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There are two key issues in assuring the accuracy of estimates of performance obtained from a simulation model. The
first is the removal of any initialisation bias; the second is ensuring that enough output data are produced to obtain an
accurate estimate of performance. Our aim is to produce an automated procedure for inclusion into commercial
simulation software to address both of these issues. This paper describes the results of a 3-year project to produce such
an analyser. Our Automated Simulation Output Analyser identifies the warm-up period, estimates the number of
replications, and/or analyses output from a single run, with the aim of providing the user with accurate and precise
measures of their chosen output statistics.
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1. Introduction

This paper describes a framework for automatically analysing

the output from a simulation model. The aim of the frame-

work is that it should be implemented in commercial

simulation software with a view to improving the use of

simulation, particularly by non-expert simulation users. The

analyser, known as AutoSimOA (Automated Simulation

Output Analyser), provides a sequential procedure that identi-

fies the warm-up period, determines the number of replica-

tions, and/or analyses the output from a single (long) run,

with the aim of providing accurate (low bias) and precise

(low variance) measures for the output statistics that are of

interest to the simulation users. The analyser is for use with

terminating and non-terminating (steady-state) simulations,

and deals with initialisation bias when it is present.

The paper starts by discussing the need for automated

analysis of simulation output. Following this the problem of

analysing the output from a simulation is stated mathema-

tically. The overall framework is then described, followed by

more detailed descriptions of the three components of

AutoSimOA: the warm-up analyser, the replications calcu-

lator and the single run analyser. AutoSimOA is demon-

strated by applying it to the output of two different models.

The paper concludes with a discussion on the implementa-

tion of the AutoSimOA framework.

There is no attempt in this paper to justify the methods

used as part of AutoSimOA through either empirical testing

or mathematical proof. The testing of the recommended

methods has been reported in detail elsewhere. References

to these papers are provided when discussing the individual

methods in AutoSimOA.

2. The requirement for automated analysis of simulation

output

Visual interactive modelling systems, first seen in the late

1980s, placed simulation model development into the

hands of non-experts by removing the need for a detailed

knowledge of programming code. Today, discrete-event

simulation is in widespread use, being applied in areas

such as manufacturing design and control, service system

management (eg call centres), business process design and

management, and health applications.

The prevalence of simulation software and its adoption

by non-experts has almost certainly led to significant

problems with the use of the simulation models that are

being developed. The appropriate analysis of simulation

output requires specific skills in statistics that many non-

experts do not possess. Decisions need to be made about

initial transient problems, the length of a simulation run, the

number of independent replications that need to be per-

formed and the selection of scenarios (Robinson, 2004; Law,

2007). Appropriate methods also need to be adopted for

reporting, comparing and ranking results. The majority of

simulation packages only provide guidance over the selec-

tion of scenarios through simulation ‘optimisers’ (Law and

McComas, 2002). Other decisions are left to the user with

little or no help from the software. As a result, it is likely

that many simulation models are being used poorly. Indeed,
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Hollocks (2001), in a survey of simulation users, provides

evidence to support the view that simulations are not well

used. The consequences are that incorrect conclusions

might be drawn, at best causing organisations to forfeit

the benefits that could be obtained, and at worst leading to

significant losses with decisions being made based on faulty

information.

Alongside developments in simulation software and

simulation practice, theoretical developments in the field of

simulation output analysis have continued. Many of these

developments are reported at the annual Winter Simulation

Conference, which has a stream dedicated to the subject

(eg Mason et al, 2008). The focus of the work reported,

however, is largely on theoretical developments rather than

practical application. For instance, a survey of research into

the initial transient problem and methods for selecting

a warm-up period found some 44 methods (Hoad et al,

2009b). None of the methods, with the possible exception of

simple time-series inspection and Welch’s method (Welch,

1983), appear to be in common use.

Three problems seem to inhibit the use of output analysis

methods:

� Most methods have been subject to only limited testing,

giving little certainty as to their generality and effective-

ness.

� Many of the methods require a detailed knowledge of

statistics and therefore are difficult to use, especially for

non-expert simulation users.

� Simulation software do not generally provide implemen-

tations of the methods.

One solution to these problems is to implement an auto-

mated output analysis procedure in simulation software.

This would overcome to a significant degree the problem of

the need for statistical skills. The development of such a

procedure requires the thorough testing, and where neces-

sary adaptation, of candidate methods. Apart from the work

described here, we are only aware of one other research

effort on automated analysis, the Akaroa project (see http://

www.cose.canterbury.ac.nz/research/RG/net_sim/simulation_

group/akaroa, accessed March 2009).

A 3-year research project has been undertaken by the

authors to explore the potential to automate the analysis of

simulation output and to ultimately create an automated

simulation output analysis tool. The work focused on three

specific areas: selecting a warm-up period, determining the

number of replications and analysing the output from a

single (long) run. In doing so, the work only focused on

automating the analysis of output from a single scenario. In

carrying out this project the authors searched the literature

for analysis methods; where necessary, undertook thorough

testing of candidate methods; adapted methods to make

them suitable for automation; and proposed an overall

procedure for automated analysis. The selection and testing

of methods have been reported in detail elsewhere (Hoad

et al, 2009a, b). This paper focuses on the overall framework

that was devised as a result of this work.

3. Statement of the problem

Our aim is to develop an automated procedure that obtains

unbiased estimators of the population mean and variance

(m and s2, respectively) for one or more simulation output

statistics.

3.1. Output data from simulation

We start with the case of a single output statistic, y. From a

single run of the model the simulation generates a data series

for y as follows: y1¼ y1, 1, y1, 2,y, y1,M, where the first

index refers to the number of the run (ie 1 for a single run)

and M is the number of observations (run-length) obtained

from the simulation. We wish to estimate m, the mean of y,

where m ¼ Lim
j!1

Eðy1; jÞ and s2, the variance of y, where

s2¼E ( y1
2)�m2. The early data in the series y1 may not be in

steady-state (if y1 reaches steady-state at all) due to the

starting condition of the simulation. Given that we wish to

estimate the mean value of y from the data in y1, then these

early data will bias the estimate of the mean. This

phenomenon is known as ‘initialisation bias’. The initial

data are considered to have a significant bias on the estimate

of the mean if a confidence interval, with significance level a,
constructed from the data in y1 does not give the expected

coverage (ie 1�a) of m. The point at which the initial data

cease to have a significant bias on the estimate of the mean is

denoted as L. According to Law (2007, p 509) the estimate

of the mean may differ significantly from m if L and M are

too small. The position of L depends in part on the run-

length (M) of the simulation; a longer run-length implies that

L can have a smaller value, since the greater remaining bias

is subsumed into more steady-state data. In recognising the

existence of initialisation bias we define the series y1 as

consisting of a series of data, y1, 1,y, y1,L, y1,Lþ 1,y, y1,M.

