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Auxetic materials are endowed with a behavior that contradicts common sense, when subjected to an axial tensile load they

increase their transverse dimension. In case of a compression load, they reduce their transverse dimension. Consequently, these

materials have a negative Poisson’s ratio in such direction. This paper reviews research related to these materials. It presents

the theories that explain their deformation behavior and reveals the important role represented by the internal structure. Their

mechanical properties are explored and some potential applications for these materials are shown.
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1. Introduction

The Poisson’s ratio of a material is a dimen-

sionless constant that depends on the direction of

an applied load, and describes the ratio of nega-

tive transverse strain to the longitudinal strain of

a body submitted to a tensile load [1]. It provides

a universal way to compare the structural perfor-

mance of real homogeneous and non-homogeneous

materials [2]. This elastic constant was implicitly

assumed to be positive [3], as common sense dic-

tated that no isotropic material in nature had a

value of Poisson’s ratio less than zero [4]. However,

there are materials that present an inverse behavior.

These materials expand their transverse dimension

when submitted to an axial tensile strength and de-

crease it when compressed [5]. This way, they have

a negative Poisson’s ratio. The materials that re-

veal this behavior have been called anti-rubber [6]

and dilational materials [7], but it was Ken Evans

who coined the currently accepted term: “auxet-

ics” [8]. This name, derived from the Greek word

auxetikos (αυχητικoς ), means “that which tends

to increase” [9].

This kind of behavior does not contradict the

classical theory of elasticity [10, 11]. In the theory,

for isotropic 3D materials the Poisson’s ratio can

assume values between −1 and 0.5 [12] while for
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isotropic 2D materials it can assume values from

−1 to 1 [10]. The violation of these limits gives

rise to instability [13].

In isotropic systems, the Poisson’s ratio is in-

dependent of the direction, but in the case of

anisotropic materials the determination of this ratio

depends on the direction of the stretch [14] and the

other transverse directions [15]. There are materi-

als that reveal an auxetic behavior in some direc-

tions and non-auxetic behavior in the others [16]

(for example in α-Cristobalite [17]). These kinds

of materials are known as partial auxetics [18, 19].

Contradicting common sense, partial auxetics are

quite common, as 69 % of cubic elemental met-

als present auxetic behavior in at least one direc-

tion [20]. This interaction between the different di-

rections of deformations may generate interesting

values of Poisson’s ratio that exceed largely the

presented isotropic values [21, 22] for orthotropic

and anisotropic materials [23].

Even though the existence of auxetic materials

has been admitted for more than 150 years [24],

only a few examples have been found in nature. In

1882 the case of iron pyrite monocrystals was re-

ported by experiments on the twisting and bending

of mineral rods [25]. This was the first study that

proved the existence of this kind of material in na-

ture. It was estimated that its Poisson’s ratio was

about −1/7 [26].
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Since then, other cases, such as polymorphic sil-

icones [27], zeolites [28] and silicates [29] have

been considered. Examples of auxetic behavior

in biological tissues were also found. There are

some classical examples such as cat skin [30],

cow teat skin [31] and cancellous bone [32]. Ad-

ditional studies suggest that inorganic and biolog-

ical fibrous materials in general present auxetic

behavior [33].

Due to the shortage of auxetics in nature and the

difficulty in attributing them a specific application,

there was an effort to synthesize them [34]. This

objective was completed for the first time in 1987,

by manufacturing the first auxetic foam [35]. This

was possible by working out the material internal

structure, considering the way that it deforms when

subjected to a load [36].

2. Structures

The approach to the manufacturing of auxetic

materials, considering not only the base material,

but the internal structure and deformation mech-

anism [37], allowed the expansion of the scale in

which this behavior occurs. The control of the ma-

terial structure made possible to tailor the mate-

rial properties [38]. This way, it became possible

to elaborate auxetic macrostructures [39].

Using these structural models, many theories

have been developed to explain the behavior of

these materials.

At this moment, there are some accepted

structural deformation models, like reentrant

structures [40, 41], the rotating rigid and

semi-rigid deformation model [42] and chiral

structures [43–47].

Reentrant structures are formed by hexagonal

face cells, which have the edges protruding out-

wardly. These kinds of structures are represented

in Fig. 1.

In the case of a uniaxial tensile load, the reen-

trant edges are subjected to bending and pulling

simultaneously [49]. The consequence of this de-

formation is the simultaneous expansion of the cell

faces, increasing cellular volume. As a result, the

dimensions of the cell increase with the tensile de-

Fig. 1. A conventional cell (a) and an ideal auxetic cell

(b) [48].

formation and the Poisson’s ratio of the structure is

negative.

