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Abstract

Most legumes can form a unique type of lateral organ on their roots: root nodules. These structures host symbiotic 

nitrogen-fixing bacteria called rhizobia. Several different types of nodules can be found in nature, but the two best-

studied types are called indeterminate and determinate nodules. These two types differ with respect to the presence 

or absence of a persistent nodule meristem, which consistently correlates with the cortical cell layers giving rise to 

the nodule primordia. Similar to other plant developmental processes, auxin signalling overlaps with the site of organ 

initiation and meristem activity. Here, we review how auxin contributes to early nodule development. We focus on 

changes in auxin transport, signalling, and metabolism during nodule initiation, describing both experimental evi-

dence and computer modelling. We discuss how indeterminate and determinate nodules may differ in their mecha-

nisms for generating localized auxin response maxima and highlight outstanding questions for future research.
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Introduction

Legumes are well known for their ability to form a symbiotic 

interaction with nitrogen-�xing bacteria collectively called 

rhizobia. These bacteria are housed intracellularly in special-

ized organs on the root called nodules. These organs are very 

different from lateral roots, making the legume root an inter-

esting model from a developmental point of view. Although 

there are large overlaps in the signalling components and 

developmental processes involved in the formation of both 

lateral organs, there also exist striking differences (Hirsch 

et al., 1997; de Billy et al., 2001; Franssen et al., 2015). Lateral 

root initiation is in�uenced by environmental signals, but ulti-

mately the plant produces lateral roots in response to internal 

signals. Nodules, on the other hand, require the presence of a 

symbiont, and their initiation is triggered by speci�c rhizobi-

ally produced signalling molecules: lipochitooligosaccharides 

(LCOs), often referred to as Nod factors (Yang et al., 1994). 

The required early signalling cascade for nodule initiation is 

largely co-opted from the much older (~450 Mya) and more 

widespread (~80% of all land plants) symbioses with arbus-

cular mycorrhiza (Catoira et al., 2000; Maillet et al., 2011).

Much of our current understanding on the role of auxin 

during nodule initiation is based on insights into auxin sig-

nalling during lateral root organogenesis (Mathesius, 2008). 

It seems that auxin signalling is crucial to the developmental 

programmes of both organs. Three main functions have been 

demonstrated for auxin during nodulation: cell cycle control, 
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vascular tissue differentiation, and rhizobial infection. During 

nodule development, auxin is a crucial signal controlling the 

cell cycle (Kondorosi et al., 2005). Silencing of the cell cycle 

regulator CDC16 in Medicago truncatula reduced auxin sen-

sitivity and increased nodule numbers (Kuppusamy et  al., 

2009), while the auxin-induced cyclin CycA2 is important for 

activation of the cell cycle in nodule meristems (Roudier et al., 

2003). Moreover, auxin plays a role in vascular differentiation 

in the nodule, with strong auxin responses occurring in the 

vascular tissue of nodules (e.g. Takanashi et  al., 2011) and 

aberrant auxin responses found in vascular tissues of nodules 

that formed central, rather than peripheral vascular bundles 

(Guan et al., 2013). As an additional role in nodulation, auxin 

is also involved in the infection process in the root hair. For 

example, infection of rhizobia is signi�cantly reduced in the 

auxin response mutant arf16a in M.  truncatula (Breakspear 

et al., 2014). The main focus of this review will be the role of 

auxin in the process of nodule initiation and development.

In both developmental programmes—lateral root and nod-

ule—a tight correlation has been found between the position 

of auxin response and meristematic activity (Larkin et al., 

1996; Rolfe et al., 1997; Mathesius et al., 1998b; Pacios-Bras et 

al., 2003; Takanashi et al., 2011; Suzaki et al., 2012; Herrbach 

et al., 2014). In addition, meristematic markers including 

PLT (PLETHORA) and WOX5 (WUSCHEL-RELATED 

HOMEOBOX) are expressed in both organs, with localization 

of four PLT and the WOX5 genes in the nodule meristem as 

well as the root apical meristem, with, in both cases, expression 

overlapping with an auxin maximum in the meristem (Osipova 

et al., 2012; Franssen et al., 2015). Nevertheless, there are sev-

eral indications that the processes leading to lateral root and 

nodule initiation are wired differently. For example, nodule-

like structures can be induced by exogenous cytokinin appli-

cation (e.g. Cooper and Long, 1994; Heckmann et al., 2011), 

whereas this hormone has a strong inhibiting effect on lateral 

root initiation in both Arabidopsis thaliana and model legumes 

(Lohar et al., 2004; Laplaze et al., 2007; Marhavý et al., 2011; 

Plet et al., 2011). The number of lateral roots is increased by 

the application of auxin (Blakely and Evans, 1979; Woodward 

and Bartel, 2005), while external auxin application inhib-

its nodulation (van Noorden et al., 2006; Li et al., 2014). In 

addition, the initiation of lateral roots shows a strong pref-

erence for the convex side of root bends (Fortin et al., 1989; 

Laskowski et al., 2008; Deinum et al., 2015), whereas nod-

ules show no such bias (Deinum et al., 2015). Last, but not 

least, the primordia are initiated from different cell layers. In 

Arabidopsis, lateral roots are exclusively founded from pericy-

cle cells (Malamy and Benfey, 1997; Casimiro et al., 2003). In 

model legumes, which all have multiple cortical cell layers, lat-

eral root primordia are still predominantly pericycle derived in 

both indeterminate (e.g. Herrbach et al., 2014) and determi-

nate nodule-forming species (e.g. Held et al., 2014). However, 

endodermal and some cortical divisions can also be observed, 

a feature shared with many non-legume plants (Mallory et al., 

1970; Lloret et al., 1989; Casero et al., 1993; Op den Camp et 

al., 2011; Xiao et al., 2014). Nodule primordia in the model 

legume M. truncatula are predominantly founded by the 

inner cortical cell layers, but pericycle and endodermis cells 

also contribute to the eventual nodule (Timmers et al., 1999; 

Xiao et al., 2014). The induction of these nodule primordia 

occurs in the so-called susceptible zone. The exact position of 

the susceptible zone along the root developmental axis differs 

among species, but it is transient and often begins where root 

hairs start to develop several millimetres behind the root tip 

(Bhuvaneswari et al., 1981). This is similar to the zone where 

lateral roots are initiated, ~4 mm behind the root tip in M. 

truncatula, although lateral roots continue to emerge from 

dormant primordia in the mature root (Herrbach et al., 2014).

In this review, we will focus on the role of auxin transport, 

metabolism, and signalling in controlling auxin accumulation 

during nodule initiation. How are auxin transport, metabo-

lism, and signalling modi�ed in response to Nod factor sig-

nalling? What are the commonalities and differences between 

different nodule types?

Different types of legume nodules

Several different types of nodules exist in nature. However, 

here we will mainly focus on the two most predominant 

and best-studied types: indeterminate and determinate nod-

ules. A key difference between these two types of nodules is 

which cortical cell layers give rise to the nodule primordium 

(Hirsch, 1992; Sprent, 2007) (Fig.  1). While many legumes 

from all three subfamilies of Leguminosae form nodules 

with a persistent nodule meristem (‘indeterminate nodules’), 

mature nodules of members of the Millettioid, Dalbergioid, 

and Loteae clades do not retain an active meristem (‘determi-

nate nodules’) (Hirsch, 1992; Sprent, 2007). Correlated with 

meristem persistence is the position of the �rst cell divisions 

that give rise to the nodule primordium. In indeterminate 

nodules (such as those formed by species including M. trun-

catula, Medicago sativa, Pisum sativum, and Vicia sativa), cell 

divisions occur in the inner cortex and pericycle (Libbenga 

and Harkes, 1973; Timmers et al., 1999; Xiao et al., 2014), 

whereas in determinate nodules cell divisions are restricted 

to the middle (Lotus japonicus) or outer (Glycine max) cortex 

(Hirsch, 1992). The position of these primary divisions coin-

cides with the position of auxin signalling in cortical cells, with 

additional expression in the pericycle and endodermis during 

nodule initiation (Fig. 1). This indicates that the initiation of 

cell division is correlated with the presence of an auxin maxi-

mum, as determined through GH3::GUS auxin reporter lines 

in species forming indeterminate (Mathesius et al., 1998b; van 

Noorden et al., 2007; Breakspear et al., 2014; Ng et al., 2015) 

