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The major natural auxin in plants, indole-3-acetic acid (IAA), orchestrates a plethora of
developmental responses that largely depend on the formation of auxin concentration
gradients within plant tissues. Together with inter- and intracellular transport, IAA metabo-
lism—which comprises biosynthesis, conjugation, and degradation—modulates auxin gra-
dients and is therefore critical for plant growth. It is now very well established that IAA is
mainly produced from Trp and that the IPyA pathway is a major and universally conserved
biosynthetic route in plants, while other redundant pathways operate in parallel. Recent
findings have shown that metabolic inactivation of IAA is also redundantly performed by
oxidation and conjugation processes. An exquisite spatiotemporal expression of the genes for
auxin synthesis and inactivation have been shown to drive several plant developmental
processes. Moreover, a group of transcription factors and epigenetic regulators controlling
the expression of auxin metabolic genes have been identified in past years, which are illu-
minating the road to understanding the molecular mechanisms behind the coordinated
responses of local auxin metabolism to specific cues. Besides transcriptional regulation,
subcellular compartmentalization of the IAAmetabolism and posttranslational modifications
of the metabolic enzymes are emerging as important contributors to IAA homeostasis. In this
review, we summarize the current knowledge on (1) the pathways for IAA biosynthesis and
inactivation in plants, (2) the influence of spatiotemporally regulated IAA metabolism on
auxin-mediated responses, and (3) the regulatory mechanisms that modulate IAA levels in
response to external and internal cues during plant development.

T
he extensive search for the plant molecule
responsible for tropic responses to light

and gravity led to the identification of the first
auxin molecule, indole-3-acetic acid (IAA),
more than 80 years ago (Abel and Theologis
2010). Since then, it has been determined that
auxin is not only involved in the control of
tropisms, but also regulates numerous plant de-
velopmental responses that mainly rely on the
spatiotemporal control of cell division, growth,

and differentiation (Zhao 2018; Gallei et al.
2020). In addition to IAA, phenylacetic acid
(PAA) and 4-chloro-indole-3-acetic acid (4-
Cl-IAA) are naturally occurring auxins in
plants. Although both are perceived by the auxin
signaling machinery (Shimizu-Mitao and Kaki-
moto 2014; Jayasinghege et al. 2019), 4-Cl-IAA
is not widespread (Lam et al. 2015) and PAAhas
been studied far less than IAA due to generally
less potent effects (Cook 2019).
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Because plant responses to auxin concentra-
tions are threshold-dependent, IAA levels must
be finely regulated during plant growth in re-
sponse to external and internal cues. Tuning of
the IAA concentration within cells and tissues is
largely performed by directional transport and
localized biosynthesis (Brumos et al. 2018; Ro-
bert et al. 2018) as well as inactivation of IAA
(Zheng et al. 2016; Di Mambro et al. 2019). A
classical model for auxin gradient formation in
plants is based on a primary synthesis of IAA in
the shoot—mainly in the young leaves and cot-
yledons—which is then distributed throughout
the plant by polar transport with a major root-
ward component. However, early reports al-
ready suggested a role for the root tip in auxin
biosynthesis (van Raalte 1936; van Overbeek
1939; Davies andMitchell 1972). Improvements
in the sensitivity of analytical technologies that
allowed quantification of IAA from minute
amounts of plant tissue, along with the identifi-
cation of newly synthesized auxin in these tis-
sues using stable isotope labeling (Novák et al.
2012, 2017), have helped researchers establish
that auxin biosynthesis occurs locally in differ-
ent plant organs and, albeit at different rates, in
every root cell type (Ljung et al. 2001a, 2005;
Petersson et al. 2009). Together with advances
in analytical methodologies, the availability of
the Arabidopsis genome sequence boosted the
identification of genes associated with auxin bi-
osynthesis, conjugation, and degradation. The
detailed genetic and biochemical evaluation of
these genes and their regulatory networks has
revealed the importance of an initially disre-
garded role of auxin metabolism in plant devel-
opment.

AUXIN BIOSYNTHESIS IN PLANTS

Several decades of research on auxinmetabolism
have firmly established the aromatic amino acid
L-tryptophan (Trp) as a central precursor for
IAA biosynthesis in plants. Trp is produced in
chloroplasts via the shikimate pathway, a route
through which most living organisms—exclud-
ing animals—produce aromatic amino acids
(Maeda and Dudareva 2012). Far from being
linear, Trp-dependent auxin biosynthesis in-

volves various parallel pathways converging at
the production of IAA, being IAOx (indole-3-
acetaldoxime), IAM (indole-3-acetamide) and
IPyA (indole-3-pyruvic acid) the most common
intermediates (Fig. 1). ATrp-independent path-
way for auxin synthesis was proposed after find-
ing that maize and Arabidopsis mutants defec-
tive in Trp biosynthesis were still producing IAA
(Wright et al. 1991; Normanly et al. 1993). It was
later suggested that a cytosolic indole synthase
(INS) mediates Trp-independent IAA produc-
tion via the conversion of indole-3-glycerol-
phosphate to indole (Zhang et al. 2008; Wang
et al. 2015). However, the biochemical pathway
for the Trp-independent conversion of indole to
IAA remains unclear (Nonhebel 2015). The fol-
lowing section will describe the Trp-dependent
pathways for auxin synthesis.

