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Abstract AutoTutor is a natural language tutoring system that has produced learning

gains across multiple domains (e.g., computer literacy, physics, critical thinking). In

this paper, we review the development, key research findings, and systems that have

evolved from AutoTutor. First, the rationale for developing AutoTutor is outlined and

the advantages of natural language tutoring are presented. Next, we review three central

themes in AutoTutor’s development: human-inspired tutoring strategies, pedagogical

agents, and technologies that support natural-language tutoring. Research on early

versions of AutoTutor documented the impact on deep learning by co-constructed

explanations, feedback, conversational scaffolding, and subject matter content. Systems

that evolved from AutoTutor added additional components that have been evaluated

with respect to learning and motivation. The latter findings include the effectiveness of

deep reasoning questions for tutoring multiple domains, of adapting to the affect of

low-knowledge learners, of content over surface features such as voices and persona of

animated agents, and of alternative tutoring strategies such as collaborative lecturing

and vicarious tutoring demonstrations. The paper also considers advances in pedagog-

ical agent roles (such as trialogs) and in tutoring technologies, such semantic processing

and tutoring delivery platforms. This paper summarizes and integrates significant

findings produced by studies using AutoTutor and related systems.

Keywords AutoTutor . Intelligent tutoring systems . Natural language processing .

Discourse processes . Pedagogical agents . Computer-assisted learning

Introduction

One grand challenge for education is to scale up the benefits of expert human tutoring

for millions of students individually (Bloom 1984). Computer-assisted learning has

long been considered as a solution to this challenge, where an automated tutor
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simulates the pedagogies and conversational patterns of experts. This problem concep-

tually has a straightforward solution: create a tutoring agent with artificial intelligence

that talks with a student, offering the same guidance and support provided by an expert

human tutor. Work as early as Carbonell (1970) tried this approach by designing the

SCHOLAR tutor to provide Socratic tutoring to learners using natural language text

input and output. Despite promising initial results, natural language conversation turned

out to be a second grand challenge problem for the AI community. The Turing test,

where a computer converses naturally enough to be mistaken for a human, remains a

serious challenge in computer science today (Epstein et al. 2009). Decades after the first

natural language tutoring system, the vision of a computer tutor emulating all of the

capabilities of a human tutor remains a distant goal. However, the good news is that

many capabilities of both human tutors and idealized (e.g., theory-based) tutoring

strategies can be automated in natural language. Attempts to do this have been pursued

by developers of AutoTutor and some of the systems that have evolved after

AutoTutor’s inception in 1997.

Judicious decisions needed to be made about when to imitate human tutors and

when to implement idealized tutoring strategies that a human could not easily imple-

ment (Graesser 2011; Graesser et al. 2009). AutoTutor incorporates strategies of human

tutors that were identified in human tutoring protocols (Graesser et al. 2009, 1995), as

well as ideal strategies derived from fundamental learning research (e.g., modeling-

scaffolding-fading, learning progressions), with the basic research goal of determining

which of the features help learning and student motivation (Graesser 2011; Graesser

et al. 2012a, b). Overall, AutoTutor has been very effective as a learning technology.

AutoTutor has produced learning gains that are on average about 0.8σ (standard

deviation units) above controls who read static instructional materials (e.g., textbooks)

for an equivalent amount of time (Graesser 2011; Graesser et al. 2012b). Learning gains

are on par with expert human tutors in computer mediated conversation. On a “by-

stander Turing test,” AutoTutor was indistinguishable from a human tutor when

individual conversational turns were evaluated by third-person bystanders who exam-

ined transcripts of human-tutor interactions (Person et al. 2002).

This paper tracks three research areas that are central to AutoTutor: human-inspired

tutoring strategies, pedagogical agents, and technology that supports natural language

tutoring. Some recent papers (e.g., Graesser 2011; Graesser et al. 2012b) have sum-

marized some of the AutoTutor research for less technical audiences, whereas this

review offers a broader and more technical perspective on the evolution of each line of

research. A major goal of this review is to help the reader understand the similarities,

contrasts, and contributions of the systems in the AutoTutor family.

Figure 1 displays a timeline of projects that will be described in this paper, loosely

arranged by three foundational lines of research at the top of the diagram. The timeline

is organized according to the date that each project was first published. Each of these

projects was developed by researchers affiliated with the Institute of Intelligent Systems

at University of Memphis, where AutoTutor was developed. Many of these projects

were led by different research collaborations, some of which spread across multiple

institutions, and represent novel contributions in their own right. Although few of the

systems share specific software components or code with AutoTutor, they each inherit

theoretical principles, features of AutoTutor’s design (e.g., expectation-misconception

tailored dialog, which will be described later), natural-language processing algorithms,
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and conversational agents. In this sense, these systems form a “family” of related

systems that has evolved over time. Due to space limitations, acronyms are used in

Fig. 1. Appendix 1 contains a glossary with a short description of each project.

AutoTutor and related systems in the family have tutored computer literacy

(Graesser et al. 2004a), conceptual physics (Graesser et al. 2003a; Rus et al.

2013c; VanLehn et al. 2007), biology (Olney et al. 2012), critical thinking

(Halpern et al. 2012; Hu and Graesser 2004; Millis et al. 2011), and other

topics. AutoTutor approaches have also been extended to push the boundaries

of the tutoring interaction, examining the impact of incorporating affect

(AutoTutor-AS; D’Mello and Graesser 2012a), gaze focus (GazeTutor; D’Mello

et al. 2012), metacognitive skills (MetaTutor; Azevedo et al. 2010), and 3D

simulations (AutoTutor-3D; Graesser et al. 2005a). Work has also been con-

ducted to expand the accessibility of AutoTutor, such as a simplified open

source release (GnuTutor; Olney 2009), a constrained version designed for web-

based authoring and delivery (AutoTutor Lite; Hu et al. 2009), and a frame-

work for sharable web-based tutoring objects (Sharable Knowledge Objects;

Nye 2013; Wolfe et al. 2012).

In this paper, we first describe the rationale for natural language tutoring.

Subsequent major sections center on the three foundational topics addressed by

AutoTutor and later systems connected to the AutoTutor family: 1) human-

inspired tutoring strategies, 2) pedagogical agents, and 3) technology that

supports natural language tutoring. Key empirical findings on these themes

and their contributions are summarized in the Discussion section, focusing on

learning gains, affect, metacognition, modality effects, and the roles of peda-

gogical agents. Finally, the paper concludes with a discussion of the future

directions, limitations, and implications of this work for dialog-based tutors and

learning technologies in general.

Fig. 1 Timeline for AutoTutor Family of Projects
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The Rationale for AutoTutor: Tutoring Through Discourse

Human tutors communicate with the student through discourse, which includes

natural language verbal messages, gestures, signals, and non-verbal communi-

cation. AutoTutor primarily communicates with learners using an animated

talking head that uses natural language (voice or text) and allows unconstrained

natural language responses from users. Other successful tutoring systems, such

as Cognitive Tutor (Aleven et al. 2009; Ritter et al. 2007) and Andes (VanLehn

et al. 2010), organize their interactions around problem-solving interactions

without discourse. This raises the question of why one would develop an

intelligent tutoring system around discourse rather than circumventing the

difficulties of natural language.

We would argue that the important question is not “Why use tutoring

discourse?” but instead “How and when should we use tutoring discourse?”

Discourse with the student opens up a range of new learning activities related

to expressing and communicating knowledge (e.g., self-reflection, answering

deep questions, generating questions, resolving conflicting statements). The

strengths of natural language tutoring complement a wide range of domains,

including traditional problem-solving. From the standpoint of Bloom’s tradition-

al taxonomy of cognitive objectives (Bloom 1956), these activities emphasize

comprehending, analyzing, synthesizing, and evaluating knowledge (Anderson

and Krathwohl 2001). Dialog-based tutoring helps integrate concepts and

problem-solving with domain principles, scaffold domain-specific language,

implement abstract strategies, and generate qualitative inferences (Graesser

et al. 2001b). Dialog-based tutoring is less effective for remembering shallow

didactic facts (Graesser et al. 2004b; Person et al. 2003). Dialog-based tutoring

also cannot completely address certain skills and procedures (e.g., no amount of

talking about playing piano will make you a pianist if you cannot also

practice). As such, natural language tutoring and other types of ITS offer

somewhat different pedagogical experiences.

Both natural language and problem-solving tutoring systems support well-

validated instructional principles such as timely feedback (Pashler et al. 2005;

Shute 2008), active engagement in learning (Prince 2004), difficulty of materials

in the zone of proximal development (Metcalfe and Kornell 2005; Wood and

Wood 1996), and taking advantage of “teachable moments” when a student

experiences an impasse or cognitive disequilibrium (Schwartz and Bransford

1998; VanLehn et al. 2003). However, there are other well-supported instructional

strategies that are naturally and distinctively incorporated into dialog. For exam-

ple, asking context-sensitive deep reasoning questions (e.g., why, how, what if) is

one effective strategy in human tutoring (Graesser and Person 1994; Graesser

et al. 1995). Similarly, natural language helps a system harness self-explanations

(Chi et al. 1994), collaborative interaction (Chi et al. 2008; VanLehn et al. 2007),

fostering common ground and terminology (Graesser et al. 2009), and cognitive

flexibility through alternative viewpoints (Dillenbourg and Traum 2006; Rouet

2006). Natural language tutors arguably afford a wider range of tutoring interac-

tions, so they are routinely considered in ITS research for tutoring new skills and

exploring the rich set of tutoring strategies inspired by human discourse.
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Human-Inspired Tutoring Strategies

Early intelligent tutoring systems had their foundations in expert systems and general

cognitive principles rather than tutoring principles specifically. Critiques of these early

ITS cited limited attention to modeling human tutoring behavior (Nwana 1990; Self

1990). More attention was placed on rigorously modeling human tutoring behaviors in

the early 1990’s. For example, Graesser and Person examined over 100 hours of human

tutoring interactions (Graesser and Person 1994; Graesser et al. 1995) and Merrill et al.

(1992) directly compared human tutoring against intelligent tutoring systems. Given

meta-analyses that showed human tutoring is effective (e.g., Cohen et al. 1982), there

were two central questions: What features of human tutoring help students learn, and

how can we implement these strategies in a computer tutor?

Research on the behaviors of human tutors ultimately led to the design of AutoTutor,

including work on collaborative tutoring dialogs (Graesser et al. 1995), pragmatic

factors in communication (Person et al. 1995), and strategies to infer student knowledge

from question and answer dialog (Person et al. 1994). However, this research also went

beyond these mechanisms native to human tutoring and explored more ideal strategies

that could be woven into the tutorial interaction. Tutoring strategies included extensive

use of deep-reasoning questions and their answers (AutoTutor and later iDRIVE),

collaborative lectures (Guru), learning progressions (DeepTutor), reading comprehen-

sion strategies (iSTART, iSTART-ME, CSAL), writing strategies (Writing-Pal), affect

and engagement detection (AutoTutor Affect-Sensitive, Supportive AutoTutor,

GazeTutor), and metacognitive skills such as critical thinking (SEEK, Operation

ARIES) and self-regulated learning (MetaTutor). While some of these strategies are

descriptive (i.e., observed in human tutoring sessions), many are not consistently or

rigorously applied by human tutors, but would be advocated according to ideal

principles of learning and pedagogy.

Compared to other natural language tutoring systems, the AutoTutor family has

distinguished itself by its strategies for helping students elaborate ideal answers and by

the breadth of domains it has tutored. These two factors are probably connected.

AutoTutor sessions primarily help students generate correct explanations that solve a

problem, while remedying students’ misconceptions is a secondary focus. Other

successful dialog systems, such as WHY2/Atlas and BEETLE (Graesser et al. 2001b;

Dzikovska et al. 2013), have emphasized targeting and repairing misconceptions.

While both approaches are effective, misconceptions tend to be highly domain-

dependent and are hard for experts to predict. AutoTutor’s emphasis on helping

students build ideal answers may explain why it has been able to transition to a variety

of domains, while the majority of natural language tutors focus on a single domain.