and determinate nodules (Takanashi et  al., 2011). Further 

auxin maxima determined through DR5::GFP-NLS reporter 

lines in L. japonicus (Suzaki et al., 2012), as well as DR5::tDT 

and DR5::GUS in soybean (Turner et al., 2013) were found 

mainly in the proliferating outer cortical cells. Both nodule 

types contain peripheral vascular bundles and a central mass 

of mostly infected cells, where nitrogen �xation takes place, 

as well as some uninfected cells. However, the processes of 

infection, nitrogen �xation, and senescence of nitrogen-�x-

ing tissue are spatially separated in indeterminate nodules, 

whereas such a separation does not exist in determinate 
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nodules (Fig.  1; Hirsch, 1992). Auxin responses are absent 

in the infected zone of both indeterminate and determinate 

nodules, but are retained in vascular tissue (Takanashi et al., 

2011; Suzaki et  al., 2012; Turner et  al., 2013; Breakspear 

et al., 2014). Indeterminate nodules, which retain an apical 

meristem, also show auxin responses in the meristem (Guan 

et al., 2013; Breakspear et al., 2014; Franssen et al., 2015)

An additional type of nodule can be found on the roots of 

the only non-legume genus known to form a root nodule sym-

biosis with rhizobia: Parasponia. Here, indeterminate nodules 

contain a central vascular bundle. In other words, these nod-

ules are morphologically more similar to lateral roots than 

legume nodules (Price et  al., 1984). This different type of 

nodule shows that the peripheral vasculature is not essen-

tial for nodule function. Further morphological and devel-

opmental diversity can be found in other legumes such as 

lupin (Lupinus albus) and peanut (Arachis hypogaea) (Guinel, 

2009). Unfortunately, these nodule types have hardly been 

studied using molecular approaches and no data are available 

on auxin responses in these nodule types.

The meaning of pseudonodules

A �nal ‘type’ of nodule that has had and still has great in�u-

ence on the �eld is the pseudonodule. Pseudonodules are a col-

lection of roughly nodule-shaped root outgrowths that can be 

induced in the absence of rhizobia in a number of ways. Few 

of these structures develop the typical peripheral vasculature, 

including pseudonodules induced by puri�ed Nod factors on 

G. max and M. sativa (Truchet and Roche, 1991; Stokkermans 

and Peters, 1994), cytokinin application (Heckmann et al., 

2011), as well as the spontaneous (pseudo)nodules formed on 

roots with the constitutively active cytokinin receptor LHK1 

(Tirichine et al., 2007) or DMI3/CCaMK (Gleason et al., 

2006; Tirichine et al., 2006). Other pseudonodules develop 

a central vasculature, which led to the suggestion that they 

are more like modi�ed lateral roots (e.g. Allen et al., 1953). 

Such pseudonodules include those formed by application of 

synthetic auxin transport inhibitors like TIBA (2,3,5-triiodo 

benzoic acid) or NPA (1-N-naphthylphthalamic acid) (e.g. 

Hirsch et al., 1989), or the synthetic auxin 2,4-D (2,4-dichlo-

rophenoxyacetic acid, e.g. Hiltenbrand et al., 2016), although 

IAA (indoleacetic acid) itself  does not induce pseudonodules 

(Mathesius et al., 2000). A similar central vascular structure, 

however, is also observed in several uninfected rhizobia-

induced nodules (Guan et al., 2013). In addition, transport 

inhibitor-induced pseudonodules on M. sativa, P. sativum, 

and M. truncatula have been shown to express genetic mark-

ers typical for real nodules (Hirsch et al., 1989; Scheres et al., 

1992; Rightmyer and Long, 2011).

Clearly, the occurrence of pseudonodules (particu-

larly in response to 2,4-D) has to be interpreted with cau-

tion. Regardless, pseudonodules have been important in the 

hypotheses that auxin transport inhibition is part of the pro-

cess that leads to nodule formation (Hirsch et al., 1989), and 

that cytokinin signalling is suf�cient to trigger nodule initia-

tion (Tirichine et al., 2007). A careful study of the timing and 

location of the earliest cell divisions in various pseudonod-

ules would be informative. Nonetheless, as discussed below, 

differences exist among legumes in their potential to form 

pseudonodules, which could hint at underlying differences 

in the mechanisms of initiation and progression of nodule 

formation.

The ins and outs of auxin transport in 
legumes

It has been demonstrated that in response to Nod factor sig-

nalling, an auxin maximum—visualized by GH3::GUS and/

or DR5::GUS expression—is established during the initiation 

of a nodule primordium (Fig. 1; Mathesius et al., 1998b; van 

Noorden et  al., 2007; Takanashi et  al., 2011; Suzaki et  al., 

2012). It has long been postulated that initiation of this 

maximum is regulated by changes in auxin transport capac-

ity (Hirsch et  al., 1989; Mathesius et  al., 1998b). However, 

the molecular mechanisms by which this is achieved are 

still poorly understood. A contributing factor to this is that 

most legumes are far from ideal plant models. Cell biology 

has proven more dif�cult compared with the model spe-

cies Arabidopsis (Barker et  al., 1990; Kouchi et  al., 2004). 

A chronic absence of stable transformation protocols, espe-

cially in M.  truncatula where elevated levels of co-suppres-

sion hinder their usage, leads to a limited amount of available 

Fig. 1. Indeterminate (A, C) and determinate (B, D) nodules. Position of 
the first cell divisions (A, B), which coincides with a local auxin response. 
Mature nodule structure (C, D). Blue: cell divisions/meristematic tissue. 
Pink: vascular tissue, root stele and nodule vascular strands. Indeterminate 
nodules (C) maintain an active meristem (I) followed by an infection zone 
(II), transition zone (II–III), fixation zone (III), and, when the nodule gets older, 
a senescence zone (IV). Determinate nodules (D) lack this distinct zonation. 
When the nodule senesces, the process starts from the centre of the 
nodule. Zones after Hirsch (1992).
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genetic tools. In addition, the relative thickness of the root 

and a high abundance of secondary metabolites hinder state-

of-the-art cell biology (Holmes et  al., 2008; Watson et  al., 

2015). As a result, most, if  not all, research on auxin homeo-

stasis in model legumes such as M. truncatula and L. japoni-

cus is based on fundamental research performed on the model 

Arabidopsis. However, Arabidopsis does not form root nod-

ules and in many cases functionality is extrapolated from 

sequence homology only (e.g. Schnabel and Frugoli, 2004; 

Huo et  al., 2006; Plet et  al., 2011; Sańko-Sawczenko et  al., 

2016). The genes involved in auxin transport, PIN (PIN-

FORMED) and AUX1/LAX (AUXIN RESISTANT 1/LIKE-

AUX1), are no exception. Please note that the numbering of 

the legume PINs and AUX1/LAXs is not always consistent 

with that of Arabidopsis. Although this is a recurring theme 

in plant biology, it is an important fact to keep in mind when 

dealing with functionality based on orthology.

PIN proteins are a group of auxin ef�ux carriers extensively 

studied in Arabidopsis (Friml et  al., 2003; Furutani et  al., 

2004; Blilou et al., 2005; Paponov et al., 2005; Huang et al., 

2010). However, their function in legumes has never been 

demonstrated. PIN proteins are speci�cally positioned on the 

cell membranes and therefore are responsible for the polarity 

of auxin transport. If  the direction of auxin transport needs 

to change, PIN proteins can be re-localized accordingly, a 

process often required during organ initiation (Wiśniewska 

et al., 2006; Benková et al., 2003). In the Arabidopsis genome, 

eight PIN proteins have been identi�ed, which can be divided 

into two distinct types referred to as long- and short-looped 

PINs based on their molecular structure. The long-looped 

PINs (AtPIN1, 2, 3, 4, and 7) co-facilitate auxin cell-to-cell 

transport (Vieten et  al., 2005; Ganguly et  al., 2010). The 

short-looped PINs (AtPIN5 and 8)  are less well studied. 

