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Abstract

Systematic studies of autosomal dominant osteopetrosis (ADO) were followed by the identification of
underlying mutations giving unique possibilities to perform translational studies. What was previously
designated ADO1 turned out to be a high bone mass phenotype caused by a missense mutation in the
first propeller of LRP5, a region of importance for binding inhibitory proteins. Thereby, ADO1 cannot
be regarded as a classical form of osteopetrosis but must now be considered a disease of LRP5
activation. ADO (Albers-Schönberg disease, or previously ADO2) is characterized by increased number
of osteoclasts and a defect in the chloride transport system (ClC-7) of importance for acidification of the
resorption lacuna (a form of Chloride Channel 7 Deficiency Osteopetrosis). Ex vivo studies of osteoclasts
from ADO have shown that cells do form normally but have reduced resorption capacity and an
expanded life span. Bone formation seems normal despite decreased osteoclast function. Uncoupling of
formation from resorption makes ADO of interest for new strategies for treatment of osteoporosis.
Recent studies have integrated bone metabolism in whole-body energy homeostasis. Patients with
ADO may have decreased insulin levels indicating importance beyond bone metabolism. There seems
to be a paradigm shift in the treatment of osteoporosis. Targeting ClC-7 might introduce a new
principle of dual action. Drugs affecting ClC-7 could be antiresorptive, still allowing ongoing bone
formation. Inversely, drugs affecting the inhibitory site of LRP5 might stimulate bone formation and
inhibit resorption. Thereby, these studies have highlighted several intriguing treatment possibilities,
employing novel modes of action, which could provide benefits to the treatment of osteoporosis.
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Introduction

The concept of osteopetrosis was introduced in the
1920s to describe patients with radio-opaque bones and
universal osteosclerosis. The disease corresponded to
marble bone disease (1) first described in 1904 by the
German radiologist Albers-Schönberg (2). He described
a man with multiple fractures and a radiographic
osteosclerosis characterized by increased cortical thick-
ness and reduced marrow space. It became clear that
osteopetrosis could be seen in families, and based on
mode of inheritance, Johnston et al. (1968) (3)
suggested two different forms: a benign form designated
autosomal dominant osteopetrosis (ADO) and a malig-
nant form seen in childhood and inherited in an
autosomal recessive manner, termed autosomal reces-
sive osteopetrosis (ARO). However, other forms were
described during the following years, and moreover, it
became clear that the clinical presentation of each of the
ndocrinology
heritable forms varied. Intermediate forms with rela-
tively mild course but a recessive mode of inheritance
were identified. In one of these, the patients presented
basal ganglia calcifications and renal tubular acidosis,
and this syndrome was subsequently found to be caused
by carbonic anhydrase deficiency (4, 5, 6, 7). With
these observations, malfunctioning bone resorption was
introduced as a common pathogenic factor in osteo-
petrosis, and at least in the intermediate forms, this
was demonstrated in the beginning of the 1980s to
be due to an acidification defect across the osteoclast
cell membrane (5), see section on Genetic studies iden-
tifying CLCN7.

Osteopetrosis was described as a heterogeneous group
of diseases related to defective bone resorption (3).
However, also within ADO, a systematic search for the
disease revealed radiographic heterogeneity (8). Based
on several families with ADO from the county of Funen,
Denmark, in the mid-1980s, we described two distinct
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radiological forms based on plain radiographs (8).
Further studies characterizing ADO at the clinical,
biochemical, histological, and biomechanical levels
revealed that these types corresponded to two distinct
disorders, which we designated as ADO type 1 (ADO1)
and ADO2 (9, 10, 11, 12, 13). These early studies were
reviewed in 1989 (14). ADO was defined as a condition
with diffuse osteosclerosis, primarily involving the axial
skeleton, but with symmetrical effects on the long bones
and with little or no modeling defects (14). Based on
bone biopsies, it was hypothesized that the pathogenesis
of these two forms involved defective bone resorption,
directly or indirectly.

During the recent 20 years, investigations of
osteopetrosis have contributed significantly to our
insight into bone biology. After the millennium, it
turned out that ADO1 was caused by an activating
mutation in LRP5 (15) and thus cannot be recognized
as a classical form of osteopetrosis but rather should be
regarded as a LRP5-activating bone disease, or high
bone mass (HBM) phenotype. Also, the disease most
probably described by Albers-Schönberg (2) turned out
to be a form of Chloride Channel 7 Deficiency
Osteopetrosis (16). However, it should be noted that a
mutation in CLCN7 has not been demonstrated in up to
30% of patients presenting with a clinical phenotype of
ADO, indicating further heterogeneity (17, 18).

The aim of the present review is to give an overview of
clinical lessons learned by studies on large and
homogenous populations of patients with ADO and
HBM. This review will discuss genetic studies leading to
the identification of the mutated genes in the original
cohorts, of instrumental importance for separating the
syndromes into an intrinsic bone-resorptive defect
(Chloride Channel 7 Deficiency Osteopetrosis (ADO))
and a LRP5 activation disease related to the bone
formative site. Moreover, we will describe subsequent
in vitro investigations on bone-resorptive cells in ADO,
increasing the understanding of bone biology and the
coupling principle. Also, we will critically review recent
data on metabolic consequences of disturbed bone
resorption in ADO. Finally, perspectives from these
studies regarding treatment of other metabolic bone
diseases are outlined. For this purpose, literature was
searched through PubMed for the key words autosomal
dominant (or benign) osteopetrosis, osteoclasts, bone
resorption, HBM, and coupling.
Summary of recent systematic clinical
studies

Clinical symptoms, bone mass, and bone
structure

Two large cohorts of well-characterized patients with
ADO have been described in detail after the millennium
(19, 20). Moreover, Frost et al. (21) recently updated the
www.eje-online.org
HBMT253I cohort. Bone mass in adults based on
dual-energy X-ray absorptiometry (DXA) is almost
increased to the same level in patients with the bone-
resorptive defect (ADO) as in patients with LRP5
activation bone disease. Thus, ADO patients and our
HBMT253I cohort had increased bone mineral density
(BMD) at all skeletal sites measured. Z-scores ranged from
C2 to C12 at the lumbar spine, which is mostly
comprised of trabecular bone, and the whole-body
compartment, consisting primarily of cortical bone,
Fig. 1, also illustrating studies by high-resolution periph-
eral quantitative computed tomography (CT) (20, 21, 22).

Penetrance is high in ADO; however, several
asymptomatic carriers have been described (14, 20).
Waguespack et al. (20) described a total of 32 obligate
carriers and presented data on BMD in six. In these,
BMD Z-scores were modestly elevated with values
ranging from 0 to C4 (Fig. 1). The authors had the
possibility to reevaluate six patients and one carrier
after more than 30 years since the original description
(3, 20). In all patients, clinical symptoms progressed,
whereas the carrier remained asymptomatic (20). The
progression of symptoms is in alignment with pro-
gression of the universal osteosclerosis, as indicated by
cross-sectional studies using DXA and histomorphome-
try (11, 12, 20, 21, 23).

