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1. INTRODUCTION

Precise positioning of autonomous underwater vehicles 
(AUVs) is an important problem for the ocean science 
community as it attempts to extend its reach to ever-greater 
depths. Terrestrial Global Positioning Systems are of little 
use for an underwater target as the high-frequency/low- 
power signals they employ are unable to penetrate beyond 
the surface layers of the ocean due to reflection and 
absorption by seawater. The Integrated Acoustic System 
(IAS) being designed at the University of Victoria aims to 
overcome this obstacle by developing a high-precision 
underwater acoustic positioning system, similar in operation 
to a commercial long baseline positioning unit, that receives 
power and transmits data via the Victoria Experimental 
Network Under the Sea (VENUS) infrastructure, a cutting- 
edge underwater cabled observatory. The IAS will be 
capable of localizing a target within the IAS range to a 
sufficient accuracy for use as ground truth for testing 
onboard navigation systems.

The IAS, located in a range which covers an area of 
approximately 1.5 km by 1.5 km, is comprised of five 3-m 
high hydrophone towers mounted on the seabed at depths of 
60 m to 130 m, located in the four comers of the range plus 
one in the centre, as depicted in Fig 3. AUVs operating in 
the range are outfitted with a transducer that periodically 
emits an acoustic pulse. Pulse time difference of arrivals 
(TDOA) are used to localize the AUV using a method 
known as multilateration, and the IAS employs the IEEE 
1588 precision timing protocol (PTP), allowing a precision 
of +/- 10 ^s in clock timing (Lentz & Lecroart, 2009), a 
substantial improvement over the milliseconds-order 
accuracy offered by less precise network timing protocols 
typically employed in a data communication network.

2. METHOD

The analysis summarized here consists of two distinct 
studies, involving a ray-based Bayesian inversion algorithm 
developed to estimate AUV position and uncertainties. The 
first study estimates the non-linear localization accuracy for 
a target located within the range, based on a Monte Carlo 
method of estimating uncertainties of the source-location in 
x, y, and z. The second study maps the target positional 
uncertainty as a function of position within the range by 
estimating the linearized posterior uncertainties of the 
source-location in x, y, and z, as well as the lateral 
uncertainty in r = [x2+y2]1/2.

2.1 Linearized Uncertainty Model

Each simulation is executed for three distinct test cases 
which were developed to simulate target positions 
representing a favourable source-receiver geometry (test 
case 1), a poor source-receiver geometry (test case 2), and 
an average over geometries in terms of a series of random 
source positions drawn from within the range (test case 3). 
The simulation scenarios were developed to investigate: (1) 
modelling transmission paths accounting for refraction due 
to a depth-varying SSP instead of using straight rays 
through a constant sound-speed approximation, (2) inverting 
for a potential sound-speed bias in the measured profile, (3) 
accounting for errors in hydrophone position by including 
these positions as unknowns in the inversion, and (4) 
applying path correction factors to account for lateral 
variability in the sound-speed profile. Each scenario is 
studied using a Monte Carlo method in which a large 
number of noisy data sets are inverted to derive statistical 
measures to quantify the various effects. In addition, 
inversions for scenarios 2-4 are carried out for a single 
source transmission, as well as for 20 source transmissions, 
to determine the degree to which the over-determined 
inverse problem improves localization accuracy. 
Linearization error is computed by comparing the results of 
the non-linear Monte Carlo analysis to the linear uncertainty 
estimates of the model covariance matrix.

2.2 Linearized Uncertainty Model

Once linearization errors are verified as described above, the 
posterior uncertainties of the source-location in x, y, z and r 
are calculated. Since the source-location uncertainty varies 
with source location, uncertainties are calculated for the 
source at each point within a grid of positions over the area 
of the test bed. At each grid point, the source-location 
uncertainties are estimated using a linearized Bayesian 
approach that includes the effects of arrival-time errors as 
well as uncertainties in hydrophone locations and sound 
speed. A complete description of these methods can be 
found in Dosso & Ebbeson (2006).

3. RESULTS

Monte Carlo analysis of the scenarios described in Sec. 2.1 
were carried out, and the results from scenario 1 are shown 
in Fig. 1, while the results from a test that combines the 
factors described in scenarios 2-4 into a single inversion are 
showninFig. 2.

Comparing results when inversions are based on straight 
rays versus refracted (curving) rays, Fig. 1 shows systematic
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Figure 1. Histogram of errors for x, y, and z (left, centre, and right 
panels, respectively) for test cases 1, 2, and 3 when inversions are 
based on straight rays (top distribution in each panel) and refracted 
rays (bottom distribution). RMS errors and standard deviations 
(except for TC3) in metres are given in each panel.

error in the straight-ray model that biases the target position 
away from the true position. With the curving-ray model, 
however, results show excellent agreement with the true 
locations, and linearization error, shown in the difference 
between histogram results and the linearized uncertainty 
estimate from the continuous line in TCs 1 and 2, is seen to 
be small.

Figure 2 shows that localization results are substantially 
improved when the sources of error described in scenarios 
2-4 are inverted for as parameters in the model, and 
linearization errors are much reduced. Over-determined
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Figure 2. Histogram of errors for x ,y ,  and z for test cases 1, 2, and 
3 when sound speed bias, hydrophone positions, and path 
correction factors are not included as inversion parameters (top 
distributions), when these factors are included as inversion 
parameters for 1 source transmission (middle distributions), and 
for 20 source transmissions (bottom distributions). RMS errors and 
standard deviations (except for TC3) are given in metres.

inverse problems, where data from 20 source transmissions 
are inverted rather than from a single transmission, show 
improved positional accuracy, particularly in z.

Since linearization errors are shown to be small for the test 
cases investigated above, linearized uncertainty estimates 
can now be used to estimate target positional uncertainty for 
locations throughout the range (Fig. 3) with a high level of 
confidence. Figure 3 shows that the lateral component of 
uncertainty is lowest for target locations towards the centre 
of the range, while the vertical uncertainty is lowest when 
the target is located above a hydrophone.
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Figure 3: Linearized localization u over the range. Panels (a)-(d) 
show absolute errors in x, y, r, and z, respectively, for a source at 
10-m depth. Contours represent uncertainty in metres. Hydrophone 
locations are depicted as white crosses.

4. DISCUSSION

The modeling studies described in this paper served as 
simulation tests for a ray-based Bayesian inversion 
algorithm developed for an acoustic positioning system for 
AUV localization in the IAS test range, which should 
become operational some time in 2012-13 within the 
VENUS infrastructure, and will serve as an functional 
‘ground truth’ test bed for AUV operations.
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