This approach limits natural language processing (NLP) to the specific topics for a

tutoring session, rather than relying on deep domain-specific NLP that cuts across all

dialogs. This strategy was inspired by human tutors, as will be discussed next.

AutoTutor’s 5-Step Tutoring Frame for Collaborative Reasoning

As mentioned earlier, a fundamental question that was: what patterns do typical human

tutors follow when tutoring? The discourse patterns of the earliest AutoTutor were

inspired by analyses of approximately 100 hours of non-expert human tutoring
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interactions (Graesser et al. 1995). One corpus included dialogs of graduate students

tutoring undergraduate college students on research methods and statistics. A second

corpus documented high school students tutoring seventh-grade students on algebra

concepts. Non-expert tutors were studied because they perform the bulk of tutoring

even though they have moderate domain knowledge and have minimal training on

tutoring pedagogies. Moreover, an earlier meta-analysis showed that tutor training did

not significantly change learning outcomes (Cohen et al. 1982). Despite having

minimal training, non-expert tutors are effective. This finding suggested that non-

expert tutors use simple but effective tutoring strategies.

Graesser et al. (1995) reported that non-expert tutors used a limited repertoire of

strategies that were guided by an approximate assessment of a students’ knowledge.

Tutoring sessions showed little active student learning (i.e., students picking the topics),

advanced strategies (e.g., Socratic Method, faded scaffolding, modeling), truly an-

chored learning (i.e., real-life examples), convergence to shared meaning (i.e., precise

models of others’ knowledge), targeted error remediation (i.e., detecting misconcep-

tions), or affective adaptation. Tutors mainly followed a curriculum script with a set of

topics from a chapter and a small set of abstract anchors (e.g., a problem from a

textbook) as a focal point for collaborative reasoning, explanations, and construction of

meaning.

Collaborative reasoning progressed in a 5-step tutoring frame: (1) Tutor poses a

question/problem, (2) Student attempts to answer, (3) Tutor provides brief evaluation as

feedback, (4) Collaborative interaction to improve the answer, and (5) Tutor checks if

student understands (Graesser et al. 1995). Question asking and answering was a key

feature of tutoring. Compared to classroom instruction, students asked many more

questions (~26/h vs. 0.1/h) and were asked more questions (104/h vs. 69/h; Graesser

and Person 1994). Deep questions and explanations are associated with better student

performance. Second, while tutors seldom explicitly pointed out specific misconcep-

tions expressed by the student, they almost always reacted to such errors indirectly.

These indirect responses included hints, leading questions to get the student to articu-

late a correct piece of an answer, or simply asserting a correct answer. These strategies

were observed across two separate age groups and domains (Algebra and Research

Methods), so they appear to be domain-neutral.

Overall, the tutors “helped students explain good answers” rather than “identifying

and correcting misconceptions” (other than simple bugs and slips). This research

produced three central tenets to AutoTutor’s pedagogical approach at a macro-level:

1. Help students construct explanations of material, such as answers to questions and

solutions to challenging problems,

2. Ask questions that tap deep levels of reasoning and that involve collaboration, and

3. Solve problems that involve deep reasoning.

It should be noted that human tutors in Graesser et al. (1995) were not particularly

adept at the selection of questions and problems at a macro-level that was tailored to

particular students’ level of mastery. They tended to ask the same questions associated

with a lesson to many students in a scripted non-adaptive fashion. The tutors were

much more micro-adaptive but not macro-adaptive, although their micro-adaptivity

also used a limited set of strategies.
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These strategies are adaptive for non-expert tutors because they can interactively

scaffold explanations and solutions to problems despite a very limited understanding of

the student’s mental model. Since an ITS shares many of these limitations for estab-

lishing common ground and knowledge with students, these strategies offered a good

starting point for AutoTutor. These principles were the basis for the expectation-

coverage strategy, as well as providing design principles for delivering tutoring dis-

course moves. AutoTutor also included misconception-detection and correction even

though student misconceptions are not reliably detected by novice tutors. In practice,

finding a good coverage for misconceptions often requires multiple design iterations

because the space of possible misunderstandings is vast and even experts have trouble

anticipating or diagnosing students’ misconceptions. Together, the expectation-

coverage and misconception-correction strategies form an expectation-misconception

discourse framework, which will be described in detail later. Around the same time that

this strategy was developed, latent semantic analysis (LSA) emerged in natural lan-

guage processing (Deerwester et al. 1990; Landauer et al. 1998). LSA, which will be

described later, is a statistical method that can compute the similarity of a student

statement against various expectations and misconceptions for the concepts being

tutored. The convergence of the 5-step tutoring frame, semantic analysis tools such

as LSA, and the increasing functionality of animated talking agents provided the three

pillars supporting early AutoTutor.

Early versions of AutoTutor attempted to simulate the discourse moves of human

tutors (e.g., sentences, verbal responses, and non-verbal responses) in a manner that is

sensitive to the system’s estimates of what the student knows. AutoTutor focuses on the

subject matter content of dialogs and the information transferred between the tutor

agent and the human student. Domain-relevant dialog is the primary method of

conveying information in the system. However, as discussed later, extensions to

AutoTutor have added capabilities to detect and transmit nonverbal information such

as affective or metacognitive cues.

To help ground the discussion, a physics dialog between AutoTutor and a learner is

presented in Table 1. The dialog is annotated to note the discourse moves used by the

tutoring agent on each step. In this dialog, AutoTutor is working with a learner to help

them explain that two objects in free fall will have the same acceleration. The student

initially explains the concept partially, but does not phrase it using physics terms, so the

tutor pumps for more information. In response to the pump, the student responds with a

related correct statement but does not address the acceleration. This leads the tutor to

provide a hint to get the student to talk about acceleration. In response, the student asks

a definitional question about the meaning of acceleration that the tutor answers. After

this, the tutor repeats the question and the student provides a good answer. Since the

student has not stated the direction of the acceleration, the tutor provides a prompt to

help the student articulate that the force of gravity acts downward on the objects. If a

student cannot cover an expectation despite many hints and prompts, the system will

use an assertion to explain the right answer.

AutoTutor relies on a set of distinct discourse moves, with key moves described in

Table 2 (Graesser 2011). These dialog moves are driven by an expectation-misconcep-

tion tailored discourse framework. The tutoring system stores a set of anticipated

correct answers (expectations) and a set of invalid answers frequently expressed by

students (misconceptions). Semantic analysis tools evaluate how well student input
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covers these expectations and detects their misconceptions so that the system can

respond with appropriate discourse moves. Semantic pattern matching algorithms

determine the match between student input and the expectations or misconceptions,

whereas semantic pattern completion mechanisms generate the AutoTutor’s discourse

moves to guide students to fill in missing information. User input can be compared to

expectations and misconceptions through a variety of semantic analysis techniques,

including latent semantic analysis (LSA), regular expressions, word-frequency overlap

techniques, and logical entailment (Cai et al. 2011; Graesser et al. 2007b; Rus et al.

2008).

As shown in Table 2, the core discourse moves fill two high-level roles of tutoring

discourse: eliciting information from the student and delivering information to the

student. A main question initiates each dialog. This is the most superordinate level of

the dialog, which encourages deep reasoning to address a fundamental question.

AutoTutor dialogs traditionally start with open-ended questions, which have 2–10

expectations (good responses) and 0 to 5 misconceptions (responses that require

remediation). Each expectation covers a distinct facet of the ideal answer to the main

question. Pumps, hints, and prompts encourage the student to provide more information

about each expectation/misconception, with varying degrees of context to lead the

student to express increasingly specific information. Short feedback, assertions, cor-

rections, answers, and summaries provide information to students, allowing AutoTutor

to correct erroneous statements and review concepts with students who are struggling to

produce relevant answers. Each of these discourse moves serves a unique role within

the tutoring interaction and is tied to specific dialog and tutoring agent actions (e.g.,

gestures, facial expressions, calling up diagrams) to help students master concepts from

the domain.

Table 1 Sample discourse on conceptual physics

AutoTutor <Main Question>: Suppose a boy is in a free-falling elevator and he holds his keys motionless in

front of his him and he lets go. What will happen to the keys? Explain why.

Student: The keys would not move but hover at the start point.

AutoTutor <Pump>: I bet you can explain this a little bit more.

Student: The velocity of the keys is the same due to gravity.

AutoTutor <Hint>: What about the acceleration of the objects involved?

Student: What is acceleration again?

AutoTutor <Answer>: Let me try to answer your question. Acceleration is the rate that velocity changes over

time, like getting faster or getting slower. Acceleration is a vector quantity, so it needs to have a direction.

AutoTutor <Hint>: Let’s try this again. What about the acceleration of the objects involved?

Student: The acceleration of the objects in the elevator are the same as the acceleration of the elevator which is

the earth’s gravitational acceleration.

AutoTutor <Short Feedback>: Good job!

AutoTutor <Prompt>: Try this. What direction are the objects going? The objects are falling <hand gesture to

cue the student to express something>?

Student: downward

AutoTutor <Short Feedback>: Right.

AutoTutor <Prompt-completion>: The objects are falling downward.
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For a full physics problem similar to Table 1 that has many expectations, the dialog

can last up to 30 to 100 turns before all expectations are fully covered (Graesser et al.

2005b). However, more knowledgeable students are likely to cover expectations in

fewer turns by producing responses with higher relevance. Fewer turns occur for high-

knowledge students because AutoTutor tracks a student’s overall contributions for each

dialog, which acts as a conversation-specific model of which expectations the student

knew. More recent systems have also used this information as part of more advanced

student models, such as models that estimate affective states (D’Mello and Graesser

2010) and persistent student models (Nye et al. 2014b). Using tutoring dialogs based on

this general form, AutoTutor variants have been developed to teach concepts from a

variety of domains, primarily in science, technology, and more recently mathematics.

Across the AutoTutor family, most tutoring dialogs have used variations on this 5-

step frame and set of speech acts. The earliest versions of AutoTutor followed this

pattern closely, while later systems have paired it with complementary strategies, such

as vicarious learning or teachable agents (Craig et al. 2006; Millis et al. 2011). While a

few systems, such as Guru (Olney et al. 2012), follow somewhat different patterns, the

Table 2 Autotutor discourse moves

Move Type Description Example(s)

Main Question A question that starts off

the dialog, focused on

a particular topic or goal

“If the man drops his keys just

as the elevator falls, how do the

objects move relative to each

other? Explain why.”

Pump Asking the student to

provide more information.

“Anything else?”

Hint Leading question or statement

that attempt to get the user

to direct the user to answering

the main question.

“What do you think about the

gravitational force on this object?”

Prompt Leading the student to express a

missing word from an important

idea for the main question.

“The force on the objects from gravity

acts in which direction?”

Short Feedback Signaling about the quality of the

student’s last statement.

“Great!” (Positive)

“Okay.” (Neutral)

“Not quite.” (Negative)

Correction Correcting a misconception or

incorrect statement by the learner.

“No, the force of gravity on both

objects is equal.” (After student

claims one is greater)

Assertion Presenting an important idea

within the problem or the answer

to the problem.

“The force of gravity on both objects is equal.”

Answer Response to a learner’s question

about the definition of a concept.

“A vector is a quantity with both a

magnitude and a direction.”

(In response to “What is a vector?”)

Summary Presents the full answer to the main

question or problem.

“The magnitude of the force of gravity

on each object is equal and all force

vectors point down, so…”
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5-step frame remains a common tutoring mode. Of the five steps, the last (asking if the

student understands) is the most commonly omitted or replaced with more effective

evaluations of student understanding (e.g., knowledge-check questions). This is be-

cause students’ assessment of their understanding is typically poor. Since the

AutoTutor’s authoring tools allow custom dialog rules, variations on these frames are

common, but the overall structure is in use today.