Patients with ADO have typical and prevalent
symptoms (2, 3, 10, 19, 20, 24). The typical findings
are increased fracture frequency, delayed healing, and
osteomyelitis, especially in the jaw (2, 10, 19, 20). The
latter is of special interest in relation to the current
discussion of osteonecrosis of the jaw (ONJ) associated
with bisphosphonates and denosumab, i.e. drugs that
decrease the number and activity of osteoclasts (25, 26,
27, 28, 29), as will be discussed in more detail below.

With the prevalent and often serious symptoms, the
term benign osteopetrosis could be questioned (19, 20).
As an example of this, Waguespack et al. (20) found
early-onset vision loss in one-fifth of the patients and
signs of bone marrow failure in 3%. Thus, their cohort
had clearly more serious symptoms than we found in
our original studies (14). However, the findings are
prone to selection bias, as patients with symptoms are
found by clinical work-up, whereas patients with sparse
symptoms and carriers are mostly found by family
studies (14, 19, 20).
Osteonecrosis in the jaw

ONJ occurs in cancer patients with bone metastasis
treated with monthly dosages of i.v. administered
bisphosphonates or denosumab (with a frequency of
1.3 and 1.8% respectively) (30) and in rare cases (two
cases per 100 000 patient years) of patients with
osteoporosis treated with oral bisphosphonates (31).
ONJ has also been reported in patients with osteoporosis
treated with denosumab every 6 months (32). The risk
of ONJ in patients with osteoporosis treated with
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Figure 1 Bone mass by DXA and high-resolution pQCT in
autosomal dominant osteopetrosis and the HBM phenotype.
(A) Individual BMD Z-scores in 19 patients with HBMT253I compared
with controls. The figure is based on data and reproduced from
Frost M, Andersen T, Gossiel F, Hansen S, Bollerslev J, Van Hul W,
Eastell R, KassemM & Brixen K. Levels of serotonin, sclerostin, bone
turnover markers as well as bone density and microarchitecture in
patients with high bone mass (HBM) phenotype due to a mutation in
Lrp5. Journal of Bone and Mineral Research 26 1721–1728, 2011,
with permission. (B) Upper panel: high-resolution pQCT of radius
and tibia in a case with HBMT253I (left two pictures) and a control
subject (right two images); reproduced from Frost M, Andersen T,
Gossiel F, Hansen S, Bollerslev J, Van Hul W, Eastell R, Kassem M &
Brixen K. Levels of serotonin, sclerostin, bone turnover markers as
well as bone density and microarchitecture in patients with HBM
phenotype due to a mutation in Lrp5. Journal of Bone and Mineral
Research 26 1721–1728, 2011, with permission. Lower panel: high-
resolution pQCT of radius and tibia in a case with ADO (left two
pictures) and a control subject (right two images). (C) Individual BMD
Z-scores from with ADO and obligate carriers. The figure is
reproduced from Waguespack SG, Hui SL, Dimeglio LA & Econs MJ.
Autosomal dominant osteopetrosis: clinical severity and natural
history of 94 subjects with a chloride channel 7 gene mutation.
Journal ofClinicalEndocrinologyandMetabolism92771–778, 2007,
with permission.
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bisphosphonates increases following tooth extractions
and with the duration of therapy. The pathogenesis
of ONJ related to bisphosphonates and denosumab is
currently unknown. Infection, osteocyte death, soft
tissue toxicity, interference with angiogenesis, conco-
mitant therapy, and decreased bone turnover have been
suggested as causative factors (33). Occurrence of
ONJ following two completely different drugs such as
bisphosphonates and denosumab sharing only the
common effect of decreasing bone turnover (and
number of osteoclasts) as well as case reports indicating
that bisphosphonate-related ONJ may respond well to
therapy with teriparatide suggests that low bone
turnover is essential in the pathogenesis of this
condition. In ADO, however, inflammation and not
necrosis is the usual feature. Patients with ADO also
have other dental abnormalities such as delayed tooth
eruption, enamel hypoplasia, and dental caries (34)
that may predispose to infection of the jaw. Also, non-
jaw osteomyelitis is seen in ADO (19) but not following
bisphosphonate therapy. Bisphosphonates are taken up
not only by osteoclasts but also by macrophages and
enhance apoptosis in these cells. The role of macro-
phages in ONJ and osteomyelitis in patients with ADO,
however, is currently unknown.
Bone remodeling

Histomorphometric analyses of bone biopsies from
adult patients with ADO are limited. Early studies at
the trabecular (11) and cortical envelope (23)
indicated virtually normal bone remodeling and an
endosteal resorption defect. However, the studies were
limited by few individuals investigated and the immense
analytical variability of histomorphometry with the
risk of a type 2 error (35). The data were in accordance
with syndromes of defective bone resorption and normal,
or atleast not increased, bone formation. In normal
subjects, administration of triiodothyronine (T3) acti-
vates bone remodeling (36). In agreement with the
relative benign character of ADO, bone turnover can
be stimulated by T3 (37, 38, 39), but the response
is blunted for bone resorption as well as for formation
markers (38, 39, 40).
ADO is osteoclast rich

Detailed ultrastructural investigations of bone biopsies
from ADO patients revealed that osteoclasts were
markedly increased in size and number (almost
threefold) compared with controls (41) and of the
typical multinucleated type. Moreover, biochemical
markers of osteoclast number, TRACP and CKBB, were
markedly increased in ADO (13, 16, 42, 43, 44, 45).
Based on these studies, ADO was described as an
osteoclast-rich form, to be discussed in detail below.
www.eje-online.org
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Genetic studies identifying CLCN7

Positional cloning was used to identify the disease-
causing genes in the original populations. This involved
a two-step procedure first aiming to localize the affected
gene to a chromosomal region and subsequently
perform mutation analysis from the delineated region
(46). For the first step, we performed genetic linkage
analysis in extended families (47).
Identification of the role of the CLCN7
gene in ADO