Observations for y1 might be time based (eg hourly

throughput) or by entity (eg time in system for each entity).

The values of y1 might be in steady-state throughout the

length of the simulation run (L¼ 0); the series might be

subject to significant initialisation bias prior to reaching

steady-state (0oLoM); or the series might be in a

transient state throughout, either because it has not yet

reached a steady-state (LXM), or because the output data

do not have a steady-state. Assuming a steady-state is

reached, the data series y1 then follows some unknown

distribution F(y).

It is common practice in simulation to carry out multiple

independent replications by running the model with different

streams of random numbers. Given that N replications are
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performed with the model, then N data series for y (denoted

yn) are created. As such, the simulation generates a matrix of

output data Y as follows:

Y ¼

y1; 1; � � � ; y1;L1
; y1;L1 þ 1; � � � ; y1;M1

y2; 1; � � � ; y2;L2
; y2;L2 þ 1; � � � ; y2;M2

� � � �
� � � �
� � � �

yN; 1; � � � ; yN;LN
; yN;LN þ 1; � � � ; yN;MN

0
BBBBBBBB@

1
CCCCCCCCA

¼

y1

y2

�
�
�
yN

0
BBBBBBBB@

1
CCCCCCCCA

where the rows denote the series of data generated for y from

replication n¼ 1, 2,y,N. Because L and M can be different

for each individual replication, they are given an index n.

A final extension would be to add the case where we are

interested in multiple outputs from the simulation model.

This can be achieved by extending the notation to the form

yn
p, where p¼ 1, 2,y,P and denotes the index of the output

statistic of interest. This would lead to P output matrices, Yp.

For now we shall only consider the case of a single output

statistic.

3.2. Warm-up estimation

Where the data series yn are subject to initialisation bias it is

useful to delete the biased data ðyn; 1; . . . ; yn;Ln
Þ prior to

further analysis. It should be noted that if the run-length

(Mn) is sufficient to warrant that the initialisation bias

in ðyn; 1; . . . ; yn;Ln
Þ is insignificant, in other words

ðyn; 1; . . . ; yn;Mn
Þ provides an unbiased estimator of m, then

deletion is not necessary at all.

Initialisation bias often fades asymptotically into the

steady-state, that is, the steady-state distribution of F ( yn)

is only obtained as Mn-N. In practical terms, given the

variance in the data, satisfactory estimates of m and s2 can
be obtained from data that are subject to negligible bias.

Hence, the location of the point Ln can be quite early in

the output data series, since the requirement is only for the

data beyond Ln to have an insignificant bias on the

estimates of m and s2.
Given the asymptotic nature of the initialisation bias and

the variance in the output data, it is extremely difficult to

identify Ln exactly. Therefore, a warm-up analysis method

should aim to identify a deletion, or truncation, point (L
_

n)

such that any difference between L
_

n and Ln has a minimal

impact on the estimation of m and s2. As noted above, the

significance of the bias caused by any remaining data

between L
_

n and Ln depends on the run-length Mn. It is, of

course, desirable to avoid the situation where L
_

ncLn, since

this wastes data and time for running the simulation. In any

practical simulation, Ln will be unknown and therefore the

warm-up method has to be tested on artificial data with

known parameters.

3.3. Replications method

One means for obtaining estimators of m and s2 is to analyse

the output from multiple independent replications (referred

to as the replications/deletion method) (Law, 2007). We can

summarise each row of the matrix Y with the mean of the

data series yn as follows:

Xn ¼
PMn

m¼L̂ n þ 1
yn;m

Mn � L̂n

; for n ¼ 1; . . . ; N ð1Þ

where Xn represents the mean of the output data series

beyond the deletion point (L
_

n). It is expected that L
_

n would

normally be given the same value for all n, as would Mn.

Given that X1, X2,y,Xn are independent and identically

distributed (IID) observations, then, following Law (2007),

the sample mean of the Xns:

�XðNÞ ¼
PN

n¼1Xn

N
ð2Þ

is an unbiased estimator for m, that is m ¼ Lim
Mn!1

E½Xn�.
Similarly, the sample variance:

s2ðNÞ ¼
PN

n¼1½Xn � �XðNÞ�2

N� 1
ð3Þ

is an unbiased estimator of the population variance s2, for
fixed Mn. Hence an approximate confidence interval for
�X(N) can be constructed using:

�XðNÞ � tN�1; a=2

ffiffiffiffiffiffiffiffiffiffiffiffi
s2ðNÞ
N

r
ð4Þ

where tN�1,a/2 is the value from the Student’s t-distribution

with N�1 degrees of freedom and significance level a/2. This
assumes that N is large enough such that the distribution of
�X(N) can be assumed to be normal under the Central Limit

Theorem, and that ðN� 1Þ s2

s2 � w2N�1 (Cochran, 1934).

3.4. Batch means method

As an alternative to multiple independent replications, the

results from a single long run (eg y1) of a simulation can be

analysed. In this case the value of X1-m as M1-N.

However, estimating the variance is more problematic due

to the likely autocorrelation in the data (y1,1,y, y1,M).

Autocorrelation violates the assumption of independence in

the data, thus biasing the usual statistical estimates. Hence,

other analysis techniques need to be employed. Various
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methods can be adopted for such an analysis including

autoregressive methods (Fishman, 1971; Fishman, 1973),

spectral analysis (Heidelberger and Welch, 1981) and

regenerative methods (Crane and Iglehart, 1974a, b, 1975;

Crane and Lemoine, 1977; Fishman, 1977; Lavenberg and

Sauer, 1977). Here we use the batch means approach

(Conway, 1963; Fishman, 1978) since this is deemed suitable

for automation.