In Fig. 2, a two-dimensional reentrant auxetic

cell subjected to a tensile load is presented. As can

be seen, the cell ribs tend to open, forcing the in-

crease of the cell’s area. This confirms the auxetic

behavior of these structures.

Fig. 2. Illustration of auxetic behavior on reentrant

structures [49].

However, the auxetic behavior of these struc-

tures is more complex than the initial geometri-

cal models predicted. It is known that the negative

Poisson’s ratio of these structures depends not only

on the reentrant geometry, but also on the simul-

taneous flexure, hinging and stretching of the cell

walls [50].

The rigid and semi-rigid rotation model is com-

posed of a system of rigid geometry, connected by

semi-rigid hinges in its corners. The layout of these

structures is made in such way that a tensile defor-

mation generates a bidirectional expansion [49], as

shown in Fig. 3. Being subjected, for example to a

tensile load, the hinges in the corners rotate, forc-

ing the structure to unfold on itself.
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Fig. 3. Deformation behavior in rigid and semi-rigid ro-

tating units [51].

This kind of internal structure can be obtained

in numerous geometries, including rectangles [42],

squares [52, 53], triangles [36, 51], and others [23,

37]. In Fig. 4 some examples of rigid units models

that exhibit auxetic behavior are shown.

Fig. 4. Square shaped (a) and triangular (b) rigid unit

models [36, 52].

The referred examples concern two-

dimensional structures of rigid rotating units,

however, recent studies demonstrate some attempts

to transform them into three-dimensional struc-

tures, such as the one represented in Fig. 5 [54].

Fig. 5. Three-dimensional rotating cube structure [54].

The main characteristics of chiral structures is

that they do not have a symmetric reflection, only

rotational reflection [55]. Fundamentally, they are

composed of a central node, connected by ribs,

whose geometry can vary [49]. These two elements

are joined by an almost tangential contact of the rib

with the external face of the node. These structures

are represented on a two-dimensional plane and are

isotropic, (see Fig. 6). Their Poisson’s ratio is close

to −1 [56].

Due to their geometry, when chiral structures

are submitted to stress, they have a particular defor-

mation behavior. Applying a compressive or tensile

load, each one of the individual cells suffers a tor-

sion effect. In this way, the central node of every

cell will rotate [55]. This rotation makes the cells

twist and untwist, generating a contraction or ex-

pansion behavior in the whole structure. In Fig. 7,

a chiral structure submitted to a uniaxial compres-

sive load is presented. Considering the generated

deformation, its auxetic behavior can be confirmed.
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Fig. 6. Chiral structure (a) [56] and an individual chiral

cell (b) [57].

Fig. 7. Confirmation of auxetic behavior on a chiral

structure [58].

3. Properties

Auxetic materials are characterized by a pecu-

liar behavior and, as a consequence, they have pe-

culiar and rare mechanical properties [59]. Explor-

ing these materials, one can find enhanced proper-

ties [60] that contradict common sense, when com-

pared to the characteristics of so called “regular”

materials. Some of these properties are presented

in the following sections.

3.1. Resistance to indentation

When a non-auxetic material is subjected to in-

dentation, the load applied by the indentor locally

compresses the material. To compensate this lo-

calized pressure, the material is spreading in the

direction perpendicular to the applied load [61]

(Fig. 8a).

However, when an indentation occurs in an

isotropic auxetic material, a local contraction is ob-

served. There is a flow of material that accumu-

lates under the indentor (Fig. 8b), and an area of

denser material with higher resistance to inden-

tation is created [9]. In this way, auxetic materi-

als have an improved indentation resistance, when

compared to conventional materials [62, 63].

Fig. 8. Indentation behavior in non-auxetix (a) and aux-

etic (b) materials [64].

The increase in indentation resistance can be

justified by the theory of elasticity. The indenta-

tion resistance is associated to the material hard-

ness (H). This property is correlated to the Pois-

son’s ratio by equation 1 [65]:

Hα

[

E

(1−ν2)

]γ

(1)
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where E is the Young’s modulus, ν is the Poisson’s

ratio of the base materials and γ is the constant

that assumes the value 1 or 2/3 in the case of uni-

form pressure distribution or hertzian indentation,

respectively.

