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Abstract

ObjectGoal Navigation (OBJECTNAV) is an embodied task
wherein agents are to navigate to an object instance in an un-
seen environment. Prior works have shown that end-to-end
OBIECTNAV agents that use vanilla visual and recurrent
modules, e.g. a CNN+RNN, perform poorly due to overfitting
and sample inefficiency. This has motivated current state-
of-the-art methods to mix analytic and learned components
and operate on explicit spatial maps of the environment. We
instead re-enable a generic learned agent by adding auxil-
iary learning tasks and an exploration reward. Our agents
achieve 24.5% success and 8.1% SPL, a 37% and 8% rel-
ative improvement over prior state-of-the-art, respectively,
on the Habitat ObjectNav Challenge [35]. From our analy-
sis, we propose that agents will act to simplify their visual
inputs so as to smooth their RNN dynamics, and that aux-
iliary tasks reduce overfitting by minimizing effective RNN
dimensionality; i.e. a performant OBJECTNAV agent that
must maintain coherent plans over long horizons does so by
learning smooth, low-dimensional recurrent dynamics.

Site: joel99.github.io/objectnav/

1. Introduction

Consider how a robot placed in a novel home environment
should find a target object, e.g. ‘Find a chair’. This task,
known as ObjectGoal Navigation (OBJECTNAV), requires
the agent to search through the unseen environment and,
upon seeing a goal, navigate around obstacles to reach it.

Current state-of-the-art OBJECTNAV agents [5, 35] build
explicit spatial maps of the environment and leverage a mix
of analytic and learned planning on top of these maps. This
is in contrast to the state-of-the-art methods in POINTNAV,
arelated task where agents navigate to specified goal coordi-
nates (instead of object categories). In POINTNAV, the best
method [39] scales a generic architecture (i.e. a CNN and
RNN) to 2.5 billion frames of experience. This approach out-
paces methods with explicit spatial grounding, to the point
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Figure 1. Overview of the OBJECTNAV agent architecture. The
agent receives RGBD input, a GPS+Compass sensor, and must
navigate to a goal instance. Building on [40], we introduce new
auxiliary tasks, a semantic segmentation visual input, a Semantic
Goal Exists (SGE) feature that describes the fraction of the frame
occupied by the goal object, and a method for tethering secondary
policies that learns from its own reward signal with off-policy
updates. We encourage the acting policy to explore, and the tethered
policy to perform efficient OBJECTNAV.

of essentially solving POINTNAV in Habitat [28].

In this work, we explore how to enable such a generic agent
for OBJECTNAV. OBJECTNAV is considerably more chal-
lenging than POINTNAV; the agent that nearly solves POINT-
NAV only achieves 6% success on OBJECTNAV [35]. While
POINTNAV agents can use the onboard GPS+Compass sen-
sor as a compact representation to measure progress towards
the goal, OBJECTNAV agents cannot; they instead need to
be competent at exploration since the target object can be
anywhere in the environment. As such, a vanilla CNN+RNN
agent tasked with learning these complex representations for
OBIJECTNAV is likely to be under-equipped with only an RL
reward, even if the reward is shaped to encourage navigation
towards a goal [35]. Even with an additional exploration
reward and no other feedback to learn better environment
representations, efficient exploration is hard [6].

Our approach builds on a recent advance in POINTNAV [40]
that combines simple architectures with auxiliary learning
tasks to greatly improve sample complexity in visually com-
plex environments. Specifically, 1) we update the agent’s
inputs to incorporate egocentric semantic segmentation and
a feature that explicitly describes how much of the target
object class is in view. 2) We additionally introduce three
new auxiliary learning tasks: two general task for learning
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an inverse dynamics model and one exploration-centric task
that predicts map coverage, and 3) to teach the agent to
explore, we add an exploration term to the reward.

However, exploration is different than OBJECTNAV and we
find that agents trained with an exploration reward will con-
tinue to explore after locating goal instances. To mitigate this
task mis-alignment, we propose a ‘tethered-policy’ multitask
learning technique. In this method, we learn a second policy
adapted only for the sparse OBJECTNAV reward while still
acting via a primary policy given the exploration reward.
Tethering allows faster adaptation to the sparse OBJECTNAV
reward, which in turns improves agent efficiency over simple
fine-tuning of a single policy on the sparse reward.