In the batch means method we calculate a series of batch

means from the series y1 (or indeed, any other single series,

yn) as follows:

YjðkÞ ¼

PjkþL
_

1

m¼1þðj�1ÞkþL
_

1

y1;m

k
;

for j ¼ 1; 2; . . . ; b where b ¼ M1 � L
_

1

k

$ % ð5Þ

and b is the number of batches and k is the size of (number

of observations in) each batch.

Given a sufficient batch size (k) to assure the approximate

independence of the Yj (k), then these may be treated as IID

observations (assuming that no initial bias is present). It then

follows that

�Yðb; kÞ ¼
Xb
j¼1

YjðkÞ
b

ð6Þ

is an unbiased estimator for m, that is E [ �Y(b,k)]¼ m. The
sample variance of the Yj (k)s and confidence interval for

m can then be calculated as for the replications method

above, by substituting Yj (k) and �Y(b, k) for Xn and �X(N),

respectively, in Equations (2)–(4).

However, assuring the independence of Yj (k) is not a

trivial matter and as a result more complex procedures for

determining the batch size (k) and estimating m and s2 are

required. These are discussed later in the section entitled

‘The single run analyser’.

4. Overview of the AutoSimOA framework

The overall framework for AutoSimOA is shown in Figure 1.

The analyser consists of three main components: the warm-

up analyser, the replications calculator and the single run

analyser. More detailed descriptions of each component are

provided in turn in the next three sections.

The user is first asked to choose between running the

model using multiple replications or one (long) run. The

choice defines the path that is taken through AutoSimOA.

Having chosen the run strategy, the user is asked whether a

warm-up analysis should be performed or not. There is no

attempt within AutoSimOA to make this choice, although

the warm-up analysis (if selected) should indicate if, in fact,

little or no warm-up is required.

The warm-up analysis may be performed on a single

run or on the accumulated results from multiple replica-

tions. If multiple replications are available, then Hoad

et al (2009b) show that this is the preferred approach.

If, in the run strategy, the user indicates a preference for

multiple replications, then the results in the warm-up

analysis are carried out on data averaged over multiple

replications (with a default of five replications). The

replications calculator is then used on the truncated data

to estimate how many replications (N
_
) need to be run to

achieve the desired precision for the estimate ( �X(N)) of

the output statistic of interest (Xn). The user specifies a

fixed run-length (M) and the same truncation point (L
_
) is

used for all individual replications. Albeit that different

truncation points could be used for every individual

replication, following separate analyses of each replica-

tion, practically it is simpler to opt for a single point.

If the user chooses to perform just one run, this causes

AutoSimOA to base its warm-up analysis on a single run.

The user is then given the choice of running the model for

a set time period (M is specified by the user) and analysing

the data produced using the batch means calculator, or

allowing the run-length calculator component to choose a

run-length (M
_
), with or without a precision requirement for

the confidence interval of m based on the overall sample

mean �Y(b,k).

AutoSimOA aims to automate as much of the process as

possible. At present, however, certain decisions continue to

be made by the user. These are: whether to perform one run

or multiple replications, whether to analyse for warm-up and

whether to use a set-run-length or not. These decisions require

an understanding of the model, the system being modelled

and the context within which the model is being used.

5. The warm-up analyser (Al in Figure 1)

The warm-up analyser uses the MSER-5 heuristic (White,

1997; White et al, 2000). This method was chosen following

a thorough review of the literature on the initial transient

problem in which 44 warm-up methods were identified.

These methods were then evaluated for their fit with the

requirement for an automated procedure and candidate

methods were tested on example data. MSER-5 was tested

on over 3000 data sets, from which it was concluded that

the heuristic was the most robust automatable method. The

selection and testing of warm-up methods is described in

Hoad et al (2009b).

In order to implement MSER-5 as an automated procedure

we have devised a heuristic framework around the method.

This framework, which involves an iterative (sequential)

procedure, is shown in Figure 2. The user specifies the output

variables for which a warm-up analysis should be performed.

There can be as many variables as the user wishes to specify.

The warm-up analyser treats each variable independently,
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recommending individual warm-up periods. For reasons of

simplicity, however, the description that follows refers to only

one output variable.

If the user selects multiple replications as the run strategy

for the simulation model (see the section entitled ‘The

replications calculator’), then the warm-up analyser will run

multiple replications (N¼ 5 is the default value) and generate

a single series of data (�y) consisting of the average values

across the replications:

�y ¼
PN

n¼1yn; 1
N

;

PN
n¼1yn; 2
N

; . . . ;

PN
n¼1yn;M
N

;

forMX100

ð7Þ

Our tests with MSER-5 (Hoad et al, 2009b) demonstrated

that the method is more robust when applied to data from

multiple replications. However, if the user selects a single run

as the run strategy, then MSER-5 only uses the data from

that single run, that is y1.

The data set �y or y1 is batched into the maximum possible

number of batches, b, of length k (with default k¼ 5 as per

MSER-5), that is IM/km¼ b. A data series consisting of b

batch means is therefore generated. It is these data that are

input to the MSER heuristic.

An initial run-length (M) of at least 100 is required in

order to provide the analyser with sufficient data to start the

procedure (ie this provides at least 20 batches of length 5 to

ENTER Analyser

Replications or one
long run?

(A2) Replications
Calculator

(A1) Warm-up Analyser  

(A3) Run-length
Calculator

Recommend number
of replications ( N )

Recommend
run-length ( M )

R
ep

lic
at

io
ns

O
ne long run

EXIT Analyser

Use set
run-length?

Warm-up? Warm-up?

(A4) Batch Means
Calculator

Recommend batch size
(k) and number (b)

Use averaged data Use data from one run

YesNo Yes No

Yes
No

Single Run Analyser

Warm-up period specified (L)

Figure 1 The overall framework for AutoSimOA.
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the MSER heuristic). On a related note, it is advised that

the run-length used for the warm-up analysis should not be

much greater than the run-length the user expects to deploy

in the subsequent runs of the simulation model, as the

position of the truncation point determined using MSER-5

is dependent in part on the run-length.