Deep Reasoning Questions

Within this 5-step frame, the earliest versions of AutoTutor explored questions about

the effectiveness of deep reasoning questions and the associated collaborative interac-

tions. A key question was: what levels of knowledge show the most learning gains and

which components of the discourse impact those gains? While the 5-step tutoring frame

can revolve around other learning activities, AutoTutor focused on scaffolding the

student’s natural language explanation to a deep question or solution to a problem,

which remains a central strategy of later systems. Appendix 2 notes the different dialog

patterns used by different tutors discussed in this paper. This section discusses strategies

used to help students effectively generate explanations to questions that require deep

reasoning. Studies are presented that demonstrate the ability of this strategy to transfer

effectively to multiple domains, such as computer literacy and physics.

Deep reasoning questions must be answered using explanations, the latter of which

are known to produce learning gains (Chi et al. 1994; McNamara and Magliano 2009).

Deep reasoning questions have steps such as tend to start with “Why,” “How,” or

“What if.” By comparison, shallower questions such as “What” or “Which one” tend to

elicit short answers. A taxonomy of deep, intermediate, and shallow question categories

was developed in Graesser and Person (1994). Six types of deep questions are present

in the current taxonomy: antecedents (Why/how was this caused?), consequences

(What-if? What-next?), goal-orientation (Why would someone do this?), enablement

(What allows this?), interpretational (What could this mean?), and expectational (Why

didn’t this happen?). A typical AutoTutor tutorial dialog starts with a deep question

from this taxonomy to promote reasoning about domain content and relationships.

Students are seldom able to answer these questions without tutoring support, so each

main question typically leads to a long series of dialog turns where pumps, hints,

prompts, and assertions are used to help the student type a full explanation for the deep

reasoning question.

AutoTutor’s first iteration was designed to tutor computer literacy skills, such

as the fundamentals of computer hardware, operating systems, and the internet

(Graesser et al. 2004b, 1999). A curriculum script was designed for the topic of

computer literacy. This script was a systematically organized set of deep ques-

tions, concepts, corrections, examples, and question-answer pairs. Each topic

included a main question, some basic concepts (e.g., key parts of a computer

relevant to the question), relevant expectations, anticipated misconceptions, antic-

ipated definitional questions, and a space of discourse moves needed during the

conversation (e.g., corrections for misconceptions, answers for definitional ques-

tions, hints, hint completions, prompts, prompt completions, a summary). This

script provided the problem-specific content for AutoTutor to expect and deliver

to the student during tutoring. In designing a curriculum script, each main
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question was generated by a curriculum designer and was intended to tap deep

systems understanding and causal mechanisms on a topic covered by the textbook

chapter.

AutoTutor attempted to get the student to articulate each expectation by expressing

pumps (e.g., “what else?”), then a hint, then a prompt, and then simply asserting the

answer (a bottom out response); this pump → hint → prompt → assertion cycle

stopped as soon as the expectation was covered. A good student could articulate the

answer with minimal tutoring guidance (i.e., pump or hint) whereas lower ability

students needed prompts for specific words or the tutoring directly asserting the

expectation (Jackson and Graesser 2006). Moreover, the hints and prompts were

carefully generated to fill in the missing content words in the expectation; this adhered

to the pattern completion principle that was discussed earlier.

Different versions of AutoTutor were evaluated, each using a small set of fuzzy

production rules to drive dialog. AutoTutor 1.1 moved on from a topic after the student

covered the expectation or after the tutor delivered a bottom-out assertion. AutoTutor

2.0 continued with a cycle of hints, prompts, and assertions until the student said the

material, making them restate their understanding of even a bottom-out assertion before

continuing (Person et al. 2003). Despite these differences, both versions performed

comparably to each other and both showed learning gains of approximately 0.5σ over

controls who studied relevant textbook chapters for an equivalent amount of time.

These effect sizes were highly dependent on the type of evaluation test question, with

gains of 0.15σ for shallow questions, 0.28σ for deep questions, and 0.64σ for cloze

questions (i.e.., filling in words of an explanation). This foreshadowed a pattern of

higher learning gains for deep reasoning with AutoTutor (Graesser et al. 2004b, 2010).

For a second type of evaluation, a bystander Turing test was conducted to determine

whether outsiders could discriminate if a specific tutoring turn was produced by

AutoTutor or a human tutor. Bystanders could not differentiate between AutoTutor

and the human tutor (Graesser et al. 2005a).

Additional work implemented idealized strategies based on general learning princi-

ples derived from the field of education and controlled laboratory studies. To promote

active learning, one strategy used two cycles of hints, prompts, and assertions. For

example, a low-knowledge student might provide little input for the first cycle, but after

the tutor asserted the answer, could generate more in the second cycle. This process was

abandoned because learners found the two-cycle process frustrating. A second strategy

encouraged students to generate questions for the tutor to answer, which correlates with

learning and can improve meta-cognitive skills (Rosenshine et al. 1996). Unfortunately,

AutoTutor was not capable of answering all student questions so this strategy was not

feasible. Established learning principles, such as those described in Graesser (2009),

continue to drive AutoTutor strategies, but more subtly: interactions are tuned itera-

tively, balancing many principles, rather than necessarily trying to maximize a single

principle. While lab experiments often detect effects as if they are simple, linear, and

additive (e.g., “active learning is good”), in practice these effects can have diminishing

gains and compete with other principles (e.g., “active learning vs. engagement”). Later

research examined more nuanced variations of tutoring discourse, such as Kopp et al.

(2012) investigation of the dosage levels for interactive tutoring, as described later.

Shortly after applications to computer literacy, AutoTutor was applied to the domain

of Newtonian physics concepts as part of the WHY2/AutoTutor project (often
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shortened to WHY/AutoTutor). The WHY2 project was intended as a conceptual

successor to the early WHY tutoring architecture for tutoring students on interactions

within physical systems (Graesser et al. 2001b; Stevens and Collins 1977). This work

was developed as one of two parallel approaches to this problem, the other being the

WHY2/Atlas project that added dialog capabilities to the Andes tutoring system

(VanLehn et al. 2010). WHY2/AutoTutor and WHY2/Atlas systems differed signifi-

cantly in how they managed dialog. WHY2/Atlas treated dialogs as a finite state graph

and emphasized detection of misconceptions, which would trigger sub-dialogs for

further diagnosis and remediation (Freedman et al. 2004; Jordan et al. 2006). WHY2/

Atlas also used a physics-specific hybrid classifier for student statements that included

dialog templates for physics formulas (e.g., velocity, acceleration), a semantic grammar,

and a Bayesian bag-of-words classifier (e.g., similar to LSA in AutoTutor). By

comparison, AutoTutor employed a less structured approach to physics semantic

evaluation (e.g., adding some basic negation handling) and relied more on the statistical

attributes of LSA in semantic matching to expectations and misconceptions. Despite

using significantly different approaches to dialog management and semantic matching,

both systems performed comparably.

Systematic assessments of AutoTutor in WHY2 on learning gains have been

reported (Graesser et al. 2003a; VanLehn et al. 2007). Learning was measured using

tests with 4 essay questions and 40 multiple choice questions, many of which were

adapted from the Force Concept Inventory (Hestenes et al. 1992). These studies

revealed that both WHY2/AutoTutor and WHY2/Atlas performed comparably to

non-expert human tutors and with each other. A second study used a pretest/posttest

design to compare WHY2/AutoTutor against reading a textbook for a comparable

amount of time and against a control condition with no physics materials. This study

found learning gains of 0.61σ for students in the AutoTutor condition over the control

posttest mean and 1.22σ over the read-textbook posttest mean. Normalized learning

gains [(posttest-pretest)/(1.0 – pretest)] showed that students in the AutoTutor condition

gained 0.32σ while students in the read-textbook condition gained only 0.04σ over

reading irrelevant information. Overall, this confirmed that AutoTutor performed

significantly better than both the read-textbook and the control condition. Follow-up

studies have shown even greater advantages of AutoTutor over a read-textbook control

(Graesser et al. 2012a, b).

The results presented in this section demonstrate how AutoTutor was able to

transition to a second domain, from computer literacy to physics. Additionally, it

performed comparably to another dialog-based tutor with physics-specific natural

language processing and remediation strategies. This indicates that helping students

generate explanations to deep reasoning questions is a powerful, domain-independent

tutoring strategy.

Expert Strategies and Collaborative Lecturing

Later work at Memphis considered the question of whether the patterns of

expert tutors show different and potentially more-effective strategies than typ-

ical tutors (D’Mello et al. 2010b). Since the effect of tutor expertise on learning

outcomes is murky due to the lack of a clear definition for an expert tutor

(VanLehn 2011), this research focused on highly-qualified practicing tutors. A
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dozen expert tutors in the Memphis areas were identified, whose qualifications

included teaching licenses, five or more years as a tutor, employment at a

tutoring agency, and excellent references. Researchers coded 50 h of expert

tutoring dialogs to identify dialog moves and dialog modes (D’Mello et al.

2010b; Olney et al. 2012). Expert tutors sometimes used more flexible and

complex tutoring strategies than non-experts, but most often used similar

approaches as non-expert tutors. The vast majority of dialog moves were

scaffolding (46 % of turns) and mini-lectures (30 % of turns).

While expert tutors are often reported to be more interactive (VanLehn 2011),

expert tutors in this study spent large amounts of time giving mini-lectures. Since

this was not a head-to-head comparison against novice tutors, the implications are

not cut-and-dry, though some other studies have reported that expert tutors

provided summaries and procedural (how-to) instruction more than novice tutors

(Lu et al. 2007). Analysis of the transitions between dialog modes revealed that

experts usually alternated lecturing with scaffolding (i.e., explain first and help the

student work on a problem/question second; D’Mello et al. 2010b). Overall,

lectures were not monologues but were interactive: shorter explanations punctu-

ated by checks for understanding using metacognitive questions (e.g., “Do you

understand?”) and short questions/problems to elicit student knowledge. These

were described as collaborative lecturing, which is lecturing interleaved with

shallow questions (D’Mello et al. 2010a).

To explore its effectiveness as a tutoring style, the Guru tutor implemented

collaborative lecturing as its primary interaction style (Olney et al. 2012). Guru

used collaborative lecturing and exercises that required the students to generate

summaries, complete concept maps, and finish cloze tasks. Student performance

on these tasks was used to determine which concepts the tutor should target

and to determine when the session is complete. This targeting is part of a larger

shift toward mixing tutoring with applying knowledge (e.g., problems, exer-

cises), which provide practice and also diagnose concepts where the student

struggles.

Guru covers 120 biology topics from the Tennessee Biology I curriculum. Guru

produced strong learning gains, approximately 0.72σ on a posttest covering biology

concepts versus controls who received classroom instruction only (Olney et al. 2012).

Compared to AutoTutor, Guru’s collaborative lecturing, concept maps, and targeting

dialog based on concept map performance represent significant departures. The relative

importance of these different elements on learning gains is still being explored.

Research on the impact of concept maps will be described in more detail in the section

on “Complementary Media”.

One takeaway from this line of research was that collaborative lecturing can

be an effective tutoring strategy. Since this strategy can also be implemented in

other AutoTutor systems, this research supported an additional interaction style

which can complement deep reasoning questions. Since both strategies appear

effective for both high and low knowledge students, further research is needed

to help determine which traits of the student and domain content determine

when each approach is more effective. Teasing out when certain strategies

should be preferred requires larger samples of human expert tutoring sessions

or comparisons of different ITS conditions.
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Learning Progressions

A more recent research question has investigated the impact of adding macro-adaptivity

to AutoTutor-style natural-language tutoring. The original AutoTutor dialogs were

micro-adaptive (e.g., adapted within a conversation), but they did not use macro-

adaptivity (e.g., selecting different main questions for different students). Macro-

adaptivity is considered an ideal strategy because most human tutors do not reliably

implement it. While human tutors may try to track student knowledge across many

sessions, there is no clear evidence that tutors can maintain accurate learner models

(Graesser et al. 2009). Macro-adaptivity is particularly important when tutoring over

longer periods and when students start with unequal knowledge. The recent DeepTutor

project added a macro-adaptive system based on learning progressions for Newtonian

physics (Rus et al. 2013a, c). Learning progressions posit that learners go through a

pathway of knowledge states, where each state has distinct patterns of understanding

and misconceptions.