Our results show that end-to-end learning can achieve state-
of-the-art results in OBJECTNAV once equipped with generic
representation learning and exploration objectives. Nonethe-
less we are far from human-like competence at the task. To
guide future work, we analyze various aspects of our agent,
but center in particular around its recurrent dynamics. We
propose that zero-shot transfer to RedNet segmentation is
greatly degraded by the chaotic dynamics it causes in agent
RNN:Ss, that several failure modes are caused by lapses in
agent memory, and that auxiliary tasks reduce overfitting by
constraining the effective dimensionality of agent RNNs.

Concretely, our contributions are:

1) Objectives to train a simple CNN+RNN architecture that
lead to 24.5% success on OBJECTNAV (+37% relative
improvement over prior state-of-the-art). This suggests
that, despite their current prevalence, explicit maps need
not be necessary to learn complex Embodied Al tasks.

2) A method for tethering secondary policies to an agent.
Tethered policies learn from separate reward signals with
off-policy updates. We use a tethered policy with no
exploration reward to achieve 8.1% SPL (+8% relative
improvement over prior work).

3) An analysis of the agent. Through examination of the
agent’s behavior, representations, and recurrent dynam-
ics, we find a) the agent seeks out simple visual inputs
corresponding to smoother RNN dynamics, b) agent fail-
ures are often related to agent memory, and c) auxiliary
tasks regularize agent RNNs by constraining their effec-
tive dimensionality. We hypothesize a key component
of performant OBJECTNAV agents will be the ability to
plan with smooth, low-dimensional recurrent dynamics.

2. Approach

OBJECTNAYV Definition and Dataset. [2] In OBJECTNAV,
an agent must navigate to an instance of a specified object
category in an unseen environment. The agent does not
receive a map of the environment and must navigate us-
ing its (noiseless) onboard sensors: an RGBD camera, a
GPS+Compass sensor which provides location and orienta-

tion relative to start of episode. The agent also receives a
goal object category ID. The full action space is discrete and
consists of MOVE_FORWARD, TURN_LEFT, TURN_RIGHT,
LOOK_UP, LOOK_DOWN, and STOP. We experiment with
both the full 6-action setting and a restricted 4-action setting
that excludes LOOK_UP and LOOK_DOWN. To our knowl-
edge, no other works have considered the 6-action setting
(perhaps due to the increased complexity of specifying tilt
actions in 2D map-based planners). The agent must stop at
a location within 1m of an object of the specified category
and be able to view the object from that location. There is a
500 step limit to succeed on the episode.

We experiment on the Matterport dataset (MP3D [4]), which
has 90 scenes and 40 labeled semantic object categories.
There are 21 goal categories, as specified in the Habitat 2020
Challenge [35]. We train our agent with a 3D GPS (i.e. with
vertical localization) to encourage the agent to reason about
3D exploration, as a considerable number of MP3D scenes
incorporate elevation changes. However, we evaluate the
agent with a 2D GPS for compatibility (by zero-ing vertical
axis) with the Habitat Challenge parameters. We provide a
comparison of these settings in (Section A.4).

Additional Features. We accelerate agent learning by pro-
viding two semantic features: semantic segmentation (segm.)
for the visual input, and a “Semantic Goal Exists” (SGE)
scalar which equals the fraction of the visual input that is
occupied by the goal category (computed from the semantic
segm.). During training, we use the ground truth semantic
segm. directly from the MP3D annotations. During evalua-
tion, the segm. is predicted from RGBD using a RedNet [18]
model finetuned to predict the 21 goal categories. The Red-
Net model is taken off-the-shelf (trained on SUNRGBD [32])
and finetuned on 100k randomly sampled forward-facing
views from MP3D. We provide additional details in Section
A.15. The SGE feature distills the domain knowledge that
the agent should navigate to the goal once it is seen; this
knowledge is built into the planners in prior works [5, 20].

2.1. Agent Architecture

Our agent uses the split-belief architecture introduced in [40],
shown in Fig. 1. This approach first embeds all sensory
inputs with feed-forward modules. The visual inputs are
first downsampled by 0.5 i.e. from 480 x 640 to 240 X
320, and the semantic segm. channel is also projected to
4D by associating each semantic ID with a learnable vector.
After this preprocessing, visual inputs are fed through a
ResNetl8 [15]. The goal object ID is directly embedded
into a 32D vector. The embedded visual and goal vectors
are concatenated with the GPS-Compass and SGE inputs
to form an observation embedding. Next, a set of recurrent
“belief modules” integrate these observation embeddings
over time. These belief modules are independent GRUs [7],
each associated with a separate auxiliary task; Ye et al. [40]
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proposes that the split modules, as opposed to one larger
recurrent network, enable orthogonal auxiliary tasks to be
learned while minimizing task conflict. We term output cell
states from all GRUs as “beliefs.” Beliefs are fused using an
attention layer conditioned on the observation embedding.
The fused belief is then directly used in a linear actor-critic
policy head. We refer to this agent as the base agent.

