoSegNet with long skip connections. The shape of the input image is
512 × 512 × 1 and the numbers shown under the blocks represent the shape of the output of that layer (hight × width × channel). The green blocks
represent the downsampling layers, and the red block represents the hybrid dilated convolution layer, the purple block represents the bridge layer, and
the blue blocks represent the upsampling layers while the red lines with an arrow represent the long skip connections searched by the RNN controller.

FIGURE 7. Segmentation results of the industrial dataset with flaw. For
each sub-figure, from left to right, they are the input, the label, and the
network prediction.

Three searched layers are shown in Fig. 2, Fig. 3,

and Fig. 4, respectively. As can be seen from the fig-

ures, the searched layers are similar to the Inception block

in GoogleNet [29]. The blocks in each figure are num-

bered (shown in the second line of the block). As discussed

in the previous sections, each layer contains several cells. The

proposed layers consist of three cells, and each cell includes

two operations from the search space. For example, in Fig. 2,

block one and block two belong to the first cell, and block

four and block five belong to the second cell. Previous cells

might be considered as the input of the next cell. For example,

in Fig. 3, the first cell of the layer is part of the input of

the second cell. Also, if a cell in a layer is not used as the

input of other cells, it will be concatenated to become the final

output directly. In Fig. 2 and Fig. 4, the input of all the cells

of the layers is the output of the previous two layers. Thus,

the output of the layer will be the concatenation of all the

cells in the channel dimension.

IV. EXPERIMENTS

The AutoSegNet was tested on the dataset of the industrial

and medical areas. In this part, details and processing of the

dataset are introduced. After that, the setting of the differ-

ent datasets of AutoSegNet is explained. The experimental

results are compared with other image segmentation models.

Finally, the analysis will be given based on the results.

A. DATASET PREPARATION

1) INDUSTRIAL DATASET

The industrial dataset is a self-proposed dataset, which is

from the components of the industrial products. The com-

ponents might have some defects on the surfaces. Thus,

AutoSegNet is used to highlight the defects. All the defects

on the surface are highlighted manually in white while the

others are in black.

The original number of images is 117, with an image size

of 160×160. The images were cropped into a size of 32×32

and augmented to 5879 images (rotation, flipping, and pixels

value scaling in a small range).

2) MEDICAL DATASET

The medical dataset is the 2D EM segmentation [33] data

from the ISBI Challenge [34]. A full stack of EM slices
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has been used to search and train the neural network for

segmentation. The training data only contains 30 sections

with an image size of 512 × 512 from a serial section

Transmission Electron Microscopy (ssTEM) dataset of the

Drosophila first instar larva ventral nerve cord (VNC). These

images represent the actual images in the real-world with

small image alignment errors as well as noise. The labels

given are fully annotated binary masks, in which pixels in

white are the segmented objects, while pixels in black are the

non-segmented objects.

As the number of the dataset is relatively small, image aug-

mentation is needed. Augmentation includes flipping images

from left to right, up to down, rotation with different angles

as well as scaling of pixels value in a small range. After the

augmentation, the total number of data increases from 30 to

1752.

B. TRAINING DETAILS

In AutoSegNet, there are two sets of parameters that need to

be trained, namely, the parameters of the RNN controller and

the weight parameters of the validation network. Like ENAS,

weight parameters are shared among all the child models.

The stochastic gradient descent (SGD) is applied to minimize

the loss function. For pixel-level segmentation, the standard

cross-entropy loss is selected to compute on a minibatch

of training data. While updating the controller parameters,

the weight parameters of the validation network will be

fixed.

Intending to maximize the automation of neural network

searching, we reduce the number of manually input parame-

ters to be as few as possible. The idea is quite straightforward.

Each layer consists of several cells, and each cell includes

operations searched from the search space. Typically, we fix

the number of operations for a cell to be two and the number

of cells per layer to be three. By doing so, we have a rea-

sonable searching time and can also generate quality neural

network structures.