MSER-5 provides a suggested truncation point (L
_
) based

on the data given to it; the calculation of the MSER-5

statistic and determination of L
_

are described in White

(1997) and White et al (2000). The suggested truncation

point, however, may not be valid. In particular, if L
_

falls

in the second half of the data series, then there is a concern

that there is insufficient apparent steady-state data to be

certain that the model has reached a steady-state. Further to

this, MSER-5 sometimes identifies a truncation point close

to the end of the data series simply because by chance there

is a low standard error in the final data values (the series is

smooth). In order to address these issues, the analyser does

not calculate the MSER-5 statistic for the last c values

(default c¼ 5). As a consequence of these two issues, L
_

is

only considered valid if L
_
pIk(b�c)/2m, that is, if it falls in

the first half of the series for which the MSER-5 statistic has

been calculated. If an invalid L
_

value is returned, further

data are requested from the simulation model. Enough data

No

Create averaged data
if running replications 

Batch data intob batches of
length k, where number of

MSER-5 returns
L value

Produce more data
to create ⎣z × b⎦

more batches or a
user specified

number.

Dynamic graph of
batched data,
single reps, or

MSER-5 statistic

Graph of batched
data, single reps,

or MSER-5
statistic with valid
L value shown.

Input data into MSER -
5 algorithm.

Yes

Yes  No

NoDoes user wish to
keep running

with more data?

L
valid.

L
invalid.

Yes

Have there been
10 invalid L

values in a row?

No

Yes

Does User wish
to keep running
with more data?

Produce more data to
create ⎣z × b⎦ more

batches

Enter Warm-up Analyser

Run a single run or N > 1
replications (default is N = 5)

of length, M ≥ 100

Exit Warm-up
Analyser

Is L ≤
2

k(b − c)
?

Warm-up
Analyser is
run for
each output
of interest
in parallel.

batches =

Figure 2 The warm-up analyser heuristic framework based on MSER-5.

14 Journal of Simulation Vol. 5, No. 1



to create a further Iz� bm batches are produced (where the

default for z is 10%).

While the algorithm is running, the user has the option of

viewing a graph of the batched averaged data, the individual

replications or single run, and the MSER-5 test statistic.

When a valid L
_
value is returned by MSER-5, the proposed

truncation point is shown on the graphs (see, for example,

Figure 8). This provides an opportunity for face validation

of the suggested truncation point. The user then has the opp-

ortunity to stop, accepting the suggested L
_
, or to continue

with more data until a truncation point that is deemed

suitable is found.

If 10 invalid estimates of L
_

occur in a row the analyser

pauses, informs the user and asks if the user wishes to

continue. If the user does wish to continue the analyser asks

for the number of extra batches to be input. As such, the

user has the opportunity to jump further ahead by specifying

how much more data should be generated. We believe

that this facility is particularly important in two specific

circumstances:

� If the user gave the method insufficient data in the first

place for the model to have reached a steady-state.

� The output data are very highly autocorrelated, thus

requiring more data to be able to identify the steady-state.

This facility acts as a fail-safe, preventing the analyser from

wasting time when it has far too little data on which to base

a decision. Once the user has specified the number of extra

batches, the analyser continues as before, returning again to

ask for more batches if 10 additional invalid estimates of L
_

are obtained.

6. The replications calculator (A2 in Figure 1)

The replications calculator aims to identify the number of

replications (N
_
) required to achieve a confidence interval of a

specified precision (drequired). The precision (dN) is defined as

the half-width of the interval expressed as a percentage of the

sample mean, that is:

dN ¼
100tN�1; a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðNÞ=N

p
�XðNÞ ð8Þ

where N is the current number of replications run. We also

include the ability to define precision in absolute terms (ie

the value of the half width), which is appropriate when

E [ �X(N)]¼ 0.

Since it is possible to select an incorrect (inaccurate)

confidence interval that has achieved the desired precision

by chance (ie through a series of similar Xn values), the

calculator includes a look-ahead procedure. This procedure

looks ahead by adding data from further replications to

determine if the confidence interval remains within the

desired precision. If the interval diverges from the desired

precision, then the calculator will continue adding more

replications until the confidence interval falls within the

desired precision again. The length of the look-ahead is

defined by the value lLimit such that the look-ahead

f(lLimit) is calculated as follows:

fðlLimitÞ ¼
lLimit; Np100

N� lLimit
100

� �
; N4100

(
ð9Þ

The replications calculator and the tests performed on it

are described in more detail in Hoad et al (2009a).

The framework for the replications calculator is shown in

Figure 3. As for the warm-up analyser, the user specifies the

output variables of interest, which are likely to be sub-

stantially the same as those for which the warm-up analysis

is performed. The replications calculator treats each variable

independently, recommending individual numbers of repli-

cations for each variable. Again, for reasons of simplicity,

the description below outlines the use of the calculator with

only a single output.

Default values for drequired and lLimit are 5% and 5,

respectively. The significance level (a) is set to 5%, but may

be changed by the user. The initial number of replications

(Ninitial) is set by default to 3. The calculator then runs the

initial replications and calculates the sample mean, con-

fidence limits and precision. If the precision is more than the

required precision (ie dN4 drequired), an additional replication

is performed and the results are recalculated. This loop

continues until the precision is such that dNpdrequired. The

look-ahead procedure is then invoked. This iteratively adds

the results from an additional replication up to the number

of additional replications as defined by f(lLimit). If on any

of these replications the precision diverges to be outside the

desired precision, the calculator reverts to adding additional

replications until the confidence interval falls within the

desired precision again. If the confidence interval remains

within the desired precision throughout the look-ahead,

the number of replications (N
_

) is recommended as the value

of N at the point where the confidence interval first met the

desired precision criterion (ie at the start of the look-ahead).