2.2. Learning Signals

Rewards. The base agent receives a sparse success reward
Tsuccess> @ Slack reward 7,k to encourage faster goal-seeking,
and an exploration reward rexpiore. Measuring exploration is
a dense indicator of progress, and encourages an intuitively
prerequisite skill for OBJECTNAV. We use a visitation-based
coverage reward, in which we first divide the map into a
voxel grid with 2.5m x 2.5m x 2.5m voxels and reward
the agent for visiting each voxel. This form of visitation-
based exploration bonus was found to work well for map-
based agents [26]. We smooth rexpiore by decaying it by
the number of steps the agent has spent in the voxel (visit
count v). Further, to ensure the agent eventually prioritizes
OBIECTNAV, we decay rexplore based on episode timestep ¢
with a decay constant d = 0.995. In summary:

Ttotal = Tsuccess T Tslack + Texplore (1a)

Tsuccess = 2-9 on success (1b)

Tsack = —107%  per step (1c)
dt

Texplore = 0.25 X . (1d)

Tethering to an Exploration Policy. Using exploration to
guide behavior can distract the agent from properly termi-
nating at the goal point, e.g. when it is standing next to the
goal but can instead choose to continue to explore a wide
open space (we observe this in Section 4.1). To alleviate
this pathology, we introduce a tethered-policy method which
attaches an additional policy head to the fused belief output.
Each of the two policy heads can be fed their own desired
rewards, and the agent can act according to any mix of the
two policies. Note this means that each policy share the same
action space. We implement a simple schedule in which the
agent first acts with a policy optimized with the full shaped
reward (7o) for an initial period of training, and then with
a second policy which only uses the sparse 7gccess- The
first phase is intended to teach the agent how to explore,
and the second to encourage efficient OBJECTNAV. We use
importance-weighted VTrace [10] returns to update the non-
behavioral policy to account for experience being off-policy
from its perspective (details in Section A.13). Tethering is
similarly motivated as SAC-X [27], but implemented as a
lightweight extension to a standard RL agent.

Auxiliary Tasks. We use 6 auxiliary tasks. As in Ye et

al. [40], we use 2 instances of CPCIA [14], a self-supervised
contrastive task, at horizons of k = {4, 16} steps. We also
use PBL [13] with a horizon of & = 8 steps. These tasks use
agent states to make predictions about the environment.

We also introduce two general-purpose inverse tasks, which
predict agent actions given environment transitions: Action
Distribution Prediction (ADP) and Generalized Inverse Dy-
namics (GID). ADP and GID both predict actions taken
between two observations k frames apart (i.e. {ajs.¢4x)})s
and are both conditioned on the belief at the first frame h;
and the visual embedding (i.e. CNN output) ¢¢ ;. ADP uses
a 2-layer MLP to directly predict an action distribution and
evaluates the KL-divergence between this prediction and the
empirical distribution of the next k actions:

Lapp = KL(MLP(h¢, ¢t 41); Q1)) 2

GID predicts individual actions using a separate GRU with
state gO'° and two linear layers f, f’. The GRU is initialized
with the same inputs as in ADP:

97" = f(he, brik) 3)

The GRU is updated with actions taken:

9712 = GRU(ay1i—1, 9017 1) “)
k-1
Lo =) CrossEnt(f'(g7%), asy) ®)

i=1

Finally, we introduce an exploration-specific Coverage Pre-
diction (CP) task that leverages the GPS sensor provided to
the agent. CP follows a similar structure as GID, i.e. using
a GRU for sequence prediction. However, this GRU’s ini-
tial state is conditioned not on a visual embedding, but on
the number of steps the agent has spent in its current voxel,
v(s¢). This conditioning helps the GRU anticipate how close
the agent is to the edge of the voxel. The GRU predicts the
change in coverage at each of the next & steps:

9" = f"(he,v(se)) ©)
gtcfi = GRU(at+i—17gtC-l:i—1) 7
k

Lep = Z CrossEnt(f" (g51:), Aeov(t,t +14))  (8)

i=1

where f”, f"'" are linear layers, g“¥ denote the GRU’s state,
and Aoy (t, t+1i) denotes the change in coverage, i.e. number
of new voxels visited between time ¢ and ¢ + i'. Perfect
performance would require the belief to remember all prior
locations. The horizons for ADP, GID, and CP are £ =
6,4, 16, respectively; details in Section A.14.