DeepTutor integrates verbal contributions and problem-based assessment into the

detection of learner states by using conversation and short multiple-choice tests to

diagnose learning states (Rus et al. 2013c). The system maps student statements and

problem-solving activity to different states of understanding each concept. While

AutoTutor considers each expectation and misconception independently, DeepTutor

associates responses with a spot on the “path” for mastery. For example, some

expectations and misconceptions only occur at high levels of understanding. To

improve identification of learner knowledge, DeepTutor has applied more advanced

natural language processing techniques that include optimized word-to-word similarity

and negation handling (Rus et al. 2013c). A recent small-scale evaluation (n=30) of

DeepTutor showed pretest-posttest learning gains of 0.79σ for a 1-h training session

when macro-adaptivity was included (Rus et al. 2014), compared to very little learning

when dialogs were not selected dynamically. If even a fraction of this difference is

maintained over longer training intervals, adding macro-adaptivity could be a major

advance.

Reading Comprehension Strategy Tutoring

While much of AutoTutor’s family have focused on STEM domains, a parallel question

was posed: what tutoring strategies are required to train text comprehension strategies,

which differ from problem-solving domains like physics? The design of iSTART

(Interactive Strategy Training for Active Reading and Thinking) was contemporary to

AutoTutor and focused on improving reading comprehension (McNamara et al. 2006).

iSTART employs ensembles of agents for tutoring reading comprehension (McNamara

et al. 2007). iSTART discourse differs from AutoTutor, concentrating on strategy

training rather than content coverage, though self-explanation still plays a major role.

iSTART strategies include paraphrasing sentences, bridging the current sentence to

previous material, predicting later content, and elaborating on content by connecting it

to personal knowledge. Additional semantic analysis, such as textual entailment, is

used to determine the quality of paraphrasing. iSTART improved reading comprehen-

sion differently for skilled readers than for less-skilled readers, for both college students

and middle-schoolers (Magliano et al. 2005; McNamara et al. 2006). Less-skilled
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readers improved on questions about the content of a single sentence. More skilled

readers improved on bridging questions, which link knowledge from two or more

sentences.

To support extended practice, a game-based version called iSTART-ME (iSTART –

Motivationally Enhanced) was developed (Jackson et al. 2010). While the game-based

version produced longer contributions, these contributions were of lower quality during

a short intervention and only reached equal quality during a multi-week intervention

(Jackson et al. 2011). A third system, Writing-Pal (W-Pal), was designed to tutor

writing skills relevant to argument essays (McNamara et al. 2012). Writing-Pal features

automated essay assessment that gives students feedback on their writing skills (Roscoe

and McNamara 2013).

A second line of reading comprehension research started in 2012. As part of the

Center for the Study of Adult Literacy (CSAL) project, a tutoring system for improving

reading comprehension has been developed. This intervention is designed to help

adults who struggle with reading and comprehension of print media. This tutoring

system uses a web service driven by scripts authored by the AutoTutor Authoring Tools

(ASAT), which is described in the discussion of authoring tools. Compared to prior

systems, CSAL is focusing significantly on connecting dialog with interactive inter-

faces and multimedia. It is difficult for struggling readers to generate text, so the CSAL

project uses web media as a secondary channel to communicate with the learner, such

as detecting clicks on an interactive graphic that the student can manipulate.

Overall, this line of research has two significant takeaways. First, natural language

tutoring systems for reading comprehension must employ significantly different

tutoring strategies. Instead of helping the student explain domain concepts, the focus

switches to practicing and scaffolding comprehension skills that must be measured

based on the students’ use of natural language. Second, this has implications for natural

language processing. At very low levels of comprehension, learners cannot even be

expected to type answers. At higher levels, more advanced processing (e.g., entailment)

is required to determine if comprehension strategies have been mastered.

Beyond Domain Information: Affect

Researchers have often hypothesized that emotions are an important dimension of

human tutoring (Lepper and Woolverton 2002). This raises a few questions: what

emotions are important to help tutors adapt, what data can help reliably detect such

emotions, and who benefits from adapting to such emotions? AutoTutor-AS (Affect

Sensitive, also known as Emotion Sensitive) incorporated affect detection by monitor-

ing body posture, facial expressions, and discourse to classify student emotional states

(D’Mello and Graesser 2010, 2012a; D’Mello et al. 2007). Interestingly, the natural

language discourse channel had a large impact on predicting emotions such as frustra-

tion, confusion, and engagement. For example, affective states are detected by dis-

course coherence, matches of student contributions to expectations, verbal fluency,

hinting, and tutor feedback. Discourse features offer key information about task

performance (e.g., are they failing to match the ideal answer?) and activity level

(e.g., are they typing a lot or very little?). Discourse context is important for interpreting

physical expressions (e.g., facial, posture) and both channels (discourse and physical)

improve detection of affect. AutoTutor-AS refers to the system with affect-detection,
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which can be used to build tutors with different strategies for dealing with affect, such

as the Supportive AutoTutor.

D’Mello and Graesser (2012) compared a Supportive AutoTutor with a standard

(neutral) AutoTutor for their impact on learning gains. The Supportive AutoTutor

empathized with the learner when there were negative user emotions and attributed

such difficulties to the material (as opposed to the learner). The Supportive AutoTutor

was more effective for low knowledge students (0.71σ gain on posttest scores) when

compared to standard AutoTutor, but such gains were only evident on a second session

when student difficulty was more pronounced. High knowledge students did not benefit

from affect sensitivity at all and sometimes showed lower learning when given

emotional support. A buddy-style Shakeup Tutor that attributed emotions to the learner

rather than the material did not show positive benefits for learners (D’Mello and

Graesser 2012).

Disengagement behaviors have also been considered. The GazeTutor project ex-

tended GuruTutor by using a camera to capture student eye-movement data and using

that to allow the tutoring agent to react to student gaze, in particular to detect and react

to student disengagement (D’Mello et al. 2012). When students appeared disengaged

when it was talking, GazeTutor would react by saying statements like “Please pay

attention.” This was particularly relevant to Guru, which used interactive lecturing

rather than highly interactive tutoring. GazeTutor succeeded at increasing attention to

the tutor and resulted in small, but not statistically significant overall learning gains

(0.26σ, p<.178) and moderate, statistically significant gains on deep learning (0.45σ,

p<.035).

These lines of research indicated that disengagement and negative emotions, such as

frustration, are important for tutor adaptation. D’Mello and Graesser (2012b) used data

from AutoTutor-AS to develop a model of learning-relevant emotions which includes

engagement, surprise, frustration, delight/achievement, disengagement, confusion, and

boredom. This model posited that inducing some short-term confusion could be

beneficial for learning, which has been verified experimentally (D’Mello et al. 2014;

Lehman et al. 2013) verified. Combined with earlier findings, this indicates that

learning is improved when (a) disengagement is reduced (e.g., by reacting to gaze),

(b) brief confusion is induced (e.g., by presenting conflicting information), and (c)

frustrated learners with low knowledge receive affective support.

Learning about Thinking: Metacognition

AutoTutor descendants have also been applied to study critical thinking, metacognition,

and self-regulated learning. The SEEK (Source, Evidence, Explanation, and Knowl-

edge) web tutor was designed to help college students improve their critical thinking by

evaluating the credibility and relevance of information as part of the scientific inquiry

process (Graesser et al. 2007c). SEEK did not use a full dialog system, but instead

embedded spoken hints and structured note-taking to evaluate the information hit

during a constrained web search (seven cached sites). Six primary skills were practiced:

(1) Asking deep questions, (2) Collecting information from multiple sources, (3)

Evaluating the validity of information, (4) Integrating information from multiple

sources, (5) Resolving inconsistencies, and (6) Constructing a causal model of a

system. Unfortunately, this tutor did not significantly improve students’ skills in finding
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relevant information. This lack of improvement was mainly attributed to short length of

training (1 h), combined with the complexity of each skill involved (e.g., asking deep

questions).

Operation ARIES (Acquiring Research, Investigative, and Evaluative Skills) also

targeted critical thinking skills in a serious game (Millis et al. 2011). Operation ARA

(Acquiring Research Acumen) continued this work by refining and extending ARIES

into a learning game for wider distribution by Pearson Education (Halpern et al. 2012).

ARIES/ARA address a set of skills more specifically related to scientific inquiry, such

as: Theories and hypotheses, Independent and dependent variables, Validity, Replica-

tion of results, Experimental controls, Sample size, Experimenter bias, Making causal

claims, and Generalizability. One component of ARIES/ARA attempts to get the

student to articulate scientific principles in natural language by using the pump-hint-

prompt-assertion cycles of AutoTutor. Another pedagogical approach is to present

specific research cases that have methodological flaws and to ask students to articulate

the flaws in natural language.

While the game has not yet been compared against static materials (e.g.,

texts), evaluations of Operation ARA reported learning gains of 1.4σ on a test

of scientific research skills when compared with controls who received no

instruction (Halpern et al. 2012). Compared to SEEK, this success may possibly

be attributed to additional time-on-task and a more cohesive set of skills.

Students used ARA between 8 and 12 h, an order of magnitude longer. There

were also motivational features through game elements, such as a coherent

game narrative and Jeopardy-like training rounds. ARA also used much more

AutoTutor discourse compared to SEEK, with a mixture of tutoring and vicar-

ious learning (watching agents talk with each other). SEEK relied significantly

on supporting self-regulated search, whereas ARA’s more structured environ-

ment could have also influenced learning gains.

Self-regulated learning skills (SRL) motivated the design of MetaTutor, which used

discourse-based agents to support a hypermedia learning environment covering biology

topics (Azevedo et al. 2010). Like AutoTutor-AS, a recent version of MetaTutor used

real time analysis of facial expressions to classify student emotions during tutoring.

Azevedo et al. (2012) reported higher learning efficiency when tutors assisted students

with prompts and feedback as they explored the hypermedia pages (0.84σ). However,

that learning efficiency score included only time spent interacting with the material and

not time interacting with the agents. After considering the entire time spent using the

system, learning efficiency was approximately equal. Even if learning efficiency for the

domain is unchanged, improved self-regulated learning might offer valuable long-term

benefits. Unfortunately, other research groups (e.g., Roll et al. 2011) have likewise

failed to show that improving self-regulated help-seeking changes domain-specific

learning gains even over multiple-month interventions.

With that said, a few studies have shown that supporting self-assessment (Long and

Aleven 2013) and other metacognitive skills (Koedinger et al. 2009) can improve

domain learning gains. More research is still needed to definitively show which self-

regulated learning skills improve learning in specific domains, as well as metacognitive

skills training transfers to new systems and domains. In general, research needs to

determine when tutoring SRL outweighs the benefits of spending time directly tutoring

domain content.
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Pedagogical Agents and Complementary Media

AutoTutor uses a mixture of media and animated pedagogical agents to deliver tutoring

dialogs. While educational software implemented basic animated agents (e.g., sprites)

since the start of personal computers, advances in graphics in the mid-1990’s made

more advanced animated agents feasible. AutoTutor emerged during a wave of research

on animated interface agents (Dehn and Van Mulken 2000; Johnson et al. 2000; Nwana

1996), a trend that continued within educational technology and ITS specifically.

AutoTutor was part of an early generation of animated agents in tutoring systems and

intelligent environments, along with contemporary systems such as STEVE (Johnson

and Rickel 1997), Baldi (Massaro 1998), Cosmo (Lester et al. 1998) and the Teachable

Agents project (Brophy et al. 1999).

The original AutoTutor relied on a talking head driven by Microsoft Agent that

incorporated speech synthesis and supported facial expressions and intonation that were

tied to the quality of student contributions (Graesser et al. 1999). Figure 2 shows an

example of this early AutoTutor interface. While the quality of animation and speech

synthesis has improved drastically since this time, the role of the animated agent has

remained fairly consistent up until recently. The tutoring agent in AutoTutor offers a

universal interface that students can understand, across a variety of subject matters.