In the context of epidemiological and clinical studies in
the county of Funen, Denmark, an extended family was
ascertained with a large number of family members
affected with the classical radiographic appearance of
ADO (9). Genome-wide linkage studies revealed a gene
localization on chromosome 16p13.3 based on the
analysis of six extended families, including the original
Danish pedigree (48). By far, the most interesting
candidate gene within the delineated region was the
CLCN7 gene encoding a chloride channel. Kornak et al.
(49) showed that loss of the ClC-7 chloride channel in
mice results in severe osteopetrosis. Furthermore, they
reported one patient with ARO due to two compound
heterozygous mutations in this gene. We identified
heterozygous CLCN7 mutations in all ADO families used
for the linkage study as well as in six additional ADO
patients (50). The ClC-7 chloride channel has 12
transmembrane domains, which turned out to function
as a slowly voltage-gated 2Cl(K)/1H(C)-exchanger
(51). Currently, 25 different mutations have been
documented and found in all regions of the gene but
with a cluster around amino acids 313–318 and in the
intracellular part before the carboxyterminal end of the
protein (Fig. 2). Most mutations are missense mutations
causing an amino acid substitution with two excep-
tions. One results in a deletion of one amino acid
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Figure 2 Topology of the chloride channel 7 (ClC-7) protein. The
lysosomal side is indicated with a black line, while the cytosolic side
is indicated with a blue line. Known mutations in patients with
autosomal dominant osteopetrosis type 2 are indicated. The original
Danish pedigree harbored the G215R mutation (50).
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(DL688), but it can be assumed that this might not
disturb the topology of the chloride channel (50). The
other is a deletion of two nucleotides (2423delAG)
found in two families and causing a frameshift
mutation. However, this mutation is located very close
to the carboxyterminal part of the protein (50). A
possible effect of missense mutations on the functioning
of the encoded protein can be complete loss of function.
However, for the CLCN7 mutations, this seems to be
unlikely. First, severe ARO has been described in patients
with loss of function mutations (49), but the parents
were clinically and radiographically normal despite
having a heterozygous loss of function mutation.
Secondly, ClC-7 is known to function in a dimeric
state. Together, this indicates that for the ClC-7 protein,
there is no effect of haplo-insufficiency in humans while
amino acid substitutions might have a dominant
negative effect. Several studies have investigated the
direct effects of the mutations. Analyses of human
osteoclasts showed that the G215R mutation, which is
the most common, reduces acid secretion into lyso-
somes (52, 53). Further studies using over-expression
systems indicated that this was related to ER retention
of the mutated protein, a finding also observed for other
mutations, such as G240R and R526W (51, 54).
Another group of mutations was shown to alter the
gating kinetics, thereby rendering the transporter
inactive (51). However, the full understanding of the
relationship between the mutations and osteoclast
functionality is generally unclear, and it is further
clouded by the presence of unaffected carriers of the
mutations, a phenotype that is manifested even in
isolated osteoclasts (55).
Genotype–phenotype correlation

Many of the mutations identified are private to one
family but some have been reported in several families.
So far, no clear-cut genotype–phenotype correlation has
been established (56). This is not unexpected taking into
account the high intra-familiar clinical variability
ranging from asymptomatic to severely affected. This
also implies a reduced disease penetrance, which has
been estimated to be between 66 and 94% (3, 19, 20,
57, 58). A clear explanation for the reduced penetrance
and the intra-familial variability is not available. In
theory, single-nucleotide polymorphisms in the
promoter region might influence the ratio between the
mutated and the wild-type copy of the protein.
Interestingly, a coding polymorphism, V418M, has
been reported to be associated with the severity of the
ADO presentation (59, 60). Furthermore, a 50 bp
variable number of tandem repeat (VNTR) poly-
morphism with a copy number between 2 and 9 is
present in intron 8 of the human CLCN7 gene. This
repeat is associated with BMD in the general population,
but also with the severity of ADO (61). The mechanism
by which this repeat influences the function of ClC-7 is
Downloaded from Bioscientifica.com at 08/23/2022 07:09:13AM
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unclear, but an effect on exon–intron splicing cannot be
excluded. The V418M and the VNTR polymorphism are
to some degree in linkage disequilibrium (62). Therefore,
the real causal variant remains to be demonstrated.

In addition to this, it is clear that ADO is genetically
heterogeneous as no CLCN7 mutation could be found
in up to 30% of patients presenting with a clinical
phenotype of ADO (17, 18). No clinical or radiological
difference between those with or without a CLCN7
mutation has been reported.
Normal

ADO

Old bone

Increased
bone
mass

Coupling signal
Apoptotic signal
TRACP residue

New bone

Old bone
New bone

Figure 3 Schematic illustration of the interplay between bone lining
cells, osteoclasts, and osteoblasts under normal circumstances
(upper panel) and with autosomal dominant osteopetrosis (ADO;
lower panel). Upper panel: bone resorption releases apoptotic
factors ensuring termination of resorption and the osteoclasts
secrete anabolic molecules for the osteoblasts ensuring that bone
formation follows bone resorption and thereby completing the bone
remodeling cycle. Lower panel: in ADO, resorption per osteoclast is
greatly reduced, and this has been shown to lower the release of
apoptotic factors from the bone matrix, resulting in larger numbers
of large and multinuclear osteoclasts. These osteoclasts are still
anabolically active, and they secrete factors to the osteoblasts
ensuring rather normal bone formation, which when combined with
defective bone formation is the reason for the increased bone mass
in these patients. An interesting phenomenon, namely deposition of
TRACP residue along the resorbed surface, has been shown in
these patients and corresponding animal models; however, the
functional consequence of this has not been shown yet. The figure
was inspired by Segovia-Silvestre et al. (213).
Analysis of osteoclasts from ADO
patients

Osteoclast-rich forms of osteopetrosis and in particular
ADO have been studied in detail in vitro. Histomorpho-
metric analyses of ADO and osteoclast-rich ARO
patients showed increased numbers of very large
osteoclasts in vivo (17, 41). In vitro analyses showed
that osteoclastogenesis was normal, both with respect
to time frame and numbers of osteoclasts, and with
respect to morphology (17, 52, 53, 63, 64). The
underlying reason for the lack of bone resorption by
these osteoclasts was shown to be reduced acid secre-
tion into the resorption lacunae (52, 53, 63, 64, 65),
an effect also seen in ClC-7-deficient mice (49).

Further studies of the ADO osteoclasts indicated that
the reason for the increased number of osteoclasts
in vivo is related to increased survival of the osteoclasts.
The osteoclasts have an attenuated capacity to resorb
the calcified bone matrix. This mechanism, at least
partially, seems to have an auto-regulatory effect of
calcium directly on osteoclast survival (63, 66).
However, other studies have also shown that release
of transforming growth factor b from the bone matrix
caused induction of osteoclast apoptosis (67) and thus
also participates in this auto-regulatory control of
osteoclast activity. In addition to increased survival
due to decreased release of pro-apoptotic factors from
the mineral, increases in parathyroid hormone could
contribute to the increased number of osteoclasts (68).
However, this increase in survival is also seen in vitro
in pure cultures of osteoclasts where acid secretion is
reduced due to mutations or blocked pharmacologically
hence showing at least some PTH-independent osteo-
clast survival effects (63, 66, 69).