Analyzing equation 1, it can be inferred that for

3D isotropic materials, when the Poisson’s ratio de-

creases to the extreme values near −1, the hardness

of the material tends to infinity [66]. As the up-

per limit of Poisson’s ratio for 3D isotropic solids

is 0.5, the observed values are considerably lower.

However, the upper limit of the Poisson’s ratio for

2D isotropic systems is 1 [67, 68]. Thus, the mate-

rials with such positive Poisson’s ratio values can

also have infinite hardness values.

3.2. Shear resistance

For similar situations, auxetic materials are

more resistant to shear forces, than “regular” ma-

terials [65]. The classical theory of elasticity for

3D isotropic solids implies that the elastic behavior

of a body can be described by two of four con-

stants: the Young’s modulus (E), the shear modulus

(G), the bulk modulus (K) and the Poisson’s ratio

(ν) [69]. In 3D, the relationship between these con-

stants is given by equations 2 and 3 [70]:

G =
3K(1−2ν)

2(1+ν)
(2)

G =
E

2(1+ν)
(3)

Analyzing the presented equations, it can be

easily observed that when the Poisson’s ratio de-

creases, the value of the shear modulus and conse-

quently the shear resistance increases.

In Fig. 9, the bulk and shear moduli of isotropic

solids are graphically correlated with the Poisson’s

ratio. It can be observed that for stable uncon-

strained solids, the shear modulus must be posi-

tive [71]. This implies that the Poisson’s ratio has

values between −1 and 0.5, which is the isotropic

solid limit. This relationship causes that at the ex-

treme negative values of Poisson’s ratio the shear

modulus tends to infinity.

Fig. 9. Correlation of the bulk and shear moduli with

the Poisson’s ratio and stability [72].

3.3. Fracture resistance

Materials that possess a negative Poisson’s ratio

have a better resistance to fracture than “regular”

materials [73, 74]. They also have low crack propa-

gation [75] and more energy is necessary to expand

them than in case of “regular” materials [76]. Thus,

these kinds of materials have a fragile fracture.

In his work on the crack growth, Maiti demon-

strated that the stress intensity factor for con-

ventional foams (K∗
IC) is proportional to the nor-

malized density and can be described by equa-

tion 4 [77]:

K∗
IC

σ f

√
πl

= 0.19

(

ρ∗

ρs

)

(4)

where σ f is the fracture stress of the cell rib, l is

the rib length, ρ* is the foam density and ρs is the

density of the foam based material.

Later, the work by Choi and Lakes showed that

in the case of reentrant foams, Eq. 4 was not ap-

plicable and that the stress intensity factor for this

kind of foams (Kr
IC) could be expressed by equa-

tion 5 [73]:

Kr
IC

σ f

√
πl

= 0.1

√

1+ sin(π
2
−ϕ)

1+ cos(2ϕ)

ρ∗

ρs

(5)

where ϕ is the rib angle of the reentrant cell, pre-

sented in Fig. 10.
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Fig. 10. Schematic cross-section view of a reentrant

cell [73].

In the same work Choi observed that for the

analyzed reentrant foam, the relationship between

stress intensity factors could be established accord-

ing to equation 6 [9]:

Kr
IC

K∗
IC

= 0.53

√

1+ sin(π
2
−ϕ)

1+ cos(2ϕ)
(6)

Experimental results also showed that for

higher values of volumetric compression, reentrant

foams revealed an increased fracture toughness, as

demonstrated in Fig. 11.

Fig. 11. Experimental normalized fracture toughness.

Open symbols: conventional foam and solid

symbols: reentrant foam [73].

This phenomenon can be explained by the ba-

sic definition of auxetic materials. When these ma-

terials are submitted to a tensile strength, they in-

crease their dimensions. This dimensional growth

is verified macroscopically. However, the visual-

ized growth is only the result of the dimensional

increase of each individual auxetic cell. This way,

whenever a crack is formed, the expansion of the

cell will tend to close it.

3.4. Acoustic absorption

Auxetic foams have a superior capacity of

acoustic absorption than conventional foams [78,

79]. The auxetic structure plays a relevant role in

the attenuation of acoustic vibrations. Their per-

formance is more relevant in frequencies under

1500 [Hz] [80].

An example of the magnitude of this effect is

the study of ultra-high-molecular weight polyethy-

lene. This material presents an ultrasonic attenua-

tion value 1.5 times higher than a sintered foam and

3 times higher than a conventional foam, composed

of the same base material [81].

Another example of the superior performance

of auxetic materials was observed by Ruzzene

while studying the attenuation of elastic waves over

certain frequency bands (stop bands) and the direc-

tional characteristics in hexagonal honeycombs and

auxetic (bowtie) lattices [82]. The studied periodic

structures are presented in Fig. 12.