These PINs are located to the endoplasmic reticulum (ER) 

and are believed to regulate cytosolic auxin homeostasis 

(Mravec et al., 2009; Ding et al., 2012). The only exception 

to this rule seems to be AtPIN6, which as a long-looped PIN 

was shown be located to the ER (Mravec et al., 2009).

The model legumes M. truncatula, L. japonicus, and G. max 

genomes harbour 12, 11, and 23 PIN proteins, respectively 

(Wang et al., 2015a; Sańko-Sawczenko et al., 2016; Fig. 2A). 

The genome of G. max underwent a relatively recent whole-

genome duplication, and—with the exception of PIN1a—all 

PINs can be found in duplicate (Schmutz et  al., 2010). In 

L.  japonicus, several incomplete fragments resembling PIN 

proteins can be found. However, it is not clear whether these 

fragments represent genuine PIN genes, or are just artefacts 

since the L. japonicus genome is far from complete and almost 

no L. japonicus transcriptome data have been made publicly 

available. For Fig. 2A, the ORF of LjPIN8 (Lj3g3v3735560) 

was extended by an additional 345 nucleotides before reach-

ing a stop codon, and the two annotated LjPIN6 fragments 

LjPIN6a (Lj0g3v0178829) and LjPIN6b (Lj1g3v0264160) 

were joined to form LjPIN6a/b. A  similar correction was 

made in GmPIN6a (Glyma.13G038300-Glyma.13G038400). 

These changes provided sequences very similar to those of 

M.  truncatula (Fig.  2A). However, whether these correc-

tions are justi�ed remains to be validated. In addition, two 

L. japonicus PIN1 genes (Lj4g3v3114900 and Lj2g3v0661480) 

with 100% identity at the nucleotide level were considered to 

be only one copy.

When analysing long PINs, three subgroups, so-called 

orthogroups, can be identi�ed (Fig. 2A). The �rst group is 

comprised of AtPIN1, three M. truncatula PINs (MtPIN4, 

MtPIN5, and MtPIN10), two L. japonicus PINs (LjPIN1 and 

Fig. 2. Gene trees of A. thaliana (black), M. truncatula (blue), L. japonicus 
(pink), and G. max (green) PINs (A), and AUX1/LAXs (B). The trees are 
depicted as rooted for readability only. Numbers along branches represent 
bootstrap values of 100 resampling trees. Scale bars indicate substitutions 
per site. Trees were constructed based on MAFFT multiple sequence 
alignments (Katoh et al., 2002) using the FastTree 2.1.5 algorithm, both 
using default settings of Geneious 9.0.4 (alignment: algorithm: default; 
scoring matrix, BLOSUM62; gap open penalty, 1.53; offset value, 0.123).

232 | Kohlen et al.

Downloaded from https://academic.oup.com/jxb/article-abstract/69/2/229/4158488
by Library CHIFLEY Blg 15 user
on 17 May 2018



LjPIN7), and �ve G. max PINs (GmPIN1a–e); together they 

form the PIN1 orthology group. Interestingly, MtPIN10, 

LjPIN7, and GmPIN1d-e represent an ancestral form, lost 

in Arabidopsis (Fig. 2A). Expression data are only available 

for M. truncatula, where it was shown that MtPIN10 is highly 

expressed in both root and nodules (Roux et al., 2014; Sańko-

Sawczenko et al., 2016). This makes MtPIN10 an excellent 

candidate for studying its involvement in nodulation. So far, 

no nodulation phenotypes have ever been described for these 

PINs. However, it is possible that this lack of phenotypes is 

due to redundancy with any of the additional PINs in this 

orthogroup. In line with this, MtPIN4 is expressed in mature 

nodules (Roux et al., 2014). RNAi knockdown of MtPIN4 

reduced nodule density (Huo et al., 2006), but off-target 

effects of this construct on MtPIN10 and/or MtPIN5 were 

not excluded, leaving the question of possible gene redun-

dancy unanswered. As little is known of the involvement of 

long PINs during nodulation, it would still be interesting to 

analyse double and/or triple mutants of this orthogroup in 

relation to nodule initiation. A second orthology group is com-

prised of three Arabidopsis proteins (AtPIN3, AtPIN4, and 

AtPIN7), two M. truncatula proteins (MtPIN1 and MtPIN3), 

two L. japonicus proteins (LjPIN3 and LjPIN4), and four G. 

max proteins (GmPIN3a–d). Closer inspection reveals that 

MtPIN1/LjPIN4/GmPIN3c/d are probably orthologues to 

AtPIN4, whereas MtPIN3/LjPIN3/GmPIN3a/b are more 

closely related to AtPIN3 and AtPIN7 (Sańko-Sawczenko et 

al., 2016). Interestingly, MtPIN1 is expressed in both M. trun-

catula roots and nodules. In Arabidopsis, AtPIN4 expression 

is located around the quiescent centre (Friml et al., 2002). 

Here it functions in transporting auxin towards the auxin 

maxima in the quiescent centre and columella (Blilou et al., 

2005). The expression of MtPIN1 in both roots and nodules 

suggests that it has a function in both organs. Detailed analy-

sis of gene expression, using laser microdissection of mature 

nodules combined with RNA sequencing, revealed that 

MtPIN1 is most predominantly expressed at the nodule apex 

(Roux et al., 2014). The M. truncatula root nodule has a func-

tional meristem, and the expression domain of MtPIN1 �ts 

with a function during meristem maintenance. Mutants have 

not been reported so far, but could shed light on any puta-

tive MtPIN1 function during nodulation. As L. japonicus and 

G. max both have meristemless mature nodules, a differential 

spatial–temporal expression between MtPIN1 and LjPIN4/

GmPIN3c/d during nodule initiation and/or development 

could—at least in part—explain the absence of such a mer-

istem. However, such expression data are currently not pub-

licly available either for L. japonicus or for G. max. MtPIN3 

is highly expressed in the M. truncatula root, but absent from 

the nodule (Roux et al., 2014; Sańko-Sawczenko et al., 2016). 

Finally, MtPIN2, MtPIN7, LjPIN2, and GmPIN2a-b are 

orthologous to AtPIN2. Like MtPIN3, MtPIN2 is expressed 

in the M. truncatula root but not in mature nodules. However, 

promoter activity was detected at the base of developing nod-

ules (Huo et al., 2006; Sańko-Sawczenko et al., 2016).

When looking at the short-type PINs, three orthology 

groups can also be identi�ed (Fig.  2A). AtPIN5 groups 

together with MtPIN9, LjPIN5, and GmPIN5a/b; AtPIN6 

with MtPIN6, LjPIN6, and GmPIN6a-b; and AtPIN8 with 

MtPIN8, MtPIN11, LjPIN11, LjPIN8, and GmPIN8a–d. 

Overall, short-type PINs, apart from MtPIN11, are expressed 

at a low level in the M. truncatula root. On the other hand, 

expression of MtPIN6, 9, and 11 is relatively high in the 

mature nodule. In particular, MtPIN9 expression is strik-

ingly high (Sańko-Sawczenko et  al., 2016). However, this is 

in contrast to previously published work that demonstrated 

expression of MtPIN6 and MtPIN9 to be low in mature nod-

ules (Roux et al., 2014). If  the function of short PINs is evo-

lutionarily conserved, even a low expression could indicate 

that MtPIN9 might be involved in nodule auxin homeosta-

sis. In addition, although MtPIN9 expression in the root is 

also low, it is strongly down-regulated in the early response to 

Nod factors (Plet et al., 2011). This could suggest a function 

for MtPIN9 during the establishment of an auxin maximum 

prior to the development of a nodule primordium. However, 

it is too early to draw any conclusions. As for most legume 

PINs, limited data are currently available on the exact spa-

tio-temporal expression patterns, localization, or function 

of MtPIN9. Overall, available results suggest a role for PIN-

related auxin transport during nodulation.