In addition to shedding light on the regulation of
the life span of osteoclasts, another highly interesting
aspect of bone remodeling has been studied extensi-
vely based on the pathophysiology of patients with
ADO, namely the coupling of bone resorption to bone
formation. In the ADO patients, as well as other
osteoclast-rich forms of osteopetrosis, it has been
shown that bone formation is ongoing, despite the
absence of bone resorption (11, 17, 41, 42), a
phenomenon that is also found in rodent models of
osteoclast-rich osteopetrosis (70, 71), and in animal
models treated with inhibitors of osteoclastic acid
secretion (63, 72, 73, 74).

In accordance with these studies, a series of in vitro
studies of osteoclasts have shown that independent of
their resorptive activity, osteoclasts produce anabolic
signals for osteoblasts (69, 75, 76, 77), thus explaining
the origin of the ongoing bone formation in the
ADO/osteoclast-rich osteopetrosis patients, see Fig. 3.
Furthermore, these studies showed that only mature
osteoclasts produce the anabolic signal (76) and hence
illustrated the specificity of this phenomenon, while also
providing some evidence as to why bone formation
appears very low or even missing in the absence of
osteoclasts, as seen in the RANK-deficient patients (78).
However, controversies still exist, as demonstrated
recently where inhibition of bone resorption in vitro
with the V-ATPase inhibitor bafilomycin blunted release
of anabolic factors from the bone matrix (79). Thus,
there are still discussions related to the origin of the
anabolic molecules initiating and driving bone forma-
tion as a consequence of bone resorption by osteoclasts.

With respect to molecular candidates for the bone
anabolic factors derived from the osteoclasts, there are
several. They include well-known bone-stimulating
www.eje-online.org
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molecules, such as IGF1, BMP6, and Wnt10b (76, 79,
80). Furthermore, there are also molecules that are still
being explored in detail, such as the ephrinB2–ephB4
interaction and sphingosine-1-phosphate (76, 77).
However, what remains to be demonstrated is clear-cut
in vivo proof that these are indeed coupling factors.
Conversely, showing this is immensely complex when
considering the ubiquitous nature of the molecules, and
the very likely possibility that it is a combination of
molecules that serves this function in vivo.

In addition to osteoclast-produced and resorption-
derived coupling factors for osteoblasts, there is also
some evidence that the bone surface in the resorption
pits is of utmost importance for bone formation (81). In
this context, it is of interest that the resorbed surface
area in the ADO patients is very high, likely as a
consequence of the increased numbers of osteoclasts,
which initiate, but fail, to perform a complete process of
resorption (41), thus leaving the bone surface
‘scratched’ as opposed to completely resorbed. Along
the same line, data from in vitro experiments show that
allowing osteoclasts to resorb bone facilitates bone
formation by osteoblasts in the resorbed areas (82, 83).
Furthermore, studies indicate that osteoclasts deposit
TRACP on the bone surface leading to recruitment of
osteoblasts (84), a finding that correlates with the high
levels of TRACP found on the resorbed bone surfaces in
ADO patients and other acid secretion-deficient systems
(41, 85, 86) (Fig. 3).

In summary, in vitro studies of ADO osteoclasts have
highlighted relevant and important aspects not only
related to bone resorption but also for the coupling
principle and thereby for bone formation. Thus, it has
been clearly demonstrated that the chloride–proton
antiporter ClC-7 is a highly relevant potential pharma-
cological target for treatment of osteoporosis.
Treatment of and potential therapies
identified from studies of ADO

Treatment of ADO

The pivotal studies by Walker (87) in the early seventies
for the first time demonstrated that osteoclast-rich
forms of osteopetrosis could be cured by parabiosis, also
demonstrating that osteoclasts derive from hemato-
poietic stem cell. Thereby, the scientific basis was
established for experimental treatment of the severe
clinical (malignant) forms of ARO with bone marrow
transplantation in children (88, 89) in the early 1980s.
This is now an established treatment modality (90, 91).
However, no specific pharmacological therapy for ADO
is currently available. Treatment of osteopetrosis
including ADO is mainly supportive. Multidisciplinary
management is required in order to manage skeletal
related complications such as osteoarthritis, fractures,
and osteomyelitis, as well as compression of cranial
www.eje-online.org
nerves including most notably the optic nerve (14, 19,
20, 24, 45, 47). Osteopetrosis may cause bone marrow
failure and seizures due to hypocalcaemia, but these
complications are infrequent in late-onset ADO.

Insight into the pathophysiology of the different forms
of osteopetrosis may be important for the design of
therapy for these diseases. A number of drugs have been
shown to increase osteoclast activity including calci-
triol, which ameliorates ARO (92). Furthermore,
treatment of ARO with interferon g1b increases bone
resorption, causing a reduction in trabecular bone area
and an increase in bone marrow space (93). While
treatment of ARO with RANKL recently was shown to
improve the bone phenotype in mice and may prove
effective in humans (94), specific pharmaceutical
treatment of ADO has not been investigated
systematically.

Patients with ADO have a single-allele dominant
negative mutation of CLCN7. Consequently, it has been
suggested that siRNA therapy could transform the
phenotype by silencing the affected allele. Indeed,
preliminary results have shown that siRNA rescued
the phenotype of human osteoclasts transfected with
mutant ClC-7 constructs (95). Another possible
approach is suggested by the demonstration that
osteoclasts cultured from unaffected gene carriers
function normally while osteoclasts from affected
patients resorbed much less bone in vitro (55, 60).
These studies strongly suggest that modifying pathways
might exist. Potentially, these pathways could be drug
targets. Age, sex, and the specific CLCN7 mutation do
not seem to be important in this respect and osteoclastic
response to RANKL did not differ between carriers and
affected patients either. Finally, it is unknown whether
reduction in osteoclast number by treatment with, e.g.
bisphosphonates or denosumab, could be beneficial.

Insight into the pathophysiology of ADO is also
important for the design of anti-osteoporosis therapy.
A number of limitations in this respect should be
recognized. First, ADO exists throughout life and thus
still show effects that are also related to bone
development (modeling) as opposed to bone remodeling
(70). The studies have provided proof-of-concept that
the chloride–proton antiporter ClC-7 is an attractive
target as well.
ClC-7 inhibitors

Studies of ADO patients have demonstrated the
potential mode of action of a ClC-7 inhibitor, and the
most intriguing finding is the apparent uncoupling
between bone resorption and bone formation, a finding
that clearly indicates that bone resorption can be
inhibited without detrimental effects on bone formation
(81, 96, 97).

