

Heriot-Watt University

Research Gateway

AUV Position Tracking Control Using End-to-End Deep
Reinforcement Learning

Citation for published version:
Carlucho, I, De Paula, M, Wang, S, Menna, BV, Petillot, Y & Acosta, GG 2019, AUV Position Tracking
Control Using End-to-End Deep Reinforcement Learning. in OCEANS 2018 MTS/IEEE Charleston.,
8604791, OCEANS MTS/IEEE, IEEE, OCEANS 2018 MTS/IEEE Charleston, Charleston, South Carolina,
United States, 22/10/18. https://doi.org/10.1109/OCEANS.2018.8604791

Digital Object Identifier (DOI):
10.1109/OCEANS.2018.8604791

Link:
Link to publication record in Heriot-Watt Research Portal

Document Version:
Peer reviewed version

Published In:
OCEANS 2018 MTS/IEEE Charleston

Publisher Rights Statement:
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

General rights
Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and /
or other copyright owners and it is a condition of accessing these publications that users recognise and abide by
the legal requirements associated with these rights.

Take down policy
Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research
Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact open.access@hw.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 27. Aug. 2022

https://doi.org/10.1109/OCEANS.2018.8604791
https://doi.org/10.1109/OCEANS.2018.8604791
https://researchportal.hw.ac.uk/en/publications/67a626f2-c33e-4d4d-84ce-708316bd7eaf

AUV Position Tracking Control Using End-to-End

Deep Reinforcement Learning

Ignacio Carluchoa,b, Mariano De Paulaa, Sen Wangb, Bruno V. Mennaa Gerardo G. Acostaa, Yvan R. Petillotb

ignacio.carlucho@fio.unicen.edu.ar, mariano.depaula@fio.unicen.edu.ar, s.wang@hw.ac.uk,

brunovmenna@fio.unicen.edu.ar, ggacosta@fio.unicen.edu.ar, y.r.petillot@hw.ac.uk
a INTELYMEC Group, Centro de Investigaciones en Fı́sica e Ingenierı́a del Centro

CIFICEN – UNICEN – CICpBA – CONICET, 7400 Olavarrı́a, Argentina
b School of Engineering & Physical Sciences Heriot-Watt University, EH14 4AS, Edinburgh, UK

Abstract—In this article we consider the navigation problem
for an autonomous underwater vehicle (AUV) for reaching
a desired way-point. The navigation problem in underwater
vehicles presents major problems, the highly coupled dynamics
of the vehicles and the unknown parameters of the dynamic
model, make the need for complex control architectures. However,
current developments in reinforcement learning show promis-
ing results for robotics applications. In particular underwater
autonomous vehicles could benefit from this new techniques,
achieving adaptive behavior for real-time problem solving. Based
on this developments the navigation problem is solved using
deep reinforcement learning, in particular the deep deterministic
policy gradient. In this proposal a model free approach is used,
where the raw sensor information is used as inputs to a policy
network, and the outputs of this network are directly mapped to
the thrusters. In addition an adaptive goal driven architecture is
used to allow the agent to reach variable way points consistently.
The obtained simulated results show its capacity for successfully
solving AUV navigation problems.

Index Terms—reinforcement learning, deep reinforcement
learning, AUV, navigation

I. INTRODUCTION

Autonomous underwater vehicles (AUVs) have a prominent

role in oceanic operations, such as in the oil industry, marine

geoscience, biology, archeology and others. The autonomy

provided allows the completion of multiple tasks without

human involvement. However, the required control techniques

to provide enough degree of autonomy are still an active area

of research due to the non linearities of the AUVs as well as

the variable and uncertain environmental conditions that are

typical of oceanic environments. Many classical control archi-

tectures were developed to provide mission autonomy, as in

[1] [2]. However, these proposal need a dynamic model of the

vehicle, which often becomes in a cumbersome task. For this

reason, researchers have been focusing on artificial intelligence

techniques to develop autonomous control strategies.