In addition to ef�ux, auxin transport requires in�ux. 

This occurs in part by diffusion, but is also facilitated by a 

small multigene family of  high-af�nity auxin in�ux carriers 

(AUX1/LAX). In Arabidopsis, this family consists of  four 

highly conserved genes, AUX1, LAX1, LAX2, and LAX3 

(Péret et al., 2012; Swarup and Péret, 2012). Although this 

multigene family is larger in M. truncatula, L. japonicus, and 

G. max [5, 6, and 15, respectively (Chai et al., 2016; Roy 

et al., 2017)] (Fig. 2B), their sequences remain highly con-

served even between these species. This suggests high evolu-

tionary pressure on these genes, indicating the importance 

of  active auxin in�ux in higher plants. As with PIN genes, 

nomenclature does not follow Arabidopsis. In M. truncat-

ula, the genes are named MtLAX1–5, and similar names are 

used for the L. japonicus gene family, which has one addi-

tional member, LjAUX1 (Sato et al., 2008; Roy et al., 2017). 

The G. max genes have been named by genomic position: 

with the �rst LAX on chromosome 1 called GmLAX1, and 

the last LAX on chromosome 18 GmLAX15 (Fig. 2B; Chai 

et al., 2016). Also here, the signature of  the whole-genome 

duplication appears, as all—except GmLAX4—are found 

in pairs. Based on our phylogeny, the AUX1/LAX proteins 

can be divided into at least three orthogroups. The largest 

group, the AUX1/LAX1 orthogroup, consists of  AtAUX1 

and probably AtLAX1, combined with MtLAX1/2/4, 

LjAUX1, LjLAX1/2/4, and GmLAX1/2/3/4/9/11/13/14/15. 

This large group can most probably be divided into more 

subgroups. However, the conserved nature of  these pro-

teins makes it dif�cult to group them properly. The two 

additional orthogroups are more distinct. In the second 

group, AtLAX2 groups together with MtLAX5, LjLAX5, 

and GmLAX5/7/10/12, and in the last group AtLAX3 

�nds itself  with MtLAX3, LjLAX3, and GmLAX6/8. A 

link between nodule development and auxin in�ux comes 

from M. truncatula, where it was demonstrated that 

MtLAX2 is expressed during nodulation (Roy et al., 2017).  
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MtLAX2 is not orthologous to AtLAX2, but belongs to a 

putative legume-speci�c subclade of  the AUX1/LAX1 ortho-

group (Fig. 2B). In L. japonicus, no data are available for 

the function of  LjLAX during nodule initiation or develop-

ment. However, in G. max, several GmLAX genes are highly 

expressed in roots (GmLAX1, 3, 4, 6, 8, 9, 10, 12, and 15), 

but only three are expressed in nodules, although at a rela-

tively low level (GmLAX6, 13, and 14). Surprisingly, none 

of  these can easily be considered orthologous to MtLAX2. 

Although this is just an observation, it could also indicate 

that auxin responses in the determinate nodulating species 

G. max are regulated differently or are less important.

So far key data are missing to draw any solid conclusions 

on how PIN and AUX1/LAX proteins contribute to nod-

ule initiation and development in (in)determinate legume 

species. As additional legume genomes of suf�cient quality 

become available, a more extensive phylogenetic analysis of 

the PIN and AUX1/LAX gene families becomes possible. 

Nevertheless, functional validation, combined with detailed 

spatio-temporal studies of PIN and AUX1/LAX during nod-

ule initiation and development, remains crucial to uncover 

any differences between determinate and indeterminate nod-

ule-forming species. It would be interesting to see where auxin 

transport-related research on nodulation will lead us in the 

near future and what new hypotheses this could yield in rela-

tion to the differences between both nodule types.

Auxin accumulation during nodule 
primordium induction: hypotheses from 
modelling work

With so many unknowns about auxin transport and metabo-

lism, models were used in an attempt to understand the auxin 

accumulation patterns during the �rst steps of nodulation 

(Deinum et al. 2012; Xiao et al. 2014; Deinum et al. 2016). 

By necessity, these models used the broad PIN layout pat-

tern from Arabidopsis (Laskowski et al., 2008) placed over 

a M. truncatula-like legume root geometry representing the 

susceptible zone.

Several singular changes in auxin transport/metabolism 

were applied to a cluster of cells roughly the size of an early 

nodule primordium (Deinum et al., 2012). Of these changes, 

a local reduction of auxin ef�ux (PIN function) produced 

a large and fairly homogeneous increase of the auxin con-

centration over the whole length of the cluster. In contrast, 

increased in�ux (LAX function) produced a large increase 

on the shootward or ‘upstream’ (single-cell wide) edge of the 

cluster, but much less in the remaining cells of the cluster; 

and locally produced auxin was mostly transported away. The 

difference between in�ux and ef�ux patterns depended on the 

polarity of the PIN proteins within the respective cell �les, 

and disappeared if  these cells had equal amounts of PIN pro-

tein located on their apical and basal ends (Deinum, 2013).

Interestingly, when local reduction of auxin ef�ux was trig-

gered by a diffusive signal of epidermal origin—in response 

to a hypothetical rhizobial encounter—the strongest auxin 

accumulation occurred in the pericycle and inner cortex 

(Deinum et al., 2016). These are the sites of the �rst cell divi-

sions in indeterminate nodules forming on M.  truncatula 

(Xiao et al., 2014). These patterns appeared within the �rst 

hour of simulated time.

The conclusion that most probably a local reduction of 

auxin ef�ux underlies the earliest auxin accumulation during 

nodulation correlates closely with the range of observations 

on changes in auxin transport during the early stages of nod-

ulation (Mathesius et  al., 1998b; Boot et  al., 1999; Wasson 

et  al., 2006). The strong single-edge pattern produced in a 

model of increased in�ux, on the other hand, contradicts the 

observations of auxin responses in a group of cells in experi-

mental studies (Takanashi et al., 2011; Ng et al., 2015).

These modelling results, however, do not exclude a con-

tribution of in�ux or production in combination with other 

changes in auxin transport; they only seem insuf�cient in iso-

lation. Indeed, primordium-wide expression of MtLAX2 has 

been observed at 16 h post-inoculation, and later in the meris-

tem of M. truncatula nodules (Roy et al., 2017). Additionally, 

increased expression of the auxin biosynthesis enzyme 

LjTAR1 (TRYPTOPHAN AMINOTRANSFERASE-

RELATED 1) has been observed in developing L. japonicus 

primordia, peaking at 3 d post-inoculation (dpi) (Suzaki et 

al., 2012), while no increased PsTAR expression was found 

in P. sativum nodule primordia (Dolgikh et al., 2017; meas-

ured from 5 dpi). Future experiments with mutants defective 

in auxin synthesis would help to elucidate the extent to which 

local auxin synthesis is required for auxin localization and 

subsequent development of nodule primordia of either type.

In conclusion, it is likely that multiple changes in auxin 

transport and metabolism occur during nodule development, 

the �rst of which may be a temporal reduction of auxin ef�ux, 

at least in indeterminate nodules. It remains unclear, how-

ever, whether auxin transport inhibition can also produce the 

observed auxin accumulation in the outer cortex for determi-

nate nodules. In the models, the lateral position of the induced 

auxin maximum could be tuned by altering the amount of out-

ward lateral PINs in the cortical layers, which strongly affected 

the auxin availability in the outer cortical layers and epidermis 

(Deinum et al., 2012, 2016). Thus future experiments should 

be aimed at testing whether this lateral shift in PIN protein 

localization can explain the observed auxin responses in the 

outer cortex of determinate nodule-forming species.