'Note that Acov (¢, t + 1) € {0,...,1}
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VAL TEST-STD

Success % (1) SPL % (1)  Success % (1) SPL % (1)

1) 4-Action 34.44+2.0 9.58+0.75 19.9 6.7
2)4-Action + RedNet FT 33.1+2.0 6.89+0.56 - -

3) 6-Action 30.8+1.9 7.60+0.64 - -

4) 6-Action + Rednet FT 34.6+2.0 7.93+0.64 24.5 6.4

5) 6-Action + Tether 26.6+1.9 9.79+0.82 - -

6) 6-Action + Tether + RedNet FT 30.3+1.9 10.8+0.84 21.1 8.1
7)E2E Baseline (DD-PPO [39]) - - - 62 21
8) SemExp [5] - - 17.9 7.1

9) SRCB-robot-sudoer - - 14.4 7.5

Table 1. Primary variants on the MP3D VAL and TEST-STD splits, along with prior SOTA from the Habitat Challenge leaderboard [35].
=+ intervals provide 95% CI; VAL bold values are significantly better than non-bold values (p < 0.05, paired t-test), TEST bolding is for
emphasis. Our auxiliary task and exploration enabled agent (row 1) outperforms prior state of the art success (over row 7) and triples the
vanilla learning agent (row 6). Fine-tuning the agent with RedNet segmentation reverses the ranks of 4 and 6-action agents (rows 1 and 3 vs
2 and 4, analysis in Section 3.1), helping the 6-action agent to achieve a new state-of-the-art 24.5% success. Finally, tuning on the sparse
OBJECTNAV success reward helps the agent set state-of-the-art 8.1% SPL (row 6 vs 9).

3. Results

In our experiments, we train each of our agents for 8 GPU-
weeks (192 GPU-hours), amounting to ~125M frames per
agent. For the tethered variant, we use the sparse policy for
the final 25M frames. The two primary metrics we report
are Success and Success weighted by Path Length (SPL), a
measure of trajectory efficiency, defined over N episodes as

1 & l;
SPL=—Y §—
N zz:; max(pi,li)

where .S, is a binary indicator of success on episode i, I; is
length of optimal path, and p; is length of agent path. We
evaluate checkpoints every ~4M frames and report metrics
from the checkpoint with the highest SPL on VAL.

Auxiliary Tasks and Exploration produce an effective
OBJECTNAYV agent. We compare against results from the
Habitat Challenge 2020 leaderboard in Table 1. We first
note the large drop from VAL to TEST-STD (e.g.-14% success
in row 1). Since we cannot access the test split, we con-
jecture that the splits were randomly sampled such that the
9 test scenes were disproportionately challenging.” While
other works do not highlight this shift, we note that even
agents with strong priors (rows 6, 7) have high performance
variance, e.g. 5% success gaps between the two test splits
(TEST-STD, TEST-CHALLENGE [35]). We provide additional
commentary and check for agent biases in Section A.1.

ZDistribution shift is expected given small VAL, TEST splits.

Using RedNet segm. directly (i.e. zero-shot transfer from
GT, row 1), the 4-action agent reaches 19.9% success (+11%
relative over prior best, row 1 vs 8). This is 3x the perfor-
mance of the E2E baseline that is rewarded for approaching
a goal, a method which “solved” POINTNAV (row 7).

We tune the 4-action agent with RedNet segm. for an addi-
tional 10M frames to account for the ground-truth-to-RedNet
distribution shift, but surprisingly performance drops (row
1 vs 2). Conversely, the 6-action agent which initially per-
forms worse than the 4-action agent (row 1 vs 3) overtakes
the 4-action agent after finetuning with RedNet (row 2 vs
4). We analyze this reversal in Section 3.1. Though these
tuned agents match in VAL (row 1 vs 4), the 6-action agent
improves on TEST-STD, to 24.5%, +37% relative over prior
state-of-the-art (row 4 vs 8).

However, both 4 and 6-Action agents are less efficient than
prior methods (SPL column). Qualitative examination of
these agents indicate they prefer to wander around goals
for some time before stopping at them correctly, likely due
to the exploration reward. After finetuning on the sparse
OBJECTNAV reward through tethered training, SPL rises and
Success falls (row 3 vs 5). We show the Success drop is likely
due to reduced exploration in Section A.2. Nonetheless,
after tuning this agent on RedNet, we achieve +0.6% (+8%
relative) over state of the art SPL (row 6 vs 9).