Within the artificial intelligence field a branch with growing

importance is the Reinforcement Learning (RL) paradigm.

In this unsupervised learning framework, the agent learns

an optimal control policy by its direct interaction with the

environment [3]. This type of learning from experience mimics

a common process in nature. Moreover there is currently

high evidence that indeed reinforcement learning happens in

mammalian brains [4].

Further developments in the RL field were recently obtained

by utilizing deep neural networks as function approximators of

the policy function. In [5], the deep Q-Network (DQN) algo-

rithm was developed, where a deep neural network was used to

parameterize the state action-value function of the well-known

Q-learning algorithm. However, the DQN algorithm can only

be applied to discrete problems, where the state and action

spaces are discrete and finite. To solve this issue the Deep

Deterministic Policy Gradient (DDPG) was proposed in [6] to

obtain a continuous control policy. On the other hand, end-

to-end deep RL (DRL) approaches have been developed to

solve complex manipulation tasks in grasping applications of

robotics arms. In these cases, the robot decision system must

deal with a complex perception system and continuous control

actions in a high dimensional space [7].

In the past some attempts were made to employ RL tech-

niques to the control of AUVs [8], [9]. However the new

developments in DRL could mean a new avenue for the

improvement of real-time operation of underwater vehicles. In

this article we developed a technique for end-to-end position

control of the AUV by using the DDPG. In our formulation,

an agent learns a control policy function to reach a dynamic

goal by directly interacting with the environment.

The algorithmic formulation uses an actor-critic architecture

with a deep neural network to represent the policy function.

In order to do so, the state of the system is determined by the

low-level continuous data obtained from the sensory input.

In the same way, the outputs of the policy are continuous

control signals that can be directly mapped to the thrusters

of the AUV. In addition, an adaptive goal driven architecture

is used, that allows the agent to reach variable way points

and thus successfully solving the navigation problem. The

proposed algorithm was tested in simulation using the dynamic

model of Nessie VII an AUV developed by the Heriot-Watt

University, shown in Fig. 1. The simulated results show the

feasibility of the proposal for different test cases, where the

agent was able to successfully reach a different number of

way-points. Moreover, the ability of the agent to adapt to

unexpected scenarios was also tested, by performing a thruster

fault simulation, showing the capabilities of the proposal.

The rest of the article is structured as follows. Section II

presents a summary of related works. On section III a brief

explanation of reinforcement learning is giving, follow by

Section IV where the proposed algorithm is explained. In

section V the obtained results are shown and finally Section

VI presents some conclusions.

II. RELATED WORKS

In [9], the authors used Q-learning, together with an in-

terpolator to achieve continuous actions, to try to reach a

position goal with an AUV. The approach controlled only

2DOF and was tested in a simulator. A path planning algorithm

was developed in [10] to navigate under oceanic currents.

A Q-learning algorithm was used for planning a local path

following a navigation chart. In [11] model based policy search

was used to train the agent to recover from thruster failures.

The proposed approach was tested in simulation using the

dynamic model of an AUV.

In [12] SARSA was compared with actor-critics methods for

a pipe following task of an AUV. The analysis was made using

a simulator of the AUV. Further developments were achieved

in [8], where an AUV was able to successfully follow an

underwater cable using the natural actor-critic algorithm. A

two step learning approach was taken, meaning the algorithm

was trained first in simulation and then continued in the real

vehicle. In this problem the state space was obtained using

a vision-based system, that gives as output a vector with 4

components, defining therefore the position of the cable with

respect to the AUV. While the output space was a vector of

two components, meaning the control algorithm only controls

2DOF. A variant of the actor-critic algorithm, namely the

episodic natural actor-critic (ENAC), was used in [13] to

generate an adaptive path planner for AUVs. The navigation

module was implemented in ROS, controlling yaw and sway

movements, while the state was a Tile Coded representation

of the state of the AUV.

As previously detailed new developments in the RL field

were recently obtained in [5] by utilizing deep neural network.