The Main Pathway for IAA Biosynthesis

Whereas auxin production from IAOx and IAM
is not yet fully understood, the IPyApathwayhas
been established as the prevailing route for IAA
synthesis in plants. It consists of a two-step re-
action in which Trp is first deaminated to IPyA
by TRYPTOPHAN AMINOTRANSFERASE
OF ARABIDOPSIS 1 (TAA1) and TAA1-RE-
LATED proteins (TARs) (Stepanova et al.
2008; Tao et al. 2008; Yamada et al. 2009).
IPyA is then decarboxylated to IAA in a rate-
limiting and irreversible reaction catalyzed by
flavin-containing monooxygenases from the
YUCCA (YUC) family (Mashiguchi et al.
2011; Stepanova et al. 2011; Won et al. 2011).
TAA1 and YUC homologs are found across the
genomes of vascular and nonvascular plants
(Yue et al. 2014; Eklund et al. 2015; Poulet and
Kriechbaumer 2017; Matthes et al. 2019), and
functional conservation of TAA1 and YUC ho-
mologs has been shown in maize (Gallavotti
et al. 2008; Phillips et al. 2011; Bernardi et al.
2012), rice (Yamamoto et al. 2007; Yoshikawa
et al. 2014), and Marchantia polymorpha
(Eklund et al. 2015). Taken together, this sug-
gests that the IPyA pathway is a universal route
for IAA synthesis in land plants. Compared to
single mutants in TAA1/TARs and YUCCA
genes, which show only subtle developmental
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Figure 1.Main pathways for indole-3-acetic acid (IAA) metabolism in plants. Biosynthesis of the IAA precursor
L-tryptophan (Trp) takes place in the plastid (green oval). Subsequent IAA biosynthesis, catabolism, and con-
jugation reactions commonly operate in the cytoplasm. IAA molecules are indicated as red hexagons and IAA-
relatedmetabolites are shown in black. Enzymes catalyzing themetabolic reactions are indicated in purple.Major
components for IAA biosynthesis and inactivation are indicated with red arrows. Solid arrows indicate pathways
in which the enzymes, genes, or intermediates are known, while dashed arrows indicate pathways that are not yet
well defined. Brassica-specific metabolites are indicated in orange. Green cylinders indicate intracellular IAA
transporters and the attached arrows indicate the IAAmovement direction. The blue circle, the gray oval, and the
pale orange square indicate peroxisome, nucleus, and vacuole, respectively. Endoplasmic reticulum (ER) is
indicated by the dark yellow structure attached to the nucleus. Organelles are not drawn to scale. (AMI1)
AMIDASE-LIKE PROTEIN 1, (ANT) anthranilate, (ASA1) ANTHRANILATE SYNTHASE α SUBUNIT 1,
(ASB1) ANTHRANILATE SYNTHASE β SUBUNIT 1, (CYP79B2/B3) CYTOCHROME P450, family 79, sub-
family B, polypeptides 2 and 3, (DAO) DIOXYGENASE FOR AUXIN OXIDATION, (GH3) GRETCHEN
HAGEN3, (IAA-glc) IAA-glucose, (IAM) indole-3-acetamide, (IAMT1) indole-3-acetate O-methyltransferase
1, (IAN) indole-3-acetonitrile, (IAOx) indole-3-acetaldoxime, (IBA) indole-3-butyric acid, (IAR3) IAA-ALA-
NINE RESISTANT3, (ILLs) ILR1-LIKE, (ILR1) IAA-LEUCINE RESISTANT1, (IPyA) indole-3-pyruvic acid,
(meIAA) methylindole-3-acetic acid, (MES17) METHYLESTERASE 17, (oxIAA) 2-oxindole-3-acetic acid,
(Phe) phenylalanine, (PILS) PIN-likes, (PIN) PIN-FORMED, (TAA1) TRYPTOPHAN AMINOTRANSFER-
ASE OF ARABIDOPSIS 1, (TAR) TRYPTOPHAN AMINOTRANSFERASE-RELATED PROTEIN, (Trp-AT)
TRYPTOPHAN AMINOTRANSFERASE, (UGTs) URIDINE-DIPHOSPHATE GLYCOSYLTRANSFERASE,
(VAS1) REVERSALOF SAV3 PHENOTYPE 1, (WAT1)WALLSARETHIN1, (YUC) YUCCA flavin-containing
monooxygenases.
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phenotypes, higher-order taa1/tar and yucmu-
tants that bypass functional redundancy result
in marked reductions in IAA levels and severe
developmental defects in Arabidopsis, including
abnormal embryo patterning, reduced stature,
aberrant vasculature, defective root growth and
gravitropic response, abnormal apical hook for-
mation, and altered leaf and floral patterning
(Cheng et al. 2006, 2007; Stepanova et al. 2008;
Chen et al. 2014). Loss-of-function of the maize
vt2 gene, a TAA1 ortholog, resulted in reduced
plant growth and dramatic effects in inflores-
cence development, which entails a severe steril-
ity of the mutant plants (Phillips et al. 2011).
Similar reproductive defects were observed in
themaize spi1mutants, impaired in the function
of a monocot-specific YUC-like protein (Galla-
votti et al. 2008). In the liverwort Marchantia,
the knock-out of its single TAA gene resulted in
severe growth and developmental defects caused
by a loss of cell and tissue differentiation
(Eklund et al. 2015). The severity of the above-
mentioned phenotypes, along with the seedling
lethality observed in the Arabidopsis taa1 tar1
tar2 triplemutant (Stepanova et al. 2008), points
to the IPyA pathway as a major and essential
route for IAA biosynthesis in plants.

Parallel Pathways for IAA Biosynthesis

TheTrp derivative IAOx is an intermediate in an
IAA biosynthetic route that is yet to be fully
understood. The conversion of Trp to IAOx is
mediated by two isozymes from the cytochrome
P450 (CYP) monooxygenase family, CYP79B2
and CYP79B3 (Hull et al. 2000; Mikkelsen et
al. 2000; Zhao et al. 2002). Both IAOx and
CYP79B2/3 genes have so far only been found
in Brassica species (Sugawara et al. 2009), which
suggests that this pathway is restricted to the
Brassicaceae family (Fig. 1). Moreover, the
cyp79b2 cyp79b3 double mutant shows condi-
tional auxin phenotypes when grown at high
temperatures (Zhao et al. 2002; Sugawara et al.
2009), further suggesting a role for the IAOx-
dependent IAA synthesis specifically during
adverse conditions. IAOx is a well-known pre-
cursor of indole glucosynolates (IGs) and cama-
lexin, which serve as defense metabolites in

plants (Hull et al. 2000; Glawischnig et al.
2004; Nafisi et al. 2007). Nevertheless, an in-
crease in IAOx levels—through either genetic
disruption of the IG pathway or overexpression
of genes associated with IAOx biosynthesis—re-
sults in elevated IAA and high-auxin pheno-
types (Boerjan et al. 1995; King et al. 1995;
Delarue et al. 1998; Barlier et al. 2000; Zhao
et al. 2002; Grubb et al. 2004; Sugawara et al.
2009; Novák et al. 2012; Kong et al. 2015). A
study in which isotope-labeled IAOx was fed to
Arabidopsis seedlings revealed that IAOx, IAM,
and IAN (indole-3-acetonitrile) are intermedi-
ates of IAA biosynthesis (Sugawara et al. 2009).
IAN-to-IAA conversion by a family of plant
nitrilases (NITs) is thought to account for the
IAOx-dependent auxin biosynthesis (Lehmann
et al. 2017). However, the lack of direct genetic
and biochemical evidence for NIT-mediated
auxin synthesis in planta, together with the
knowledge that nitrilases participate in cyanide
and glutathione detoxification (Piotrowski
2008; Niehaus et al. 2019), means that the bio-
chemical route from IAOx to IAA remains un-
resolved.

IAM is a well-known auxin biosynthesis in-
termediate in certain plant-associated bacteria
(Patten et al. 2013) in which Trp is converted to
IAA through the formation of IAM. While it
was demonstrated that IAM can be produced
from IAOx in Arabidopsis (Sugawara et al.
2009), IAM has also been detected in non-Bras-
sica species that lack IAOx (Pollmann et al.
2002; Sugawara et al. 2009; Novák et al. 2012).
IAM application results in classical high-auxin
phenotypes (Sugawara et al. 2009; Gao et al.
2020), indicating that IAM-to-IAA conversion
operates in planta. However, the disruption of
the main IAM hydrolases in Arabidopsis,
IAMH1, and IAMH2, did not lead to sub-
stantial developmental defects or variations in
IAA contents, suggesting that the IAM pathway
only plays a minor role in auxin homeostasis
under standard growth conditions (Gao et al.
2020).