Thus far, our understanding of the mechanism by which 

auxin transport is controlled in legumes is fragmented, partly 

due to our insuf�cient knowledge of auxin transporter biol-

ogy in legumes. In the following section, we will discuss exper-

imental evidence for the contribution of auxin export and 

import, auxin metabolism, and auxin signalling in de�ning 

the auxin maximum in nodule primordia.

Auxin transport, auxin metabolism, and 
auxin response contribute to auxin maxima 
formed in nodule primordia

Within 24 h of rhizobia infection, the auxin transport capacity 

below the initiation site of indeterminate nodules is reduced 
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(Mathesius et al., 1998b; Wasson et al., 2006). Moreover, it 

has been demonstrated that in V. sativa, application of spe-

ci�c Nod factors reduced auxin transport with 4  h, with a 

stronger reduction after 24–48  h (Boot et  al., 1999). These 

observations support the mathematical modelling that pre-

dicted auxin export inhibition to be the strongest driver of 

auxin accumulation. In contrast, auxin transport capacity in 

L.  japonicus roots, forming determinate nodules, increases 

in response to inoculation with a compatible symbiont (i.e. 

Mesorhizobium loti) within 48  h (Pacios-Bras et  al., 2003). 

The formation of pseudonodules through auxin transport 

inhibitors NPA and TIBA has been reported for numerous 

species forming indeterminate nodules, such as Afghanistan 

pea (P.  sativum; Scheres et  al., 1992), white sweetclover 

(Melilotus albus; Wu et al., 1996), alfalfa (M. sativa; Hirsch 

et al., 1989), and M. truncatula (Rightmyer and Long, 2011). 

However, induction of pseudonodules by application of 

auxin transport inhibitors has only been reported for one 

single species forming determinate nodules (i.e. Macroptilium 

atropurpureum; Relić et  al., 1993), unfortunately without a 

thorough description of the structures. Previous reports of 

pseudonodules formed in response to the auxin transport 

inhibitor 2-bromo-3,5-dichlorobenzoic acid in some deter-

minate nodule-forming species described them as modi�ed 

lateral roots of mainly pericycle origin and with central vas-

culature, and thus not true pseudonodules (Allen et al., 1953). 

Despite the difference in the apparent requirement for auxin 

transport control, both legumes forming indeterminate nod-

ules and those forming determinate nodules show an elevated 

auxin response in the cortical cells during the formation of 

a nodule primordium (van Noorden et al., 2007; Takanashi 

et al., 2011; Suzaki et al., 2012; Turner et al., 2013). This sug-

gests that changes in acropetal auxin export are insuf�cient 

to explain the similarities in the auxin response maximum 

observed in indeterminate versus determinate nodule types.

It is likely that local auxin accumulation within the cor-

tex is not just regulated by auxin ef�ux, but that auxin in�ux 

also plays a role. This is supported by in situ hybridization 

of MtLAX2 (homologue of AtAUX1) auxin in�ux carri-

ers during the early stages of nodule primordium formation 

(de Billy et al., 2001). MtLAX2 promoter activity has been 

demonstrated throughout early nodule primordia (at 16 h 

post-induction) as well as at speci�c locations in maturing 

and mature nodules (Roy et al., 2017). Mutants defective in 

MtLAX2 exhibited reduced auxin responses and fewer nod-

ules. In line with this, application of auxin in�ux inhibitors to 

wild-type roots similarly reduced nodule numbers (Roy et al., 

2017). This suggests that increased auxin in�ux capacity ele-

vates the effectiveness of local auxin accumulation and thus 

improves nodulation success (Deinum, 2013). Whether this 

happens through a generic feedback of auxin concentration 

on AUX1/LAX production—similar to the auxin/AtAUX1 

feedback in A. thaliana (Laskowski et al., 2008)—or whether 

MtLAX2 is speci�cally induced as part of the nodulation 

programme remains to be investigated.

In addition to auxin transport, control of auxin metabo-

lism and auxin responses also contributes to nodule initiation. 

Proteome and transcriptome studies suggest that responses to 

Sinorhizobium meliloti or their Nod factors, and auxin appli-

cation to the roots of M. truncatula overlap extensively at the 

early stages (van Noorden et al., 2007; Herrbach et al., 2017), 

and increased auxin (IAA) content has been measured at the 

site of nodule initiation (Ng et al., 2015). Support for local 

auxin biosynthesis can be found in the increased expression 

of auxin biosynthesis genes during nodulation in L. japoni-

cus (Suzaki et  al., 2012). Campanella et  al. (2008) showed 

an increased expression of several auxin conjugate hydrolase 

genes in response to S. meliloti infection, suggesting that the 

release of auxin from its conjugated form could be a mecha-

nism contributing to increasing auxin concentration during 

nodulation. There is also indirect evidence that auxin break-

down in dividing cortical cells could be reduced by �avonoids 

accumulating in the same cells (Mathesius, 2001). However, 

under the (Arabidopsis-derived) assumption of continuous 

polar PIN activity in the whole cortex, local auxin biosynthe-

sis or reduced breakdown would have to be accompanied by 

a reduction in auxin ef�ux at the same location to be effective. 

If  not, the produced auxin is likely to be transported away 

(Deinum, 2013). This would make it unlikely that local auxin 

biosynthesis alone is suf�cient to induce cell division and 

indicates that modi�cation of the auxin transport machin-

ery could be required for the establishment of such an auxin 

maximum. Rhizobia-synthesized auxins also positively affect 

nodulation, as an IAA-overproducing strain of S.  meliloti 

increased nodule numbers in M. truncatula (Pii et al., 2007). 

However, since rhizobia are not located in the inner cortex 

at the time that the �rst auxin maximum is observed, it is 

unlikely that this potential source of auxin contributes to 

generating the auxin maximum in the nodule primordium. 

Overall, there is little evidence to support host or symbiont 

auxin biosynthesis as a main strategy for increasing auxin 

concentrations early during nodulation.

An additional mechanism to increase auxin responses 

in the cortex is to increase the sensitivity of  its perception. 

One way of  regulating auxin responses in Arabidopsis is 

through several miRNAs that target auxin receptors and 

auxin response genes (e.g. Couzigou and Combier, 2016; 

Weijers and Wagner, 2016). Similar miRNAs are expressed 

in legume roots and at various stages of  nodulation, and 

have effects on indeterminate and determinate nodule num-

bers (e.g. Subramanian et al., 2008; Bustos-Sanmamed et al., 

2013; Turner et al., 2013; Wang et al., 2015b; Cai et al., 2017; 

Table 1). It has been hypothesized in these studies that these 

miRNAs play a role in reducing auxin responses, and this 

may be relevant for controlling auxin responses in the grow-

ing nodule primordium (Turner et al., 2013; Nizampatnam 

et al., 2015). However, these data should currently be inter-

preted with some caution. First, the effects of  these miRNAs 

on auxin signalling are mostly based on direct extrapolation 

of  their effects on speci�c target genes in Arabidopsis, and 

this has not always been con�rmed in legumes. Secondly, 

many studies, although not all (Nizampatnam et al., 2015), 

have used ectopic overexpression of  miRNAs, which may 

lead to expression of  miRNAs and subsequent auxin 

responses in the cell types that do not usually divide, mak-

ing interpretation dif�cult. Thirdly, a single miRNA may 
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affect sensitivities to multiple plant hormones. For example, 

overexpression of  miRNA160 in soybean reportedly resulted 

in auxin hypersensitivity as well as cytokinin hyposensitiv-

ity (Turner et al., 2013), and nodule numbers in these plants 

could be rescued by cytokinin addition (Nizampatnam et al., 

2015). Currently, evidence of  the involvement of  miRNAs 

playing a role at the very earliest stages of  nodule initiation 

that could explain an effect on the creation of  an auxin maxi-

mum in the cortex is lacking.

Which signals modulate auxin transport 
during nodulation?