We provide ablations for our design choices in Table 2. Our
auxiliary task ablations are compared against the 4-action
agent (rows 1-4). These tasks provide modest gains in both
metrics (<1% for ADP, 1% GID, 2% CP). Next, ablating the
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Success % (1) SPL % (1)

1) Base (4-Action) 34.4+2.0 9.58+0.75
2) - Action Distribution Prediction 34.1+2.0 9.27+0.69
3) - Generalized Inverse Dynamics  33.7+2.0 9.05+0.69
4) - Coverage Prediction 32.4+2.0 8.757+0.69
5) - Semantic Goal Exists 20.3+1.7 4.14+40.47
6)6-Action + Tether  26.6£10  9.79:tos2
7) 6-Action + Sparse Tuning 23.1+18 8.43+0.76

Table 2. Ablations on VAL. Bold values are significantly better
than unbolded values in the same group. New auxiliary tasks pro-
vide moderate performance gains, and tethered training preserves
Success better than directly tuning on sparse OBJECTNAV reward.

Success % (1) SPL % (1)
TRAIN VAL TRAIN VAL
1) 4-Act 50.3(36.0) 43.3(34.4) 18.1(12.4) 12.3(9.6)
2) 6-Act 56.0 (21.7) 58.0 (30.8) 21.5(8.2) 16.9(7.6)

3)6-Act + Tether 54.0 (27.3) 52.2(26.0) 27.9(11.5) 26.0(9.8)

Table 3. Performance on a 300-episode subset of TRAIN and VAL
splits, reported as “with GT segmentation (with RedNet segmen-
tation)”. Best metrics are bolded for emphasis. In both splits,
all agents degrade significantly with RedNet segmentations, but
6-action agents more so. Under GT segmentation (numbers out-
side parentheses), agents are minimally overfit, though SPL does
degrade slightly from TRAIN to VAL. In the GT setting, 6-action
agents outperform 4-action agents.

SGE sensor drops performance by a large amount (-14%,
row 1 vs 5). In Section A.5, we note that SGE is much more
effectively incorporated as a feature than as an auxiliary task.
Finally, we also compare tethered policy training against
direct finetuning (row 6 vs 7) for the 6-action agent. While
direct finetuning also improves SPL (vs SPL reported in row
3 in Table 1), tethered training is overall more effective at
preserving agent performance.

3.1. Stable segmentation is critical to untuned 6-
action agents.

We found that 4-action agents suffer a performance drop
after finetuning on RedNet, while 6-action agents improve.
To understand why, we first observed that the RedNet is
greatly overfit (Section A.15), we decouple our agent from
RedNet by evaluating agent performance on both TRAIN and
VAL with GT and RedNet segm. , shown in Table 3. We
first note that most agents are minimally overfit to TRAIN,
with a moderate impact to SPL and < 3% drop in success.
RedNet Seg. degrades performance significantly, but in
particular, RedNet Seg. hurts 6-action agents more, even on
TRAIN, where the effects of an overfit RedNet are reduced.
This suggests 6-action agents are more sensitive to RedNet

statistics in particular, and hence able to overtake the 4-action
agent once finetuned with RedNet.

We examine agent trajectories to understand this sensitivity
(videos provided in supplement). We first find that during
training with GT semantics, 6-action agents learn to navigate
while spending most steps facing downwards towards the
floor (while the 4-action agent can only look straight ahead).
This happens despite there being minimal obstacles on the
floor while looking straightforward offers greater chance to
see more distant goals. Intuitively, the visual input provided
by the floor is simpler than the view of a room. We thus posit
a stability hypothesis: the 6-action agent learns to exploit a
simpler signal to enable stabler recurrent dynamics. That is,
because it is harder to maintain memory over long term tra-
jectories when faced with noisy inputs, agents will simplify
their input even at slight cost to information gained. Such a
hypothesis may relate to results on improved generalization
when restricting the visual field of a gridworld agent [17]
and when withholding inputs from parts of a recurrent mod-
ule [12]. This hypothesis suggests that standard RNN gating
is imperfect at preventing input-induced information decay
in the RNN state, and presents an avenue for future work.