Indole-3-butyric acid (IBA) is a compound
that has been shown to stimulate an auxin re-
sponse when applied to plants. However, it is
very unlikely (1) that IBA itself is perceived by
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the plant (Strader and Bartel 2011; Uzunova
et al. 2016), and (2) that it is transported via
polar transport (Liu et al. 2012). Instead, the
effects of IBA can be attributed to its conversion
to IAA by a group of peroxisomal enzymes (Zol-
man et al. 2008). IBA-to-IAA conversion has
been found to be relevant to plant development
(Frick and Strader 2018). How plants synthesize
IBA is still unknown and, as such, it is not clear
whether IBA is an IAA precursor or storage
molecule. Also, whether endogenous IBA is
present at physiologically relevant concentra-
tions in plants has been questioned (Novák
et al. 2012) and is still under debate (Frick and
Strader 2018).

AUXIN METABOLIC INACTIVATION

Together with directional transport and local bi-
osynthesis, metabolic inactivation of IAA also
modulates auxin concentrations across plant cells
and tissues. Indeed, research has shown that the
majority of plant IAA exists as (1) inactive con-
jugates andmethyl ester forms that can be revers-
ibly converted to IAA (auxin storage forms), to
rapidly fine-tune auxin levels without the need
for de novo synthesis; and (2) as irreversible in-
active IAA (auxin catabolites), which is the result
of the removal of excess auxin or a regulated
response to create auxin minima. The most ex-
tensively studied inactive forms of auxin will be
summarized in the following section.

IAA Storage Forms

Many different auxin storage forms have been
identified in plants (Korasick et al. 2013). These
forms fall into three main groups: ester-linked
IAA conjugates, amide-linked IAA conjugates,
and methyl IAA (meIAA). The most prevalent
and abundant ester-linked auxin in plants is
IAA-glucose (IAA-glc), which is present at high-
er levels than any other directly measured conju-
gate (Pěnčík et al. 2009, 2018; Brunoni et al.
2020). IAA-glc has been detected in seedling ex-
tracts fromdifferent plants (Kai et al. 2007), and is
the predominant IAA metabolite throughout
Arabidopsis tissues (Porco et al. 2016). IAA-glc
and its metabolic derivative IAA-myo-inositol

(IAA-Ins) are particularly abundant in plant
seeds (Hall 1980; Cohen and Bandurski 1982),
and are thought to be themain auxin source dur-
ing early seedling establishment in vascular
plants (Bartel et al. 2001; Ljung et al. 2001b).
High-molecular-weight IAA-glycan and -glyco-
protein conjugates have also been found in plants
(Korasicket al. 2013), although their specific roles
in auxin homeostasis are not yet understood. Hy-
drolases that release free IAA from IAA-glc and
IAA-Ins were identified in maize kernels (Jaku-
bowska and Kowalczyk 2005), and rice (TGW6;
Ishimaru et al. 2013). Specific UDP-glycosyl-
transferases (UGTs) that produce IAA-glc have
been identified in plants (Szerszen et al. 1994;
Jackson et al. 2002; Ludwig-Müller et al. 2005;
Liu et al. 2019). Overexpression of these UGTs
results in increased levels of IAA-glc and reduced
levels of amide-linked auxins (Jackson et al. 2002;
Ludwig-Müller et al. 2005), indicating that IAA
homeostasis was disturbed. The availability of
knockout mutants for the known auxin UGTs,
together with the discovery of additional IAA
glycosylases and hydrolases, will help clarify the
roles of ester-linked auxins throughout plant de-
velopment.

Amide-linked auxins encompass a group of
compounds in which IAA is conjugated to ami-
no acids, small peptides and proteins, among
which IAA-amino acid (IAA-aa) conjugates
are the best characterized. The formation of
the IAA-amide bond is catalyzed by a group of
IAA acyl acid amido synthetases from the
GRETCHENHAGEN3 (GH3) family (Staswick
et al. 2005; Ludwig-Müller et al. 2009). GH3
genes (Terol et al. 2006; Okrent andWildermuth
2011), along with different IAA-aa conjugates
(Korasick et al. 2013; Záveská Drábková et al.
2015), are found all across land plants. GH3
co-orthologs have been functionally character-
ized in vascular and nonvascular plants (Stas-
wick et al. 2005; Ludwig-Müller et al. 2009; Bru-
noni et al. 2020). The application of various
IAA-aa conjugates results in plant phenotypes
that are similar to what can be observed upon
the addition of exogenous IAA, which provides
strong evidence that IAA-aa conjugates can
serve as IAA storage forms (LeClere et al.
2002; Rampey et al. 2004). Several IAA-aa ami-
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dohydrolases, including IAA-LEUCINE RESIS-
TANT1 (ILR1), ILR1-LIKE proteins (ILLs), and
IAA-ALANINE RESISTANT3 (IAR3), were
identified in screens for mutants that are insen-
sitive to IAA-aa conjugates (Bartel and Fink
1995; Davies et al. 1999; LeClere et al. 2002).
These amidohydrolases appear to be function-
ally conserved across plant species. IAR3 was
found to be required for root architectural
changes under osmotic stress in Arabidopsis
(Kinoshita et al. 2012), and to mediate defense
responses of tomato and potato plants upon in-
fection (D’Ippolito et al. 2016). GH3s are known
to mediate different responses to biotic and abi-
otic stress (Park et al. 2007; Zhang et al. 2007,
2009; Ding et al. 2008; Du et al. 2012; Kirungu
et al. 2019). A note of caution is due here since
certain GH3 enzymes that function as IAA ami-
do synthetases, as GH3.3, GH3.5, and GH3.6,
present a promiscuous conjugating activity to-
ward different substrates like salicylic acid, jas-
monic acid, and benzoic acid (Zhang et al. 2007;
Gutierrez et al. 2012;Westfall et al. 2016), at least
in vitro. Hence, GH3-related phenotypes might
be the result of the perturbation of the homeo-
stasis of not just IAA, but also of other phyto-
hormones.

The methyl ester of IAA, meIAA, also serves
as an auxin storage form in plants. IAA methyl-
ation at the carboxyl group is mediated by
IAA CARBOXYL METHYLTRANSFERASE1
(IAMT1) (Zubieta et al. 2003; Qin et al. 2005).
As an inactive form of auxin, melAA does not
interfere with the auxin signaling machinery (Li
et al. 2008; Abbas et al. 2018). Nevertheless, the
application of meIAA results in auxin-related
phenotypes in plants (Qin et al. 2005), a dynam-
ic that can be attributed to the hydrolysis of
meIAA to IAA by METHYLESTERASE 17
(MES17) and related enzymes (Yang et al.
2008). Research using knockout iamt1 mutants
revealed that auxin methylation has little impact
on auxin levels, both locally or in whole seed-
lings (Abbas et al. 2018; Takubo et al. 2020).
meIAA is a nonpolar compound that is trans-
ported in plants by both passive influx and PIN-
mediated efflux and, thus, affects IAA gradients
rather than IAA levels (Li et al. 2008; Abbas et al.
2018). Specific expression of IAMT1 in the hy-

pocotyl endodermis was shown to be important
for gravitropic growth (Abbas et al. 2018). The
role of auxin methylation in regulating plant
development is, however, still under debate (Ta-
kubo et al. 2020).