Particularly, convolutional neural networks (CNN) were used,

to directly extract the agent state from raw pixel data [14].

The stabilization of the policy was obtained by means of the

experience replay and the introduction of a target network [15].

In this seminal contribution it was shown how an agent is

able to learn a control policy directly from raw pixel data.

Some improvements were proposed to the DQN algorithm

such as in [16] were experience was prioritized, replaying

important transitions more often, thus optimizing learning. In

[17] proposed to use double Q-learning taking advantage of

the target network as a natural replacement for the double Q-

learning original proposal. By using two Q estimators the over-

estimation problem in Q-learning is solved, achieving higher

results. However, this methods are not directly applicable to

problems were the state-action space is too large or continuous.

Other methods are proposed to solve this shortcomings,

such as the Deep Deterministic Policy Gradient (DDPG) [6].

(a) Nessie VII

(b) AUV reference system

Fig. 1. AUV platform used

This algorithm is based on the deterministic policy gradient

[18] and uses the actor critic architecture, together with ideas

of batch normalization and experience replay, to obtain a

continuous control policy. The DDPG algorithm is thus able

to solve a multiple number of problems using both CNN to

extract the states from raw pixel data, as well as low level

information from sensors.

This new developments show a promising avenue of future

research for the development of control algorithms for AUVs.

Indeed, DDPG algorithms have been already tested in AUVs

for a different number of applications [19]–[21]. However,

further research is still required for goal seeking problems.

III. REINFORCEMENT LEARNING

In this control paradigm the agent is able to learn a control

policy π by successive interactions with the environment.

RL is a special case of a Markov Decision Process (MDP),

therefore it can be represented by the tuple : S, A, P, r(.).

Where S is the State Space, A the action space, P the state

transition probability and r(.) the reward function. Therefore

to solve the RL problem the agent must find the optimal

control policy π∗ that defines the optimal action u∗, to in

turn maximize the total expected reward:

J∗ = max Jπ = maxE
π
{Rt|xt = x} (1)

where J∗ is the maximum expected reward, x is the

robot state, Rt is the total return from a state defined as

Rt =
∑

∞

k=0
γkrk+t+1 , and γ is a discount factor.

It is possible to classify RL methods in three large groups:

actor-only, critic-only and actor-critic methods [22]. In this

classification critic-only methods are those that use only a

value function to obtain the policy. Therefore the policy is

directly derived from the obtained state value function (V) or

state-action value function (Q(s, a)). The disadvantage with

these methods is that a discretization of the action space is

usually needed (such as in the Q-learning algorithm).

On the other hand, actor-only methods are those that can

obtain a policy directly, for instance by means of a neural net-

work [23]. Having a explicit policy means that a discretization

of the action space is not necessarily and a continuous policy

function can be obtained. Actor methods, such as the policy

gradient, are known to converge. However, this methods are

prone to variance in the estimation of the gradient and tend to

learn slower.

Finally actor-critic methods combine the advantages of the

previous methods. By having a parameterized policy they can

use continuous actions while the critic reduces the variance by

giving information of the performance. Within this methods is

the deterministic policy gradient, that will be explained in the

following subsection

A. Deterministic policy gradient

The deterministic policy gradient utilizes a actor-critic ar-

chitecture to solve the RL problem. In this case, the critic is

the state-action function Q, defined as:

Qπ(xt,ut) = E{Rt|xt, ut} = E{

∞
∑

k=0

γkrk+t+1|xt,ut} (2)

where ut is the action taken at time t. The state-action

function can be learned using transitions from state xt to xt+1.

If the target policy is deterministic, Q can be learned off-

policy, by following trajectories generated by different policy

β(xt,ut). Then, the critic is updated as in the regular Q-

learning algorithm.