Studies in the aged ovariectomized rat model using
these inhibitors have shown that bone resorption is
lowered, while osteoclast numbers and bone formation
Downloaded from Bioscientifica.com at 08/23/2022 07:09:13AM
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are maintained (63, 73), thereby mimicking the
phenotype of the ADO patients and ClC-7-deficient
mice (11, 41, 85, 86). Treatment with these inhibitors
also resulted in increased BMD and bone strength
(63, 73), thereby underlining the potential of these
molecules. The contrast to the fracture pattern in ADO
patients (10) might be related to the difference between
an inherited condition with early effects during
development and bone modeling. As osteopetrosis
patients, including ADO patients, show poor bone
quality and increased numbers of fractures (14, 18, 98),
it should be considered whether molecules mimicking
these phenotypes would also result in bone fragility.
However, a recent study in which osteopetrosis was
induced in adult mice (O3 months of age) showed
that the bone brittleness observed in osteopetrosis is
a developmental phenomenon during growth and
bone modeling caused by the presence of calcified
cartilage (70) and thus not a phenomenon likely to
occur in adult osteoporotic patients with normal
childhood bone development.

In addition, the patients and mice with complete loss
of function or expression of ClC-7 are known to show
primary neurological issues (49, 91, 99); however,
analyses of the ADO patients, which, based on gene
doses, have 25% residual ClC-7 activity remaining, have
not shown any primary neurological phenomena
(14, 20, 91), indicating that the neurological problems
only arise when ClC-7 is completely inactive or absent,
and this level of inhibition of ClC-7 is not expected with
small-molecule inhibitors.

In relation to the specificity of the target, the A3
subunit of the osteoclastic proton pump, which is
functionally close to identical to ClC-7, in addition to
only having a function in the osteoclasts, has also been
studied in detail (100). However, as the A3 subunit is
a structural component docked in the membrane and
as the enzymatic subunit of the V-ATPase complex
has a broad tissue distribution, this has complicated
development of small-molecule inhibitors of this target
significantly (100).

Hence, the acid secretion process in the osteoclasts is
a highly attractive target from a pharmacological point-
of-view. However, it is also a difficult target, and more
research is clearly needed before a final conclusion can
be reached, although the phenotype observed in ADO
with decreased resorption and normal or increased bone
formation in adults is very promising.

Interestingly, inhibition of cathepsin K, the acid-
activated protease mediating type I collagen cleavage
in the resorption lacunae, has been explored extensi-
vely as a pharmacological target, including publication
of data from phase II trials (101, 102, 103, 104).
Initially, inhibition of cathepsin K was thought to lead
to inhibition of resorption, increases in osteoclast
numbers, and no secondary inhibition of formation,
as seen in the ADO patients, due to the very close
relationship between these processes and the bone
phenotype observed in cathepsin K-deficient mice
(105). However, studies on monkeys, the clinical trials,
and the phenotype observed in the cathepsin K-deficient
pycnodysostosis patients have demonstrated that
inhibition/ablation of cathepsin K in humans is more
complex, as bone formation is reduced secondary to the
inhibition of resorption. Hence, the final data from the
phase III study of the cathepsin inhibitor odanacatib
is awaited with interest. In summary, inhibitors of
ClC-7 are attractive as candidates for treatment of
postmenopausal osteoporosis, inflammatory osteolysis,
and other bone metabolic disorders.
Identification of the role of the LRP5
gene in bone

Two Danish families with HBM were instrumental in
localizing the disease-causing gene by linkage analysis
on chromosome 11q12–13 (106). Within the deli-
neated region, two genes of interest were localized:
TCIRG1 encoding for the a3 subunit of the proton pump
V-ATPase and LRP5 encoding for the LDL receptor-
related protein 5. Mutations in TCIRG1 were found to
cause ARO (107) but could not be demonstrated in our
cohort. On the other hand, loss-of-function mutations
in LRP5 were identified to be causative for autosomal
recessive osteoporosis-pseudoglioma syndrome (OPPG),
characterized by congenital blindness and severe
juvenile-onset osteoporosis (108). Heterozygous
carriers of these mutations showed an increased
incidence of osteoporotic fractures, indicating a domi-
nant negative effect on bone mass (108). At the same
time, Little et al. (110) and subsequently Boyden et al.
(109) reported the identical missense mutation, G171V,
in two kindred diagnosed with the so-called HBM
phenotype. Patients from the first family were asympto-
matic but showed radiographic very dense bones,
especially involving the cortices of the long bones, as
well as an increased thickness of the skull. In the second
family, some additional features including a wide and
deep mandible and a torus palatinus were described
(55). In both families, the patients seem to be protected
against fractures. Analysis of the LRP5 gene in patients
from the two Danish families indicated a heterozygous
missense (T253I) mutation in both (15). In addition, a
more extended set of patients was screened for LRP5
mutations. All these patients, despite different diagnoses
such as endosteal hyperostosis, Van Buchem disease, or
autosomal dominant osteosclerosis, showed a similar
radiographic and clinical picture (111, 112). In several
of these families, we found a missense mutation in LRP5
(15). As shown in Fig. 4, all these mutations cluster
within the first propeller domain of the LRP5 protein.
This has also been the case for all mutations reported
later on (113, 114, 115). The clinical variability
observed in patients with these LRP5 mutations cannot
be correlated with the specific mutation identified.
www.eje-online.org
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Figure 4 Gain-of-function mutations in the gene encoding the
LDL receptor-related protein 5 (LRP5). All identified mutations in the
high bone mass phenotypes cluster in the first b-propeller of the
extracellular domain, thereby affecting the binding of inhibitory
proteins as DKK1 and sclerostin. The consequence of these
mutations is an increased signaling of the canonical Wnt pathway.
The original Danish pedigrees harbor the T253I mutation (15).
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Moreover, intra-familial variability supports the idea
that other genetic modifiers as well as environmental
factors influence the expression and severity of the
phenotype.

Minor changes in the LRP5 gene, i.e. polymorphisms
in LRP5, have been associated with slightly lower bone
mass and an increased risk of fracture (116, 117). This
suggests that the pathway may be a drug target to
achieve a regulated response on bone homeostasis.

