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Abstract—As an important branch of the Internet of
Vehicles (IoV), vehicle positioning has drawn extensive attention.
Traditional positioning systems based on a global positioning
system incur long delays, and may fail due to obstructions. In
this article, we propose an auxiliary positioning architecture,
whose core is to estimate the direction of arrival (DOA) of signals
from landmarks, such as wireless access points, utilizing a sensor
array in the vehicle. Due to space limitations, the array may be
placed in an arbitrary geometry and may suffer from unknown
mutual coupling. Most algorithms are only effective for sensor
arrays with special geometries, e.g., a uniform linear array or
rectangular array. To tackle this problem, an improved multiple
signal classification algorithm is derived, which is superior to the
state-of-the-art iterative method from the perspective of compu-
tational complexity. Detailed analysis concerning identifiability,
computational complexity, and Cramér–Rao bounds are given.
The simulation results verify the improvement of the proposed
DOA estimation algorithm. The proposed architecture can obtain
robust self-localization with existing vehicular ad hoc networks,
and it can collaborate with other positioning systems to provide
a safe driving environment.

Index Terms—Arbitrary geometry, direction-of-arrival (DOA)
estimation, Internet of Vehicles (IoV), mutual coupling, sensor
array, vehicle positioning.

I. INTRODUCTION

R
ECENT decades have witnessed explosive growth in

the demands on the Internet of Vehicles (IoV) [1]–[8].

Generally speaking, the IoV refers to the infrastructure that

connects vehicles to intervehicle networks [9]–[12], intrave-

hicle networks, and the vehicular mobile Internet. The IoV

is a complex system that integrates vehicle technology with
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detection [13], networks [14], cloud computing [15]–[17], and

control. It aims to offer safe and comfortable driving services

and may profoundly change human lives. Vehicle location

awareness is vital for emerging IoV [18], and it enables numer-

ous applications, such as navigation, collision warning, and

emergency rescue [19]. It is well known that vehicle location

can be obtained via commercial global positioning systems

(GPSs). However, the reliability of GPS systems is too poor

(long latency and inadequate accuracy) to provide a safe driv-

ing environment. Moreover, GPS systems may fail to work due

to imperfect environments, such as tunnels and cloud cover.

Advanced sensors (e.g., radar, lidar, and camera) have been

widely investigated to overcome the above disadvantages.

Among various positioning techniques, cooperative position-

ing systems are common for reasons of cost, latency, and reli-

ability [20]. Cooperative positioning techniques use wireless

communication devices, such as wireless access points (APs)

and cellular devices, to estimate the vehicle position [21]. A

vehicles position can be achieved based on the four principles

of radio signal strength (RSS), time of arrival (TOA), time

difference of arrival (TDOA), and direction of arrival (DOA).

In [22] and [23], RSS approaches are adopted to achieve tar-

get vehicle localization, where the spatial fading properties

of signals must be known as a prior. Due to the complexity

of wireless channels, the fading characteristics are difficult to

obtain accurately, hence the RSS approach has limited accu-

racy. The TOA and TDOA algorithms were proposed in [24],

[25], and [26], respectively. The perfect synchronization of

clocks between all nodes is essential to both approaches,

and this is difficult to achieve in practice. Their performance

is highly sensitive to time-difference measurements, making

it difficult to obtain high-accuracy vehicle positions. Hence,

the DOA approaches become good choices. Their positioning

performance depends only on the accuracy of DOA estima-

tion, which can be easily measured via a radio array. DOA

approaches were proposed in [27] and [28], in which the

DOA of the incoming signal is measured using at least three

nodes. Wymeersch et al. [29] and Abu-Shaban et al. [30] dis-

cussed positioning approaches that combine angle and delay,

which are less costly than DOA approaches, since they require

fewer nodes. However, like their TOA and TDOA counter-

parts, the positioning accuracy of the combination approaches

is sensitive to delay measurement. To avoid measuring delay

information, we focus on a DOA-aware vehicle positioning

system.

DOA estimation has a rich history, stretching over 60 years.

Many excellent estimators have been proposed [31]–[36],
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such as estimation method of signal parameters via rotational

invariance technique (ESPRIT), multiple signal classification

(MUSIC), and tensor estimators. Most estimators rely on a

well-calibrated sensor array. In practice, however, sensor array

errors are always present and unknown. Typical sensor errors

include gain-phase error, position error, and mutual coupling,

the last being particularly important. Mutual coupling is caused

by the radiation effects of the antenna elements. This will

cause a model mismatch in DOA estimation and may lead

to seriously degraded estimation performance. Optimal DOA

estimation requires a sensor array capable of self-calibration,

using its collected signals to simultaneously calibrate the sen-

sor error and perform the desired function. Several efforts

have addressed this issue. In [37], an active calibration method

was proposed in that required additional instrumental sensors.

In [38], an iterative strategy was proposed for performing the

joint estimation of DOA and mutual coupling coefficients,

which required no auxiliary sources or instrumental sensors.