We next observe that RedNet segm. is low quality and unsta-
ble, flickering across consecutive frames and without well-
defined object boundaries. These are expected failures: poor
segm. is due in part to the noisiness of the underlying MP3D
meshes, and consistent segm. is a broader challenge [36].
Predicted segm. of frames of the floor are particularly poor,
likely since RedNet is trained with front-facing views. Con-
sequently, the 6-action agent behavior was very erratic, with
repeated alternating turning actions. If the 6-action agent
did learn to exploit the floor for simple visual inputs, it
would have a reduced incentive to filter noisy frontal views,
and thus would be particularly vulnerable to degraded segm.
Then, one possible reason to explain earlier trends is that
1. RedNet overfitting implies that previously general agents
which are tuned with RedNet will in turn overfit, 2. Untuned
6-action agents avoid this overfit transfer but suffer signifi-
cantly more from unstable semantics, and 3. Tuned 6-action
agents overfit, but gain performance by maintaining stable
behavior while receiving unstable semantics. We quantify
this instability in Section A.7. The fact that tuning agents
with RedNet improves agent performance suggests robust-
ness to noisy inputs is partially learnable, though the agent
will not do so if it has a simpler option (facing the ground).

4. Agent Analysis

These agents demonstrate promising performance (~ 55%
val success) in navigating large, complex environments, es-
pecially when granted GT segm. Nonetheless, their perfor-
mance is far from perfect, and they still display qualitative
failure modes that a human would not have, such as repeated
circling inside a room. In this section we analyze agent be-
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Figure 2. Breakdown of failure modes for base 6-action agent in
300 episodes of VAL.

havioral modes, knowledge, and internal dynamics to inform
future directions towards human-level OBJECTNAV, and to
develop an intuition for how a competent OBJECTNAV agent
operates. We scope our analysis to GT segm. and the base
6-action agent, unless otherwise noted.

4.1. Behavioral Analysis

In our behavioral analysis we aim to understand: How can
OBJECTNAV agents approach 1.0 Success? To identify
prominent modes of the remaining failures, we conduct a
qualitative coding of agent behavior for both the base and
tethered 6-action agent. Specifically, we sample 300 vali-
dation episodes and manually label the failures (there are
125 for base, 151 for tether) and group them according to
common trends. A subset of failure modes are described
in Table 4 and their relative prevalence for the base agent is
shown in Fig. 2. A full list of failure modes are in Section
A.6, and example videos are available in the supplement.

Name Description

Explore A generic failure to find the goal despite
steady exploration. Includes semantic fail-
ures e.g. going outdoors to find a bed.

Plateau Repeated collisions against the same piece
of debris causes a plateau in coverage. In-
cludes debris which traps agent in spawn.

Loop Poor exploration due to looping over the
same locations or backtracking.

Detection Despite positive SGE, the agent does not
notice nor successfully navigate to the goal.

Last mile Gets stuck near the goal.

Commitment Sees and approaches the goal but passes it.

Open Explores an open area without any objects.

Table 4. Description of prominent failure modes.

We find that agent failures are diverse and beyond only un-
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Figure 3. We probe time and max SGE seen on each belief, the
fused belief, and the observation embedding (“Obs”) as a baseline.
Error bars show 95% CI across single beliefs. Both concepts are
encoded, though imprecisely and with high variance across beliefs.

successful exploration, which at best comprises ‘explore’
and ‘loop’. They get stuck (‘plateau’ and ‘last mile’), suffer
pathologies that might be attributed to the exploration reward
(‘commitment’ and ‘open’), and deal with a handful of issues
due to scene quality (labeled as ‘misc’ here). However, some
failure modes do preclude others. For e.g., an agent which is
trapped by reconstruction debris at spawn (‘plateau’) is still
liable to not find the goal due to general exploration issues.
Additionally, the agent does not make panoramic turns to
identify promising goal locations, as a human might. We
attribute this to the visitation-based exploration reward; a
different reward which promotes simply viewing more areas
instead of visiting them may mitigate this. Alternately, non-
episodic exploration rewards may promote the appropriate
behavior with less misalignment with OBJECTNAV.

These exploration-related pathologies are not cured by swap-
ping to the sparse OBJECTNAV reward, which degrades
success (Table 2, row 6 and 7). Tethered agents explore
worse, and behavioral coding finds a new dominant failure
mode wherein the agent quits early (see Section A.2).