Irreversible IAA Catabolites

The amide-linked IAA-Asp and IAA-Glu con-
jugates, unlike other IAA-amino acid conju-
gates, are not hydrolyzed back to IAA in planta
(Östin et al. 1998; Rampey et al. 2004) and are
thus considered catabolites. These two irrevers-
ible conjugates are found in plants atmuch high-
er levels than the reversible IAA-aa conjugates
(Kowalczyk and Sandberg 2001; Pěnčík et al.
2009). GH3 IAA-amido synthetases show dif-
ferent substrate preferences for Asp and Glu
(Staswick et al. 2005; Brunoni et al. 2020).
GH3.17, and to a lesser extent GH3.5, is known
to preferentially use Glu as a cosubstrate (Stas-
wick et al. 2005). Accordingly, gh3.17 plants
show remarkably reduced levels of IAA-Glu in
their hypocotyls (Zheng et al. 2016) and
roots (Di Mambro et al. 2017), while the
gh3.1,2,3,4,5,6 sextuple mutant does not pro-
duce any IAA-Asp, although IAA-Glu produc-
tion is up-regulated, and is likely supported by
the still functional GH3.17 (Porco et al. 2016).

The major catabolic pathway that regulates
IAA levels in plants is the irreversible oxidation
of IAA to oxIAA (2-oxindole-3-acetic acid),
with further glycosylation to oxIAA-glc (Östin
et al. 1998; Kai et al. 2007; Kubeš et al. 2012;
Novák et al. 2012; Pěnčík et al. 2013). There is
extensive evidence that the levels of these oxida-
tive catabolites rapidly increase after IAA appli-
cation (Östin et al. 1998; Kubeš et al. 2012).
Moreover, they are prevalent at higher levels
than amide-linked catabolites at physiological
conditions in algae, as well as in vascular and
nonvascular land plants, which suggests that ox-
idation is a major pathway for IAA catabolism
across the plant kingdom (Novák et al. 2012;
Pěnčík et al. 2013; Záveská Drábková et al.
2015; Porco et al. 2016; Žižková et al. 2017).
Conifers were found to be an exception, as con-
jugation and not oxidation dominates IAA ho-
meostasis (Brunoni et al. 2020). The conversion
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of IAA to oxIAA is catalyzed by DIOXY-
GENASE FOR AUXIN OXIDATION (DAO)
proteins (Zhao et al. 2013), which belong to
the 2-oxoglutarate-dependent Fe(II) dioxyge-
nase superfamily (Kawai et al. 2014; Nadi et al.
2018), while the UGT74D1 enzyme participates
in the glycosylation of oxIAA to oxIAA-glc (Ta-
naka et al. 2014). Arabidopsis DAO1 accounts
for most de novo IAA oxidation and is widely
expressed in plant tissues. However, DAO1 loss-
of-function results in only mild developmental
defects. Because amide-linked catabolites are
greatly increased in dao1 mutants, while de-
creased in DAO1 overexpressors, DAO and
GH3 enzymes are proposed to function redun-
dantly in regulating IAA levels (Mellor et al.
2016; Porco et al. 2016; Zhang et al. 2016). De-
spite this redundant IAA catabolism, multicel-
lular modeling of auxin gradients has shown
that impaired oxidation perturbs IAA levels in
specific root tissues (Mellor et al. 2016), which is
supported by the localized, albeit subtle, pheno-
types of dao1-1mutant roots (Porco et al. 2016;
Zhang et al. 2016).

LOCALIZED IAA METABOLISM
COORDINATES PLANT DEVELOPMENT

The identification and characterization of sever-
al genes related to auxin metabolism has re-
vealed an intricate spatiotemporal orchestration
of their localized expression (exemplified in Fig.
2) that turned out to contribute to the regulation
of local auxin concentrations. YUCCA genes
represent an excellent example of specialization,
as several rounds of gene duplication have re-
sulted in multiple YUCs that have unique ex-
pression domains (Zhao 2018). For example, a
group of shoot- and root-specific YUCCAs has
been defined (Won et al. 2011; Chen et al. 2014).
YUC1 andYUC4 are specifically expressed in the
shoot apicalmeristem, alongwithflower and leaf
primordia (Cheng et al. 2006, 2007). In the em-
bryo, YUC1, YUC4, YUC10, and YUC11 were
found to be expressed in the apical cells, with
each showing certain temporal changes in ex-
pression domain as embryo development pro-
gressed (Cheng et al. 2007). The quadruple yuc1
yuc4 yuc10 yuc11 mutant was found to lack the

hypophysis, a root meristem precursor cell, and
thus germinated without a primary root (Cheng
et al. 2007). Localized expression of TAA1 in the
developing embryo was also found to be critical
for root and apical embryonic meristem specifi-
cation (Stepanova et al. 2008; Robert et al. 2013).
In roots, TAA1 is specifically expressed at the
quiescent center (QC), while TAR2 expression
was reported in the root provasculature (Stepa-
nova et al. 2008). Disruption of both of these
genes resulted in the complete loss of the stem
cell niche and root growth abortion early after
germination (Stepanova et al. 2008). This dy-
namic and localized expression, together with
the developmental abnormalities noted for
plants with loss-of-function mutations in the
TAA1/TAR and YUC genes, supports a role for
IPyA-dependent local auxin biosynthesis in em-
bryo patterning, root meristem maintenance,
gynoecium formation, and leaf and floral devel-
opment (Cheng et al. 2006, 2007; Stepanova
et al. 2008). Localized expression of CYP79B2/
B3 genes at the root meristem and lateral root
primordia initiation sites additionally suggests
that the IAOx pathway participates in local
IAA synthesis during root development (Ljung
et al. 2005).

Cooperation between local IAA biosynthesis
and polar transport generates auxin concentra-
tion gradients that drive plant growth (Ikeda
et al. 2009; Brumos et al. 2018). For example,
the spatiotemporally coordinated expression of
TAA1 and YUCs in the basal and apical embryo,
together with the resulting auxin-triggered PIN
polarization, was shown to define the apicobasal
embryo axis (Robert et al. 2013; Wabnik et al.
2013). However, auxin transport cannot always
compensate for deficiencies in local synthesis.
Proper root development largely depends on
auxin production in the root (Bhalerao et al.
2002; Chen et al. 2014), and localized auxin bio-
synthesis at the root QC was found to be suffi-
cient for root meristem maintenance in the ab-
sence of functional polar transport (Brumos
et al. 2018). Recently, the capacity of the roots
to regenerate their tips after wounding was
shown to be highly dependent on local auxin
biosynthesis mediated by TAA1 and YUCs
near the cut site and in the protoxylem and
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xylem-pole-pericycle, while PIN-mediated
transport was found dispensable (Matosevich
et al. 2020).