However, such an iterative procedure is computationally inef-

ficient. The recursive rank reduction method was proposed to

lessen the computational load in [39]. In [40], DOA estimation

and mutual coupling calibration problems were investigated

from the Bayesian learning perspective. More recently, an

improved Bayesian learning algorithm was derived in [41],

and it is capable of solving the off-grid problem. Considering

the low-rank properties, sparsity-awarded frameworks have

been proposed [42], [43] offering new insights into the mutual

coupling problem. Efforts have also been made to improve

estimation performance using the extra information of the

source signals [44], [45], and the direction-dependent mutual

coupling problem has been investigated [46], [47]. The algo-

rithms in [38]–[47] are only suitable for a uniform linear array

(ULA). Similar works have been done for uniform circular

arrays [48]–[50], uniform rectangular arrays [51], [52], and

cross arrays [53].

The aforementioned algorithms are only effective for arrays

with special geometries. In such cases, the mutual coupling

matrix is assigned a special structure, e.g., symmetric Toeplitz,

symmetric circulant, or symmetric block Toeplitz. However,

sensors in IoV systems may be irregularly distributed due to

space limitations, in which case mutual coupling matrices have

few special structures beyond being symmetric, and current

algorithms would fail to work. To our knowledge, only [54]

has stressed the DOA estimation problem for such scenarios.

To relax the mutual coupling requirement in DOA estimation,

a two-step alternative method was proposed in [54]. In the

first step, the mutual coupling coefficients are interpreted as

known priors, and DOA estimation is accomplished via the tra-

ditional MUSIC algorithm. In the second step, mutual coupling

coefficients are estimated by solving a semi-definite program-

ming problem, using the previously obtained DOAs. Iteration

continues until convergence conditions are satisfied. Although

the iterative method in [54] is suitable for an arbitrary geome-

try, it is time consuming, which makes implementation difficult

for real-time systems.

In this article, an auxiliary vehicle positioning frame-

work based on robust DOA estimation is proposed that is

easily implemented via existing vehicular ad hoc networks

(VANETs). Moreover, we consider a more realistic scenario

in which the sensor array is distributed in an arbitrary geom-

etry, but it suffers from the unknown mutual coupling. A

fast DOA estimation algorithm is derived and analyzed. The

contributions of this article are as follows.

1) An auxiliary vehicle positioning architecture relying on

VANETs and robust DOA estimation is presented. In

the proposed framework, low-latency wireless APs, e.g.,

5G base stations, are interpreted as landmarks. Vehicles

are equipped with an antenna array (for wireless com-

munications), and DOAs from different landmarks are

measured to calculate vehicle positions. In addition, the

measured results can be uploaded to a cloud platform

to collaborate with other positioning systems to pro-

vide a safe driving environment. Since wireless APs and

antenna arrays are the basic infrastructures of VANETs,

the proposed architecture is easily implemented. Unlike

the DOA approach in [28], the proposed architec-

ture can achieve onboard positioning without additional

hardware.

2) We consider a more practical scenario for DOA estima-

tion. The sensor array is placed in an arbitrary geometry

in the vehicle, since sensors suffer from the unknown

mutual coupling. The data model for DOA estimation in

such a scenario is established, in which mutual coupling

between sensors is formulated into a mutual coupling

matrix.

3) A fast DOA estimation and mutual coupling self-

calibration algorithm is proposed. To pursue robust

vehicle positioning, the DOA estimation problem is

first linked to the perturbed MUSIC search issue, in

which each response vector is corrupted by an unknown

mutual coupling matrix. The transformation method

in [54] is adopted, hence, the unknown mutual coupling

coefficients are extracted into a single vector. Using

the rank-reduction property of the transformed matrix,

DOA estimation is obtained via one-peak searching, and

mutual coefficients are subsequently achieved.

4) We analyze the proposed algorithm in terms of iden-

tifiability and computational complexity. Moreover, the

Cramér–Rao bound (CRB) with respect to DOA esti-

mation and mutual coupling coefficient estimation is

derived. Numerical experiments are designed to show

the effectiveness and improvement of the proposed

algorithm.

The rest of this article is organized as follows. In Section II,

the mathematical model of DOA estimation for an arbitrary

sensor array with mutual coupling is formulated. The proposed

algorithm is described in Section III, and is theoretically ana-

lyzed in Section IV. The simulation results are presented in

Section V. Conclusions are discussed in Section VI.

Notations: Throughout this article, lowercase italic letters,

e.g., a, boldface lowercase letters, e.g., a, and boldface capital

letters, e.g., A, are reserved for scalars, vectors, and matrices,

respectively. Other notations are as follows.

1) AT: Transpose of A.

2) AH: Hermitian transpose of A.

3) A∗: Conjugate of A.
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Fig. 1. Illustration of passive vehicle localization system.

4) A−1: Inverse of A.