4.2. Probing Learned Knowledge

How well do agent representations match our intuitions?
Does its behavior match represented features? e.g., “com-
mitment” failures, which generally occur when the agent
spots the goal early in the episode, should only be feasible
if the agent maintains a time representation and knows it
has time to continue gaining coverage rewards. Conversely,
does the agent represent prominent variables that a human
might? e.g., “Commitment” and “Detection” failures both
imply that agents do not remember SGE features from prior
timesteps. To test these questions, we train linear decoders
to probe our agent for time and the most goal seen. We first
record representations from 300 episodes on both TRAIN and
VAL. We train the decoders using TRAIN representations and
test them on VAL representations (~ 60 — 70K steps each).
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We plot decoder performance in Fig. 3, aggregating perfor-
mance across individual beliefs. Though the features are
represented across beliefs, there is high variance in probe
performance across beliefs. Moreover, probe performance
on the fused belief is worse than in individual beliefs. These
results reveal semantic differences among individual beliefs
and the fused belief, suggesting some abstraction is lost in
fusion despite it only being a weighted sum. Separately, the
tethered agent represents Max SGE more prominently than
the base agent, matching the intuition that the base agent
does not retain goals seen in previous steps perfectly.

With the same approach, we find little evidence of features
that a human might use in OBJECTNAV: time spent in loca-
tion, room ID, and distance to goal (Section A.8). Supplying
these features directly could improve the agent.

4.3. Dynamical Analysis

Though a behavioral analysis provides a sense of how the
agent fails, it does not explain why, and probing techniques
fall short when it is unclear what knowledge an agent might
encode. Through our experiments, dynamics have played
an important role — the 6-action agent looking downward,
acting chaotic with predicted segm., and overtaking 4-action
after tuning. Important failure modes appear dynamic in
nature: ‘loop’ failures indicate forgetting of visited locations,
‘commitment’ failures could be attributed to procrastination
through the agent’s internal clock. We were thus motivated
to characterize the agent’s dynamic computations.

Belief Dynamics correlate with agent observations. Be-
fore we study RNN dynamics proper, we first validate that
RNN dynamics reflect trajectory dynamics, as represented by
sequences of observation embeddings. This helps quantify to
what extent agent beliefs are grounded in agent observations
and actions; a strong connection would support a stability
hypothesis (that agents need smooth inputs for smooth RNN
dynamics). Alternately, RNN dynamics could be driven by
intermediate computation, and thus the RNNs would conser-
vatively incorporate inputs, i.e. through gating, so as to best
preserve hidden state information. We measure this with the
curvature of the agent belief trajectories and the observation
embeddings, by computing the dot product similarity of suc-
cessive displacements in a sequence of representations ([16],
details in Section A.9). We report the correlation between
each belief curvature and observation curvature.

Fig. 4 shows that observation and belief curvatures are
closely correlated, i.e. that varying observations track large
changes within agent hidden state. This suggests that RNNs
do incorporate most inputs. It is possible non-reactive com-
putation (e.g. such as time tracking probed in Section 4.2)
which occurs independently from observations might not
manifest because they are relatively stable; however, the CP
belief, which should track coverage variables that are rela-
tively independent from moment-to-moment observations, is

Beliefs ||

0.0~ -~

~0.75 -0.50 -0.25 0.00 025 050 075 1.00
Observation Correlation r

Figure 4. We measure curvature of observation embeddings and
beliefs of the base 6-action agent, plotting the distribution from
transitions in 300 episodes. All but CP closely correlate.
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Figure 5. Fixed point (FP) memories. Top: For each of 6 agents
(4-Act, 6-Act, 6-Act + Tether, No CP, No ADP, No GID), we sort
agent beliefs by the span of their memory. This span is computed by
sampling 50 FPs and counting at each FP the number of eigenvalues
with time constants above 10 steps. The more eigenvalues past
threshold, the larger the span, and the lower the rank. Beliefs are
labeled by their task, and beliefs without tasks (from ablations) are
labeled with BASE. We count the number of times a belief appears
in a given rank (e.g. since BASE only appears in 3 agents, it only has
3 counts). Consistent rank indicates relative span is stable. Bottom:
We measure how memory changes over time for the CPCIA-4 and
CP tasks by counting the number of eigenvalues with time constants
above 100 steps at several points during training.

less correlated with observations than the other beliefs. This
suggests non-reactive computation needn’t be hidden.