Qw(xt,ut) = E{rxt,ut
+ γQw(xt+1,ut+1) (3)

where Qw is a differentiable parameterized function, so that

Qw ≈ Qπ

Now, if we consider an actor that parameterizes states

directly into actions with parameters θ, thus µ(xt|θ). And we

define a performance objective function J(µθ) = E{rγ |µ}
and a probability distribution, then the performance as an

expectation can be written as:

J(µθ) =

∫

ρµr(s, µ)ds = E[r(s, µθ(s))] (4)

and by applying the chain rule to the expected return, we can

then write:

∇θJ =

∫

ρµ∇θµθ(x)∇aQ
µ(x, u) (5)

∇θJ = E[∇θµθ(x)∇aQ
µ(x, u)] (6)

in [18] was proven that this is the deterministic policy gradient

and its convergence properties. In the following subsection we

will describe with more detail the function aproximators that

are used for representing both the actor an the critic.

B. Deep Neural Networks as function approximators

Previously, the utilization of neural networks as function

approximators for the policy and value functions were un-

successful. However, in recent developments it is common

to see networks with many layers and different architectures.

Constitutional neural networks have been use in multiple

applications to solve classification as well as reinforcement

learning problems. The use of rectifier linear activations units

(ReLu) activation layers as well as new stochastic optimiza-

tion algorithms, such as Adam, allowed researchers to train

networks with bigger architectures.

In particular, for the RL problem, deep neural networks are

used as function approximators for both the critic and actor,

since it allows generalization over large state spaces. However,

the training of the network cannot be applied directly during

training since during exploration the data sets are correlated

causing instabilities on the learning. So, during training phase

small changes of the network weights could cause major

changes to the policy and thus make it diverge from the

optimal.

To address this issues two major solutions were proposed

in [6], that is the use of a replay buffer and the utilization

of a target network. The replay buffer is used to store all

the transitions tuples of the form (xt, ut, rt, xt+1). Instead of

using the last transitions, random samples are obtained from

the replay buffer to train the agent in each step, thus reducing

the correlation between samples. In addition, a copy of the

actor and critic networks is created (µ′ and Q′), which are

called target networks. The weights of these target networks

are updated as:

θ′ = τθ + (1− τ)θ′ (7)

where τ << 1. It was demonstrated that using this updating

strategy greatly improve the stability of the learning process.

C. Deep Deterministic Policy Gradient

With the use of deep neural networks together with the

ideas of the replay buffer and target networks, it is possible

to represent the actor and the critic of the DPG algorithm

presented in the previous subsection.

If a Q function is used as critic, then to learn an optimal

policy we need to obtain an optimal critic. If the neural

network has parameters w then the optimal critic can be found

by minimizing the loss function L(·), of the form:

Fig. 2. Goal driven architecture

L(w) =
1

N

N
∑

i=1

(yi −Qw(xi, ui))
2 (8)

where L is simple a mean squared error function, N

represents a time horizon of N sampling times and yi is the

target state-action values obtained from the target deep neural

network Q′, such that:

yi = r(xi, u
′

i)− γQ′w(xi, ui) (9)

where u′

i is given by the target actor network:

u′

i = µ(xi|θ
′) (10)

Then the gradient of the loss function L(·) is defined as:

∇wL(w) = −
2

N

N
∑

i=1

(yi −Qw(xi, ui))
∂Qw(xi, ui)

∂w
(11)

Once the loss and gradient of the critic is defined we

can define the updating rule for the actor, by following the

policy gradient theorem. If the actor is represented by a neural

network with parameters θ, and J(µθ) = Qw(xi, µ(xi|θ)|w),
then by following the deterministic policy we obtain:

∇θJ =
∂Qw(xi, ui)

∂u
·
∂µ(xt|θ)

∂θ
(12)

and thus the optimal policy can be found. Note that the updates

to the target networks must be done as shown in Eq. (7).

IV. END-TO-END DEEP RL

We aim to develop a technique that allows us to solve the

navigation problem end-to-end for AUV. Current underwater

vehicles have four, six or more thrusters to control the 6DOF

of the AUV. This means that the agent must outputs as many

continuous control signals to achieve the dynamic goal. The

RL techniques previously explained can help the agent solve

the particular end-to-end problem, i.e. reaching a desired goal.