5) A†: Pseudoinverse of A.

6) IN: N × N identity matrix A.

7) 0: Zero vector.

8) A(:, m): mth column of A.

9) A(m, n): (m, n)th element of A.

10) rank{A}: Rank of A.

11) det{A}: Determinant of A.

12) diag{a1, a2, . . . , aN}: Diagonal matrix whose nth diago-

nal entity is an.

13) |A|: Absolute value of A.

14) Re(A): Real part of A.

15) Im(A): Imaginary part of A.

II. AUXILIARY POSITIONING SYSTEM

AND PROBLEM FORMULATION

A. Auxiliary Positioning System

The architecture of the proposed auxiliary positioning

system, depicted in Fig. 1, mainly consists of three modules:

1) vehicle terminal; 2) wireless AP; and 3) cloud platform. The

cloud platform provides computing services. The wireless AP

is fixed at the roadside. It connects with the cloud platform

using optical fiber, and can broadcast location information at

a fixed frequency, such as 2.4 or 5 GHz. The vehicle terminal

is equipped with an antenna array, and it can receive the sig-

nals from the wireless AP. The DOAs are calculated onboard,

and the results are uploaded to the cloud platform to real-

ize high-accuracy DOA estimation, which is utilized assist in

vehicle localization. In addition, we assume that all the nodes

in a local area are well synchronized with the same clock.

To synchronize the nodes is a key issue in IOV. Actually, it

is hard to synchronize the nodes, even within a local area.

Imperfect synchronization will result in an inaccurate time

measure. However, it has little impact on DOA approaches.

How to synchronize the network is a topic of interest, but it

is beyond the scope of this article.

To simplify the analysis, we consider a vehicle equipped

with an M-element antenna (sensor) array. The sensors are

distributed in the 3-D space [54], and coordinates of the mth

(m = 1, 2, . . . , M) sensor are set to pm = [xm, ym, zm]T. It is

assumed that K uncorrelated narrowband source signals appear

in the far field. The DOA pair (or DOA) of the kth (k =

1, 2, . . . , K) source is denoted as �k = [θk, φk]T, where θk

and φk are, respectively, the kth elevation angle and the kth

azimuth angle. The received array signal can be expressed

as [54]

x(t) =

K
∑

k=1

a(�k)sk(t) + n(t)

= As(t) + n(t) (1)

where a(�k) � [ exp{−j2πτ1,k/λ}, exp{−j2πτ2,k/λ}, . . . ,

exp{−j2πτM,k/λ}]T ∈ C
M×1 is the response vector corre-

sponding to the kth target and λ is the carrier wavelength.

sk(t) is the kth baseband signal, and n(t) is the array noise.

A � [a(�1), a(�2), . . . , a(�K)] ∈ C
M×K is the direction

matrix and s(t) = [s1(t), s2(t), . . . , sK(t)]T is the source signal

matrix. τm,k takes the form

τm,k = pT
mrk (2)

where rk � [ cos(φk) sin(θk), sin(φk) sin(θk), cos(θk)]
T.

In the presence of mutual coupling, the signal model (1) will

be invalid. The mutual coupling effect between an M-element

sensor array can be described by an M × M mutual coupling

matrix, which is given by

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

c1 c2 c3 · · · cM

c2 c1 cM−3 · · · cM−1

c3 cM−3 c1 · · · cM−2

...
. . .

...
. . .

...

cM cM−1 cM−2 · · · c1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(3)

where cm in (p, q) of C is the mutual coupling coeffi-

cient between the pth sensor and qth sensors. Generally, the

magnitude of cm is inversely proportional to the distance

between the sensors. As a result, C is a symmetric matrix

and |cm| < c1 = 1 for any m > 1. Obviously, there are at

most 1 + [(M(M − 1))/2] distinct entities in C. Actually, the

mutual coupling coefficient is approximated by zero if the dis-

tance is larger than a given threshold. Due to the identifiability

(see Section IV), we assume that there are at most Q = M−K

distinct entities in C. Accordingly, the signal model in (1) with

mutual coupling is modified to

x(t) = CAs(t) + n(t). (4)
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If the noise n(t) is Gaussian white, and it is uncorrelated with

the source signal s(t), then the covariance matrix of x(t) is

R = CARsA
HCH + σ 2IM (5)

where Rs = diag{δ1, δ2, . . . , δK} is the covariance matrix of

the source signals, δk is the power of the kth source, and σ

is the noise variance. When L snapshots are available, i.e.,

t = 1, 2, . . . , L, R can be estimated as

R̂ =
1

L

L
∑

t=1

x(t)xH(t). (6)

Our ultimate goal is to jointly estimate the DOA and mutual

coefficients from R̂.