Additionally, agent conversations are interactive and capable of offering speech rather

than text when this is needed. This line of research has spanned multiple major projects

exploring the value and role of pedagogical agents.

Projects have recently shifted from using single-agent interfaces to multiple agents,

part of a larger trend in ITS where ensembles of agents are increasingly common

Fig. 2 Early AutoTutor Interface
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(Graesser et al. 2008, 2014; Halpern et al. 2012; McNamara and Magliano 2009; Millis

et al. 2011; Woolf 2009). Table 3 lists common types of roles that pedagogical agents

can play in a tutoring system. The roles for pedagogical agents have undergone

significant shifts over time. Single non-interactive presenters, opponent agents (e.g.,

chess opponents), and non-player characters that populate a reactive game world were

already common before systems like AutoTutor emerged. While such agents are still

used, AutoTutor and similar systems have contributed to the development of a new

generation of pedagogical roles, such as vicarious learning presenters (iDRIVE; Craig

et al. 2006), affectively supportive agents (Supportive AutoTutor; D’Mello and

Graesser 2012a), student peer agents (Operation ARIES; Millis et al. 2011), and agents

that enhance virtual worlds (VCAEST; Shubeck et al. 2012). As with all new technol-

ogies, there have also been dead ends. This section reviews significant findings related

to the features and roles of animated agents, as well as complementary media such as

simulations (AutoTutor-3D; Graesser et al. 2005a) and concept maps (Guru; Olney

et al. 2012).

Surface Features: Animation and Speech

A key question for research on animated pedagogical agents has been what features

contribute to learning. Studies with AutoTutor have indicated that the content of

conversations is more important than the delivery medium or input modality (Nye

et al. 2014a). For example, work with AutoTutor showed no statistically significant

degradation for lesioned versions that lacked the animated talking head or conversed

using text rather than speech (Graesser et al. 2003b). Both factors were secondary to the

presenting the right content, since removing the agent animation (no avatar) or pre-

senting print only (no avatar or voice) each resulted in a statistically non-significant

−0.13σ reduction in learning gains (Graesser et al. 2003b; Link et al. 2001). The

redundancy effect for multimedia learning, which posits that duplicating text and voice

Table 3 Common animated pedagogical agent roles

Role Purpose

Presenter Non-interactive agent that delivers static content.

Tutor Supports learning by asking questions and giving

trustworthy information.

Peer/Student Acts as a peer learner and may demonstrate either

correct answers or misconceptions. May sometimes

be a teachable agent that can learn to perform certain

tasks over time.

Supportive Provides affective or motivational feedback

(e.g., “Let’s keep trying.”).

Opponent Competes against the learner on some task or game.

Navigational Helps the learner decide what to do next or locate

learning materials

Non Player Character (NPC) Reacts to user behavior as part of an interactive world

or simulation.
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hurts learning, was also tested using AutoTutor. Contrary to studies that showed

negative effects for redundant voice and text, Graesser et al. (2008) reported a non-

significant positive (+0.34σ) impact on learning, rather than a negative effect.

Later research tested the impact of students providing their answers with

voice input as compared with typed text. Voice input and typed input performed

comparably, with a slight advantage to text input due to errors in voice

recognition (D’Mello et al. 2011). Overall, this research strongly indicates that

the content, rather than the animation or speech, is primarily responsible for

learning gains.

Vicarious Agent Demonstrations

Another line of research has investigated the question of whether students can learn by

watching one agent tutoring another student agent. Craig et al. (2006) developed

iDRIVE (Instruction with Deep-Level Reasoning Questions in Vicarious Environ-

ments) to study this approach. This project compared the effectiveness of AutoTutor

tutoring interactions against a vicarious learning system where a peer student agent

asked a series of deep questions and a teacher agent promptly answered each question,

with no meaningful input by the user (i.e., vicarious learning by observation). This

vicarious learning research followed up on a study that reported that adaptive conver-

sational interaction was only slightly more effective than presenting succinct, targeted

script content that directly answered the main question (Graesser et al. 2004b). Re-

search on iDRIVE revealed that vicarious learning with deep questions performed

comparably to AutoTutor on physics (Gholson et al. 2009). Vicarious dialogs where the

peer student modeled asking deep questions also increased question asking by students,

which is a metacognitive strategy that improves learning (Craig et al. 2006; Rosenshine

et al. 1996).

iDRIVE lead to studies that examined different vicarious self-explanations

(Craig et al. 2012). These studies evaluated learning gains under four conditions:

a content monolog, questions + answer content responses, “self-explanations”

stated by a peer agent, and questions + self-explanations. A study of college

students reported that low knowledge students benefited significantly more from

the question + explanation condition (34 % learning gain vs. 7 % for high

knowledge students; Craig et al. 2012). A follow-up study examined high-

school students in different ability tracks (honors vs. standard), but comparable

prior knowledge on pre-tests. This study found that students of both honors and

standard classes significantly benefited from questions + explanations (p<0.01),

with honors students showing slightly higher learning gains (Craig et al. 2012).

Considering both studies, these findings imply that that low knowledge students,

even with different ability levels, benefit from vicarious “self-explanations” that

help build a mental model. Craig et al. (2012) hypothesized that high-knowledge

students benefit less due to mismatches between the students’ existing mental

models and the agents’ explanations. These results indicate that vicarious deep

questioning and explanations, which are significantly simpler to author than

dynamic tutoring, can offer significant advantages for students with low knowl-

edge. In particular, vicarious dialogs can model new skills and interactions (e.g.,

question-asking) that the human learner cannot yet accomplish even with help.
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Trialogs: Tutor, Peer Student, and Human Student

A landmark extension of AutoTutor combined vicarious learning with interactive

tutoring in order to take advantage of the complementary strengths of these two

approaches. Operation ARIES introduced agent trialogs, where the human student

was situated in a three-party conversation between a second agent student and a teacher

agent (Millis et al. 2011). This design supports a mixture of vicarious learning and

interactive tutoring, allowing the system to combine the benefits of both. Several types

of interaction are possible. For students who are having trouble with the material,

vicarious learning is suitable, but the human is drawn in periodically by asking them to

answer simple yes/no verification questions. For students who have deep mastery of the

material, it is appropriate to have teachable-agent designs, with the human student

teaching the simulated student, detecting errors in their reasoning, and resolving

conflicting opinions between the two agents (Lehman et al. 2013). This design was

particularly beneficial for tutoring critical thinking in ARIES, allowing different agents

to represent information sources that disagree. Studies indicate that interactive trialogs

significantly improve scientific reasoning beyond no-dialog vicarious sessions (Kopp

et al. 2012).

Navigational Agents in Hypermedia

One line of research explored the question of whether conversational agents are

effective guides to help learners find and utilize learning resources, HURAA (Human

Use Regulatory Affairs Advisor) was a web-based tutor for training ethics in human

subjects research, with a curriculum based on United States Federal agency regulations

(Hu and Graesser 2004). HURAAwas integrated with a learning management system

that included hypertext, multimedia, help links, glossaries, links to external sites, case-

based reasoning lesson modules, and a conventional e-text presentation of material.

AutoTutor’s conversational capabilities were applied in ways that differed from other

systems. Firstly, the conversational agent was used as a guide to help users navigate the

system rather than collaboratively answering deep reasoning questions. Secondly, a

question and answer system called Point & Query supported asking questions by means

of a context-sensitive dropdown list of relevant questions (Langston and Graesser

1993). Finally, semantic analysis supported users’ natural language queries for help

on a particular topic.

Evaluations of HURAA reported that users had significantly higher free recall

(1.19σ), cued recall (0.56σ), cloze recall (0.58σ), and accuracy for retrieving relevant

documents (0.67σ), when compared to controls who used a conventional hypermedia

and e-text presentation of the same material (Hu and Graesser 2004). However,

HURAA did not change the ability of users to diagnose problematic issues in cases,

indicating that the case-based lesson modules were not significantly more effective than

simply reading an expert opinion on the case (the control condition). Additionally, a

second study reported that using the agent as a navigational guide did not significantly

improve any of these measures, nor did it change the users’ impressions of the system

significantly (Graesser et al. 2003c). As noted earlier, the SEEK agents were also not

helpful in improving navigation in a hypermedia system on plate tectonics. In both

systems, emphasis was placed on answering students’ questions and information
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retrieval rather than the agent posing deep reasoning questions and collaboratively

answering the questions. Given the poor performance of navigational agents in both

SEEK and HURAA, this suggests that animated agents may not offer much advantage

during information search and retrieval tasks when compared to more traditional text

interfaces. Perhaps navigational guides may be more effective when the learner is very

lost or frustrated and needs guidance, but this needs further investigation.

Integrating Agents into Virtual Worlds

A more recent question has explored the potential benefit of enhancing virtual learning

practice environments with deep reasoning questions. VCAEST (Virtual Civilian

Aeromedical Evacuation Sustainment Training) trains civilian medical personnel on

federal guidelines for triage in emergency situations, particularly those where military

aircraft will be used to evacuate victims of an emergency, such as a natural disaster or

mass-casualty attack (Shubeck et al. 2012). VCAEST uses AutoTutor Lite, which will

be introduced shortly, to work with trainees within a 3D virtual world. This world

includes a tutoring agent and an ensemble of in-game non-player character agents,

some of whom represent injured individuals who must be stabilized and evacuated. The

project represents a mixture of direct intelligent tutoring with an interactive environ-

ment populated with task-relevant agents. In VCAEST, natural language tutoring

dialogs “pop up” and ask questions about virtual world events (e.g., bad triage

decisions). Virtual world events that launch tutoring dialogs is an interesting approach

to integrating discourse with authentic scenarios of social action. However, it is

pedagogically unclear when to interrupt the simulation with these dialogs and how to

manage tutoring if multiple learners are in the world. The VCAEST project is ongoing,

so the effectiveness of learning in this tutoring-enhanced virtual world is still being

evaluated.

Complementary Media: Simulations and Concept Maps

AutoTutor and related systems have added value by complementing the tutoring agents

with various types of media, ranging from simple images up to simulations. AutoTutor-

3D used three-dimensional simulations to help students represent the physics problems

they were working on (Graesser et al. 2005a). That is, AutoTutor used an interactive

simulation showing the objects and their spatial orientation within the problem. 3D

representations and simulations were added because they were believed to promote

deeper understanding of physics. In addition to conversing with the AutoTutor agent,

students were able to modify parameters of the simulation and launch the simulation to

display what will happen. During this process, the tutoring agent was able to request

that the students predict what would happen and ask them to compare what actually

happened in the simulation with their expectations. However, AutoTutor mainly posed

deep questions similar to WHY2/AutoTutor, rather providing simulation-specific scaf-

folding. An example of this interface is shown in Fig. 3.

Results revealed that most students made little use of the simulation features and had

trouble using them productively. There was only a 0.22σ gain for the AutoTutor-3D

condition over one with no 3D objects, which did not quite meet significance at p=0.05

(Jackson et al. 2006; Kim et al. 2005). The number of times students used the
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simulations correlated with learning (r=.51, p<.01), but total usage was low and the

overall impact on students was modest. High performing students made greater use of

the simulations, however, and appeared to gain some benefit. These results confirmed

earlier findings that students have trouble using simulations productively and are

unable to systematically manipulate different combinations of parameters, observe

what happens, and record the results (Klahr 2002). Students clearly need more guid-

ance to use simulations profitably. Agents might be designed to provide such guidance,

but would likely need to be integrated with the simulation more tightly than in

AutoTutor-3D.

GuruTutor (see Fig. 4) integrated secondary multimedia (e.g., graphics, video) more

tightly than many earlier members of the AutoTutor family of ITS (Olney et al. 2012).

The agent strategically points to elements in a display during the course of the tutoring.

Guru also uses concept maps to provide demonstrations and students interact with

Fig. 3 AutoTutor-3D Interface

Fig. 4 Guru Biology Tutor Interface
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concept maps during exercises. While Nesbitt and Adesope’s (2006) meta-analysis

reported an effect size of 0.82σ for concept maps, the impact of concept maps in Guru

has been inconclusive. Time spent on concept maps and errors on concept map tasks

did not show reliable correlations with learning across two different topics (Person et al.