However, RL lacks of generalization and therefore the agent

should be retrained if the target goal (in this case the way-

point) changes. Therefore, we propose an adaptive goal driven

architecture which will be explained in the next subsection.

Algorithm 1 Algorithm 1

1: Initialize/Load Q and µ networks

2: Initialize target networks Q′ ← Q and µ′ ← µ

3: Initialize/Load replay buffer R

4: for j = 1 to M do

5: Initialize a random noise process for exploration

6: Get desired way-point xref

7: Set x0 from AUV initial measurements and xref

8: for t = 1 to T do

9: Select action ut = µt(xt|θ) + noise

10: Execute action ut

11: if |R| > m then

12: Sample a random minibatch S of m transitions

13: for i=1 to N do

14: Obtain u′

i+1 = µ′(xi+1|θ
′)

15: Set yi = ri + γQ′(xi+1, u
′

i+1|w
′)

16: end for

17: Obtain the critic parameterization w by minimizing

the loss function L(w)
18: Obtain the actor policy parameterization θ using

the deterministic policy gradient

19: Update the actor target network µ′

20: Update the critic target network Q′

21: end if

22: Get AUV dynamic measurements and set state xt+1

23: Observe the reward rt
24: Store the transition (xt, ut, rt, xt+1) in R

25: Set xt = xt+1

26: end for

27: end for

28: Q(·, ·|w), u(·|θ), R

A. Goal driven architecture

In order to avoid re-training the network every time a new

goal is required, an architecture to help the neural network

agent to generalize over different way-point goals is created. In

order to do so, we give include information of the desired goal

into the system state configuration. Therefore, if a change in

the goal occurs the current state (xt) changes as a consequence.

The information of the goal is provided to the agent as the

vector xe obtained from the current position (xpos) and the

desired goal (xref):

xe = xref − xpos (13)

In Fig. 2 the architecture of the system is shown. The

deep agent is shown together with the goal drive architecture

forming the end-to-end agent. As it can be seen in the figure

the agent receives information from the sensory system and the

goal driven architecture. The current state is thus defined as

xt = [xpos, xe, vt, ut−1]
T . The information from the sensory

system is the current position, the longitudinal speed. In

addition the past thrusters commands are also feed to the

end-to-end control system module giving information about

the system behavior. Finally, the current goal brings an extra

information dimension for the end-to-end control system.

Another improvement implemented in our architecture is

the goal decay. The goal in the navigation problems means

reaching a neighborhood of the desired xreq . In a three

dimensional space, we regard an spheric neighborhood, i.e.

a sphere with radius β. Initially, when the agent has a poor

policy, reaching a goal with low β is extremely difficult, which

means that the agent will not be able to experience enough

successful episodes to learn an adequate policy. On the other

hand, if β is too big, even if the agent learns a policy to reach

this way-point, the navigation problem is not considered to be

successfully solved since the distance to the xreq is too large

for practical applications.

Therefore by decaying β as the agent learns and gains expe-

rience, it allows it to experience enough successful episodes.

And once the policy is learn, the β is small enough so that

the navigation problem can be consider as solved.

With this modifications we were able to enhance the deep

agent allowing it to solve more complex tasks and, more

importantly, generalize over different goals.

B. End-to-End RL algorithm

The final end-to-end proposal is based on an RL agent using

the deterministic policy gradient together with deep neural

networks as policy approximators. This approach is expanded

by means of the goal driven architecture.

Algorithm 1 outlines the pseudo code of our proposal. In the

first three lines the networks and replay buffer are initialized.

Note that these can also be load, with information about

collected experience in previous training, and this may be an

important issue for deployments in the real vehicles.