III. PROPOSED POSITIONING ALGORITHM

A. DOA Estimation With Unknown Mutual Coupling

Performing eigendecomposition on R̂, one can obtain

R̂ =

M
∑

m=1

αmumuH
m

= Us�sU
H
s + Un�nUH

n (7)

where α1 ≥ α2 ≥ · · · ≥ αK > αK+1 ≥ · · · ≥ αM are the

eigenvalues and um ∈ C
M×1 is the corresponding eigenvector.

Moreover

Us = [u1, u2, . . . , uK] (8a)

�s = diag{α1, α2, . . . , αK} (8b)

Un =
[

uK+1, uK+2, . . . , uM

]

(8c)

�n = diag{αK+1, αK+2, . . . , αM} (8d)

where Us and Un are usually called the signal subspace and

noise subspace, respectively. It is well known that Us is

orthogonal to Un, and Us spans the same subspace as CA,

hence

UH
n Ca(�k) = 0. (9)

Consequently, the MUSIC idea can be adopted for DOA

estimation, which tries to optimize

min aH(�)CHUnUH
n Ca(�k). (10)

Usually, a grid consisting of all of the possible DOAs is

constructed. By finding the peaks of (10), we can obtain

the estimates of DOAs. Unfortunately, the traditional MUSIC

algorithm fails to work since C is unknown. To eliminate the

mutual coupling effect, the following result will be utilized.

Theorem [54]: For a matrix C ∈ C
M×M and a vector

a ∈ C
M×1, if there are only Q (Q < M) distinct entities

c = [c1, c2, . . . , cQ]T in C, then the following transformation

holds:

Ca = Tc (11)

where T ∈ C
M×Q, with the qth (q = 1, 2, . . . , Q) column

given by

T(:, q) = Jqa (12)

and Jq is defined as

Jq(m, n) =

{

1, if C(m, n) = cq

0, otherwise.
(13)

According to the theorem, we have

Ca(�) = T(�)c (14)

where T(�) ∈ C
M×Q and c ∈ C

Q×1 are constructed

accordingly. Equation (10) can then be rewritten as

min cH TH(�)UnUH
n T(�)

︸ ︷︷ ︸

�Q(�)

c. (15)

Equation (15) is obviously a quadratic optimization problem.

To avoid the trivial solution c = 0, we enforce the constraint

dHc = ρ (16)

where ρ is a constant, and d = [1, 0, . . . , 0]T. As a result, (15)

is transformed to

min cHQ(�)c s.t., dHc/ρ = 1. (17)

The above problem can be solved using the Lagrange

multiplier technique. First, we construct a Lagrange function

L(�) = cHQ(�)c − τ
(

dHc/ρ − 1
)

(18)

where τ is a Lagrange multiplier. Then, letting ∂L(�)/c go

to zero yields

2Q(�)c +
τ

ρ
d = 0 (19)

from which we obtain

c = ξQ−1(�)d/ρ (20)

where ξ is a constant. Combined with (16), we have

ξ =
ρ2

dHQ−1(�)d
. (21)

Inserting (21) into (20) gives

c =
ρ2Q−1(�)d

dHQ−1(�)d
. (22)

Finally, we can rewrite (17) as

min
|ρ4|

dHQ−1(�)d
. (23)

As ρ is a constant, (23) is equal to

max dHQ−1(�)d. (24)

The DOA pair (or DOA) can be estimated by searching the

K peaks of (24), after which the mutual coupling coefficients

can be estimated by

ĉ =
1

K

K
∑

k=1

ρ2Q−1
(

�̂k

)

d

dHQ−1
(

�̂k

)

d
. (25)

Note that c1 = 1, and the scalar effect in (25) can be eliminated

by normalization.
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Fig. 2. Diagram for vehicle positioning using 2D-DOA.

It should be pointed out that in the absence of noise, we

have

cHQ(�)c = 0 (26)

and, as c �= 0, the necessary condition for (26) is that there is

a rank reduction on Q(�), i.e.,

det{Q(�)} = 0. (27)

According to (27), an alternative to DOA estimation is

max
1

det{Q(�)}
. (28)

B. Vehicle Positioning Using DOA

Once the DOA of a landmark has been obtained, the vehi-

cle position is easily recovered. The positioning principle is

depicted in Fig. 2, where the reference sensor with position

(Xo,Yo,Zo) in the vehicle is set as the coordinate origin. As the

position of the kth landmark is known to be (Px,k,Py,k,Pz,k),

the following equations are established:

tan θk =
Py,k − Yo

Pz,k − Zo

(29a)

tan φk =
Py,k − Yo

Px,k − Xo

. (29b)

Since there are three unknown parameters Xo, Yo, and Zo,

but only two equations, the vehicle position cannot be real-

ized if there is only one landmark. When two landmarks with

positions (Px,1,Py,1,Pz,1) and (Px,2,Py,2,Pz,2) are available, the

coordinates of (Xo,Yo,Zo) can be determined by

Xo =
Py,1 − Py,2 + tan φ2Pz,2 − tan φ1Pz,1

tan φ2 − tan φ1
(30a)

Yo =
tan θ1 tan θ2

(

Pz,1 − Pz,2

)

+ tan θ1Py,2 − tan θ2Py,1

tan θ1 − tan θ2

(30b)

Zo =
Py,1 − Py,2 + tan θ2Pz,2 − tan θ1Pz,1

tan θ2 − tan θ1
. (30c)

If more than two landmarks are available, then the estimated

accuracy of the coordinates can be improved by averaging

various results.