2012). This may be due to the types of content involved : time spent on an easier, more

fact-based concept map correlated with learning gains but there was no correlation

between time spent on concept maps for a second topic that was more difficult and

procedural (Person et al. 2012). As a comparison, Betty’s Brain showed consistent

learning gains using concept map tasks (Leelawong and Biswas 2008). However,

Betty’s Brain uses different content (maps of causal influences) and a different task

(teaching an agent with the map). Further research is needed to disentangle if Guru’s

concept map inconsistency is due to the concept map task or due to the type of

knowledge in the maps (e.g., links being remembered most saliently; Cade et al. 2014).

AutoTutor Technologies: Semantic Analysis, Authoring, and Delivery

AutoTutor research has also developed advanced capabilities for semantic analysis,

authoring, and tutoring delivery platforms. Semantic analysis research has been driven

by tutoring systems (AutoTutor, iSTART, DeepTutor) and by semantic analysis tools

(QUAID, Coh-Metrix, SEMILAR). AutoTutor’s authoring tools (ASAT) are also

discussed, including a discussion of emerging authoring tool designs. Finally, delivery

platforms are considered, such as web-based tutors (AutoTutor Lite, BCRA-Gist),

service-oriented architectures (AutoTutor Web Services, Sharable Knowledge Objects),

and open-source releases (GnuTutor).

Semantic Analysis and Natural Language Processing

Semantic analysis is a central technology behind any natural language tutoring system.

Early dialog-based tutors were extremely constrained in their ability to understand

natural language. The SCHOLAR tutor, noted previously, had very limited language

understanding and could get very little out of wrong or off-topic answers (Carbonell

1970). CIRCSIM was one of the first successful natural language tutoring systems and

was designed to teach blood pressure regulation to complement a simulation-based

environment for cardiology experimentation (Kim et al. 1989). CIRCSIM relied on a

domain-specific and hand-made lexicon that mapped to statements about ontology

objects, such as “Heart rate is increasing” (Glass 1997). This system did not have much

flexibility for transitioning to new domains, primarily due to the approaches used to

handle natural language. SOPHIE, a tutoring system for circuit design, used a more

powerful technique based on semantic grammars, but developing semantic grammars

remains a challenge (Burton 1977; Gavaldà and Waibel 1998).

In many ways, AutoTutor represents a synthesis of studies on naturalistic human

tutoring with technologies in computational linguistics, such as latent semantic analysis

(Graesser et al. 2007b) and Coh-Metrix (Graesser et al. 2004b). AutoTutor relies on

lexicons, part-of-speech classifiers, speech act classifiers, syntactic parsers, regular

expressions, templates, corpora, LSA, and other semantic analysis tools (Graesser

et al. 2012a, b). This multi-faceted approach is shared by other contemporary natural

450 Int J Artif Intell Educ (2014) 24:427–469



language ITS families, which often have one central natural language understanding

technology supported by complementary methods. For example, the BEETLE II tutor

for circuit design combines semantic grammars with lexical databases (e.g., WordNet),

reference resolution algorithms, and statistical classifications (Dzikovska et al. 2013).

For AutoTutor, LSA has played a central role because it offers a robust semantic

matching algorithm that compares the student’s verbal input to AutoTutor’s expecta-

tions and anticipated misconceptions. The most common semantic matching algorithm

currently used by AutoTutor combines LSA, regular expressions, and frequency

weighted content word overlap (Cai et al. 2011). Syntactic parsing does not help much

in the pattern matching operations because much of the students’ verbal input is

ungrammatical. However, statistical syntactic parsers are useful for classifying the

student contributions into speech act categories. Clearly, AutoTutor must respond

differently to speech acts that are assertions versus questions, expressive evaluations,

acknowledgements (“okay”), metacognitive expressions (“I’m lost,” “I don’t know”).

LSA supports natural language processing by using a statistical technique called

singular-value decomposition to represent each word by a vector of component seman-

tic statistical dimensions (factors). These component factors are generated by process-

ing a large corpus of millions of words, in tens of thousands of documents, with

typically 100–500 such dimensions being generated (Landauer et al. 1998). This

process uses a bag-of-words model that captures co-occurrence information while

ignoring ordering. In essence, LSA captures what words co-occur with other words

in naturalistic documents, such as encyclopedias, but not in rigid dictionaries. A

domain-specific LSA dimensional model can be created based on word co-

occurrence within a specific domain corpus. To compare a student contribution against

an anticipated contribution (expectation or misconception), each word is replaced by its

dimensional equivalent. All of the dimensions of the words within the contribution are

aggregated (typically summed) into a single dimensional vector. The similarity between

the actual and anticipated (e.g., ideal) vectors are then calculated, such as by calculating

the cosine between the vectors to generate a number ranging from 0 (no match) to 1

(perfect match).

LSA provides a quick technique for evaluating the quality of student contributions,

with studies indicating that AutoTutor’s evaluations of student contributions performed

comparably to intermediate domain experts (Graesser et al. 2000). LSA (and similar

approaches) also allow AutoTutor to transition effectively to new domains by training

on new corpora and developing semantic pattern matching assessments for new

expectations and misconceptions. This does not mean that tutoring a new domain is

always accurate, but LSA allows a high degree of automation compared to hand-crafted

semantic grammars and parser-based approaches.

The LSA semantic space for the original AutoTutor for computer literacy was

generated from two textbooks on the topic, 30 articles, and the curriculum script

(Graesser et al. 1999). Before testing the system for instructional purposes, the ability

of AutoTutor to evaluate student responses was tested on a sample of 192 answers to

questions in the curriculum script. This test revealed a correlation of 0.49 between the

LSA evaluations and the average evaluations of four human experts, two with inter-

mediate expertise and two with advanced expertise (Graesser et al. 1999). By compar-

ison, the correlation between the ratings of the intermediate experts (graduate students)

was 0.51 and the correlation between the ratings among advanced experts (graduate
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degree holders active in the topic) was 0.78. As such, the LSA scoring performed

comparably with the intermediate experts, who are representative of typical tutors.

Early versions of AutoTutor produced solid learning gains, but evaluating student

contributions had room for improvement. Expert ratings of the quality for student

statements using AutoTutor for Physics were less robust than those for computer

literacy, with expert correlations reported as r=0.29 correlation with LSA, r=0.25 with

Kendall’s Tau (word ordering), r=0.39 word overlap (words shared between expecta-

tion and statement), and r=0.42 when all three were combined (Graesser et al. 2007b;

Rus and Graesser 2006). LSA has clear limitations due to ignoring sentence syntax and

ordering: it cannot handle negations (“correct” vs. “not correct”) or resolve terms using

context (e.g., “He ran” vs. “Charlie ran”). To overcome these issues, AutoTutor has

relied on regular expressions to find word overlap and detect necessary compound

structures (Cai et al. 2011, 2012). This yields semantic match scores with a reliability of

0.67 whereas trained humans agree 0.69. More advanced aggregation techniques across

words are also possible, such as inverse frequency weighting and contextual weighting

(e.g., negations changing the weights for terms). However, this process increases

authoring effort and the reliability of the performance is sometimes expectation-spe-

cific. Physics hits these problems more than computer literacy, because physics rela-

tionships are more abstract (e.g., “x has twice the velocity of y” vs. “The CPU reads

instructions from RAM”). These challenges have spurred development of more ad-

vanced tools.

Rus et al. (2008) improved on AutoTutor’s semantic analysis techniques by detect-

ing textual entailment. Textual entailment of “X entails Y” holds true when “If a human

read X, they would probably infer that Y is true.” Entailment uses subsumption

relationships (e.g., “Y is a type of X”) to determine if the student’s statement is a more

general version of the expectation. This was executed in real-time by parsing statements

into graphs and applying subsumption hierarchically to determine if the entities and

relationships from the expectation were present in the student statement (i.e., same

terms, synonyms from thesaurus, more general terms). This approach offered an

improvement over word-overlap, LSA, and some similar word-to-word entailment

measures (Rus et al. 2008, 2009). Detecting entailment and paraphrasing (mutual

entailment) was used by iSTART and early versions of DeepTutor (Rus et al. 2009,

2013c).

A number of standalone semantic analysis packages have evolved in tandem with

the AutoTutor family. QUAID (Question Understanding Aid) was developed to eval-

uate the comprehensibility of questions to check if surveys are likely to provide useful

results (Graesser et al. 2006). Later, the Coh-Metrix was designed to support over 200

measures of text cohesion, language, and readability (Graesser et al. 2004b; McNamara

et al. 2014). Coh-Metrix (www.cohmetrix.com) is a free web-based service intended to

analyze passages of text, with a focus on ease versus difficulty of comprehension. Coh-

Metrix has been used to analyze AutoTutor conversations (Graesser et al. 2007a) and

emotions during tutoring (D’Mello and Graesser 2012a). A recent development is the

SEMILAR (SEMantic SimILARity) toolkit, which implements a variety of word-to-

word similarity measures, classifiers, and entailment algorithms related to the

DeepTutor project (Rus et al. 2013b). A notable algorithm in SEMILAR is DeepTutor’s

Quadratic Assignment for optimal word-to-word matching, which outperformed all

other reported algorithms (77.6 % accuracy; Rus et al. 2013c) on text-to-text similarity

452 Int J Artif Intell Educ (2014) 24:427–469

http://www.cohmetrix.com/


measures for sentences in the Microsoft Research Paraphrase corpus (Dolan et al.

2004). The algorithms in SEMILAR are described in Rus et al. (2013b).

Authoring Tools

The primary authoring tool for AutoTutor is ASAT (AutoTutor Script Authoring Tool),

also called ASAT-D (Desktop), whose initial design was outlined by Susarla et al.

(2003) but has been substantially revised to the point of being licensed for numerous

applications. The new version of this tool streamlines authoring and supports better

integration of media (e.g., graphics) and testing of AutoTutor’s scripts and conversa-

tional rules. Authoring tools are crucial for scaling up intelligent tutoring systems and

other advanced learning environments. Domain knowledge is essential for tutoring but

domain experts are unlikely to have the technical skills or time to learn complicated

interfaces or programming functionality. Time costs of authoring for ITS can be

particularly high, with some systems estimating approximately 100 or more hours of

authoring time for a single hour of instruction (Koedinger et al. 2004). With ASAT,

users with limited technical expertise can author a tutoring script in under 1 h (Song

et al. 2004). This is made possible because, unlike tutors that rely on programming or

special data representations, authoring AutoTutor scripts primarily involves writing (in

natural language) questions, expectations, misconceptions, hints, prompts, summaries,

and other verbal content. Nevertheless, technical expertise is needed to handle regular

expressions, links to external media requiring adaptive interaction, rule sets for con-

versations with adaptive complexity, and complex branching.

Significant room for improvement remains for improving three functions of

authoring tools: collaborative authoring, reducing the learning curve, and simplifying

dialog rule authoring. First, while scripts (“tutoring packs”) are modular, ASAT-D has

no way for multiple authors to collaboratively author different parts of the same script.

Ongoing work with the Sharable Knowledge Objects (SKO) project, described next, is

exploring the feasibility of web-based collaborative authoring with ASAT-W (Web-

Based), which uses cloud hosting and basic version control (e.g., similar to a Google

document). Second, while ASAT-D no explicit programming, learning to use the tool

effectively still involves a learning curve related to implicit understanding of program-

ming concepts (e.g., conditions and rules). For in-service teachers and curriculum

designers, time-costs can be nontrivial, so a form-based tool called ASAT-FB (Form-

Based) is under development to provide a wizard design to streamline this process.

Finally, to simplify rule authoring, development of a visual flow-chart authoring

interface is under development as ASAT-V (Visual).

Delivery Technologies and Architectures

Delivery technologies are also very important for AutoTutor and ITS in general.

While intelligent tutoring systems are effective teaching tools (Graesser et al.