Localized auxin degradation was also found
to play various roles in plant growth and devel-
opment. The IAA-amido synthetase GH3.17
was shown to modulate hypocotyl elongation

in response to shade and temperature indepen-
dently of auxin transport and de novo biosyn-
thesis (Zheng et al. 2016). GH3.17, GH3.5, and
GH3.6 are specifically expressed in the lateral
root cap (Di Mambro et al. 2019; Pierdonati
et al. 2019), with GH3.17—at the very least—
participating in the IAA degradation required
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Figure 2. Relative expression level of the main genes for auxin metabolism in different developmental stages,
organs, and tissues from Arabidopsis. Data was retrieved from Genevestigator (genevestigator.com; Hruz et al.
2008) using datasets from (A) RNA-seq experiments, and (B) Affymetrix Arabidopsis ATH1 Genome Array.
Results are expressed in percentage of expression potential (the maximum expression a gene reaches across all
experiments). GH3.2 and GH3.4 share array probes in the results shown in B. AGI codes: YUC1 (At4G32540),
YUC2 (At4G13260), YUC3 (At1G04610), YUC4 (At5G11320), YUC5 (At5G43890), YUC6 (At5G25620), YUC7
(At2G33230), YUC8 (At4G28720), YUC9 (At1G04180), YUC10 (At1G48910), YUC11 (At1G21430), TAA1
(At1G70560), TAR1 (At1G23320), TAR2 (At4G24670), CYP79B2 (At4G39950), CYP79B3 (At2G22330),
DAO1 (At1G14130), DAO2 (At1G14120), GH3.1 (At2G14960), GH3.2 (At4G37390), GH3.3 (At2G23170),
GH3.4 (At1G59500),GH3.5 (At4G27260),GH3.6 (At5G54510),GH3.9 (At2G47750), andGH3.17 (At1G28130).
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to create an auxin minimum at the transition
zone, which influences root meristem size (Di
Mambro et al. 2019).

REGULATION OF AUXIN METABOLISM

Decades of intensive research have resulted in a
deep understanding of the network of intercon-
nected and redundant pathways involved in IAA
synthesis and inactivation. To ensure plastic and
coordinated plant development, these pathways
need to be fine-tuned by an array of regulating
mechanisms that control the activation/deacti-
vation of various synthetic and catabolic routes.
However, our understanding of the regulation of
this complex homeostatic machinery is mainly
based on research that has been conducted dur-
ing the past decade. The regulatory mechanisms
underlying IAA synthesis and inactivation in-
clude (1) metabolic regulation, (2) hormonal
cross talk, (3) transcriptional regulation, (4)
posttranslational modifications, and (5) subcel-
lular compartmentalization.

Metabolic Regulation of IAA Metabolism

It has been well established that IAA biosynthe-
sis is controlled by feedback inhibitory mecha-
nisms dependent on IAA levels (Ljung et al.
2001a). Auxin perception and signaling was
shown to cause the down-regulation of genes
related to the IPyA biosynthetic pathway and,
consequently, to decrease endogenous IAA lev-
els in a feedback loop (Suzuki et al. 2015; Takato
et al. 2017). Likewise, the impaired conversion of
IAA-aa conjugates, IBA, andmeIAA to free IAA
has been shown to up-regulate the expression of
genes associated with IPyA-dependent auxin
synthesis (Spiess et al. 2014). Moreover, the dis-
rupted oxidative degradation of auxin in Arabi-
dopsis dao1mutant plants up-regulates not only
redundant GH3-mediated degradation, but also
de novo auxin biosynthesis, which is a rather
counterintuitive way of returning to homeosta-
sis after an increase in auxin (Mellor et al. 2016;
Porco et al. 2016).

Chorismate, the terminal product of the shi-
kimate pathway, is a common precursor in the
synthesis of the aromatic amino acids Trp, tyro-

sine (Tyr), and phenylalanine (Phe) (Maeda and
Dudareva 2012). While the Tyr and Phe biosyn-
thetic routes share common intermediates, Trp
synthesis proceeds independently. However, a
recent investigation revealed metabolic inter-
play between the Phe and IAA biosynthesis
pathways. Phenylpyruvate, an intermediate in
cytosolic Phe synthesis, can also serve as an ami-
no acceptor in the Trp-to-IPyA conversion by
Trp amino transferases and, thus, modulates
IAA biosynthesis in response to Phe fluctuations
(Lynch et al. 2020). Such metabolic interplay
might also play a role under specific stresses,
such as wounding (Lynch et al. 2020).

A screening for suppressors of the impaired
shade-avoidance response observed in the TAA1
mutant sav3-1 identified the aminotransferase
VAS1, which converts IPyA back to Trp and,
thus, limits IAA synthesis (Zheng et al. 2013).
VAS1 uses the ethylene intermediate methionine
as a preferred amino donor, which revealed a link
in the metabolic control of auxin and ethylene
biosynthesis (Zheng et al. 2013). VAS1-mediated
regulation is specifically, but most likely not ex-
clusively, required for shade-induced elongation
of hypocotyl and petioles (Zheng et al. 2013) and
for the control of parthenocarpy in Solanaceae
species (Matsuo et al. 2020).

Additional metabolic control of the IPyA
pathway relies on the glycosylation of IPyA to
IPyA-glc by UGT76F1, which was recently
identified as a fine-tuning mechanism in the
modulation of IPyA availability for IAA biosyn-
thesis during light- and temperature-induced
hypocotyl elongation (Chen et al. 2020).

Hormonal Cross Talk Modulates IAA
Metabolism

The conversion of chorismate to anthranilate,
which represents the first, rate-limiting step in
the Trp biosynthetic pathway, is catalyzed by the
anthranilate synthase complex (Niyogi and Fink
1992). Previous research has identified anthra-
nilate production as a central hub in the modu-
lation of IAA biosynthesis by other hormonal
pathways. A screen for mutants with altered re-
sponses to ethylene identified twomutants,wei2
and wei7, which harbored mutations in genes
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encoding anthranilate synthase α1 (ASA1) and
β1 (ASB1) subunits, respectively (Stepanova et
al. 2005). TheASA1 promoter was later found to
be a direct target of ETHYLENE RESPONSE
FACTOR 1 (ERF1), which up-regulates ASA1
expression in response to ethylene, resulting in
increased auxin biosynthesis and root growth
inhibition (Mao et al. 2016). ASA1 was also
found to be at the core of jasmonate-auxin met-
abolic cross talk (Sun et al. 2009), in a mecha-
nism that relies on the direct up-regulation of
ASA1 expression by the jasmonate-respon-
sive ETHYLENE RESPONSE FACTOR 109
(ERF109) (Cai et al. 2014). ERF109 additionally
binds to YUC2 promoter to stimulate auxin bio-
synthesis in response to an increase in jasmonate
levels (Cai et al. 2014). YUC8 and YUC9 might
also be involved in jasmonate-regulated auxin
biosynthesis, as their expression is promoted
by methyl jasmonate (Hentrich et al. 2013).