One concern with the replications algorithm is the time

that it might take to reach the desired precision. This could

be a problem when the model runs slowly, or when a very

fine level of precision is required. In order to address these

issues, we recommend a fail-safe mechanism in which the

procedure continuously monitors the number of replications

that might be required and reports this to the user through a

graph. The required number of replications can be estimated

after each replication as follows (Banks et al, 2005):

N̂	 ¼
100tN�1; a=2sðNÞ

drequired �XðNÞ

� �2
ð10Þ

Our tests showed that this value is only stable for large

values of N. As a result, it should only be used as an
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indicator from which a user can decide whether to continue

trying to run the model to the desired precision.

7. The single run analyser (A3 and A4 in Figure 1)

If the user opts to perform a single (long) run of the

simulation, there are three possible options for running the

model:

1. Fixed Run-Length: The user has a specific run-length (M)

in mind (eg 1 month) and wants a mean value with a valid

confidence interval at the end of this set time. In this case,

the single run analyser should calculate the sample mean

and confidence interval from the given data and report

the precision achieved. If there are insufficient data to

produce a valid confidence interval, the algorithm should

advise the user accordingly.

2. Confidence Interval with a Specific Precision: The user

desires a mean estimate with a confidence interval of a

specific precision. The output analyser should run the

model until there are enough data to achieve this (M
_
).

However, the user must be given the ability to abort

the procedure if the analyser is taking too long (ie too

much data are required for the specified precision). The

algorithm should then form a valid confidence interval,

if possible, using the data created thus far, and report the

precision achieved.

3. Valid Confidence Interval: The user neither requires a

specific precision nor does the user have a set run-length

Run N replications

Set N = Ninitial

Calculate cumulative mean,
( X(N) ), confidence limits,

and precision, ( dN ).

Yes No
Set N = N + 1

Set N = N + 1

No
� = �+1 Is � = f(�Limit)?

No

Yes

Recommend
N

Run one more
replication

Yes

1. Show estimated N s
to user as trial calculator
runs.

2. Show graph of each
variable with changing
precision of CIs.
3. Allow user to exit trial
calculator at any time. 

Run one more
replication

Calculate cumulative mean,
( X(N) ), confidence limits,

and precision, ( dn ).

Is dN ≤ drequired ?

Calculate f(�Limit).
Set N = N
Set � = 0

Is dN ≤ drequired ?

The Replications
Calculator is run for each
output variable of interest
in parallel (with different
required precision levels
if desired).

� drequired
� �Limit
� Ninitial
� significance level for CI (α).

Set

Enter Replications
Calculator

Exit
Replications
Calculator

Figure 3 The replications calculator heuristic framework.
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in mind. The output analyser should run the model until

enough data are collected to achieve a valid confidence

interval (M
_

). Again, the user must be given the option to

abort the procedure if the method is taking too long.

The first option is addressed by the batch means calculator

(A4 in Figure 1) and the second and third options by the

run-length calculator (A3 in Figure 1). When the user

chooses to abort the run-length calculator, this returns the

analyser to running option 1 (the batch means calculator).

As stated previously, the batch means approach has been

adopted for AutoSimOA. A search of the literature on batch

means methods revealed a core group of researchers working

on this approach. As a result, the majority of the methods

are extensions or adaptations of previous methods. Figure 4

shows the ‘family trees’ of the methods, depicting which

methods were developments from previous work.

Batch means methods generally fall into two categories:

sequential or fixed sample size. The first are methods that

sequentially request more data until some stopping criterion

(eg a precision requirement) is fulfilled; these are suitable

for application to the second and third options above. The

second category acts upon a fixed amount of data, pro-

ducing results, if possible, with only the data given; these are

suitable for application to the first option above.

Bearing this in mind we selected a method from each

category, LABATCH2 (Fishman, 1998) and ASAP3 (Steiger

et al, 2005), for implementation within AutoSimOA. Both of

these methods are fairly recent and received good recom-

mendations and test results in the literature (Fishman, 1998;

Steiger et al, 2005; Alexopoulos, 2006, Lada et al, 2008). The

LABATCH2 algorithm works on a fixed quantity of data,

providing a confidence interval without set precision. It was,

therefore, deemed suitable for option 1. Meanwhile, ASAP3

is a sequential procedure that attempts to create a valid con-

fidence interval around the mean estimate to a set precision

(described in either absolute or relative terms). It can also

run with no precision requirement. It is, therefore, suitable

for options 2 and 3. Both procedures are easily automated

and therefore suitable for AutoSimOA.

A brief overview of LABATCH2 and ASAP3 is now

provided. For further details see Fishman (1998) and Steiger

et al (2005), respectively.

7.1. The LABATCH2 procedure (Option 1: A4 in
Figure 1)

LABATCH2 takes in a set amount of data (specified by M)

and performs a series of ‘interim reviews’ on increasing

amounts of the data provided. Each interim review consists

of batching the data, using either the square root (SQRT) or

fixed number of batches (FNB) rules (Alexopoulos et al,

1997), carrying out the Von Neumann test for independence

(Von Neumann, 1941), and producing an estimate of the

mean and variance (of the batched data), and a confidence

interval for the mean. These interim results (both displayed

in graphic and tabular form) can then be surveyed by the

user in order to conclude whether the variance has stabilised

and the final confidence interval is valid. LABATCH2 is

essentially made up of two separate methods, ABatch and

LBatch (Fishman and Yarberry, 1997). The user is required

to choose which one of these should be used in the pro-

cedure. The only difference between these two methods is the

decision rule used to switch between the SQRT and FNB

batching rules.