Auxiliary tasks specify fixed point memory spans. We
would ideally like to understand what computational struc-
ture the agent RNNs use beyond coarse-grained statistics like
curvature. To approach this question, we employ fixed point

16123



(FP) analysis [11, 33, 34]. FP analysis simplifies the study of
a full RNN into a study of its “slow points,” where the RNN
update is small and well-approximated by a linear function.
We provide details on methodology in Section A.10. FPs
are typically studied both through their overall layout (the
manifold) and their local dynamics. While FP manifolds
have been used to directly link RNN computation to dynam-
ical structures, e.g. ring attractors, we find our RNNs are
much higher-dimensional than those in prior work and thus
difficult to clearly classify (notes in Section A.11). This
leaves local dynamic structure. At an identified FP h, the
RNN update is well described by a first order approximation.
Let Ah; := h; — h, for h; near h, then

Aht+1 ~ J}rlecAht. (9)
Then the decomposition of J;* assesses FP “memory.
Specifically, a delta along an eigenvector v with correspond-
ing eigenvalue A < 1 would decay to 0, while an eigenvector
v’ with \ & 1 would persist indefinitely. A simple method
to quantify FP memory is to count the eigenvalues past a
threshold value. For interpretability we count eigenvalue
time constants instead of the values themselves, as in [21]
(Section A.10); we call this quantity a memory span.

>

We measure and rank these spans for all beliefs of several
different agents, producing Fig. 5. The auxiliary task cor-
responding to a belief appears to play a consistent role in
specifying FP memory span, and thus in organizing recurrent
dynamics, across seeds, action suites (4 vs 6 action), and RL
objectives (tether or not). Among the tasks, only CP induces
larger spans than the base belief. This matches the intuition
that CP could require the tracking of an unbounded number
of variables. Separately, the fact that the base belief has
larger span than other tasks reveals a potential mechanism
by which auxiliary tasks encourage generalization. Note
that smaller memories imply there are more dimensions
along which RNN state decays towards fixed points, which
in turn should imply preference towards lower-dimensional
trajectories (even if variable inputs prevent this empirically).
Then, the fact that most auxiliary task-augmented beliefs
achieve smaller memories than the vanilla “Base” belief
demonstrates auxiliary tasks may preferentially select for
low-dimensional trajectories. Such low-dimensional trajec-
tories could be necessary for generalization; indeed this is
theorized to be the reason why monkeys engage low-d dy-
namics in working memory tasks[8]. Note that this hypothe-
sis concerns how auxiliary tasks promote generalization in
recurrent beliefs (i.e. beyond general visual representations).

In the bottom figure of Fig. 5 we plot memory span for
several agents at various points in training. Memory span
trends upward over training. Consistent with the first plot,
CPCIA-4 appears to constrain the span to be low. CP, on the
other hand, may be constrained by the capacity of the RNN

(the belief hidden size is 196). It is possible that an ideal
OBJECTNAV agent would maintain stable low-d dynamics,
but this would need to be reconciled with how such an agent
would need to track its path to keep exploring new areas.

5. Related Work

Learning an appropriate state representation is a central goal
of reinforcement learning. Representations pretrained in
static visual tasks, such as the semantic segm. used in our
agent, have been successfully applied to navigation in com-
plex environments [24, 29], though results in [40] suggest
non-semantic representations may be less effective than end-
to-end learned representations. While auxiliary tasks are
commonly used to improve agent performance [13, 23], we
believe their role in preventing overfitting to complex envi-
ronments is underappreciated.

Analyzing Embodied Recurrent Computation. Under-
standing an agent’s recurrent computation will be key to
understanding their complex behavior. While complex com-
putation resists simple analyses, e.g. our probes, the Al com-
munity has successfully used sophisticated probing tasks to
reveal recurrent representations reflect considerably more
environmental knowledge than do static (visual) represen-
tations [37], and can contain compositional knowledge [9].
We have explored a different perspective by analyzing the dy-
namic rules our agent learns; similar analyses have provided
considerable insight in simpler tasks [1, 33]. Unfortunately,
our agent RNNs are much higher-dimensional than those
studied in previous settings and stymies simple fixed point
analyses. However, we are encouraged by the different per-
spective (e.g. memory) such dynamic analyses provide, and
believe embodied Al provides a good testbed for future de-
velopment of these dynamic analyses.

6. Discussion

Our work uses a recurrent agent with an implicit environment
representation to set state-of-the-art for OBJECTNAV. Our
agents are minimally overfit and have yet to saturate training
performance, meaning that our approach re-enables scaling
as a viable path to improving OBJECTNAV. This success
relies on auxiliary tasks and an exploration policy, both of
which are generic RL ingredients. Future works should con-
sider these ingredients in their generic CNN+RNN baselines,
since the default of only providing rewards is demonstrably
ineffective in complex environments. Our analysis indicates
that understanding misbehaving agent dynamics is a promis-
ing direction, and our results suggest generic learned agents
can still drive progress in embodied navigation.
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