As discussed in detail below, the LRP5 protein plays
a role as a co-receptor for extracellular Wnt proteins
to induce the canonical Wnt signaling and this
signaling pathway is regulated by inhibitors including
DKK1 and sclerostin (118). Structural analysis of the
LRP5 protein revealed that all amino acids involved in
any of the HBM are clustered at an open binding pocket
near the surface of the first b-propeller of LRP5 (119).
The mutations do not have any effect on the functioning
of the protein but rather disrupt the ligand binding
of the extracellular inhibitors DKK1 and sclerostin
(120, 121, 122), in which a short binding motif was
found by structure analysis (123). The latter protein
was identified by positional cloning for two other
sclerosing bone disorders, Van Buchem disease and
sclerosteosis (124, 125, 126, 127). The radiographic
picture in these patients is very reminiscent to HBM.
However, the phenotype is more severe (128, 129),
with pronounced enlargement of the mandible and
extreme thickening of the skull causing cranial nerve
encroachments resulting in facial nerve palsy, optic
atrophy, and hearing loss. Thus, the similarities between
the dominant phenotypes (HBM) and the recessive
phenotypes (Sclerosteosis and Van Buchem disease) can
be explained by a shared increased Wnt signaling, but
by different mechanisms. In the latter conditions, the
patients are lacking an inhibitor (sclerostin) while in the
former ones the inhibitor can no longer bind its mutated
receptor. However, a recent study indicated that this
might be a somewhat simplified model. Niziolek et al.
(130) made knock-in mouse models for two HBM
www.eje-online.org
mutations and compared them to a SOST knockout
model. All models showed an increased thickness of the
skull, but clear differences were noticed at the appendi-
cular skeleton. The A214V and SOST mutants were
identical with increased bone formation periosteally,
while in the G171V model, bone was added preferentially
at the endocortical envelope (130), as suggested (14) and
demonstrated by histomorphometry in the HBMT253I

cohort (11, 23). This indicates, at least for the G171V
mutant, that additional mechanisms not associated
with sclerostin are involved.
The involvement of the canonical Wnt
signaling pathway in bone metabolism

The most important implication of the LRP5 mutations
revealed by positional cloning efforts in skeletal
disorders is that they linked, for the first time, the
canonical Wnt/b-catenin signaling pathway to bone
biology. This is the best-known pathway triggered by
extracellular Wnt molecules. In the absence of Wnts,
intracellular b-catenin is bound to a protein complex
including axin1/2, APC, casein kinase 1, glycogen
synthase kinase 3b (GSK3b), as well as WTX (AMER1)
and subsequently degraded in the proteasome (131).
However, upon the presence of Wnt molecules, these
will bind to the extracellular frizzled receptor and a
co-receptor (Lrp5/Lrp6). This results in destabilization
of the destruction complex and release of b-catenin,
leading to intracellular accumulation of b-catenin that
can translocate to the nucleus and, after binding to
Tcf/Lef transcription factors, induce the expression of
target genes (131).

Over the last years, plenty of evidence became
available supporting a role of canonical Wnt signaling
in bone homeostasis from molecular genetic studies on
skeletal diseases. In addition to the already mentioned
mutations in the co-receptor LRP5 and the Wnt
inhibitor sclerostin, mutations were found in WTX, a
member of the destruction complex of b-catenin,
causing osteopathia striata (132, 133, 134). Further-
more, a loss-of-function mutation in LRP6 results in a
condition with osteoporosis, coronary artery diseases,
and metabolic syndrome (135). Finally, patients diag-
nosed with Williams–Beuren syndrome have a low
BMD, and this condition is associated with a deletion of
FZD9, another Wnt co-receptor (136). Both in vitro
and in vivo studies have been performed gaining insight
into the underlying mechanisms involving both the
processes of bone formation and bone resorption.
Evidence for a role of canonical Wnt
signaling in bone formation

Canonical Wnt signaling is involved in the bone
formation process at different levels. This pathway is a
key regulator of the differentiation of mesenchymal stem
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cells toward chondrocytes, osteoblasts, or adipocytes.
The Wnt/b-catenin signaling pathway has been shown
to inhibit the adipogenic differentiation potential,
thus altering the fate of cells from adipocytes to
osteoblasts (137, 138, 139, 140). This is induced by
suppressing the expression of the adipogenic transcrip-
tion factors peroxisome proliferator-activated receptor g
(PPARg (PPARG)) and CCAAT/enhancer-binding
protein a (C/EBPa (CEBPA)) (141). Next, an extended
set of mouse models was generated to evaluate the role
of LRP5 and b-catenin in osteoblastogenesis and bone
formation. Lrp5 knockout mice showed a decreased
bone formation rate mainly due to reduced osteoblast
proliferation (142). In order to model the human HBM
phenotype, Babij et al. (143) generated a Lrp5 G171V
transgenic mouse using the 3.6 Col1A1 promoter and
were able to also show a decrease in the apoptosis of
osteoblasts and osteocytes, which might also contribute
to the phenotype. Mouse models in which b-catenin
was conditionally deleted indicated an essential role in
osteoblast differentiation as absence of b-catenin in
embryonic mesenchymal progenitors abolished the
generation of mature osteoblasts (144) and had an
effect on the balance between osteo- and chondroblas-
togenesis (145).

In different studies, the role of Wnt/b-catenin
signaling in bone formation was linked to the
responsiveness to mechanical loading on bone, which
seemed to be increased in the LRP5 (G171V) mutant
models and reduced in the LRP5 knockout models
(146). Furthermore, deletion of one copy of the
b-catenin gene in osteocytes was linked to reduced
new bone formation upon mechanical loading (147).
Thus, a model has been suggested combining a direct
b-catenin-dependent but LRP5-independent osteocytic
effect with an LRP5-dependent feedback loop to explain
the responsiveness to mechanical loading (148).
Evidence for a role of canonical Wnt
signaling in bone resorption

Mouse studies have provided strong indications that at
least b-catenin influences the process of bone resorp-
tion. The generation of conditional knockout mouse
models for b-catenin supports that regulation of bone
resorption is mediated by osteoblasts and osteocytes.
Deletion of b-catenin in a later stage of osteoblast
differentiation results in a severe bone loss (149). An
increased number of osteoclasts were present, and
subsequently, it was demonstrated that canonical Wnt
signaling within differentiated osteoblasts induces the
expression and secretion of osteoprotegerin (OPG), an
important inhibitor of osteoclastogenesis (137). Thus,
by stabilizing b-catenin, the OPG:RANKL ratio
increased followed by decreased osteoclastogenesis and
defective tooth eruption (137, 150), which are classical
signs of osteopetrosis in murine models (151, 152, 153,
154). Along the same lines, deletion of b-catenin in
osteocytes resulted in decreased BMD due to an
increased number and activity of osteoclasts (155).
This effect was associated with a decreased level of OPG,
thus increasing the RANKL:OPG ratio and consequently
stimulating osteoclastogenesis.

Because b-catenin is also involved in many
Wnt-independent processes, this might suggest, but
does not confirm, a direct role for Wnts in osteoclast
differentiation. However, Ruan et al. (156) recently
reported an increased osteoclast differentiation of
osteoclast precursors lacking functional LRP5 and
LRP6, indicating that canonical Wnt signaling indeed
suppresses osteoclast differentiation. Furthermore, the
administration of anti-sclerostin antibody, which is
assumed to increase canonical Wnt signaling, also
results in a decreased osteoclastogenesis and reduction
in bone resorption in rats (157).