In our formulation, reaching each way-point can be seen as

an episodic task. Therefore we define an outer loop that circles

trough episode. The episode ends if the agent reaches the goal

or if a certain amount of time (T) passes without reaching to

goal. Following an initial desired way-point is defined, during

training this is simply a randomly generated point into a certain

region. With this information and the initial AUV position, the

state vector x0 is generated.

In line 8 the inner loop is defined. This loop cycles from

time to a final time T , if the agent is unable to reach the

way-point this time lapse, the episode is considered as ended

and a penalization is given. Inside the loop, in line 9, the

agent chooses an action to then execute it. If the number of

transitions stored in the replay buffer (|R|) are bigger than a

number m (m is the size of the minibatch used for training)

then a training step is carried out. During the training a

minibatch of the stored transitions is taken from buffer R. This

minibatch S is used to update the critic network by minimizing

the loss function L presented in Eq. 8, using stochastic

optimization, and to update the actor network following the

deterministic policy gradient as in Eq. 11. The training is

then completed by updating the target networks as previously

explained.

Fig. 3. Test 1: 3D position of AUV

Once the training step has been completed and after the

action ut was applied on the robot, the system evolves to the

state xt+1 and it is observed (line 22). The reward of taking

the action is observed and the transition step is stored in buffer

R. Then the current state x is updated (line 25), and the loop

continues until the training has been completed. The outputs

of the algorithm are the policy networks and the replay buffer.

V. RESULTS

The proposed approach was tested in simulation using the

model of Nessie VII, developed by the Heriot-Watt University,

Fig. 1. This AUV has 6 thrusters, indicated as T1 to T6 in Fig.

1b, that allow for a 5DOF control (surge, heave, sway, pitch

and yaw).

The goal of the algorithm is to reach a way-point

(xref) in space. A way-point is defined as a vector of the

(north, east, down) coordinates in meters. During training,

a new xref is generated randomly each episode. The AUV

starting point x0 is the same from episode to episode. We

define the reward function as follows:

rt =

10, if d(x, xref) ≤ β

−1− f(Tr), if d(x, xref) > β

−10, if d(x, xref) > βmax

(14)

where β is the radio of a sphere in space that defines

a neighborhood to xref in which we consider the goal as

reached, βmax is a ratio of a bigger sphere so that β >> βmax,

d is the euclidean distance function, and f(Tr) is a function

that weights the thruster usage. Therefore the reward function

is as follows, if the distance of the AUV with respect to the

way-point is less than β a positive big number is given as

reward. On the contrary if the distance is bigger a negative

number is given as reward (punishment) discounting also for

the amount of thruster usage. Finally, if the distance of the

AUV to the the way-point is bigger than a safe value βmax

then a big negative reward is given and the episode is ended.

This is done to consider physical restrictions that may occur

during the deployment of the algorithm on the real vehicle.

(a) Test 1: Position results

(b) Test 1: Thruster output

Fig. 4. Test 1

Initially β is fixed as β = 1.5m and as the number of episodes

progresses it decay to β = 0.5m after 3000 episodes, and after

5000 it achieve its minimum value fixed in 10−4m. In this

way, we assure us that along the initial episodes the goal is

sufficiently large so that the agent will be able to achieve it.

Therefore, the agent could have some successful experience

from which the learning process progress.

A. Test case scenarios

With the explained architecture we obtained the results

shown below. For this we trained the agent for 6000 episodes

each episode consisting of 700 time steps long, with a time

step equal to 0.1 s. The agent was trained using Tensorflow, on

an AMD eight-core processor with 16 GB of memory and a

Nvidia GPU, the Titan X. The resulting actor and critic policy

were tested in different scenarios, called test 1 and test 2.

(a) Test 2: Position results

(b) Test 2: Thruster output

Fig. 5. Test 2

In test 1 the desired way point was defined as xref =
[7., 6., 10.]. The starting position was x0 = [0., 0., 5.], accord-

ing to the reference system defined as in Fig. 1b. The goal

of the agent is to reach the way point as fast as possible,

following the reward function defined in Eq. 14.