7.2. The ASAP3 procedure (Options 2 and 3: A3 in
Figure 1)

ASAP3 is a sequential procedure that progressively increases

the batch size (and correspondingly the run-length, M
_
) until

the batch means pass the Shapiro–Wilk multivariate nor-

mality test (Shapiro and Wilk, 1965). The batch size is then

further increased until a first-order autoregressive time series

model (AR(1)), with a parameter not significantly greater

than 0.8, can be fitted to the batched data. The terms of an

inverted Cornish-Fisher expansion (Stuart and Ord, 1994)

are then computed for the classical batch means t-ratio

based on the AR(1) parameter estimators. ASAP3 then

produces a correlation-adjusted confidence interval based on

LBATCH
(Fishman &

Yarberry, 1997)

ABATCH
(Fishman &

Yarberry, 1997)
 

LABATCH2
(Fishman, 1998)

Fishman’s method
(Fishman, 1978)

BMEAN method
(Schriber &

Andrews, 1979)

Schmeiser’s modification
to BMEAN

(Schmeiser, 1982)

Family B1:

Mechanic & McKay
(Mechanic & McKay,

1966)

Law & Carson
(Law & Carson,1979)

Family B2: ASAP
(Steiger & Wilson,

1999)

ASAP2
(Steiger et al, 2002)

ASAP3
(Steiger et al, 2005)

 

SBATCH
(Lada et al, 2008)

IBATCH
(Yazdi & Wilson,

2007)

WASSP
(Lada & Wilson,

2006)

Family B3:

Weighted Batch Means
(Bischak, Kelton &

Pollack, 1993)

Quasi-Independent and
Normal Procedure

(Chen & Kelton, 2007)

Sherman’s
Algorithm

(Sherman, 1995)

Orphan B6:

Family B4:

Orphan B5:

Quasi-Independent
Procedure

(Chen & Kelton, 2003)

Figure 4 ‘Family trees’ of batch means methods in the
simulation literature.
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this expansion (Steiger et al, 2005). Although ASAP3

attempts to deal with any initial bias in the data by

discarding the first two batches of data, it was found not to

cope well with substantial bias in that it required extremely

(and prohibitively) large amounts of data. This is not such a

problem for AutoSimOA, since much of the initial bias

should have been removed by the warm-up analyser.

8. Examples of the implementation of AutoSimOA

Having described AutoSimOA, we now demonstrate the

results of using the complete analyser on two case studies. We

generated output data from two discrete-event simulation

models. The first is a steady-state data set with an initial

transient (generated from a non-terminating simulation)

and the second is a transient data set (generated from a

terminating simulation) in which customer arrivals vary over

a day (the run-length is 1 day). Using these two data sets we

are able to explore the different paths through AutoSimOA.

The first model (‘user support model’) simulates calls

received, processed and actioned at an IT support help desk

(Robinson, 2001). The output of interest is the average time

the calls spend in the system (Figure 5). This is a steady-state

output with a substantial initial bias. The true steady-state

mean is believed to be around 2269min. This was estimated

using a long run with 54 000 data points. The second model

is of a cinema call centre (Robinson, 2004). The output of

interest is the average waiting time of the calls in the centre

(Figure 6). This is a transient output as the model has

varying call arrival rates throughout the working day and

the model terminates after a 1-day run. There is no

initialisation bias since the simulation starts from a realistic

empty state. The true mean average waiting time is estimated

as 1.4399min based on running the model for many

replications to obtain results for 113 600 entities.

Table 1 sets out the details of each data set with the

paths that each set could take through AutoSimOA.

Figures 7 (a)–(d) illustrate these different paths.

8.1. Results: steady-state output data from the user
support model

Path A: warm-up analyser and replications calculator. Five

replications of length 500 (user specified) are run and averaged

across the replications to give values for �y. These are input into

the warm-up analyser that recommends a warm-up period of

70 data points. From the MSER-5 graph (Figure 8) it appears

that the data have stabilised and a truncation point of 70 is

reasonable. The recommended warm-up period is therefore

accepted and the current data (5 replications) truncated accor-

dingly. This leaves a truncated run-length of 430.

AutoSimOA then moves on to determine the number of

replications that are required. On entering the replications

calculator the user is asked if the existing run length of 430

is sufficient. This is not deemed to be sufficient and an amen-

ded run-length of 1000 is requested. More data are then

created from the simulation model to bring each of the 5

truncated replications to a length of 1000.

The input parameters for the replications calculator are

kept at their default levels. The calculator recommends

that 10 replications are required to achieve the desired

precision, giving a mean estimate of 2211.3 and 95%

confidence interval of (2104.5, 2318.1). This interval covers

the estimated true value of 2269.

As the calculator runs it generates two graphs. The first

shows the mean, confidence intervals and precision as more

replications are run (Figure 9). The second graph shows

how the estimate of the number of replications that might

be required (N
_	

) changes as more replications are run

(Figure 10). It is this graph that provides a fail-safe for the

user. If N
_	

appears to be so large that the running time for

the calculator is going to be excessive, the user has the option

to interrupt the calculator and change the parameters; most

likely the required precision. Note how poor the estimates of

N
_	

are with only a few replications.

Path B: warm-up analyser and run-length calculator. Data

from a single run of length 350 is entered into the warm-up

analyser, which then recommends a warm-up period of 25

data points. The graph of the data and test statistic

0

3000

6000

9000

1 26 51 76 101 126 151 176 201 226

Entity

A
ve

ra
ge

 ti
m

e 
in

 s
ys

te
m

 (
m

in
s)
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(Figure 11(a)) shows a relatively large peak in the batched data

values at the end of the current data set. It is therefore unclear

whether a run length of 350 is sufficient since it appears the

data may not have reached steady-state. A further 250 data

points (50 batches) are added and again the analyser

recommends a warm-up of 25 data points. After examining

the new graph (Figure 11(b)) this truncation point is accepted.

The run-length calculator is then invoked to produce a

confidence interval with a required absolute half width of

760min. ASAP3 requires 10 368 data points to achieve

this, giving a mean estimate of 2297.7 and a half width of

58.1, hence the confidence interval is (2239.6, 2355.8). This

interval does cover the estimated true mean.

Path C: warm-up analyser and batch means calculator. The

warm-up analysis is the same as for path B and a warm-up

period of 25 data points is used. The run-length is set to 6500

data points. The LABATCH2 method is implemented using

the LBatch procedure, and requiring 95% confidence inter-

vals. Table 2 shows the results obtained from the sequence of

Table 1 Data sets used to demonstrate AutoSimOA

Data set Initial bias Steady-state/transient Path

User support model output: time in system (min) Yes Steady state A, B, C
Cinema call centre model output: waiting time (min) No Transient D

A: Replications or one run?—‘Replications’—Warm-up?—‘Yes’—Warm-up Analyser—Replications Calculator—Exit Analyser
B: Replications or one run?—‘One run’—Warm-up?—‘Yes’—Warm-up Analyser—Set run-length?—‘No’—Run-length Calculator—Exit Analyser
C: Replications or one run?—‘One run’—Warm-up?—‘Yes’—Warm-up Analyser—Set run-length?—‘Yes’—Batch Means Calculator—Exit Analyser
D: Replications or one run?—‘Replications’—Warm-up?—‘No’—Replications Calculator—Exit Analyser.