Early based investigations of our HBMT253I cohort
identified low bone resorption biochemically (68)
reflecting reduced osteoclast profiles by immunohisto-
chemistry and electron microscopy (41). Although we
confirmed the biochemical findings recently (21, 40),
these findings have never been established in other HBM
cohorts, as systematic bone metabolic studies have not
been published.
Treatment of and potential therapies
identified from studies of HBM

Treatment of HBM

Owing to the benign nature of the HBM disorders,
treatment has so far been mainly supportive, as for
ADO. As the pathogenic defect is on the formative side of
bone remodeling, bone marrow transplantation is not
an option (151, 158, 159). Two considerations are of
importance in relation to treatment of HBM: i) serious
side effects are unacceptable given the relatively benign
nature of the disease and ii) bone formation is increased
and accompanied with some alteration in bone
resorption (118, 160).

With respect to reversing the phenotype, there
appears to be some possibilities as both glucocorticoids
and glitazones are characterized by reducing bone
formation and increasing bone resorption (161, 162).
However, these drugs are associated with unacceptable
side effects with high dosages and long-term treatment.
Moreover, it would be more appealing to treat directly
by targeting the regulation of the Wnt signaling.

Sclerostin and stimulators of sclerostin secretion
such as calcitonin (163) could potentially be used for
the treatment of HBM, but calcitonin is also a potent
inhibitor of bone resorption. Mechanical unloading
(i.e. bed rest) is followed by increased resorption and
decreased formation, controlled at least to some extent
by increased sclerostin levels and thereby inhibition of
the overactive Wnt cascade (164). It is at present
www.eje-online.org
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unknown whether manipulating sclerostin levels will
have unintended effects on the neuromuscular response
as seen in humans in relation to unloading (165).
Moreover, some of the HBM mutations appear to
prevent sclerostin by itself from binding to LRP5 (122),
possibly explaining the increased level of sclerostin
observed in patients with HBM (21).

Alternatively, application of continuous PTH or
RANKL could lead to aggressive induction of bone
resorption and thereby potential removal of the excess
bone (166, 167). However, this would need careful
long-term studies and could potentially be complicated
by antibody production and difficulties in controlling
the RANKL dose.

Taken together, there are several hypothetical
approaches to treat HBM. However, so far, they are
all limited by side effects and lack clinical validation. For
future studies, side effects and long-term consequences
of treatment should be balanced against the, in general,
benign nature of the disorder.
The Wnt/LRP5 system

With the identification of the highly interesting bone
phenotype of increased bone mass and strength in the
HBM patients, who have loss-of-inhibition mutations in
LRP5 (15, 109, 140, 160, 168), an intensive search for
therapies targeting this molecule was initiated. As the
Wnt ligands, as well as the downstream signaling
molecules GSK3b and b-catenin, are rather ubiquitous
and have been implicated in cancer progression, these
are less attractive targets despite their obvious anabolic
potential (169, 170). On the other hand, the identifi-
cation of the soluble inhibitors of Wnt signaling, such as
sclerostin, DKK1-4, WIF, and sFRPs, identified a series
of interesting targets for antibody and small-molecule
inhibitor therapy (169), and especially sclerostin that
appears rather bone specific and DKK1 have been
explored extensively (171, 172, 173, 174).

Anti-sclerostin antibodies, which prevent the binding
of sclerostin to LRP5 and the co-receptor (175), have
been tested in a host of animal models of osteoporosis,
and in all these models that resulted in a large increase
in BMD, due to a powerful acceleration of modeling-
based bone formation, i.e. activation of bone formation
at otherwise quiescent surfaces (176). Also, a reduction
of bone resorption was demonstrated, and the resulting
increase in bone strength at various sites was
substantial (173, 174). AMG-785, a sclerostin MAB,
is currently tested in an extensive clinical program.
In a phase-1 trial, a large increase in the bone formation
marker P1NP and a decrease in the bone resorption
marker CTX-I, led to significant increases in BMD
at both the lumbar spine and the hip, confirming the
pre-clinical results (177).

Anti-DKK antibodies have also been explored,
although not to the level of the anti-sclerostin antibodies.
Recent studies indicated that these antibodies induce
www.eje-online.org
bone formation, reduce bone resorption, and thereby
lead to an increase in bone volume in rodent and monkey
models (171, 172, 177). Thus, anti-DKK may have a
potential as treatment of osteoporosis.

While there is no doubt about the anabolic potential
of these molecules, a question is the potential effect
of inducing bone formation at surfaces that are
normally quiescent or slowly remodeled. A site in
question is the subchondral plate in the joints, which
has been highlighted by a series of studies indicating
that loss of the Wnt inhibitors is a key player in the
development of osteoarthritis (178, 179); however,
whether this will occur with the therapeutic strategies
and thereby become a potential serious side effect
remains to be elucidated. In addition, nerve compression
is frequently observed in osteopetrotic/osteosclerotic
phenotypes (14, 18, 24), and in the case of the mutations
related to the Wnt/LRP5 system, this is a consequence
of the high bone volume.

In summary, the antibodies against soluble Wnt
inhibitors are highly promising in terms of the bone
response, but they will need to be carefully monitored in
clinical development for osteoporosis due to the potential
consequences of inducing bone formation systemically.
Metabolic aspects in relation to a
homeostatic model involving bone

Interaction between bone and glucose
metabolism

Recent investigations have linked bone metabolism and
whole-body glucose homeostasis, and studies indicate
that the ADO and HBM phenotypes may include
changes in glucose metabolism.

Lee et al. (180) showed that bone cells interact with
glucose metabolism through the osteoblast-specific
protein, uncarboxylated osteocalcin. Mice expressing
lower levels of uncarboxylated osteocalcin were hyper-
glycemic, hypoinsulinemic, had reduced insulin sensi-
tivity in peripheral tissue, lower-cell mass, and
increased fat mass (180). Subsequently, Ferron et al.
(65) demonstrated that insulin signaling in osteoblasts
increased osteoclast activity and thereby the level of
uncarboxylated osteocalcin, thus affecting glucose
homeostasis. Fulzele et al. reported that insulin
promotes osteoblast development and osteocalcin
expression and that bone formation and the number
of osteoblasts were reduced in mice without insulin
receptors in bone (181, 182). With age, these mice
developed adiposity and insulin resistance (181).