Nod factor signalling modi�es auxin transport during the ini-

tiation of indeterminate and determinate nodules (e.g. Pacios-

Bras et al., 2003; Wasson et al., 2006). However, it is unlikely 

that it controls the auxin transport machinery directly. Nod 

factors are produced at the epidermis by infecting bacte-

ria, and have been demonstrated to be highly immobile  

Table 1. Comparison of auxin transport, metabolism, and response phenotypes during the formation of indeterminate and determinate 

legume nodules

Process Indeterminate nodules Determinate nodules

Auxin transport inhibition in response to 

rhizobia preceding nodule initiation

Observed within 24 h of inoculation in Medicago 

truncatula and Vicia sativa (Boot et al., 1999; Wasson 

et al., 2006).

No evidence from Lotus japonicus (Pacios-Bras et al., 

2003) but untested in other species.

Auxin transport inhibitors induce 

pseudonodules

Observed in M. sativa (Hirsch et al., 1989), M. truncatula 

(Rightmyer and Long 2011), Pisum sativum (Scheres 

et al., 1992), and Melilotus albus (Wu et al., 1996).

Reported in Macroptilium atropurpureum but structure 

not analysed in detail (Relić et al., 1993).

Flavonoids required for nodulation and 

auxin transport control

Observed in M. truncatula roots lacking the whole 

flavonoid pathway (Wasson et al., 2006).

No evidence that isoflavonoids are involved in soybean 

nodulation beyond their role as nod gene inducers, but 

other flavonoids remain untested (Subramanian et al., 

2006, 2007).

Auxin response in proliferating cortical 

cells

Observed in inner cortex in M. truncatula (van Noorden et 

al., 2007) and Trifolium repens (Mathesius et al., 1998b) 

using GH3::GUS reporter.

Observed in middle/outer cortex of L. japonicus and 

Glycine max (Turner et al., 2013) using GH3::GUS 

(Takanashi et al., 2011), DR5::GUS (Turner et al., 2013), 

DR5::GFP-NLS (Suzaki et al., 2012), and DR5::tDT 

(Turner et al., 2013) reporters.

Increased auxin content, release, or 

synthesis during nodulation

Increased auxin (indole-3-acetic acid) content at 24 

h post-inoculation in M. truncatula (Ng et al., 2015). 

Increased expression of auxin conjugate hydrolases in M. 

truncatula (Campanella et al., 2008).

Increased auxin synthesis gene expression at 3 d post- 

inoculation in L. japonicus (Suzaki et al., 2012).

Altered auxin signalling in roots through 

miRNAs targeting the auxin receptor 

family TIR1/AFB

Overexpression of miR393 reduced nodule numbers in 

M. truncatula (Mao et al., 2013).

Overexpression of miR393, did not alter nodule numbers 

in G. max (Mao et al., 2013). Silencing of miR393, or 

overexpression of GmTIR1 in G. max increased nodule 

numbers (Cai et al., 2017).

Altered auxin signalling in roots through 

miRNAs targeting the auxin response 

factor ARF8a/b

Not tested. miR167 inhibits ARF8a/b during nodulation, which 

enhances nodule numbers in G. max (Wang et al., 

2015b).

Altered auxin signalling in roots through 

miRNAs targeting the auxin response 

family ARF10/16/17

Overexpression of miR160 reduces nodule numbers in 

M. truncatula (Bustos-Sanmamed et al., 2013).

Overexpression of miR160 enhances auxin 

responsiveness and reduces nodule numbers in G. max 

(Turner et al, 2013; Nizampatnam et al., 2015).

Cytokinin signalling activates auxin 

response in cortex

The M. truncatula cre1 mutant fails to show an auxin 

response in the cortex after infection with rhizobia (Ng 

et al., 2015).

The L. japonicus snf2 mutant, exhibiting constitutive 

cytokinin signalling and spontaneous nodule formation, 

activates an auxin response in the cortex (Suzaki et al., 

2012).

High auxin response/content in vascular 

tissue of a developing and mature nodule, 

while auxin response/content in the 

infected nodule zone is low

Observed in M. truncatula using the DR5::GUS reporter 

(Guan et al., 2013; Franssen et al., 2015), GH3::GUS 

in T. repens (Mathesius et al., 1998b) and M. truncatula 

(Breakspear et al., 2014), SAUR1::GUS (Breakspear et al., 

2014), and anti-IAA antibody (Fedorova et al., 2005).

Observed in L. japonicus using the GH3::GUS reporter 

(Takanashi et al., 2011) and the DR5::GFP-NLS reporter 

(Suzaki et al., 2012), and in soybean using the DR5::dTD 

reporter (Turner et al., 2013).

High auxin response/content in meristem 

of a mature nodule

Observed in M. truncatula using the DR5::GUS reporter 

(Guan et al., 2013; Franssen et al., 2015), GH3::GUS and 

SAUR1::GUS in M. truncatula (Breakspear et al., 2014), 

and anti-IAA antibody (Fedorova et al., 2005).

Not observed, no nodule meristem retained in mature 

nodules.

Increased auxin response or content in 

roots of supernodulating mutants

Increased auxin content in rhizobia-inoculated roots of the 

M. truncatula sunn1 mutant (van Noorden et al., 2006).

Increased DR5::GFP-NLS response observed in L. 

japonicus har1 mutant (Suzaki et al., 2012).

Increased shoot to root auxin transport in 

supernodulating mutants

Observed in M. truncatula (van Noorden et al., 2006). Not tested.
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(Goedhart et al., 2003). Thus, a secondary signal is required 

that is induced by epidermal Nod factor signalling, but acts 

in the inner cortex. One possible candidate for endogenous 

auxin transport modulation are the �avonoids (Peer and 

Murphy, 2007). Flavonoids are a large group of secondary 

metabolites derived from the phenylpropanoid pathway. 

Flavonoids accumulate in dividing cortical cells of legumes 

forming both nodule types (Mathesius et al., 1998a), and �a-

vonoid synthesis genes are induced at sites of nodule initiation 

(Chen et al., 2015). In M. truncatula, forming indeterminate 

nodules, silencing of the �rst dedicated enzyme towards �avo-

noid biosynthesis (i.e. CHALCONE SYNTHASE) increased 

auxin transport rates, prevented inhibition of auxin transport 

in response to S.  meliloti, and prevented nodule formation 

(Wasson et al., 2006). External application of speci�c �avo-

noids to M.  truncatula roots could inhibit auxin transport 

similarly to rhizobia (Ng et al., 2015). How �avonoids func-

tion to reduce auxin transport in this process is unknown. 

Analysis of MtPIN gene expression in �avonoid-de�cient 

M. truncatula roots showed no changes compared with con-

trol roots (Wasson et  al., 2006), suggesting that any effects 

involving PIN-mediated auxin transport should occur post-

transcriptionally. The fact that nodule induction by appli-

cation of auxin transport inhibitors was never observed in 

most determinate nodule type plants suggests that �avo-

noids might have a different function here. In soybean, which 

forms determinate nodules, silencing of iso�avone synthase 

reduced nodule numbers (Subramanian et al., 2006). It has 

been demonstrated that (iso)�avonoids induce rhizobial Nod 

genes and subsequent Nod factor biosynthesis (e.g. Kosslak 

et al., 1987), and in the soybean–Bradyrhizobium symbiosis 

this seems to be the case (Subramanian et al., 2006, 2007). 

Interestingly though, increased auxin responsiveness and 

transport were observed in these knock-down lines as well 

(Subramanian et al., 2006), indicating that �avonoids could 

have a function in controlling auxin transport in soybean. 

However, how this is related to nodule initiation is unknown. 

Detailed genetic analysis of the �avonoid pathway in differ-

ent legume species could shed light on this matter.

Another option for controlling auxin transport during 

nodule initiation can be found in strigolactones. These plant 

hormones are known to affect PIN protein levels (Bennett et 

al., 2006; Crawford et al., 2010; Kohlen et al., 2011; Ruyter-

Spira et al., 2011), but might also act independently of auxin 

transport, at least for shoot branching (Brewer et al., 2015). 

Increased numbers of nodules have been reported after appli-

cation of the synthetic strigolactone GR24 to M. sativa roots 

(Soto et al., 2010). In M. truncatula, low concentrations of 

GR24 increased nodule number slightly, whereas higher con-

centrations had a reducing effect (De Cuyper et al., 2015). 