Another critical parameter for the neural network architec-

tures is the layer number of the searched network. As for the

depth of the network, previous research says ‘‘. . .We claim

that most functions that can be represented compactly by deep

architectures cannot be represented by a compact shallow

architecture’’ [31]. From this point of view, a more in-depth

model means a better non-linear expression ability and can

learn more complicated transformations, so that more com-

plex features of the input can be fitted [35]. On the other hand,

it does not mean a deeper network always performs better.

A deeper network might bring problems like gradient van-

ishing or degeneration. Moreover, a more in-depth network

could also overlearn the data and cause a vast computation

cost.

The dataset given to the AutoSegNet might be vari-

ous. They can be dataset from the medical area, industrial

area, or natural images in a different size. If different settings

are provided for different datasets, the degree of automa-

tion will be greatly reduced. Consequently, instead of giving

the fixed layer number manually every time we train the

AutoSegNet, we just let the network choose the layer number

by themselves. We let the network downsample the input

features to a fixed size. The input image size and minimum

downsampling image size (or minimum downsampling ratio)

decide the number of layers. It is not a part of the learn-

ing parameters of RNN but is directly computed when the

input image size is given. For example, we set the minimum

downsampling image size to be 16 × 16, and the minimum

downsampling ratio to be 1 : 32. The final minimum down-

sampling image size is the maximum value between the mini-

mum downsampling image size and size downsampled by the

maximum downsampling ratio. This is used to maximize the

level of automation. For those who are not familiar with deep

learning or neural network, it could be a difficult task to set

the value of the layer number of the network. The proposed

method tries to solve this problem. The encoder and decoder

of the network is symmetric, which means the number of

the downsampling layer and the upsampling layer will be the

same in the searched network.

The smallest size by pooling may primarily be based

on experience. Commonly, for image segmentation tasks,

the smallest size by pooling is recommended to be

1/16 or 1/8 of the original image resolution [8], [20]. In both

industrial and medical date sets, 75% of data is used as a

training set, while 25% of data is test set. The final score is

the average of three runs of training-testing. To test how the

model complexity affects the performance of the network,

we have excluded some components from the search space

(3 × 3 hybrids dilated convolution with rates of 1, 2, and 3).

The results show that both the Intersection over Union (IoU)

scores on the self-proposed validation datasets and the visual

effect of the AutoSegNet are worse than the current result.

Adam optimization algorithm [36], whose name is derived

from adaptivemoment estimation, is used to training the RNN

controller with an initial learning rate of 0.0005. The shared

weight parameters of the validation network are trained using

SGD with an initial learning rate of 0.5. The total searching

epochs were 200, and a factor of 0.98 decays the learning

rate in every epoch after epoch 50. The norm of the gra-

dient of weight parameters is clipped at 0.5. For prevent-

ing loss explosion, cosine annealing and SGD restart [37]

are introduced to adjust the learning rate. Considering the

generalization ability, we choose SGD as the optimizer of

our network. Other optimizers, for example, the adaptive

optimization algorithm, may exhibit a fast convergent rate

at the initial stage of the training, but it may stagnate soon

on the test set. Its generalization ability may be worse than

that of the non-adaptive method [38], [39]. Although the

adaptive optimization algorithm can show a fast convergence

rate at the initial stage of training, its performance on the

test set might soon stall. The searching stage stops automat-

ically if they reach the MAX_EPOCH or meet the require-

ments of specific parameters such as LOSS and ACCURACY.

The entire epoch for training the final searched architecture

was 300.
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C. RESULTS

The segmentation results of the industrial dataset and medical

dataset are shown in this part. All the searched neural archi-

tectures are trained from scratch without pre-training. For the

industrial dataset, the proposed method has cost of three and

a half hours for searching the network structure on a single

GPU (GeForce RTX 2080), while for searching the network

architecture for the medical dataset, it takes eight hours and

forty-five minutes on the same GPU. For the medical dataset

with input image size 512×512, the number of segmentation

network parameters is 41.93 million.

1) EXPERIMENTAL VERIFICATION ON THE INDUSTRIAL

DATASET

The segmentation results for the industrial data are shown

in Fig. 7. For each group, from left to right, they are the

input image, the label, and the network prediction. As can be

seen from the figures, most of the edges are well segmented.