In Fig. 4 a 2D representation of the trajectory is shown,

together with the thruster usage. As it can be seen the AUV

successfully reaches the goal in around 25s. In Fig. 6 a 3D

plot of the trajectory followed by the AUV, according the

obtained policy, is shown. It is worth noting that the dynamics

of the AUV are highly coupled and so it is the thrusters torque

applied to the systems.

A second test is shown in Fig. 5, where the goal is set

as xref = [7., 6., 10.]. In this test case the AUV reaches the

goal in almost 17s. In Fig. 5a it can be seen that since the

AUV starts with a position facing away from the way-point

a more aggressive maneuverer is needed in order to reach

xref . However the agent has no difficulty reaching the desired

reference point.

Fig. 6. Test 2: 3D position of AUV

B. Fault recover scenario

After proving that the agent is able to reach way-points

in a normal scenario a fault recovery test case was perform

in order to analyze the abilities of the agent to recover from

unexpected scenarios. To this end a thruster failure is simulated

on Thruster one (T1). The failure simulates a thrust reduction

of 90%. Results from running test case 1 incorporating this

failure are shown in Fig. 7. It can be seen that, due to the lack

of thrust, the AUV undershoots the goal, having to perform a

heavy turn in order to compensate for the failure. However, the

agent is able to reach the goal. In Fig. 8 both the thruster usage

and the xy position can be seen. In Fig. 8b the T1 output is

shown clipped to display the actual thrust obtained from this

thruster due to the simulated failure. It is important to note

that even with a failing thruster the agent was able to reach

the goal in around 30s.

Fig. 7. Fault recover: 3D position of AUV

(a) Fault recover: Position results

(b) Fault recover: Thruster output

Fig. 8. Fault recover

VI. CONCLUSION

In this article an end-to-end reinforcement learning agent,

capable of solving the navigation problem, was presented. For

this end, the deep deterministic policy gradient method was

used in an actor-critic architecture. In order to solve the lack

of generalization problem of the RL agent, a goal oriented

architecture was implemented. With this inclusion the agent

was able to learn how to successfully navigate to different

required way-points without the need of a continuous re-

training from scratch.

The proposed system was tested in simulation using the

dynamic model of Nessie VII, an autonomous underwater

vehicle used as an experimental platform in multiple research

works. The obtained simulation experiments demonstrated the

feasibility of the proposed architecture for episodic navigation

tasks, typical for AUV missions. Moreover, the agent was

able to navigate to the way-point during a simulated thruster

failure scenario, demonstrating the adaptive behavior of the

proposed architecture. As future works, the authors propose

the deployment of the developed technique in the real robot

to further explore the capabilities of the reinforcement learning

techniques in underwater marine robotics. We also think that

a more in depth analysis of the reward function could be

performed in order to optimize the performance of the thruster

output.

VII. ACKNOWLEDGEMENT

We gratefully acknowledge the support of NVIDIA Corpo-

ration with the donation of the Titan X Pascal GPU used for

this research. Particularly, we thank UNCPBA and CONICET

for the financial support of Ignacio Carlucho at the Ocean

System Laboratory.

REFERENCES

[1] L. Lapierre and B. Jouvencel, “Robust nonlinear path-following control
of an auv,” IEEE Journal of Oceanic Engineering, vol. 33, no. 2, pp.
89–102, April 2008.

[2] C. Barblat, V. D. Carolis, M. W. Dunnigan, Y. Ptillot, and D. Lane,
“An adaptive controller for autonomous underwater vehicles,” in 2015

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), Sept 2015, pp. 1658–1663.

[3] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[4] Y. Niv, “Reinforcement learning in the brain,” Journal of Mathematical

Psychology, vol. 53, no. 3, pp. 139 – 154, 2009, special Issue: Dynamic
Decision Making.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. a. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
2015.