It should be pointed out that the 3-D coordinates of the

vehicle rely on 2D-DOA estimation. If we can only obtain

1D-DOA (e.g., the manifold of the sensor array is linear), then

TABLE I
ALGORITHMIC STEPS OF PROPOSED POSITIONING ALGORITHM

TABLE II
DETAILED COMPLEXITY OF THE PROPOSED ALGORITHM

we can only determine the 2-D coordinates of the vehicle, as

discussed in [28].

To better understand the proposed positioning algorithm, the

steps of the algorithm are listed in Table I.

IV. ALGORITHM ANALYSIS

A. Identifiability

According to Section III-A, the DOA is estimated using

the rank reduction property of Q(�). Since Q(�) =

TH(�)UnUH
n T(�) ∈ C

Q×Q, thus the maximum rank of Q(�)

is min{Q, M−K}. If Q > M−K, then Q(�) is the natural rank

deficit, and the proposed algorithm will fail to work. Therefore,

a sufficient condition of the proposed algorithm is Q ≤ M−K,

or equivalently, K ≤ M − Q, which reveals that the maximum

identifiability of the proposed algorithm is M − Q. Based on

this assumption, the rank reduction of Q(�) will take place in

the estimation of �. If K > M − Q, then Q(�) is natural sin-

gular, and no peak value will occur in (28), then the proposed

algorithm will be invalid.

As pointed out in [54], the upper bound on Q is M − K;

thus the proposed algorithm and iterative method in [54] have

the same identifiability.

B. Computational Complexity

We analyze the complexity of the proposed method (by

counting the number of complex multiplications), as shown

in Table II. It can be observed that the dominant com-

plexity of the proposed algorithm is the spectrum searching

in step 4.

In [54], before the iteration, the same operation is required

in steps 1 and 2. Each iteration in [54] has two parts, MUSIC

spectrum searching and mutual coupling coefficient calcula-

tion, which require P(2M2 + 2M) and M2Q + Q2M + K2Q3 +

KQ3 + O{Q3} complex multiplications, respectively. Thus, the

total complexity of the method in [54] is M2L + O{M3} +

W(P(2M2 + 2M) + M2Q + Q2M + K2Q3 + KQ3 + O{Q3}),
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where W is the iteration number. Generally, dozens of itera-

tions are required before convergence, and thus the proposed

algorithm is computationally more efficient than the method

in [54]. We will compare the complexity in Section V.

C. Deterministic CRBs

Performance bounds for wideband localization with com-

monly used signal metrics (such as TOA, TDOA, DOA, and

RSS) were derived in [55] and [56]. The bounds for narrow-

band localization were stressed in [57], to which interested

readers can refer for more details. Unlike prior work, we con-

sider the scenario of DOA estimation for narrowband signals

with unknown mutual coupling, and we derive the determinis-

tic CRBs with respect to DOA and mutual coupling estimation.

We start by rewriting (4) as

xl = CAsl + nl, l = 1, 2, . . . , L (31)

where xl � x(l), sl � s(l), and nl � n(l). Thereafter, we

construct a “column” measurement y = [xT
1 , xT

2 , . . . , xT
L]T ∈

C
ML×1. We assume that the source signals are deterministic

but unknown to the receiver. Then, the mean μ ∈ C
ML×1 and

covariance matrix Ŵ ∈ C
ML×ML of the observed data are

μ =

⎡

⎢
⎣

CAs1

...

CAsL

⎤

⎥
⎦ = HS (32a)

Ŵ = blkdiag{σ 2IM, σ 2IM, . . . , σ 2IM
︸ ︷︷ ︸

L

}, (32b)

where H � blkdiag{CA, CA, . . . , CA
︸ ︷︷ ︸

L

} ∈ C
ML×LK and S �

[sT
1 , sT

2 , . . . , sT
L]T ∈ C

LK×1.

Next, we define the parameter vectors θ � [θ1, θ2, . . . , θK],

φ � [φ1, φ2, . . . , φK], α � [θ, ϕ] ∈ R
1×2K , β �

[Re{c}, Im{c}] ∈ R
1×2Q, and γ = [Re{ST}, Im{ST}] ∈

R
1×2LK . The entire estimation parameter vector is formulated

as ζ = [α, β, γ ]T. According to [58], the CRB matrix for ζ

is given by

CRB =
σ 2

n

2

[

Re
{

�H�
}]−1

(33)

where � = [(∂μ/∂α), (∂μ/∂β), (∂μ/∂γ )].