For example, in Figs. 7b-7d, the segmentation shape of the

network outputs and labels are almost the same as well as the

jagged edges. In Fig. 7a, the jagged edge cannot be segmented

perfectly, which might be due to the discontinuity of the color

edge. The discontinuity of the color might confuse the model

to consider it as flaw. When the size of the training data

is 2205, the average IoU score was 0.96 with the proposed

method.While the training data size goes to 4414, the average

Intersection over Union scorewas 0.9956 compared to a score

of 0.9771 with the UNET trained with the same training data.

2) EXPERIMENTAL VERIFICATION ON THE MEDICAL

DATASET

The network of the medical dataset was searched by an

image size of 64 × 64 (by cropping). The searched layer

structures (the downsampling layer, the upsampling layer,

and the bridge layer) were transferred to train the original

images with a size of 512 × 512, and the searching epochs

of the medical dataset is 85. The segmented result of the

medical dataset is shown in Fig. 8. Comparing the label and

the network prediction, most of the edges of the prediction

are clear and continuous. It indicates that the AutoSegNet can

distinguish the edges and cell texture without treating them

as edges. There are some black points inside the cell area

in Fig. 8(a), especially around the edges. This is due to the

dark areas near the edges, which might confuse the training

model to consider it as edges. We also trained our model with

different training size, from 657 to 1314. The IoU scores on

the self-proposed validation set of theAutoSegNet are 0.9 and

0.9132, with training size 657 and 1314, respectively.

From Table 1, we can see that even though the neural

network architecture was searched on images with a size of

64 × 64, it still generated qualified segmentation results on

images with a size of 512 × 512. As the IoU score shows,

the model trained with image size of 512 × 512 is 0.0004

lower than the the model trained with image size of 64 × 64.

This reveals the robustness of the searching architectures.

FIGURE 8. Segmentation results of the medical dataset. For each
sub-figure, from left to right, they are the input, the label, and the
network prediction. Sub-figures (a) to (c) represent the slices of the
Drosophila, first instar larva and ventral nerve cord, respectively. In (a),
there are some black points inside the cell area, especially around the
edges. It is because there are some dark areas near the edges, which
might confuse the training model to consider it as edges.

TABLE 1. IoU score of the validation on the medical dataset.

TABLE 2. Comparison of the IoU score on the self-proposed validation
set. The PSPNet is used for comparison [40].

The segmentation results on the industrial and medical

datasets of Fig. 7 and Fig. 8 indicate that the AutoSegNet

can generate neural network architectures with a variety of

given learning datasets. From the network prediction, we can

see that continuous edges are well-segmented. Besides, even

though the neural network architectures are searched in a low

fidelity dataset, it still generated qualified results when we

apply them to high fidelity datasets, which shows the robust-

ness and the capability of the generalization of AutoSegNet.
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We also compared the mean IoU of the proposed AutoSeg-

Net and UNET [6] and PSPNet [21] which is the state of the

art. As shown in Table 2, the mean IoU scores on the self-

proposed validation set of the AutoSegNet are 0.9956 and

0.9132 with the industrial and medical datasets, respectively.

While with the UNET, the scores are 0.9771 and 0.9119,

which indicates that the AutoSegNet shows a more superior

efficiency. And when compared the mean IoU score with

PSPNet, for the Industrial dataset, the score of the proposed

method is also higher than that of PSPNet in both industrial

dataset and medical dataset.

V. CONCLUSION

In this paper, we proposed an efficient AutoSegNet for

image segmentation, especially for the industrial and med-

ical datasets. We maximized the level of automation of the

AutoSegNet. Compared to the previous searching neural

architectures in which parameters such as layer number, cell

number, and block number are required, the AutoSegNet

requires nothing other than the learning data. Besides, com-

pared with other NASmethods, the AutoSegNet holds a small

search space. Meanwhile, it covers the functions of most

typical image segmentation neural networks. These charac-

teristics account for its significant efficiency. Furthermore,

searching the neural networkwith a lower fidelity dataset, and

applying it to a higher fidelity dataset, the AutoSegNet still

generates outstanding segmentation results, which indicates

its robustness and generalization.
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