(A1)

(A2) (A3) (A4)

(A (A1)  

(A2) (A3) (A4)

(A1)

(A1)

(A2) (A3) (A4)

1) (A1)  

(A2) (A3) (A4)

(A

Path A Path B 

Path C Path D

Figure 7 Paths through AutoSimOA, for example models
shown on an outline of Figure 1.
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reviews performed by LABATCH2 as it increases the amount

of data in the calculation of the confidence interval.

Figures 12 and 13 display the standard deviation and the

mean and confidence intervals (respectively) at each review.

On the final review, 94.5% of the data are used (the

maximum amount possible with the specific starting batch

size (1) and number of batches (3) selected). Looking at the

tabular results it is noted that the batched data passes the

independence test for 9 out of the 12 reviews with no

particular pattern for the failures (cells shaded in grey).

Looking at the graphs it appears that the standard deviation

of the batched data begins to stabilise and the confidence

intervals narrow after the eighth review. We therefore choose

to accept the final mean estimate and confidence interval

displayed at the top of the results tableau, noting that this

confidence interval has a precision of 3.2%. The confidence

interval (2251.5, 2401.7) covers the estimated true mean, as

for paths A and B.

8.2. Results: transient output data from the cinema call
centre model

Path D: replications calculator. When applied to the

cinema call centre model the replications calculator recom-

mends 5 replications to achieve the specified precision of

5%. The mean estimate is 1.4441 with a confidence interval

of (1.3824, 1.5058). This interval includes the estimated true

mean of the process (1.4399). Figure 14 shows the mean,

confidence limits and precision reported by the replications

calculator.

9. Implementation of AutoSimOA

AutoSimOA is intended to be an automated output analysis

system that can be implemented with commercial simulation

software. Indeed, some elements of the framework have

already been implemented in the SIMUL8 software. Our

experience in developing, testing and implementing Auto-

SimOA has raised a number of practical issues. These are

discussed here.

9.1. Output data type

One issue with applying AutoSimOA to real models is which

output data should, and should not, be analysed. There are

two specific data types that present a problem in this respect:

cumulative values (eg utilisations and average time in a

queue) and extreme values (eg maxima and minima). Both of

these present a particular problem for time-series-based

analyses, that is, warm-up and single run analysis. For

cumulative results the variance of the data reduces as the

quantity of data is increased. For extreme values the same is

likely to be the case with changes to maxima and minima

becoming less frequent as the simulation runs. Indeed, at an
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extreme, the minimum value of entities in a queue does not

change from the initial state of empty. To address these

issues we recommend that cumulative data are disaggregated,

for instance, percentage utilisation is disaggregated into a

time-series of hourly utilisation. Furthermore, AutoSimOA

should not be applied to extreme values. For time-series data

there is also an issue of whether the data should be recorded

and analysed based on time (eg hourly) or on entities (eg

time in queue for individual entities as they leave). It seems

that, in general, simulation software only directly record

output data by time (eg a time-series of throughput) and that

to record data by entity requires some additional coding

Table 2 Path C: LABATCH2 results for the user support model

Final results table: mean estimate

Series Mean Estimate* Standard errorw 95% confidence interval Standardised half width Standardised

Lower Upper

1 2326.59 38.3162 2251.481 2401.705 0.032284

Total number of data points supplied: 6500

Interim review table

LBatch data analysis for output series 1

Review Data
total

Batch
number

Batch
size

Mean
estimate

95% confidence
interval

Standard deviation
estimate

Independence
test p-value#

Lower Upper

1 3 3 1 440.617 �950.473 1831.707 559.989 0.299200
2 8 4 2 1040.324 �681.945 2762.592 1082.355 0.176052
3 12 6 2 1080.458 �289.356 2450.272 1305.287 0.260779
4 24 8 3 1179.750 447.001 1912.500 876.473 0.338124
5 48 12 4 1508.040 865.712 2150.368 1010.952 0.017736
6 96 16 6 1715.260 681.946 2748.574 1939.176 0.264867
7 192 24 8 2268.810 1181.611 3356.008 2574.695 0.016617
8 384 32 12 2305.105 1000.770 3609.440 3617.742 0.131456
9 768 48 16 2445.910 1385.700 3506.119 3651.240 0.144988
10 1536 64 24 2448.422 1634.686 3262.158 3257.647 0.011680
11 3072 96 32 2431.859 1781.332 3082.386 3210.595 0.221122
12y 6144 128 48 2334.874 1794.568 2875.181 3089.150 0.437934

If original data are independent:
6500 6500 1 2326.593 2270.261 2382.925 2316.76449 1.57E–28

*The estimate of the mean is based on all 6500 observations.
wThe estimate of the variance is based on the first 94.52% of the 6500 observations.
#Significance level for independence testing¼ 0.1
yReview 12 used the first 94.52% of the 6500 observations.

Figure 12 Path C: LABATCH2 standard deviation results for
the user support model.

Figure 13 Path C: LABATCH2 mean estimate and confidence
interval results for the user support model.
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with the data being written to an external file. It also seems

that the software define warm-up periods and run-lengths in

terms of time and not the number of entities processed.

Interestingly, many research papers record data by entity

and there are clearly cases where it is preferable to do so.

It would be useful if simulation software gave a facility to

set up runs based on either time (eg 10080min, 1 week) or

entities (eg once 1000 have left the system), and also gave a

facility for recording the output data in either way.

Given that the software provides time-based data and

requires the set-up to be in terms of time, then disaggrega-

tion should also be based on time. This is not a trivial task as

the analyser needs to record the cumulative statistics and the

number of entities involved in the aggregate values for each

time period in order to disaggregate the data properly.

9.2. Multiple outputs

It was noted previously that we would normally be

interested in more than one output. Indeed, it is possible

that a user may have quite a number of key output

statistics of interest. In practical terms this is relatively

straightforward to address. We would recommend that

AutoSimOA analyses all the outputs of interest (the full

matrix Yp) and that the warm-up period, run-length and/

or number of replications is selected based on the output

that requires longest to stabilise.