We now focus on each part of �. It is straightforward to

find

∂μ

∂γ
=
[

H, jH
]

∈ C
ML×2LK . (34)

Moreover, we have (∂μ/∂α) � [(∂μ/∂θ), (∂μ/∂ϕ)] �

[C�θ , C�φ] ∈ C
ML×2K with

�θ =

⎡

⎢
⎢
⎢
⎣

(
∂a(�1)

∂θ1

)

s1,1 . . .
(

∂a(�K)
∂θK

)

sK,1

...
. . .

...
(

∂a(�1)
∂θ1

)

s1,L . . .
(

∂a(�K)
∂θK

)

sK,L

⎤

⎥
⎥
⎥
⎦

(35a)

�φ =

⎡

⎢
⎢
⎢
⎣

(
∂a(�1)

∂φ1

)

s1,1 . . .
(

∂a(�K)
∂φK

)

sK,1

...
. . .

...
(

∂a(�1)
∂φ1

)

s1,L . . .
(

∂a(�K)
∂φK

)

sK,L

⎤

⎥
⎥
⎥
⎦

(35b)

where sk,l is the kth element of sl. Similarly, we define

(∂μ/∂γ ) � ∇ ∈ C
ML×2Q with

∇ =

⎡

⎢
⎢
⎢
⎣

(
∂C
∂c1

)

As1 . . .
(

∂C
∂cQ

)

As1

...
. . .

...
(

∂C
∂c1

)

AsL . . .
(

∂C
∂cQ

)

AsL

⎤

⎥
⎥
⎥
⎦

⊗ [1, j]. (36)

Letting � � [C�θ , C�φ], (∂μ/∂ζT) = [�,∇, H, jH].

Furthermore, we can obtain

J = Re
{

�H�
}

= Re

⎧

⎪
⎪
⎨

⎪
⎪
⎩

⎡

⎢
⎢
⎣

�H

∇H

HH

−jHH

⎤

⎥
⎥
⎦

[

�,∇, H, jH
]

⎫

⎪
⎪
⎬

⎪
⎪
⎭

. (37)

Since we are only interested in the CRB with respect to DOA

estimation and mutual coupling estimation, we will extract

those counterparts from J by means of diagonalization. We

define

P� �
(

HHH
)−1

HH� ∈ C
LK×2K (38a)

P∇ �
(

HHH
)−1

HH∇ ∈ C
LK×2Q. (38b)

As HHH is nonsingular, both P−1
∇ and P−1

∇ are valid. In

addition, we define

V �

⎡

⎢
⎢
⎣

I 0 0 0

0 I 0 0

-Re{P�} -Re{P∇} I 0

-Im{P�} -Im{P∇} 0 I

⎤

⎥
⎥
⎦

. (39)

It is easy to find

[

�,∇, H, jH
]

V =
[

(� − HP�), (∇ − HP∇), H, jH
]

. (40)

We let �⊥
H be the orthogonal projection of HH onto null

space, i.e.,

�⊥
H � IML − H

(

HHH
)−1

HH. (41)

Obviously, HH�⊥
H = 0. Then, we have

VHJV = Re

⎧

⎪
⎪
⎨

⎪
⎪
⎩

⎡

⎢
⎢
⎣

�H�⊥
H

∇H�⊥
H

HH

−jHH

⎤

⎥
⎥
⎦

[

�⊥
H�,�⊥

H∇, H, jH
]

⎫

⎪
⎪
⎬

⎪
⎪
⎭

= Re

⎧

⎪
⎪
⎨

⎪
⎪
⎩

⎡

⎢
⎢
⎣

�1 �2 0 0

�3 �4 0 0

0 0 H̃ jH̃

0 0 −jH̃ H̃

⎤

⎥
⎥
⎦

⎫

⎪
⎪
⎬

⎪
⎪
⎭

(42)

with

�1 = �H�⊥
H� (43a)

�2 = �H�⊥
H∇ (43b)

�3 = ∇H�⊥
H� (43c)

�4 = ∇H�⊥
H∇ (43d)

H̃ = HHH. (43e)
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According to properties of a partitioned diagonal matrix, we

obtain

J−1 = V
(

VHJV
)−1

VT

=

⎡

⎣

I 0 0

0 I 0

× × I

⎤

⎦ ·

⎡

⎣

Re{�1} Re{�2} 0

Re{�3} Re{�4} 0

0 0 ×

⎤

⎦

−1

×

⎡

⎣

I 0 ×

0 I ×

0 0 I

⎤

⎦

=

⎡

⎣

Re{�1} Re{�2} 0

Re{�3} Re{�4} 0

0 0 ×

⎤

⎦

−1

(44)

where × denotes the irrelevant part in the derivation.