The interplay between auxin and cytokinin
has long been recognized as crucial to plant
growth and development (Moubayidin et al.
2009). In Arabidopsis, cytokinin signal trans-
duction was shown to modulate the rate of
IAA biosynthesis (Jones et al. 2010). This met-
abolic cross talk involves the cytokinin-mediat-
ed up-regulation of YUC1 and YUC4 at the gy-
noecium primordia (Müller et al. 2017) and of
YUC8 in roots (Di et al. 2016). The cytokinin-
response transcriptional effector ARABIDOP-
SIS RESPONSE REGULATOR 1 (ARR1) pro-
motes auxin biosynthesis in the stem cell niche
via the up-regulation of ASB1 (Moubayidin et al.
2013). While a direct molecular link for cyto-
kinin-regulated auxin biosynthesis remains
unknown, cytokinin was found to directly mod-
ulate IAA degradation. More specifically, ARR1
directly binds to GH3.17 and activates its tran-
scription in response to cytokinin, thus promot-
ing auxin degradation (Di Mambro et al. 2017).
This regulatory module was found to be a pre-
requisite for root meristem size determination
(Di Mambro et al. 2017, 2019).

Transcriptional Regulation of IAA Metabolism

The coordinated response of auxin biosynthesis
and inactivation to specific physiological and

environmental cues is mediated by the direct
modulation that specific transcription factors
and components of the epigenetic machinery
exert on the expression of auxin metabolic
genes. Although little is known about the tran-
scriptional control of auxin metabolism, several
transcription factors and epigenetic regulators
have been identified and associated to the con-
trol of auxin metabolism during specific plant
developmental responses (see Tables 1 and 2).

Specific posttranslational histone modifica-
tions, also termed histone marks, are associated
with an active or repressed transcriptional state.
Whole-genome occupancy studies of the his-
tone repressive mark H3K27me3 found that
epigenetic mechanisms control auxin-related
genes. In comparisons of dividing and differen-
tiated cells, differential H3K27me3 modifica-
tions were observed at genes involved in auxin
biosynthesis (YUCs, CYPs, TAA1/TARs, SUR1,
NITs), inactivation (GH3s, IAMT), transport
(PINs, AUX/LAXs), and signaling (TIR1/AFBs,
IAAs, ARFs), thus revealing that this histone
mark exerts a profound effect on auxin action
(Lafos et al. 2011; He et al. 2012). YUC1 and
YUC4, for example, were found to be specifically
involved in early auxin-mediated de novo root
regeneration, in direct correlation with an
H3K27me3 drop along their promoter regions
(Chen et al. 2016). The Polycomb Repressive
Complex 2 (PRC2) accessory protein LIKE
HETEROCHROMATIN1 (LHP1) (Derkacheva
et al. 2013) are recruited to YUC1, YUC2, YUC4,
YUC5, YUC6, YUC8, YUC9, and YUC10 pro-
moters to control their expression (Rizzardi
et al. 2011). Beyond general correlations and
whole-genome comparisons, specific mecha-
nisms related not only to histone modifications
—but also DNAmethylation and small RNAs—
have been shown to alter auxin homeostasis by
regulating the transcription ofYUCs (for review,
see Mateo-Bonmatí et al. 2019).

During the first steps of flower determina-
tion—a process in which floral meristem cells
stop proliferating and initiate a floral organ pri-
mordium—flower primordia formation re-
quires auxin-driven rapid cell expansion and
elongation. The required increase in auxin levels
is, at least in part, achieved by the activation of
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YUC4 by the chromatin-remodeling factors
CHROMATIN REMODELLING 11 (CHR11)
and CHR17, both of which are specifically
recruited to the YUC4 promoter during floral
primordium formation (Yamaguchi et al. 2018).
Later in floral organ development, the C2H2-
type zinc-finger transcription factor SUPER-
MAN (SUP) actively represses YUC1 and YUC4

expression and, thereby, auxin biosynthesis at
the boundaries between carpels and stamen pri-
mordia (Xu et al. 2018). SUP-mediated tran-
scriptional silencing of YUC1 and YUC4 further
involves the recruitment of members of the
PRC2 machinery, such as CURLY LEAF (CLF)
or LHP1, for the trimethylation of H3K27 (Xu
et al. 2018).

Table 1. Transcription factors that have been shown to directly modulate the expression of genes related to IAA
metabolism

Target
Transcriptional
regulator(s) Structural type Biological process(es) References

YUC1 ARR1, ARR10,
ARR12

B-ARR Shoot stem cell niche
maintenance

Meng et al. 2017

SUP C2H2-type
zinc finger

Floral patterning Xu et al. 2018

YUC4 LEC2 B3 domain Embryogenesis Stone et al. 2008
SHI/STY1 RING-like zinc

finger
Leaf and flower development Eklund et al. 2010

ARR1, ARR10,
ARR12

B-ARR Shoot stem cell niche
maintenance

Meng et al. 2017

LEC2, FUS3 B3 domain Lateral root formation Tang et al. 2017
SUP C2H2-type

zinc finger
Floral patterning Xu et al. 2018

CRC C2C2 type zinc
finger

Floral determinacy Yamaguchi et al. 2018

AG MADS Floral determinacy Yamaguchi et al. 2018
YUC5 IDD14, IDD15,

IDD16
IDD Organ morphogenesis,

gravitropism
Cui et al. 2013

YUC8 PIF4 bHLH Hypocotyl elongation at high
temperature

Franklin et al. 2011

YUC9 EIN3 EIL Aluminum-induced root growth
inhibition

Liu et al. 2016b

TAA1 PIF4 bHLH Hypocotyl elongation at high
temperature

Franklin et al. 2011

IDD14, IDD15,
IDD16

IDD Organ morphogenesis,
gravitropism

Cui et al. 2013

SPT bHLH Gynoecium development Reyes-Olalde et al. 2017
ARR1s B-ARR Light-induced tissue-specific

IAA synthesis
Yan et al. 2017

CYP79B2 PIF4 bHLH Hypocotyl elongation at high
temperature

Franklin et al. 2011

UGT76F1 PIF4 bHLH Hypocotyl elongation at high
temperature

Chen et al. 2020

OsYUC8 OsEIL1 EIL Ethylene-mediated primary root
elongation

Qin et al. 2017

ZmGH3.2 ZmDREB2A AP2/ERF Longevity of maize seed Han et al. 2020
GH3.2

GH3.6

MYB30 R2R3-MYB Root growth Zhao and Xue 2020

(Os) Oryza sativa, (Zm) Zea mays; otherwise Arabidopsis thaliana.
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During angiosperm fertilization, auxin bio-
synthesis is constitutively repressed in mater-
nal-derived tissues by the action of the FER-
TILIZATION-INDEPENDENT SEED-PRC2
(FIS-PRC2) complex (Figueiredo et al. 2015).
Mutations in genes encoding subunits of this
complex lead to premature expression of YUC10
in the nonfertilized diploid central cell, which will
result in the development of empty seeds. Recent
reports indicate that additionalmechanisms, driv-
en by EMSY-like Tudor/Agenet H3K36me3 his-
tone readers EMSY-Like protein 1 (EML1) and
EML3, actively repress auxin biosynthesis, trans-
port, and signaling during seed coat and endo-
sperm development (Milutinovic et al. 2019).