Circumstantial evidence of interaction between bone
and whole-body metabolism in humans has recently
become available. Thus, osteocalcin was inversely
associated with plasma glucose, insulin levels, and
serum triglycerides in elderly men and women as
well as elderly men with high cardiovascular risk
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(183, 184, 185, 186, 187, 188). Also, osteocalcin was
lower in patients with T2DM (189, 190, 191) and
gestational diabetes (192). Moreover, in active acro-
megaly, a condition with profound insulin resistance,
osteocalcin levels were the major determinant of
insulin resistance and b-cell function, both in vivo
and in vitro (193). In animals, the potent inhibitor
of bone resorption, alendronate, changed the levels of
both uncarboxylated osteocalcin and glucose metab-
olism. In accordance with these results, treatment of
humans with alendronate reduced whereas PTH 1–84
(a bone-forming agent) increased circulating levels
of uncarboxylated osteocalcin. These changes were
associated with fat mass and other markers of
metabolism including adiponectin (194). In contrast
to these findings, teriparatide (PTH (1–34)) had no
impact on glucose homeostasis (195). Furthermore,
it has recently been reported that treatment with
antiresorptive drugs including alendronate, zoledronic
acid, and denosumab has no clinically important effect
on fasting glucose levels (196). However, these findings
need to be studied further in trials designed to fully
clarify to what extent bone resorption has an effect on
glucose homeostasis.
Glucose and fat metabolism in relation to
ADO and HBM

LRP5 is expressed in several tissues including bone
and pancreas (197, 198). Mutations in LRP5 have been
shown to influence the differentiation of human
mesenchymal stem cells into osteoblasts or adipocytes
(140). Moreover, polymorphisms in LRP5 have been
associated with osteoporosis and osteoporotic fractures,
as well as obesity and metabolic syndrome (116, 117,
199, 200, 201). Glucose-induced insulin secretion is
impaired in mice deficient in Lrp5 (202). Recently,
Palsgaard et al. (203) reported that LRP5 promotes
insulin signaling in pre-adipocytes, suggesting that
modulation of LRP5 could promote insulin sensitivity
in type 2 diabetes. Furthermore, patients with OPPG
due to a loss of function mutation in LRP5 are more
frequently glucose intolerant or diabetic, possibly due
to b-cell dysfunction (204). However, glucose homeo-
stasis remains to be investigated in detail in patients
with HBM.

Compared with age- and sex-matched controls, fat
mass and BMI were higher in our patients with
HBMT253I (21). Additionally, patients with clinical, not
genetically verified, HBM had higher BMI compared
with their relatives (205). Thus, these observations
suggest that the clinical phenotype of HBM and
increased bone mass may also involve fat mass and
glucose metabolism.

Individuals with impaired bone resorption due to
ADO appeared to have lower levels of uncarboxylated
osteocalcin and decreased levels of insulin after food
intake, strengthening the notion that bone metabolism
at least in part regulates glucose homeostasis (65).
However, as the study comprised few individuals
with ADO, further studies on glucose metabolism in
ADO are needed for confirmation, in as much as ADO
seems not to entail a higher risk of diabetes, based on
the literature.

Taken together, these studies suggest that bone
metabolism and whole-body glucose and fat homeostasis
are integrated. Monogenetic bone disorders charac-
terized by abnormal bone formation or resorption may
prove useful as a platform for further investigations.
Serotonin in relation to HBM

Rather than acting directly on osteoblast differen-
tiation, LRP5 may regulate bone formation through
changes in the expression of tryptophan hydroxylase I,
an enzyme that influences the serotonin synthesis
in the gut (206), and pharmacological inhibition of
gut-derived serotonin may increase bone mass (207).
In accordance with the animal study, a subsequent
study demonstrated that the level of serotonin was
lower in patients with HBM (207). We reported lower
levels of serotonin in platelet-poor plasma as well as
serum serotonin measured in samples collected at two
different time points in our patients with HBMT253I (21,
208), but the level of serotonin was not associated with
bone mass or structure. Furthermore, a recent study
did not find any effect of gut-derived serotonin on bone
metabolism (209). Instead, the study indicated that
LRP5 regulates bone mass through osteocytes and,
possibly, late-stage osteoblasts. Taken together, the
LRP5–HBM has provided support of a potential
association between serotonin levels and bone mass;
however, further studies including other genotypes are
clearly needed for confirmation.
Conclusions and perspectives

Updated definition of clinical osteopetrosis

Previously, we have described ADO in two forms (ADO1
and ADO2) (14). However, it turned out that the former
was caused by an activating mutation in LRP5 (LRP5
activation bone disease) defined as an HBM phenotype
(15), leaving ADO to the disease related to chloride
channel 7 deficiency. An updated definition taking into
account recent advantages in pathophysiological
understanding should describe osteoclast-rich and
osteoclast-poor forms (17, 18). Thus, in a modern
sense, osteopetrosis is an inherited group of generalized
bone disorders characterized by increased bone mass in
all compartments due to osteoclast failure and impaired
bone resorption. This definition focuses on the resorp-
tive side of bone remodeling, however, and recognizes
direct (for example, ADO due to ClC-7 defects within the
osteoclast) and indirect regulatory defects. Examples of
www.eje-online.org
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the latter are defects in the receptor for RANKL at the
resorptive, osteoclastic site (RANK) (78), and mutations
in RANKL by itself on the osteoblastic site (210).
This definition acknowledges regulatory (autocrine/
paracrine/endocrine) pathways within bone remodeling
and also points to the fact that bone formation is
ongoing in osteopetrosis. For ADO, the defective
osteoclasts seem to regulate bone formation (75, 81,
96). This updated definition is also in alignment with
the original description of the naturally occurring
murine forms of osteopetrosis, depicting osteoclast-poor
(ex the tl-rat, (151, 158, 159)) and -rich forms (ex the
ia-rat, (211, 212)).
Potential therapeutic aspects

From a therapeutic perspective, the studies of ADO have
highlighted several new targets, all of which employ
novel modes of action and could thereby provide
benefits to the field of osteoporosis. The possibility to
have a pure anabolic response or an anti-resorptive
response without the secondary reduction in bone
formation associated with presently available treat-
ments is enticing (97).

Based on the studies of the HBM phenotype, an array
of new drugs for treatment of osteoporosis is in
development and several of these target the canonical
Wnt signaling pathway. The antibodies against soluble
Wnt inhibitors are promising in terms of the bone
response, but they will need to be carefully monitored
in clinical development due to the potential serious
side effects.
Whole-body energy homeostasis

The role of bone as an integrated part of whole-body
energy homeostasis is controversial. Both ADO and
HBM have contributed directly to this discussion.
Detailed metabolic studies hypothesized a positive
feed-forward loop integrating bone remodeling in
glucose and insulin homeostasis, exemplified with
ADO as the human counterpart (65). Insulin via the
insulin receptor on osteoblasts stimulates bone resorp-
tion and thereby the release of uncarboxylated
osteocalcin from the bone matrix, thus in turn
stimulating insulin secretion. Indeed, ADO patients
had decreased uncarboxylated osteocalcin (reduced
bone resorption) and reduced insulin levels (65). The
extensive, however, diverging studies performed in
various models have clearly challenged previous
concepts in this field. However, only very few patient
samples have been presented and the clinical import-
ance remains unclear.
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