Inserting (37) and (44) into (33), and removing all the unaf-

fected parts, we can then obtain the CRBs on DOA estimation

and mutual coupling estimation as

CRBa,c =
σ 2

2

[

Re{�1} Re{�2}

Re{�3} Re{�4}

]−1

. (45)

According to the inverse property of a partitioned matrix, we

can obtain the CRB on DOA estimation CRBd and the CRB

on mutual coupling estimation CRBm, respectively, as

CRBd =
σ 2

2

[

Re{�1} − Re{�2}Re−1{�4}Re{�3}
]−1

(46a)

CRBm =
σ 2

2

[

Re{�4} − Re{�3}Re−1{�1}Re{�2}
]−1

. (46b)

In this article, the CRB is adopted to evaluate the the-

oretical lower bound for each vehicle terminal. In practice,

the positioning accuracy can be improved further by network

localization and navigation (NLN) [59], [60], which advocates

that agents jointly infer their states. The NLN exploits joint

spatial and temporal cooperation for position inference.

V. SIMULATION RESULTS

To show the efficiency of our method, Monte Carlo trials

were carried out. In the simulations, we assumed that there are

M sensors and K far-field sources. The source signals satisfied

a normal distribution, and L = 200 snapshots were collected.

The signal-to-noise ratio (SNR) in the simulation is defined as

SNR � 10 log10 ‖x(t) − n(t)‖2
F/‖n(t)‖/2

F [dB]. All the simu-

lations were run on an HP Z840 workstation [two Intel Xeon

E5-2650 v4 2.20-GHz processors with 128-GB DDR4 RAM)

with MATLAB R2016a (MathWorks, USA). Two metrics were

adopted for performance assessment. One is the root-mean-

square error (RMSE); and the other is the runtime. The RMSE

is defined as

RMSE =
1

K

K
∑

k=1

√
√
√
√

1

T

T
∑

i=1

(

ζ̂i,k − ζk

)2
(47)

where T is the total number of trails, and ζk and ζ̂i,k are the

kth parameter (angle or mutual coupling coefficient) and its

estimate, respectively, for the ith Monte Carlo trial. Two array

geometries were considered.

Fig. 3. Illustration of ULA.

Fig. 4. Illustration of 3D-ULA.

Scenario 1: ULA geometry with interelement distance of

λ/2, as shown in Fig. 3. We assumed Q = 3 and c = [1, 0.8+

0.5j, 0.2 + 0.1j]T. In such a case, we only needed to estimate

the azimuth angle θ .

Scenario 2: 3D-ULA with M = 12 and interelement dis-

tance of λ/2, as shown in Fig. 4, again assuming Q = 3.

The mutual coefficient between two adjacent sensors was

c2 = 0.8 + 0.5j, and the mutual coupling coefficient between

sensors with distance λ was c3 = 0.017 + 0.035j, while

the mutual coefficient associated with two cross-adjacent sen-

sors was c4 = 0.2 + 0.1j. Therefore, Q = 4 and c =

[1, 0.8 + 0.5j, 0.017 + 0.035j, 0.2 + 0.1j]T. In addition, we

assumed K = 2 sources located at � = (40◦, 25◦) and

� = (60◦, 105◦), respectively.

In the first example, we illustrate the spatial spectrum of the

proposed algorithm in scenario 1. We assume that M = 12,

SNR = 20 dB, and K = 3 with DOAs are 20◦, 25◦, and

40◦, respectively. The search range of all of the algorithms

was [0◦, 90◦] with interval 0.1◦. For comparison, the spec-

trum obtained by MUSIC (marked with “MUSIC”) and the

iterative method in [54] (marked with “iterative method”) are

added (all the compared algorithms share the same simula-

tion parameters). For each algorithm, five independent trials

were run. The result is depicted in Fig. 5, from which we

can observe that the traditional MUSIC could only obtain

two DOAs. However, both the proposed algorithm and the
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Fig. 5. Spectrum comparison in scenario 1.

Fig. 6. Spectrum result of the proposed algorithm in scenario 2.

iterative method offered good performance, since they were

robust enough against mutual coupling.

In the second example, we tested the performance of the

proposed algorithm in scenario 2, where SNR= 10 dB was

considered. The search range for θ was [0◦, 90◦] with interval

0.5◦, while the search range for φ was [0◦, 180◦] with interval

1◦. The spatial spectrum result is illustrated in Fig. 6. Clearly,

the proposed algorithm could correctly detect and pair the

2D-DOAs.

In the third example, we measured the estimation

performance of the proposed algorithm in the presence of sce-

nario 1, where M = 12 and K = 2, with DOAs are 20◦

and 30◦, respectively. The search range was [0◦, 90◦], with

interval 0.01◦. The curves of RMSE versus SNR are shown

in Figs. 7 and 8 (the performance of MUSIC is not shown

in Fig. 8, as it cannot offer mutual coupling estimation). The

RMSEs of the proposed and iterative methods seem almost

identical except for some low SNR cases. For the proposed

algorithm, DOA estimation accuracy is only related to SNR,

while in the iterative method, it is related to both SNR, but also

Fig. 7. RMSE for DOA estimation versus SNR in scenario 1.