Auxin integrates internal and external signals
as sugar levels, shade, and temperature into reg-
ulated plant growth responses (Sairanen et al.
2012; for review, see Zhao 2018). A good model
to exemplify such interaction is the auxin biosyn-
thesis-driven hypocotyl elongation in response to
shade or high temperature (Gray et al. 1998; Tao
et al. 2008). In the hypocotyls of plants grown
under normal light conditions, YUC9 is actively
repressed by the action of two AT-HOOK-CON-
TAININGNUCLEAR-LOCALIZED(AHL)pro-
teins, AHL27 and AHL29 (Lee and Seo 2017).
AHL29 recruits ACTIN-RELATED PROTEIN

4 (ARP4), a member of the SWI2/SNF2-RELAT-
ED1 (SWR1) chromatin-remodeling complex, to
the YUC9 regulatory region to promote the dep-
osition of histone variant H2A.Z and, hence,
block the access of RNApol II to the DNA (Lee
and Seo 2017). Similarmechanisms for transcrip-
tional regulation are driven by ARP6 under nor-
mal temperatures (Kumar and Wigge 2010).
However, independent mechanisms trigger
YUC8 expression in plant hypocotyls to facil-
itate their elongation under shade or high tem-
perature. The transcription factor PHYTO-
CHROME-INTERACTING FACTOR 7 (PIF7)
and the H3K4me3/H3K36me3-binding protein
Morf-Related Gene 2 (MRG2) bind to the
YUC8 promoter in response to shade, and facili-
tate its transcription byallowing the acetylationof
H3 and H4 (Peng et al. 2018). At high tempera-
ture, HISTONE DEACETYLASE 9 (HDA9) ac-
cumulates, facilitating the H2A.Z removal from
theYUC8 locus andproviding a looser chromatin
environment that allows PIF4-mediated activa-
tion of YUC8 transcription (van der Woude
et al. 2019). High temperatures additionally
promote auxin biosynthesis through the temper-
ature-specific recruitment of PIF4 to the promot-
ers of the IPyA glycosylase UGT76F1 and the
IAOx-pathway-related CYP79B2 gene to repress

Table 2. Epigenetic regulators that have been shown to directlymodulate the expression of genes involved in IAA
biosynthesis in a specific biological process

Target Epigenetic regulator(s) Biological process(es) References

YUC1 LHP1 Floral patterning (−) Xu et al. 2018
CLF-PRC2

YUC2 CMT3, DRM1, DRM2 Leaf development/growth (−) Forgione et al. 2019
LOCUS_77297 Ambient temperature (−) Gyula et al. 2018

YUC4 LHP1 Floral patterning (−) Xu et al. 2018
CLF-PRC2
CHR11 Floral determinacy (+) Yamaguchi et al. 2018
CHR17

YUC8 MRG2 Hypocotyl elongation (shade) (+) Peng et al. 2018
HDA9 Hypocotyl elongation (temperature) (+) van der Woude et al. 2019

YUC9 ARP4 Hypocotyl elongation (shade) (−) Lee and Seo 2017
YUC10 FIS2-PRC2 Endosperm development (−) Figueiredo et al. 2015

(ARP4) ACTIN-RELATED PROTEIN 4, (CHR11) CHROMATIN REMODELLING 11, (CLF) CURLY LEAF, (CMT3)
CHROMOMETHYLASE 3, (DRM1) DOMAINS REARRANGED 1, (FIS2) FERTILIZATION INDEPENDENT SEED 2,
(HDA9) HISTONE DEACETYLASE 9, (LHP1) LIKE HETEROCHROMATIN 1, (MRG2) MORF-RELATED GENE 2,
(PRC2) POLYCOMB REPRESSIVE COMPLEX 2. The (-) and (+) reflect transcriptional repression and activation of the
target, respectively.
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and promote their transcription, respectively, by
unknown epigenetic mechanisms (Chen et al.
2020).

DNA methylation of cytosines is another
important epigenetic mark mostly associated
with gene repression that has also been shown
to participate in auxin homeostasis. In animals,
DNAmethylation is almost entirely restricted to
CG dinucleotides while plant DNA can addi-
tionally be methylated at CHG and CHH se-
quence contexts (with H representing A, T,
or C) (Zhang et al. 2018; Gallego-Bartolomé
2020). The cytosine methylation is mediated
by RNA-directed DNA methylation (RdDM),
in which 24-nt small interfering RNA (siRNA)
guides the DNAmethyltransferases DOMAINS
REARREANGED METHYLTRANSFERASE 1
(DRM1) and DRM2 to the target region (Zhang
et al. 2018). Following DNA replication, cell-
specific methylation patterns are maintained
by another subset of DNA methyltransferases
(METHYLTRANSFERASE 1 [MET1], CHRO-
MOMETHYLASE 2 [CMT2], and CMT3)
which, in contrast to DRMs, function in a con-
text-specific manner, targeting CG, CHH, and
CHG sequences, respectively (Zhang et al.
2018). Interestingly, several phenotypes that
have been linked with auxin deficiency, such as
root agravitropism, aberrant embryogenesis,
and vascular disorders, were also observed in a
triple drm1 drm2 cmt3 mutant (Forgione et al.
2019). Tissue-specific expression analyses in
drm1 drm2 cmt3 seedlings revealed that the aux-
in biosynthetic genes YUC2 and TAA1 were
specifically up-regulated in leaves. Me-DIP
(methylated DNA immunoprecipitation)-PCR
experiments further confirmed a reduction of
non-GC DNA methylation at the YUC2 pro-
moter, thus linking RdDM with the regulation
of auxin biosynthesis (Forgione et al. 2019). A
search for thermoresponsive regulatory RNAs
identified a novel temperature-regulated 24-nt
siRNA, coined Locus_77297, in the vicinity of
the YUC2 promoter (Gyula et al. 2018). The
expression of this siRNA in leaves was positively
correlated with CHH methylation at the YUC2
promoter. Plants grown at high temperatures
showed severe reductions in both Locus_77297
expression and CHH methylation, which trig-

gered the up-regulation of YUC2 (Gyula et al.
2018).

Posttranslational Regulation of IAA
Metabolism

After transcriptional control, additional regula-
tory mechanisms also govern protein function
posttranslationally. Posttranslational modifica-
tions (PTMs) refer to covalent modifications
that generally modulate protein folding or activ-
ity. There is recent evidence that auxin homeo-
stasis is also modulated by PTMs. Arabidopsis
TAA1 phosphorylation at the Thr101 was
shown to be triggered by auxin perception itself,
and to serve as an on/off switch controlling the
activity of the enzyme, and therefore IAA bio-
synthesis (Wang et al. 2020). DAO1 auxin oxi-
dase is known to be barely induced by IAA
(Porco et al. 2016). Instead, experiments in
rice demonstrated that DAO activity is regulated
posttranslationally by substrate-mediatedmulti-
merization, which involves the IAA-triggered
formation of DAO dimers that show increased
affinity for IAA (Takehara et al. 2020). Interest-
ingly, IAA-triggered TAA1 phosphorylation
also enables this enzyme to dimerize with ho-
mologous TAR enzymes, a dynamic that likely
regulates IAA biosynthesis through the control
of several isoenzymes (Wang et al. 2020).
Whether DAO dimerization also depends on
IAA-triggered phosphorylation remains unex-
plored, and future research might identify a
common mechanism for the posttranslational
control of auxin metabolism.