Fig. 12. Hexagonal honeycombs (a) and auxetic

(bowtie) lattice (b) unit cells [82].

Numerical results demonstrated that for a rib

angle θ = 30°(θ = −30°, for auxetic cells), the

auxetic structures showed a superior wave attenua-

tion in the great majority of that structures orienta-

tion angles (φ ) and wave frequencies (ω), as shown

in Fig. 13.

3.5. Synclastic behavior

Synclastic behavior is a body’s ability to deform

in a shape of a dome when it is bent [83].
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Fig. 13. Band gap representation in hexagonal honey-

combs (a) and auxetic (bowtie) lattices (b) [82].

Reviewing the basic concepts of mechanics of

materials, when a body is bent, it is submitted to

tensile and compression stresses. Consider the con-

cavity formed by the bending deformation. Focus-

ing on the case of auxetic materials, there is an ex-

pansion and a contraction of the material in the

exterior and the interior of the material, respec-

tively. While bending the auxetic material, a dome

is formed [84], as a result of expansion of the pulled

material and the contraction of the compressed por-

tion. This behavior is shown in Fig. 14.

Fig. 14. Anticlastic hexagonal honeycomb (a) and syn-

clastic auxetic reentrant structure (b) [85].

The ability to form the doubly curved shapes is

useful [86], e.g. because it provides a way to fab-

ricate this kind of complex structures without the

necessity of using damaging techniques nor addi-

tional machining [87], which are normally used to

obtain such shapes [61].

3.6. Variable permeability

Due to the expansion and contraction behavior,

namely in auxetic foams, it can be said that these

structures have variable permeability.

In auxetic foams, the variation of the structure

dimensions is the reflection of the change of the di-

mensions of each individual cell. Consequently, it

can be seen that each cell of the structure is nothing

but a pore that can be opened and closed [49] in the

more convenient way. This characteristics can be

observed in Fig. 15.

Fig. 15. Variable permeability [36].

3.7. Shape memory auxetics

Shape memory is the ability of a material sub-

jected to a plastic or semi-plastic deformation

to remember and return to its initial shape and

size, when submitted to a specific thermal stimula-

tion [88, 89]. Studies in this field show that it is pos-

sible to obtain auxetic foams that can be reverted

to conventional foams several times without loss

of mechanical characteristics [90, 91]. This prop-

erty is extremely useful in situations that require

auxetic and non-auxetic variable mechanical prop-

erties [92], where the variation of temperature is

involved [93].

3.8. Other auxetic properties

The improved fracture toughness and hardness

of auxetic materials suggest that these materials can

have better tribological attributes than conventional

materials. This can be justified by the properties

that reduce the abrasive wear in auxetic materials.

This possibility was confirmed in the work by

Uzun who showed that auxetic based weft knit-

ted fabric had an increase of 15 – 35 % of abra-

sive wear resistance when compared to conven-

tional polypropylene knitted fabrics [94].

Another interesting property of auxetics is the

dielectric behavior in chiral honeycombs. It was

suggested by Kopyt that the panels composed of

hexa-chiral honeycombs may act like a homoge-
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nous medium, despite their complex and heteroge-

neous geometry [95].

4. Applications

Considering the properties that are character-

istic of these materials thanks to their negative

Poisson’s ratio, there were created conditions for

development of new potential applications and

mechanisms that otherwise would be impossible to

obtain [96].

One possible application of these materials is

the manufacturing of piezoelectric sensors [97].

The low bulk modulus [65] and the capacity to

obtain an auxetic matrix that can follow the defor-

mation of the piezoelectric rods [64], makes this

sensors more sensible to the variation of pressure.

This behavior can be observed in Fig. 16.

Fig. 16. Auxetic piezoelectric sensor [64].

As it was mentioned earlier, one of the most

desirable properties of these materials is the vari-

able permeability. This property can be used in

manufacturing of intelligent filters, which can be

designed with different sizes and particular ge-

ometries to control the passage pressure while

filtering [98].

An interesting field of application for these ma-

terials is biomedical engineering. The evolution

of these materials will allow the manufacturing

of blood vessels that expand their walls when the

blood is pumped [99] or the development of new

surgical tools and mechanisms. Consider, for ex-

ample Fig. 17, where a possible blood vessel dilator

is represented.

Taking into account that the most obvious char-

acteristics of these materials is their expansion

when submitted to a tensile load, there can be found

common applications that use this as an advantage.