Loss-of-function mutations or RNAi knockdown of strigol-

actone biosynthesis genes affect nodule numbers in legumes 

forming both indeterminate (P. sativum) and determinate (L. 

japonicus) nodules (Foo and Davies, 2011; Liu et al., 2013). 

In M. truncatula, the strigolactone biosynthesis gene MtD27 

(DWARF27) is highly up-regulated upon Nod factor applica-

tion within 3 h after inoculation (van Zeijl et al., 2015a), and 

a clear link between MtD27 expression and the Nod factor 

signalling pathway was demonstrated in the nsp1 and nsp2 

(nodulation-signaling pathway1 and 2) mutants (Liu et al., 

2011). In addition, it was demonstrated that expression of the 

strigolactone biosynthesis gene MtCCD8 (CAROTENOID 

CLEAVING DEOXYGENASE8) is up-regulated at the site 

of primordia formation (Breakspear et al., 2014). However, 

no increase in strigolactone levels during early signalling was 

ever reported. Notably, however, the Psrms1/ccd8 (ramosus1) 

mutant contains almost no strigolactones (Gomez-Roldan 

et al., 2008), but produces only ~40% fewer nodules than the 

wild type (Foo and Davies, 2011). This suggests that if  strigo-

lactones are involved in regulating auxin transport upon Nod 

factor perception, they are not the only factor involved in this.

Other plant hormones such as cytokinins and ethylene play 

a role in nodule initiation, and there is strong evidence that 

they function in crosstalk with auxin. The gain-of-function 

mutation in the L.  japonicus LHK1 (LOTUS HISTIDINE 

KINASE1) cytokinin receptor produces dividing cortical 

cells and nodules in the absence of rhizobia. These nod-

ules have a very similar developmental pattern to rhizobia-

induced nodules (Tirichine et al., 2007; Suzaki et al., 2012). 

Similar spontaneous nodules are produced from the gain-of-

function mutation in the orthologous CRE1 (CYTOKININ 

RESPONSE1) receptor in M. truncatula (Ovchinnikova et al., 

2011). External application of cytokinin induces empty nod-

ules in alfalfa (M. sativa; Cooper and Long, 1994), white clover 

(Trifolium repens; Mathesius et al., 2000), siratro (M. atropur-

pureum; Relić et al., 1993), Aeschynomene spp. (Podlevšáková 

et  al., 2013), L.  japonicus (Heckmann et  al., 2011), and in 

the non-legume alder (Alnus glutinosa; Rodriguez Barrueco 

and Bermudez de Castro, 1973). These cytokinin responses 

have been linked to cortical auxin responses. For example, 

exogenous cytokinin treatment to white clover elicited auxin 

responses in associated divided cortical cells (Mathesius 

et  al., 2000). In L.  japonicus, cortical auxin responses were 

observed in the snf2 (spontaneous nodule formation 2) mutant, 

which harbours an autoactive LHK1 cytokinin receptor 

(Suzaki et  al., 2012). In M.  truncatula, cytokinin signalling 

via the CRE1 receptor is required for the onset of auxin 

response in the inner cortical cells during nodule initiation 

(Ng et  al., 2015). This signal precedes the auxin maximum 

(Xiao et al., 2014; van Zeijl et al., 2015b), and could be medi-

ated by the induction of �avonoids that inhibit auxin trans-

port (Ng et al., 2015). During the early cell divisions of the 

inner cortex in M. truncatula, auxin and cytokinin response 

maxima overlap (van Noorden et al., 2007; Plet et al., 2011). 

However, it is possible that cytokinins are initially produced 

in the epidermis and translocated inward towards the cortex 

as several genes belonging to the putative cytokinin transport 

facilitator family are up-regulated in the epidermis upon Nod 

factor application (Jardinaud et al., 2016). At later stages of 

nodule development, the localization of auxin and cytokinin 

responses only partially overlaps. Auxin responses localize 

to vascular cells and the entire M. truncatula nodule meris-

tem (Table 1), whereas cytokinin responses were observed in 

the nodule meristem for type-A cytokinin response regula-

tors and throughout the nodule in type-B cytokinin response 

regulators (Plet et al., 2011; Franssen et al., 2015).
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Ethylene is regarded as a negative regulator of nodulation. 

Evidence for this can be found in the fact that in wild-type 

plants, nodules are preferentially formed opposite  protoxylem 

poles, a position where ethylene biosynthesis is assumed to 

be low (Heidstra et al., 1997; Penmetsa and Cook, 1997). 

Moreover, ethylene-insensitive plants show massive numbers 

of nodules when inoculated with rhizobia (Penmetsa and 

Cook, 1997; Lohar et al., 2009). In addition, ethylene inhibits 

the calcium spiking that otherwise follows LCO perception, 

and the ethylene-insensitive skl/Mtein2 (sickle) mutant forms 

more infection threads compared with the wild type (Oldroyd 

et al., 2001; Penmetsa et al., 2008). Application of the ethyl-

ene precursor ACC (aminocyclopropane carboxylic acid) to 

the roots of M. truncatula reduced auxin transport (Prayitno 

et al., 2006). The effects of both ACC and rhizobia on shoot 

to root auxin transport were abolished in the skl mutant 

(Prayitno et al., 2006). The skl mutant also showed increased 

MtPIN1 and MtPIN2 expression at the site of nodule initia-

tion. This suggests that ethylene signalling is required for the 

correct control of auxin transport during nodule initiation. 

This conclusion is supported by a signi�cant reduction of 

pseudonodule formation induced by auxin transport inhibi-

tors in the skl mutant (Rightmyer and Long, 2011). A similar 

control of auxin transport by ethylene has previously been 

described in Arabidopsis (e.g. Růžička et al., 2007).

Ethylene also plays a role in controlling nodule numbers 

in species forming determinate nodules such as L. japonicus 

and M. atropurpureum, to the same extent as in M. trunca-

tula and M. sativa (Nukui et al., 2000; Lohar et al., 2009). 

Some authors mention soybean as an exception (e.g. Schmidt 

et al., 1999; Nukui et al., 2000), but reports of strong hyper-

nodulation in ethylene-insensitive soybean genotypes exist as 

well (Caba et al., 1999). Further con�icting reports for species 

forming determinate nodules may be explained by multiple 

copies of the EIN2 gene in L. japonicus (Miyata et al., 2013) 

and/or large redundancies among ethylene receptors. The lat-

ter is well illustrated by Arabidopsis, where often quadruple 

or quintuple mutants of ethylene receptors are required to 

induce developmental phenotypes (Hua and Meyerowitz, 

1998). There are no reports yet that ethylene reduces shoot to 

root auxin transport in species forming determinate nodules. 

Such measurements would be interesting in the light of the 

emerging picture that the importance of shoot to root auxin 

transport differs between indeterminate and determinate 

nodules.

In summary, several plant hormones and signals have 

been reported to interact with auxin transport during nod-

ule initiation (Fig. 3) and others will have to be investigated 

in the future. While cytokinin signalling appears to be essen-

tial for auxin transport control in both indeterminate and 

Fig. 3. Model for the involvement of auxin in local and systemic regulation of nodulation based on experimental evidence. Dashed lines/box outlines 
indicate that a feature has only been convincingly shown in legumes forming indeterminate nodules. Solid lines indicate features that play a role for 
both nodule types. The major root events are sorted in chronological order, insofar as known, on top of the large grey arrow. Grafting experiments have 
demonstrated that a shoot-derived inhibiting mechanism is present in both legume types. For determinate nodules, the nature of this inhibitor as well as 
its exact point of action remain elusive, and for indeterminate nodules it is unclear whether there is an additional signal apart from reduced auxin loading. 
Therefore, the respective arrows are drawn in grey. Ethylene probably can inhibit nodulation processes at multiple stages.
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determinate nodulation, a role for �avonoids in controlling 

auxin transport has only been demonstrated for indeter-

minate nodulation. For strigolactones, in�uences on auxin 

transport and nodule number have been established in isola-

tion, but how and if  these hormones in�uence auxin trans-

port, metabolism, or signalling during nodulation remains to 

be shown. Ethylene signalling is required for correct auxin 

transport control during indeterminate nodulation, but its 

role in controlling auxin during determinate nodulation will 

require further investigation.