2012a; VanLehn 2011), wide scale adoption remains a serious challenge for

tutoring systems. AutoTutor has steadily worked toward minimizing the technical

requirements for end-users of the system, with initial designs relying on installed

software, later designs moving to web-based Java applications, and more recent

designs using a mixture of HTML and Flash.
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AutoTutor Lite implements a constrained version of AutoTutor that is designed for

easier authoring (ASAT-W), rapid web deployment, and integration into third-party

systems such as games (www.skoonline.org; Hu et al. 2009). This version of AutoTutor

does not employ the full range of semantic analysis methods, but is limited to LSA and

keyword-based analysis. AutoTutor Lite does not have all of the dialog flexibility of

AutoTutor, but its main dialog style still uses deep reasoning questions complemented

by simpler self-reflection questions and vicarious tutoring. AutoTutor Lite uses a

simplified student model called Learner’s Characteristic Curves (LCC) that is based

on the relevance and novelty of student contributions (Morrison et al. 2014). Rele-

vance, as with the original AutoTutor, is the similarity between the student’s contribu-

tion and the expectations. Novelty captures how different the student’s contribution is

from their prior contributions toward that topic, i.e., are they covering new ground or

rehashing old points? These factors trigger discourse moves such as hints, to determine

when to move on to new topics, and to select new questions. These restrictions help

AutoTutor scale as a web application and also simplify authoring.

Evaluations of learning gains for systems using AutoTutor Lite are underway, as it is

being used for the VCAEST military medical training and BRCA-Gist, a tutor for

assessing breast cancer risk. The content for BRCA-Gist was authored by researchers at

Miami University, making it one of the first AutoTutor descendants authored outside of

Memphis. A recent study using BCRA-Gist reported that the AutoTutor Lite’s evalu-

ations of student contributions predicted student outcomes on a posttest (Wolfe et al.

2013). A second study indicated that AutoTutor Lite outperformed a static web-based

tutorial for reducing internal inconsistency (e.g., negating prior assumptions) but did

not improve quantitative estimates of risk probabilities (Wolfe et al. 2012).

Three additional projects have also attempted to make AutoTutor more accessible.

The first such project, GnuTutor, was a Java open-source release with elements of

AutoTutor and AutoTutor Lite (Olney 2009). GnuTutor was intended for third-party

developers who wish to inspect or build on the system. AutoTutor and AutoTutor Lite

development has continued since this time so an updated release of GnuTutor is needed

in the future. Second, recent versions of AutoTutor have been exposed as the AutoTutor

Web Services (ATWS), to improve interoperability with other systems. For example,

the University of Wisconsin’s Land Science multiparty game helps groups of middle

school students learn about urban science in their community (Shaffer 2006; Shaffer

and Graesser 2010). The group learning environment has an automated AutoMentor

with some of the components of AutoTutor, with the tutoring agent’s behaviors

modeled after the behaviors of human mentors for students using the system (Shaffer

and Graesser 2010). The goal is for students to think and act like STEM profes-

sionals, but they can only do this with the guidance of either a human mentor

(Shaffer 2006) or an AutoMentor. AutoMentor gives each student group sugges-

tions and responds to some of their questions by either answering the questions

directly or asking other students to respond to the questions, then assessing the

semantic relevance of the replies. Web services help AutoMentor integrate into this

multiplayer serious game.

Third, the Sharable Knowledge Objects (SKO) Module system is an ongoing project

that can extend AutoTutor or AutoTutor Lite. SKO modules are designed using web-

based and service-oriented patterns, allowing each SKO to be an encapsulated tutoring

unit that composes local and remote services (Nye 2013). Each SKO is capable of
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conversation using one or more high-quality agent avatars, text, graphics, movies,

sound files, and embedded web resources. The SKO project moves AutoTutor toward

a service-oriented design that increases the modularity of tutor designs. This should

improve integration into learning management systems and other service-oriented

systems, such as the Generalized Intelligent Framework for Tutoring architecture

(GIFT; Sottilare et al. 2012). As part of this system, a persistent student model service

is being developed to track and report student knowledge levels.

The SKO framework is currently being used to approach Algebra I mathematics,

which is a new domain for AutoTutor. This system is being integrated to provide just-

in-time tutoring for ALEKS (Assessment and Learning in Knowledge Spaces), an

adaptive learning system based on knowledge space theory (Falmagne et al. 2006).

Each relevant ALEKS problem will be supported by AutoTutor trialogs (three-way

conversations between the user, the tutor, and a simulated student). Algebra is more

procedural than many topics approached by AutoTutor in the past, making this a

qualitatively different domain. A major goal of the SKO project is to develop a tutoring

architecture that can be integrated with existing content (e.g., adding tutoring to

existing HTML pages) and platforms (e.g., ALEKS). SKO focuses on integrating with

pre-existing content because the cost to develop new content is a common bottleneck

for ITS. While this system is currently being used to produce standalone modules for

delivery inside other systems, the framework supports real-time semantic messaging to

integrate into dynamic systems (e.g., simulations). By making it easier to enhance

existing resources with tutoring, it should be possible to make tutoring systems

available to a greater number of learners.

Discussion: Key Findings from AutoTutor

Overall, AutoTutor and related systems have shown learning gains over non-interactive

learning materials on a variety of math and science domains: computer literacy, physics,

biology, and critical thinking. Average learning gains were approximately 0.8σ

(Graesser et al. 2012b, 2008), typically with higher gains for deep learning than

shallow. On the one hand, these show an impressive effectiveness as an instructional

tool. On the other hand, learning gains fall significantly short of Bloom’s (1986) report

of 2σ for expert human tutoring and no study reported learning gains in excess of 1.5σ

over controls. These results can be interpreted in two ways: either it is extremely hard to

match the performance of human tutoring or human tutors are not actually as good as

Bloom estimated. Meta-analyses by Cohen et al. (1982) and VanLehn (2011) reported

effect sizes of only 0.4σ and 0.79σ for human tutoring, respectively. Studies with gains

over 0.8σ tended to be short (<4 weeks) and structured interventions. Learning gains of

2σ might only be possible for special subsets of domain content or extremely effective

tutors. With that in mind, AutoTutor is probably more effective than many non-expert

tutors and might even be on-par with a typical expert tutor.

The particular mechanisms of such learning gains in AutoTutor-style tutoring have

been examined in some studies, but additional work is needed to disentangle the

components that are responsible for learning. Studies have examined the effect of

disabling or altering specific tutor functions, but it is infeasible to empirically test

every combination of tutoring features. Table 4 shows the relative difference in learning
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gains when certain features were disabled or altered, with the relevant study results

cited. A tilde mark (“~”) means that the study found this design reported no statistically

significant difference in learning gains from the base AutoTutor system, nor any

consistent effect direction. The base system for AutoTutor uses text input from the

human and a talking head avatar that uses synthesized speech. This table demonstrates,

in part, the difficulty in obtaining statistically significant effects when changing indi-

vidual features, even when using reasonable sample sizes (25–40 subjects per

condition).

The only consistent and reliable differences are seen when comparing AutoTutor

against different types of content, such as reading static text or reading the tutoring

scripts. These findings indicate that engaging with appropriate, relevant content dom-

inates other factors such as modality and sometimes even interactivity. However, the

issue of information equivalence complicates these evaluations: textbooks seldom

include deep reasoning questions, so curriculum designers must generate them for

AutoTutor. While the similarity between control text and tutoring scripts is high (e.g.,

LSA cosine similarity=0.58; VanLehn et al. 2007), they are not identical. This issue is

systemic: textbooks do not pose deep reasoning questions because they cannot provide

feedback and because their rhetorical structure is not organized around deep questions

and answers. This may offer a “format advantage” for dynamic media over textbooks,

because ITS can present content (e.g., questions) that would not make sense in a

textbook.

The small difference (−0.07σ) between AutoTutor versus reading the tutoring scripts

belies the importance of adapting to the student. A study of WHY2/Atlas and WHY2/

AutoTutor (VanLehn et al. 2007) controlled for content by comparing the human tutors,

tutoring systems, canned text (static tutoring script content), and textbooks. They found

that human tutors strongly outperformed canned scripts (1.64σ) when novices encoun-

tered intermediate content (e.g., content in their zone of proximal development).

Ceiling and floor effects were highly evident outside of the zone of proximal

Table 4 Changes in learning gains under different conditions

Description Δ Learning Study

AutoTutor Base System 0.80σ (Average of many)

Text only (No avatar + no voice synthesizer) −0.13σ1 Graesser et al. (2004a);

Graesser et al. (2008)Voice only (No avatar) −0.13σ1

AutoTutor with Redundant Text + Voice +0.34σ1

Human spoken input (instead of typed text) ~ D’Mello et al. (2011a, b)

Human reads relevant book sections that

answers a question(non-interactive)

−0.22σ Graesser et al. (2004a)

Human reads tutoring scripts directly relevant

to the main question (non-interactive)

−0.07σ

Tutoring by an expert tutor over text chat −0.08σ

Vicarious learning (watch tutoring only) ~ Gholson et al. (2009)

3D Simulations (Physics) +0.22σ1 Graesser et al. (2005a, b)

1Not statistically significant
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development. When students had very high knowledge, tutors (human or computer)

performed no better than canned statements. Likewise, when students totally lacked the

requisite background knowledge, they performed poorly regardless of the condition

(VanLehn et al. 2007). This demonstrates how prior knowledge can confound effect

sizes as a measure of effectiveness and might also hinder testing of feature-

effectiveness.

Prior achievement can also impact the effectiveness of features directly. Table 5

notes specific dialog strategies and pedagogical agent roles that have significant

evidence of being effective (+) versus not significantly effective (~) for learning. In

this table, the first six rows (AutoTutor to ARIES) represent unique systems compared

against traditional controls as discussed earlier in the paper (e.g., reading texts). The

final four rows (AutoTutor-AS to AutoTutor-3D) are modified versions of either

AutoTutor or Guru, so they are compared against their respective base system. These

findings hint at opportunities to detect student traits that allow tutor features to be more

effective, thereby improving personalization of learning. Work with AutoTutor-AS

revealed that only low knowledge students benefited from affect sensitivity (D’Mello

and Graesser 2012a; D’Mello et al. 2011b). This work mirrors findings with the

Wayang Output tutoring system, which found that low knowledge students benefit

more from affective support provided by animated agents (Woolf et al. 2010). Similar

results have been found for factors such as politeness of animated agents (Wang et al.

2008).

Vicarious dialogs (a tutor agent talking with a peer agent) have also been

more effective for low knowledge learners (Craig et al. 2012). While these

dialogs can still benefit high knowledge students, they show particular benefits

for helping low knowledge students build initial models for domain knowledge.

In this way, a vicarious dialog in natural language may be analogous to a

worked example for problem-solving. On the converse, interactive simulations

were used more productively by higher-performing learners, though increased

scaffolding might help other students benefit also (Jackson et al. 2006). While

Table 5 Effectiveness of tutoring system features on different learners

Feature First System w/ Feature Learner Performance

High Low

Expectation-misconception tutoring dialog (5-frame) AutoTutor +

Deep reasoning questions AutoTutor +

Collaborative lectures Guru +

Navigational agent (search help) HURAA ~

Vicarious agent dialogs iDRIVE + ++

Trialogs (tutor + peer agent) ARIES +

Affective sensitivity AutoTutor-AS (Supportive) ~ +

Informal interaction AutoTutor-AS (Shakeup) ~

Reacting to disengaged eye contact Gaze Tutor (Built on Guru) +

Interactive simulations AutoTutor-3D + ~
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it is not noted in the table because conclusive evidence is not yet available, it

is hypothesized that teachable agents will be most beneficial for high-

knowledge learners. This is because teachable agents require the highest levels

of learner contributions, since the human student leads the explanation.

Other strategies and features appear effective (or ineffective) for a variety of

learners. Expectation-misconception tailored dialogs and deep reasoning ques-

tions have been effective for a variety of systems and domains (Graesser et al.