Subcellular Compartmentalization of the IAA
Metabolism

The cellular compartmentalization of bioactive
IAA, IAA metabolites, and IAA metabolic en-
zymes represents yet another mechanism
through which intracellular levels of IAA are
regulated (Skalický et al. 2018). The first com-
partmentalization of IAA regards its biosynthe-
sis, as the central precursor Trp is produced in
chloroplasts, and the IAOx-pathway-related
CYP79B2 and CYP79B3 contain a chloroplast
transit peptide (Hull et al. 2000). Nevertheless,
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the major routes for IAA biosynthesis and deg-
radation are believed to take place in the cytosol,
as the enzymes TAA1, YUC1, YUC2, YUC3,
YUC6, YUC11, and DAO1 have been shown
to share a cytoplasmic localization (Stepanova
et al. 2008; Tao et al. 2008; Zhao et al. 2013;
Kriechbaumer et al. 2016; Porco et al. 2016;
Zhang et al. 2016). The IAA amido synthetase
GH3.17 is also localized to the cytosol (DiMam-
bro et al. 2019). However, TAR2, YUC5, YUC7,
YUC8, and YUC9 colocalize with ER-mem-
brane markers (Kriechbaumer et al. 2016).
YUC4 is expressed as two tissue-specific splice
variants, with one localized to the cytosol and
the other localized to the cytosolic face of
the endoplasmic reticulum (ER) membrane
(Kriechbaumer et al. 2012). This suggests that
part of IAA biosynthesis is compartmentalized
to the ER. In line with this hypothesis, isolated
ER microsomes were shown to significantly
contribute to IPyA-dependent IAA biosynthesis
(Kriechbaumer et al. 2015, 2016). Additionally,
the IAA amidohydrolases ILR1, IAR3, and ILL2
have been shown to localize to the ER (Sanchez
Carranza et al. 2016).

Together with the apparent subcellular
localization of the IAAmetabolism, active trans-
port between organelles and the cytosol is a ma-
jor factor determining cellular IAAhomeostasis.
The atypicalmembers of the PIN family of auxin
transporters PIN5, PIN6, and PIN8, together
with PIN-LIKES proteins (PILS), have been de-
tected at the ER (Mravec et al. 2009; Barbez et al.
2012; Dal Bosco et al. 2012; Ding et al. 2012;
Simon et al. 2016). Genetic analyses on these
PINs and PILSmutants and overexpressors sug-
gest that ER-compartmentalization of IAA reg-
ulates auxin signaling by limiting the available
cytosolic IAA that can enter to the nucleus
(Mravec et al. 2009; Béziat et al. 2017; Feraru
et al. 2019). Genetic manipulation of the ER
transporters leads to altered levels of IAA as
well as the IAA-Asp and IAA-Glu conjugates
(Mravec et al. 2009; Dal Bosco et al. 2012;
Ding et al. 2012; Simon et al. 2016), which fur-
ther suggests that the compartmentalization of
certain IAA metabolites is important to main-
taining auxin homeostasis. Vacuole-associated
auxin transporters that move IAA out of the

vacuole have also been found (Ranocha et al.
2013; Liu et al. 2016a), pointing to a role of the
vacuole in intracellular IAA regulation (Fig. 1).
The presence of IAA precursors, as well as ox-
IAA and IAA-glc, in Arabidopsis vacuoles sug-
gests that this organelle is involved in at least
part of IAA metabolism (Ranocha et al. 2013).
Additionally, the IBA vacuolar transporter
TOB1 was shown to move IBA from the cyto-
plasm to the vacuole, which provides further
evidence that the vacuole participates in subcel-
lular IAAmetabolism (Michniewicz et al. 2019).

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Auxin is mainly produced in plants from Trp
through the formation of IPyA by the action of
plant-conserved members of the TAA and YUC
enzyme families. The IPyA pathway is a major
and essential pathway for auxin biosynthesis,
while other parallels routes for auxin production
turned out to have minor or environmentally
restricted roles during plant development. Irre-
versible IAA degradation by the redundant
action of DAO oxidases and GH3 amido syn-
thetases additionally control auxin concentra-
tions across plant tissues. Research on when
and where these genes are expressed has re-
vealed a strict requirement of localized auxin
metabolism for regulated plant growth and de-
velopment. Major breakthroughs during the
past decade have shed light on the transcription-
al control of auxin biosynthesis, as several tran-
scription factors and epigenetic regulators have
been described to control local auxin produc-
tion during specific developmental processes
in response to environmental and physiological
cues (Tables 1 and 2). However, we are only
starting to understand the molecular basis for
such regulation. As such, the transcriptional
control of genes associated with auxin inactiva-
tion remains largely unexplored. Whether the
so-far-known regulatory mechanisms operate
in a similar way across different tissues and/or
developmental times needs further exploration.
Moreover, when considering the number of
transcription factors that have been reported to
directly control auxin biosynthesis (Table 1), it
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seems probable that many additional epigenetic
mechanisms for the regulation of auxin metab-
olismwill be elucidated in the coming years. The
recently described posttranslational modulation
of the activity of the auxin biosynthetic enzyme
TAA1 (Wang et al. 2020) and the auxin oxidase
DAO (Takehara et al. 2020) represents a thrill-
ing starting point to explore similarmechanisms
controlling the activity of other enzymes from
the pathway.

Despite extensive efforts to unravel intracel-
lular IAA dynamics to understand the role of
organelles such as the ER and the vacuole on
cellular auxin homeostasis, many critical ques-
tions remain unanswered. For example, the sub-
cellular localization of several enzymes involved
in IAA metabolism, notably, most of the GH3s,
remains unexplored. Moreover, our understand-
ing of how various IAA metabolites are distribu-
ted among different organelles, and how this
compartmentalization influences intracellular
auxin levels, transport, and signaling, is still at a
rudimentary level. Fluorescent activated cell sort-
ing has been employed to characterize the hor-
mone distribution in different Arabidopsis root
cell types (Petersson et al. 2009; Antoniadi et al.
2015). Sorting pure fractions of organelles by
fluorescent activated organelle sorting (FAOS),
a technique successfully used inmammalian cells
(Gauthier et al. 2008), followed by high-resolu-
tion IAA metabolite profiling is expected to ad-
vance our knowledge regarding how the intracel-
lular compartmentalization of different enzymes
and metabolites influences auxin homeostasis
(Novák et al. 2017; Skalický et al. 2018). Novel
techniques, however, will be required to study the
dynamic changes of subcellular IAA distribution
and metabolism in response to different stimuli
in planta. As most of the IAA is sensed in the
nucleus, determination of IAA levels in nuclei
during different responses to auxin in living
plants, and the specific role of other cell compart-
ments in modulating the available IAA to be
sensed, remains an exciting challenge.
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