Fig. 8. RMSE for mutual coupling estimation versus SNR in scenario 1.

relate to and the estimation accuracy of the mutual coupling

coefficient. The estimation error in the iterative method has

a cumulative effect. As a result, the proposed method would

perform better than the iterative method in low SNR regions.

However, the advantage is not obvious for mutual coupling

coefficient estimation, as shown in Fig. 8. There is a big gap

between the estimation performance and the theoretical bound,

hence more work is necessary to solve this problem. Fig. 9

shows that the average runtime of the proposed algorithm is

about an order of magnitude lower than that of the iterative

method, which implies that the proposed algorithm is more

efficient.

In the fourth example, we repeated the simulation in sce-

nario 2. The search range for θ was [20◦, 80◦], with interval

0.2◦, while the search range for φ was [0◦, 130◦], with the

interval set to 0.5◦. The RMSE curves for DOA estimation

are shown in Fig. 10, and those for the RMSE curves for

mutual coupling estimation are given in Fig. 11. It is clearly

seen that RMSE of the traditional MUSIC algorithm barely

changed in such a scenario, while RMSE of the proposed
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Fig. 9. Average runtime versus SNR in scenario 1.

Fig. 10. RMSE for DOA estimation versus SNR in scenario 2.

algorithm would decrease with the increasing SNR. Moreover,

the proposed algorithm and the iterative method had similar

estimation performance, and both attained the CRB. The run-

time results, as illustrated in Fig. 12, indicate that the average

runtime of the iterative method was about three times that

the proposed algorithm. Therefore, the proposed algorithm is

much more efficient.

In the fifth example, we compared the performance with

various sensor numbers M in scenario 1, with the SNR fixed

at 10 dB, and the other conditions are the same as that in

the third example. Figs. 13 and 14, respectively, present the

RMSE on DOA estimation and mutual coupling estimation.

One can observe that the RMSE on DOA estimation slowly

decreased with increasing M, while the RMSE on mutual cou-

pling estimation barely changed with various M values. In

addition, it appears that the proposed algorithm performed

better than the iterative method. Fig. 15 shows the average

runtime comparison. Noteworthy is that the proposed algo-

rithm was computationally more efficient than the iterative

method. As mentioned previously, the method in [54] involves

Fig. 11. RMSE for mutual coupling estimation versus SNR in scenario 2.

Fig. 12. Average runtime versus SNR in scenario 2.

Fig. 13. RMSE for DOA estimation versus M in scenario 1.

optimization of a highly nonlinear problem and, more sig-

nificantly, an iterative procedure, which is time consuming.

In contrast, the proposed algorithm only needs a peak search

process.
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Fig. 14. RMSE for mutual coefficient estimation versus M in scenario 1.

Fig. 15. Average runtime versus M in scenario 1.

TABLE III
VEHICLE POSITIONING RESULTS USING 1D-DOA ESTIMATION

Finally, the vehicle positioning performance of different

DOA estimation algorithms was tested relying on the proposed

auxiliary vehicle positioning framework. First, we considered

scenario 1, in which the positions of the landmarks were (0, 0)

and (0, 50 m). We then considered scenario 2 with landmarks

located at (0, 0, 0) and (0, 50 m, 10 m). Theoretically, the coor-

dinates of the vehicle with respect to the two scenarios were

(234.32 m, −85.29 m) and (20.80 m, −30.71 m, 36.60 m),

respectively. Tables III and IV compare the vehicle position-

ing performance in scenario 1 and scenario 2, respectively. It

is seen that the traditional MUSIC algorithm was not suitable

TABLE IV
VEHICLE POSITIONING RESULTS USING 2D-DOA ESTIMATION

for accurate vehicle positioning in either scenario, since its

absolute error was too large. In scenario 1, the proposed DOA

estimation algorithm achieved better positioning performance

than that of the iterative method. Moreover, it was more robust

than the latter in low SNR regions. In scenario 2, the method

in [54] performed slightly better than the proposed algorithm.

VI. CONCLUSION

In this article, we proposed an auxiliary vehicle position-

ing framework that relies on robust DOA estimation within

current VANETs. We considered a realistic scenario in which

sensors are irregularly distributed in a vehicle, and they suf-

fer from the mutual coupling. We derived a computationally

friendly algorithm for DOA estimation and mutual coupling

self-calibration in such a scenario. By utilizing the RD-MUSIC

idea, the proposed algorithm can obtain the DOA and mutual

coupling coefficient by searching a single spatial spectrum.

The proposed algorithm has estimation performance that is

very close to the state-of-the-art iterative method, but it is

superior from an engineering standpoint, since it is much more

efficient. Simulation experiments corroborate our theoretical

analysis. The proposed positioning framework can provide a

self-localization service, and it can collaborate with other posi-

tioning systems; thus it should have bright prospects for future

IoV applications.
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