One studied application is the use of auxetic fas-

teners. These fasteners contract when inserted and

Fig. 17. Blood vessel dilator [64].

expand on an attempt of removal. In this way, a big-

ger force is required to remove them [100].

Fig. 18. Behavior of auxetic fastener [100].

It can be observed in Fig. 18 that the expansion

originating during the removal required bigger load

than for the fastener insertion.

Another example of the application of aux-

etic materials is the manufacturing of a chiral-

based honeycomb deployable antenna for deep-

space missions, using the shape-memory proper-

ties [89]. This antenna is folded while transported,

as there is a very limited area for rocket launchers.

Once in space, the shape memory structure uses the

thermal energy of the sun to unfold to its original

size, as shown in Fig. 19.

Auxetic textile structures are also a fast grow-

ing field. Their development should lead to the fab-

rication of materials with improved energy absorp-

tion, high volume change, wear resistance and dra-

peability [101]. Some of these characteristics can

be used in the aerospace, automotive and military

sector [102].
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Fig. 19. Folded (a) and unfolded (b) auxetic cellular an-

tenna [89].

The production of this kind of textiles can be

executed by two basic methods. The first one is the

use of auxetic based fibers directly in the knitting

and weaving of the textiles [103]. The other one

is the production of auxetic textiles using conven-

tional fibers weaved or knitted into a structure that

is auxetic by itself [101, 104].

The use of auxetic textiles can already be found

commercially, for example in applications that use

GoreTex and polytetrafluorethylene [66].

One of the most promising fields is the devel-

opment of auxetic materials at a nanoscale, for ex-

ample in the applications with carbon nanotubes.

These kinds of materials are basically made of

the molecules composed of a monolayer of carbon

atoms arranged in a cylindrical lattice [105]. One of

the applications of this nanostructured auxetics can

be the molecular variable permeability filters [106].

The simulations that represent these nanostruc-

tures suggest that under certain geometric and force

conditions, when the stretching deformation in the

cell walls dominates, it is possible to obtain nega-

tive values of Poisson’s ratio [105].

5. Conclusions

As a relatively new class of materials, auxetics

are generating a progressive interest in the scien-

tific community. Their counter-intuitive behavior,

allowed by the deformation mechanism of the in-

ternal structure, gives new perspectives in terms of

possible applications of these materials.

Although this kind of behavior is not rare in

anisotropic materials (partial auxetics), there are

real advantages in the continuous development of

isotropic materials with negative Poisson’s ratio

(auxetics). This objective is gradually achieved by

the constant study of the theoretical structures, like

reentrant, rigid and semi-rigid as well as chiral

models.

The unique combination of mechanical char-

acteristics, like their superior resistance to inden-

tation, shear, fracture and wear, make them very

desirable at a structural level. On the other hand,

the advantages generated by their variable perme-

ability, acoustic absorption, synclastic behavior and

their evolution in the shape memory field make

them very promising as technological materials.

The continuous study of these materials at a

molecular level, for example in a nano scale may

provide the means to obtain new homogenous aux-

etic materials that combine the advantages of both

regular and auxetic materials.
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[71] XINCHUN S., LAKES R.S., Phys. Stat. Sol. B, 244

(2007), 1008.

[72] WANG Y.C., LAKES R.S., J. Compos. Mater, 39

(2005), 1645.

[73] CHOI J.B., LAKES R.S., Int. J. Fracture, 80 (1996),

73.

[74] BEZAZI A., BOUKHAROUBA W., SCARPA F., Phys.

Stat. Sol. B, 246 (2009), 2102.



Auxetic Materials – A Review 571

[75] CHOI J.B., LAKES R.S., J. Mater. Sci., 27 (1992),

5373 – 5381

[76] DONOGHUE J.P., ALDERSON K.L., EVANS K.E.,

Phys. Stat. Sol. B, 246 (2009), 2011.

[77] MIATI S., ASHBY M.F., GIBSON L.J., Scripta Metall,

18 (1987), 213.

[78] HABERMAN M.R., HOOK D.T., TIMOTHY D., J.

Acoust. Soc. Am., 132 (2012), 1961.

[79] HOWELL B., PRENDERGAST P., HANSEN L., Acous-

tic Behavior of Negative Poisson’s Ratio Materi-

als, Ship Materials Engineering Department – United

States Navy, Arlington, United States of America,

1991.

[80] CHEKKAL I., BIANCHI M., REMILLAT M., BÉCOT
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