9.3. Multiple scenarios

AutoSimOA performs an analysis on an individual simula-

tion scenario, but frequently users need to analyse multiple

scenarios. We believe the ideas underlying AutoSimOA can

be extended to the case of comparing multiple scenarios. For

instance, when comparing two scenarios a confidence interval

on the differences between the mean of an output statistic

from the two scenarios can be used for comparison purposes.

The replications calculator can be used to obtain a confidence

interval on the differences of a specified precision.

Where more than two scenarios are involved then multiple

confidence statements are required. As is standard practice

in statistical inference, the significance level (a) associated

with multiple confidence intervals should be adjusted in

order to provide an overall confidence level (see Law (2007)

on the Bonferroni inequality). This becomes problematic if

a very large number of output statistics are of interest. It is

then necessary to resort to more sophisticated means, for

example ranking and selection (Kim and Nelson, 2007).

In terms of assuring the accuracy of the results obtained

from each scenario, then AutoSimOA could be run for every

scenario. The problem with this is that the sample sizes

obtained from each scenario might (necessarily) be quite

different. For reasons of fair comparison it might be

preferable to use AutoSimOA on a base case and then reuse

the warm-up period, run-length and/or number of replica-

tions for all other cases. In this instance, we would

recommend re-running AutoSimOA from time-to-time,

and particularly for critical scenarios, in order to affirm

that an appropriate run set-up is still being used. The results

would be accurate in themselves but might not be sufficiently

accurate to compare with each other.

If the run-length calculator is used on the base case (using

ASAP3) then this would present an issue with reusing that

run-length on further scenarios. Since ASAP3 relies on a

correlation-adjusted confidence interval in its calculations,

the resulting confidence interval is not just dependent on the

batch size and number of batches. In other words, the same

batch size and batch number cannot be applied to a different

set of data and a valid confidence interval necessarily be

produced. A pragmatic solution to this might be to use the

run-length suggested by ASAP3 for the base case on all

future runs, but to apply the LABATCH2 procedure for

generating the confidence intervals. It should be noted that

this would not assure the precision of the confidence

intervals, but it would provide a more consistent basis for

generating the results.

9.4. Issues with automation

AutoSimOA is a sequential procedure for making decisions

about warm-up, run-length and number of replications. As a

result, at each iteration the analyser requires more data to be

generated from the simulation model. To do this efficiently

the simulation should be able to run on from its present

termination point. In general this is not an issue for most

simulation software when running a single replication. This

requires some more effort, however, when multiple replica-

tions are being performed and further data are required, as is

the case when using averaged data in the warm-up analyser.

AutoSimOA cannot claim to be fully automated. Indeed,

this is in part deliberate since we believe that output analysis
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Figure 14 Path D: replications calculator applied to the
cinema call centre model with the graph showing the mean,
95% confidence intervals and precision.
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requires some intervention from the user of the model who is

knowledgeable about the real-world system being modelled.

There are two key areas where users are involved in the

analysis with AutoSimOA.

Deciding what to do. On the basis of a knowledge of the

model, the user must determine whether a warm-up analysis

is needed and whether multiple replications or a long run is

required. The user must also decide the length of run for

the multiple replications case. These decisions depend on the

nature of the model and the output, for instance, whether

the model is terminating or non-terminating, or whether the

output data are transient or steady-state. There may be ways

of automating these decisions by inspecting the details of

the model, but this would require further research into the

characteristics of models.

Determining if the recommendations are reasonable. For

each element of AutoSimOA the user is presented with

graphical output showing the nature of the recommendations

being made. For the warm-up analyser we recommend that

the user can view graphs of the MSER-5 test statistic

(Figure 8), the batched data (Figure 8) and the individual

time-series if multiple replications are being used. For the

replications calculator the user should be able to see a graph

of the mean, confidence intervals and precision with inc-

reasing numbers of replications (Figure 9). We also recom-

mend a graph showing the expected number of replications

(N
_	

) (Figure 10) as a fail-safe mechanism to prevent excessive

running time. Finally, for the single run analyser we would

suggest graphs of the standard deviation (Figure 12) and

mean and confidence intervals (Figure 13) are presented to

the user for the LABATCH2 procedure. These graphs

allow the user to gain some understanding of the reason for

the recommendation and thereby some confidence in the

decision. The user is also given the option to override the

recommendations of AutoSimOA.

9.5. Limitations of AutoSimOA

There are some output analysis requirements that are not

covered by AutoSimOA in its current form. First, Auto-

SimOA is not directly able to handle cyclic data. The user is

required to batch the data to remove cycles prior to analysis

by AutoSimOA. Second, if transient output data are subject

to initialisation bias, the procedures used by AutoSimOA

will not be able to detect the difference between the initial

transient and further transient data. We do not know of such

a procedure, and it is likely that for the foreseeable future

users will need to identify such initial transients based on

their knowledge of the model.

A third limitation of AutoSimOA is that it only performs

an analysis on the mean and variance of the output statistics

of interest. There are occasions on which other statistics

need to be measured, for instance, the mode, median and

quantiles. It would be useful to extend AutoSimOA to

provide decisions for these measures.

Finally, AutoSimOA provides no facilities for scenario

analysis. This might include, for instance, comparison of

scenarios (eg ranking and selection (Kim and Nelson, 2007)),

and simulation optimisation (Fu, 2002). The addition of

such facilities is an area for further research.

10. Conclusion

The automated analyser, AutoSimOA, provides recommen-

dations on the warm-up period, number of replications

and/or run-length for a discrete-event simulation. It is for

use with terminating and non-terminating (steady-state) simu-

lations. The aim of the analyser is to provide accurate and

precise measures for the output statistics that are of interest

from a simulation model. AutoSimOA has been designed for

implementation in commercial simulation software with

a view to improving the use of, and results obtained from,

commercial simulation models. In its current form, Auto-

SimOA provides facilities that can help improve the use of

simulation. We believe that with additional research and

development the analyser can provide further capabilities to

aid simulation output analysis.
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