2012b). Guru demonstrated that collaborative lectures are consistently effective

(Olney et al. 2012). Reacting to disengagement in GazeTutor was also found to

improve deep learning (D’Mello, Olney et al. 2012). Pedagogical agents have

also failed in particular roles. For example, the HURAA and SEEK systems

indicated that intelligent agents may not add much value as navigators in a

hypermedia system (Hu and Graesser 2004). Similarly, the buddy-style

AutoTutor-AS Shakeup tutor was less effective than the more traditional Sup-

portive AutoTutor (D’Mello, Lehman, & Graesser 2011). Students’ liking of an

AutoTutor agent also had no correlation with learning as reported by Moreno

et al. (2002), whereas Jackson and Graesser (2007) reported a negative rela-

tionship between conditions that promote liking versus deep learning. Studies

on vicarious learning have identified some conditions when the human does not

even need to be directly interacting with the tutor, but can learn fairly well by

watching a simulated student learn (Gholson et al. 2009; Chi et al. 2008). In

total, this suggests that pedagogical agents do not need to be navigators or

buddies to the learner, nor even liked by the learner. It also indicates that they

do not always need to be tutors to the student, but can teach indirectly instead.

Other work suggests that while optimizing microsteps can improve learning gains

(Chi et al. 2014), ITS may over-emphasize high levels of interactivity at the micro-step

level (VanLehn 2011). Simply stated, the best dialog is not always the most interactive

one. This point is supported by Kopp et al.’s (2012) finding on the dosage of interactive

tutoring. They reported significant learning gains (0.46σ) for mixing intense dialog on

some problems and no dialog in others when compared to a system that used intense

dialog exclusively. Trialog-based environments like Operation ARIES/ARA allow

great flexibility in tutoring exchanges to explore the tradeoffs of mixing direct tutoring,

vicarious tutoring, teachable agents, and traditional media (Forsyth et al. 2012; Halpern

et al. 2012; Millis et al. 2011).

It is possible that the optimal level of interactivity depends on the students’

knowledge level. Table 5 hints at a trend where low-knowledge students benefit

most from low control over the interaction (e.g., vicarious) and high-knowledge

students benefit from high control over the interaction (e.g., simulations). If this

trend holds true, we would expect a positive correlation between knowledge

level and the benefits from interactivity, such as: Vicarious (lowest knowledge)

→ Collaborative Lectures → Deep Questions and Expectation-Misconception

Dialog → Teachable Agents → Simulations (highest knowledge). While this

pattern intuitively makes sense, many of these strategies have not been directly

compared, so further research is needed to see if this holds empirically. Moving

forward, new roles and arrangements for ensembles of pedagogical agents

should continue to enhance the quality of tutoring systems by allowing re-

searchers to analyze and compare different tutoring strategies.
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Future Directions

This review of AutoTutor’s history demonstrates that conversational tutoring systems

can help students with a variety of domains and subject matter. In many ways, the

success of conversational tutors across many subjects validates a core idea behind

AutoTutor: that the conversational agent offers a universal interface for tutoring that

can implement a variety of pedagogical strategies. Assuming that natural language

tutoring can be universal, can it become ubiquitous? The evolution of AutoTutor shows

a gradual shift in this direction. The initial AutoTutor design was a standalone desktop

application, but is becoming available as standards-based web services. The AutoTutor

family has integrated increasingly rich and diverse media into their tutoring environ-

ments, including simulations, interactive concept maps, and videos. In some recent

projects, the roles of AutoTutor agents and complementary media have reversed:

tutoring agents are being embedded into static media (e.g., HTML pages) and dynamic

media (e.g., virtual worlds). Considering conversational agents as a universal interface,

this inversion offers powerful opportunities for embedding tutoring agents into the

wealth of existing digital educational media and learning systems. Conversational

interfaces are also uniquely suited for mobile learning. For example, natural language

tutors could be effective as situated tutors, such as mobile learning tutors that are

triggered by GPS hotspots (Hwang and Tsai 2011).

Despite clearing technological hurdles, transferring tutoring systems into schools

and commercial use has proved difficult for the ITS field in general. Learning gains are

only one of many considerations for teachers and administrators, making it harder to

get ITS into the hands of students. While thousands of learners have used AutoTutor,

there has been little sustained use by K-12 schools. However, AutoTutor and related

systems have recently made promising footholds. Projects such as Guru and DeepTutor

were each recently evaluated by over 200 students in K-12 classrooms, and have

potential for broader use. The CSAL project for adult literacy will reach 500 adult

learners during its evaluation and could make a large impact as a web service, since

nearly 3 million Americans enroll in adult literacy programs annually. Partnerships with

commercial groups are also growing. A specialized version of ASAT for Assessment

(ASATA) is being developed with the Educational Testing Service (ETS).

Operation ARA is being expanded with Pearson for use as a serious game.

Finally, SKO modules for Algebra are being integrated with ALEKS, a com-

mercial learning system with McGraw-Hill that has served millions of students

over more than a decade. AutoTutor is also integrated into the Generalized

Framework for Intelligent Tutoring (GIFT) architecture, a major Army Research

Lab project working to build the next generation of tutoring standards and

authoring (Sottilare et al. 2012).

Getting tutoring systems into the hands of learners is particularly important because

there is little doubt that tutoring systems are effective. Studies indicate that tutoring

systems may have surpassed non-expert tutors and might even match expert human

tutors on some topics (Graesser et al. 2012a; VanLehn 2011). This leads to an important

question about the future of tutoring systems: what if human tutors were not as effective

as we previously thought? Should tutoring systems attempt to model more effective

human tutors (e.g., Guru Tutor)? Alternatively, should ITS attempt to take advantage of

optimized micro-steps or idealized progressions that human tutors would have
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difficulty implementing? Finally, how tutoring systems be optimized to promote greater

use by students and classes (e.g., SKO Modules)? There are good reasons to pursue

each of these research agendas, as well as significant questions about which types of

students benefit most from certain tutoring features. As research based on AutoTutor

continues, new projects will continue to explore the principles that produce effective

and accessible learning.
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Appendix 1: Glossary of Projects

ASAT: AutoTutor Script Authoring Tool is the primary authoring tool for AutoTutor.

Can direct multiple agents and external events/controls.

ASATA: AutoTutor Script Authoring Tool for Assessment is a specialized authoring

tool developed with the Educational Testing Service for developing for build-

ing dialog-based high stakes assessments.

AutoMentor (STEM Thinking): Uses epistemic analysis of discourse in student group

chats to help students learn how to think and act like STEM (science, technol-

ogy, engineering, and mathematics) professionals in a multi-party serious game

simulation of urban planning.

AutoTutor (Computer Literacy): Core AutoTutor natural language tutoring system,

which uses expectation-misconception dialog and deep questions, latent

semantic analysis & regular expressions, and talks with user through the

animated agent(s).

AutoTutor-3D (Physics): An extension of AutoTutor for physics, AutoTutor-3D

added interactive three dimensional simulations of physics problems designed

in 3D Studio Max.

AutoTutor Affect-Sensitive (Computer Literacy): AutoTutor-AS detected affect

using natural language and discourse, facial expressions, body posture, and

speech. Feedback considered student emotions and cognitive states. Sometimes

called AutoTutor-ES (Emotion Sensitive).

AutoTutor Lite (General): AutoTutor Lite (ATL) is a web-based variant of AutoTutor

designed for simpler authoring, rapid deployment, and integration into third-

party systems.

BRCA-Gist (Breast Cancer Risk): An AutoTutor Lite tutor led by the Miami Uni-

versity, intended to tutor understanding of risk probabilities and personal breast

cancer risk.

Coh-Metrix: A linguistic analysis toolkit with over 200 metrics. The “Coh” stands for

cohesion and coherence.

CSAL Adult Literacy Tutor (Reading): This tutoring system project for the Center

for the Study of Adult Literacy (CSAL) is intended to help learners who
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struggle with print media, through closer integration of trialogs, web pages, and

multimedia.

DeepTutor (Physics): Tutor that uses learning progressions to foster deep learning of

physics concepts, as well as enhanced semantic analysis, such as entailment.

GazeTutor (Biology): Enhanced version of Guru Tutor that monitors and reacts to

student gaze.

Gnu Tutor (General): An open source Java release of an early version AutoTutor Lite.

Guru Tutor (Biology): Tutoring system for biology designed based on observation of

expert tutors. Uses collaborative lecturing and concept maps to support

learning.

HURAA (Research Ethics): The Human Use Regulatory Affairs Advisor for training

ethics in human experiments. AutoTutor agents helped navigate hypertext

multimedia containing case-based reasoning and multiple information retrieval

mechanisms.

iDRIVE (Computer Literacy, Physics, Biology): Instruction with Deep-Level Reason-

ing Questions in Vicarious Environments where the learner observes two

pedagogical agents demonstrate deep explanations and model effective learn-

ing behavior (e.g. question-asking).

iSTART (Reading): Interactive Strategy Training for Active Reading and Thinking is a

tutoring system for improving reading comprehension by training reading

strategies. Uses multi-agent conversations and specialized semantic analysis

to tutor reading strategies.

iSTART-ME (Reading): The Motivationally-Enhanced (ME) version of iSTART

provides tutoring using an interactive game environment.

MetaTutor (Biology): Tutors self-regulated learning (SRL) skills inside a hypermedia

setting.

Operation ARA (Scientific Reasoning): Operation Acquiring Research Acumen is an

extension of the Operation ARIES project that adds additional features and

game content.

Operation ARIES (Scientific Reasoning): Operation Acquiring Research, Investiga-

tive, and Evaluative Skills is a trialog-based tutoring system and serious game

for teaching critical thinking. Learners resolve inconsistent information about

scientific methods inside a serious game narrative.

QUAID: Question Understanding Aid was a tool to evaluate the comprehensibility of

questions.

SEEK Web Tutor (Critical Thinking): The Source, Evidence, Explanation, and

Knowledge Tutor was designed to help learners evaluate the credibility and

relevance of information using tutoring-enhanced web search, with spoken

hints, pop-up ratings and metacognitive journaling.

SKO Modules (General): Sharable Knowledge Object Modules are encapsulated,

cloud-hosted modules that compose web services to provide tutoring. Currently

being applied to Algebra.

VCAEST (Medical): Virtual Civilian Aeromedical Evacuation Sustainment Training

is designed to train civilian medical personnel on federal guidelines for emer-

gency situations and triage.

WHY2/AutoTutor (Physics): Extension of AutoTutor that approached tutoring con-

ceptual physics. This was part of a larger WHY2 project that included
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WHY2/Atlas. WHY2 was a reference to an old tutoring system called WHY

and the year 2000 (e.g., Y2K).

Writing-Pal (Writing): This tutor attempts to improve essay and academic writing

skills and provides automated evaluation and feedback on essays. It is related to

the iSTART system.

Appendix 2

Table 6 Main tutoring discourse styles, by system

Systema Deep

Question

Vicarious Trialog

Stylesb
Collaborative

Lectures

Navigation &

Queries

Other

ARA/ARIES X X X

AutoTutor X

AutoTutor-3D X Xc

AutoTutor-AS X

AutoTutor Lite X X

BRCA-Gist X X

CSAL X X X Xd

DeepTutor X

GazeTutor X

GnuTutor X

GuruTutor X

HURAA X X

iDRIVE (X)e X

MetaTutor X X Xf

SEEK X X

SKO X X X

VCAEST X X

WHY2/AutoTutor X

a iSTART, iSTART-ME, and Writing-Pal are not listed because their tutoring styles differ significantly from

other tutors, due to their focus on tutoring reading and writing skills
b Multiple trialog styles exist, including teachable agents, trialog-based deep reasoning questions, and peer

competition quiz games such as those used by Operation ARIES. Not all trialog-capable systems use all

available modes in practice, but all are able to use them
c AutoTutor-3D asked for predictions about simulations and responded to those predictions
d CSAL uses click-based inputs, such as interactive graphics, to help improve literacy
e iDRIVE presented deep questions asking and answering vicariously
f MetaTutor had multiple agents that served distinct roles for fostering metacognition
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