[6] D. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa,
Y., Silver, D., Wierstra, “Continuous control with deep reinforcement
learning,” Foundations and Trends® in Machine Learning, vol. 2, no. 1,
pp. 1–127, 2016.

[7] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-End Training
of Deep Visuomotor Policies,” Journal of Machine Learning Research,
vol. 17, pp. 1–40, 2016.

[8] A. El-Fakdi and M. Carreras, “Two-step gradient-based reinforcement
learning for underwater robotics behavior learning,” Robotics and Au-

tonomous Systems, vol. 61, no. 3, pp. 271–282, 2013.

[9] C. Gaskett, D. Wettergreen, and A. Zelinsky, “Reinforcement learning
applied to the control of an autonomous underwater vehicle,” in In Proc.

of the Australian Conference on Robotics and Automation (AUCRA99,
1999, pp. 125–131.

[10] B. Liu and Z. Lu, “Auv path planning under ocean current based
on reinforcement learning in electronic chart,” in 2013 International

Conference on Computational and Information Sciences, June 2013, pp.
1939–1942.

[11] M. Leonetti, S. R. Ahmadzadeh, and P. Kormushev, “On-line learning
to recover from thruster failures on autonomous underwater vehicles,”
in 2013 OCEANS - San Diego, Sept 2013, pp. 1–6.

[12] S. A. Fjerdingen, E. Kyrkjeboe, and A. A. Transeth, “Auv pipeline
following using reinforcement learning,” in ISR 2010 (41st International

Symposium on Robotics) and ROBOTIK 2010 (6th German Conference

on Robotics), June 2010, pp. 1–8.

[13] G. Frost, F. Maurelli, and D. M. Lane, “Reinforcement learning in
a behaviour-based control architecture for marine archaeology,” in
OCEANS 2015 - Genova, May 2015, pp. 1–5.

[14] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, “Object recognition with
gradient-based learning,” in Shape, Contour and Grouping in Computer

Vision. London, UK, UK: Springer-Verlag, 1999, pp. 319–.

[15] M. Riedmiller, “Neural fitted Q iteration - First experiences with a
data efficient neural Reinforcement Learning method,” Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 3720 LNAI, pp.
317–328, 2005.

[16] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” CoRR, vol. abs/1511.05952, 2015.

[17] H. v. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with
double q-learning,” in Proceedings of the Thirtieth AAAI Conference on

Artificial Intelligence, ser. AAAI’16. AAAI Press, 2016, pp. 2094–
2100.

[18] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic Policy Gradient Algorithms,” Proceedings of the 31st

International Conference on Machine Learning (ICML-14), pp. 387–
395, 2014.

[19] H. Wu, S. Song, K. You, and C. Wu, “Depth control of model-free auvs
via reinforcement learning,” IEEE Transactions on Systems, Man, and

Cybernetics: Systems, pp. 1–12, 2018.
[20] I. Carlucho, M. De Paula, S. Wang, Y. Petillot, and G. G. Acosta,

“Adaptive low-level control of autonomous underwater vehicles using
deep reinforcement learning,” Robotics and Autonomous Systems, jun
2018.

[21] R. Yu, Z. Shi, C. Huang, T. Li, and Q. Ma, “Deep reinforcement learning
based optimal trajectory tracking control of autonomous underwater
vehicle,” in 2017 36th Chinese Control Conference (CCC), July 2017,
pp. 4958–4965.

[22] I. Grondman, L. Busoniu, G. A. D. Lopes, and R. Babuska, “A
survey of actor-critic reinforcement learning: Standard and natural policy
gradients,” IEEE Transactions on Systems, Man, and Cybernetics, Part

C (Applications and Reviews), vol. 42, no. 6, pp. 1291–1307, Nov 2012.
[23] A. El-Fakdi, M. Carreras, N. Palomeras, and P. Ridao, “Autonomous

underwater vehicle control using reinforcement learning policy search
methods,” in Europe Oceans 2005. IEEE, 2005, pp. 793–798 Vol. 2.