A role for auxin transport in the 
autoregulation of nodulation

Whether nodules are initiated in response to compatible 

rhizobia largely depends on several environmental factors. 

A sophisticated system—called autoregulation of nodulation 

(AON)—systemically regulates nodule numbers on the root 

in response to signals derived from the shoot. AON is co-reg-

ulated by Nod factors as well as nitrate (Reid et al., 2011b), 

and some evidence suggests a role for auxin in this process 

(van Noorden et al., 2006; Suzaki et al., 2012).

During AON, small regulatory peptides of the CLE 

(CLAVATA3/endosperm-surrounding region-related) family 

are induced. These CLE peptides bind to leucine-rich repeat 

receptor-like kinases (LRR-RLKs) and subsequently inhibit 

further nodules from forming. In soybean, nitrate induces 

the peptide GmNIC1, which is predicted to bind locally to 

the GmNARK (nodulation autoregulation receptor kinase; 

Searle et al., 2003; Reid et al., 2011a) receptor to inhibit nod-

ule initiation. The same receptor is expressed in the shoot 

where it is hypothesized to bind GmRIC1, a second CLE 

peptide. This triggers the movement of a shoot-derived, nod-

ule-inhibiting signal to the root (Reid et al., 2011a; Okamoto 

et al., 2013). In M. truncatula, Nod factors induce MtCLE12 

and MtCLE13, which negatively regulate nodule numbers via 

the MtSUNN1 (SUPERNUMERARY NODULES 1) recep-

tor in the shoot (Schnabel et al., 2005; Mortier et al., 2010). 

An equivalent signalling pathway has been identi�ed in L. 

japonicus via the receptor LjHAR1, which binds CLE-RS 

peptides (Nishimura et al., 2002; Okamoto et al., 2009, 2013).

While the shoot-derived inhibitor has not been identi�ed, 

both auxin and cytokinin movement from the shoot to the 

root have been implicated in AON. In L. japonicus, inocula-

tion of roots with rhizobia led to increased translocation of 

cytokinin from the shoot to the root in an LjHAR1-dependent 

manner (Sasaki et al., 2014). It is possible that this source of 

cytokinin interacts with auxin signalling in the root, as the 

increased numbers of nodules in the Ljhar1 mutant were 

accompanied by an increased area of auxin response (Suzaki 

et al., 2012). In M. truncatula, inoculation of roots with rhizo-

bia led to a decrease of shoot to root auxin transport, and 

this was dependent on MtSUNN1 (van Noorden et al., 2006). 

In addition, nodule numbers in the Mtsunn mutant are signif-

icantly reduced by application of an auxin transport inhibitor 

at the shoot/root junction. This suggests a positive correla-

tion between the amount of shoot to root auxin transport 

and the number of nodules being formed (van Noorden et al., 

2006). Similar to the increased zone of auxin response in the 

Ljhar1 mutant, Mtsunn1 mutants exhibited increased auxin 

(IAA) concentration at the root zone responding to rhizobia 

(van Noorden et al., 2006).

It has been demonstrated in M. truncatula that the presence 

of an external nitrogen source affects root auxin responses 

during nodulation. It led to an elevated and diffuse auxin 

response in the whole cortex following rhizobia infection, 

preventing a local accumulation of auxin typical for an incip-

ient nodule primordium (van Noorden et al., 2016). However, 

nitrate did not prevent the inhibition of auxin transport by 

Nod factors in vetch (Boot et al., 1999). It is possible, though, 

that experiments with rhizobia in the presence of nitrate are 

affected by the reduction in Nod gene induction of �avonoids 

(Coronado et al., 1995). At a whole-plant level, the presence 

of nitrate at levels inhibiting nodulation altered shoot to root 

auxin transport in M. truncatula, and this was dependent on 

the MtSUNN1 receptor (Jin et al., 2012). Collectively these 

studies suggest that AON control of nodule numbers involves 

changes in the concentration, transport, and response to 

auxin in the root zone susceptible to rhizobia. However, the 

precise mechanisms underlying this involvement are still 

poorly understood.

Conclusion: indeterminate and determinate 
nodules—minor variations on the same  
developmental programme, or 
fundamentally different?

The Nod factor signalling pathways for the interaction 

between legumes and rhizobia are shared between indeter-

minate and determinate nodule formation, as well as most 

known plant signalling components required for the induc-

tion of nodule organogenesis. However, so far it remains 

unknown what determines the location of the �rst cortical 

cell divisions. In both nodule types, the location of the �rst 

cell divisions is accompanied by auxin responses (e.g. van 

Noorden et al., 2007; Takanashi et al., 2011; Fig. 1; Table 1). 

In addition, there is evidence of increased auxin synthesis, 

content, or release in both nodule types (Campanella et al., 

2008; Suzaki et al., 2012; Ng et al., 2015). Similarly, cytokinin 

responses are found in early dividing cells of nodule primor-

dia in both nodule types (e.g. Plet et  al., 2011; Held et  al., 

2014), and it has been shown that cytokinin responses occur 

upstream of auxin responses in those cells (Plet et al., 2011; 

Suzaki et al., 2012; Ng et al., 2015; Fig. 3; Table 1). However, 

the mechanisms that induce these responses at their respec-

tive location may differ between indeterminate and determi-

nate nodules, either by degree or fundamentally.

The modelling-derived hypothesis—that differences in the 

cortical PIN distribution could shift the radial position of an 

induced maximum through altered auxin availability (Deinum 

et al., 2012, 2016)—remains to be veri�ed experimentally.

Alternatively, it may be the case that the mechanism of 

inducing a local auxin maximum through auxin transport 

inhibition is effective for indeterminate nodules only, and 
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other mechanisms for locally increasing auxin availability 

and/or the sensitivity of auxin perception are more impor-

tant in the formation of determinate nodules. Evidence for 

this alternative hypothesis falls into two categories: (i) local 

auxin transport inhibition can induce pseudonodules in a 

range of legumes forming indeterminate nodules, but has 

only been reported for one species forming determinate nod-

ules, M.  atropurpureum, with marginal description (Relić 

et al., 1993); and (ii) auxin transport inhibition in response 

to rhizobia has been measured in legumes forming indeter-

minate (e.g. Boot et al., 1999), but not determinate legumes 

(Pacios-Bras et  al., 2003), and a role for �avonoids in this 

auxin transport inhibition has also only been clearly demon-

strated for indeterminate nodules. It appears, therefore, that 

auxin transport inhibition explains auxin accumulation and 

subsequent nodule primordium initiation for indeterminate, 

but not determinate nodules.

Thus, the main difference between indeterminate and deter-

minate nodules appears to be the mechanism that different 

legumes use to achieve the initial buildup of an auxin maxi-

mum in different layers of the cortex. Future investigations will 

need to be directed at explaining how an auxin maximum in 

the outer cortex of legumes forming determinate nodules can 

be achieved, for example through lateral auxin transport or 

through altered auxin synthesis or sensitivity, which could be 

regulated by speci�c miRNAs. It will also be important to com-

pare long-distance auxin transport in supernodulation mutants 

of indeterminate and determinate nodule-forming species.

Currently, our understanding of auxin signalling in leg-

umes is limited, making experiments to answer how auxin 

maxima are formed in both nodule types dif�cult. For exam-

ple, many legume auxin mutants remain uncharacterized, and 

a very limited number of reporter lines for auxin transport-

ers have been described. In addition, few studies have directly 

compared different legumes. However, with increasing spe-

cies-speci�c molecular and genetic tools at our disposal, this 

will improve. The great diversity in root nodule morphologies 

and development in different legume species has the potential 

to become an important resource for fundamental research 

questions about plant development.
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