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Finding Errors of Hybrid Systems by Optimising an

Abstraction-Based Quality Estimate

Stefan Ratschan1 and Jan-Georg Smaus2

1 Academy of Sciences of the Czech Republic, stefan.ratschan@cs.cas.cz
2 University of Freiburg, Germany, smaus@informatik.uni-freiburg.de

Abstract. We present an algorithm for falsifying safety properties of hybrid
systems, i.e., for finding a trajectory to an unsafe state. The main approach is to
approximate how close a point is to being an initial point of an error trajectory
using a real-valued quality function, and then to use numerical optimisation to
search for an optimum of this function. The function is computed by running
simulations, where information coming from abstractions computed by a verifi-
cation algorithm is exploited to determine whether a simulation looks promising
and should be continued or cancelled. This information becomes more reliable
as the abstraction becomes more refined. We thus interleave falsification and
verification attempts. In contrast to related work, we consider hybrid systems
with completely deterministic evolution.

Note: This AVACS report is the extended version of a conference paper [44].
It contains some proof sketches, more background material, more details on
experimental results, and more discussions of related work.

1 Introduction

A hybrid system is a dynamical system with combined discrete and continuous state
and evolution. Hybrid systems are an important formalism for modelling embedded
systems. An important problem is to ensure correctness, i.e., verification [19, 20, 43].
However, during the design (debugging) process, hybrid systems are usually not correct
yet, and hence it is important to be able to automatically find errors of hybrid systems.

We address here the problem of automatically finding error trajectories that lead
the system from an initial to an unsafe state. We distinguish ourselves from other recent
works [10, 37] by two main aspects:

– The above methods aim at systems with a high amount of non-determinism (e.g.,
in the form of inputs), and do a broad search in the statespace spanned by the non-
deterministic choices. For systems with completely deterministic evolution however,
it is important to distinguish and prefer those regions of the search space that are
most promising, which is the aim of this work.

– In a similar way as related work in program verification [23, 36], we do not assume
a-priori that our system is incorrect, but rather, we interleave verification, using
abstractions of the system, and falsification attempts. The information contained
in abstractions is valuable both for verification in case the system is correct, and
for falsification otherwise. More specifically, the abstraction allows for estimating
whether a simulation approaches an unsafe state or not and is thus a promising
candidate for an error trajectory.

The main idea of our algorithm is the following: We define a real-valued function
(the quality estimate) onto the state space that approximates the notion of a given
point being close to an initial point of an error trajectory. Then we use numerical
optimisation techniques to search for an optimum of this quality estimate. The quality



estimate is computed using information from the abstraction, and its accuracy improves
as the abstraction is refined, hereby improving the chances of numerical search finding
an actual error trajectory.

The rest of this paper is organised as follows: In the next section we define hybrid
systems and abstractions thereof. In Sec. 3 we explain our search algorithm. In Sec. 4
we define the quality estimate. In Sec. 5 we discuss and analyse our method. Section 6
explains the implementation and reports on experiments. Section 7 is on related work,
and Sec. 8 concludes.

2 Hybrid Systems and Abstractions

2.1 Hybrid Systems

Hybrid systems are systems with both continuous and discrete state. In this section,
we briefly recall our formalism for modelling hybrid systems. It captures many rele-
vant classes of hybrid systems, and many other formalisms for hybrid systems in the
literature (e.g., the one used by the tool PHAVer [19]) are special cases of it. A hybrid
system has a finite and nonempty set S of modes. I1, . . . , In ⊆ R are compact intervals
over which the n continuous variables of a hybrid system range. The state space of a
hybrid system is denoted by Φ = S× I1×· · ·× In. Note that it is not a severe practical
restriction that the continuous variables have to range over compact intervals because
in most applications the variable ranges are bounded and engineers use their experience
to choose reasonable values for the interval bounds.

Definition 1. A hybrid system H is a tuple (Flow , Jump, Init ,Unsafe), where Flow ⊆
Φ × R

n, Jump ⊆ Φ × Φ, Init ⊆ Φ, and Unsafe ⊆ Φ.

Informally speaking, the predicate Init specifies the initial states of a hybrid system
and Unsafe the set of unsafe states that should not be reachable from an initial state.
The relation Flow specifies the possible continuous flows of the system by relating each
state to corresponding derivatives, and Jump specifies the possible discontinuous jumps
by relating each state to a successor state. Formally, the behaviour of H is defined as
follows:

Definition 2. A flow of length l ≥ 0 is a function r : [0, l] → I1×· · ·×In, differentiable
on [0, l]. A trajectory of H is a sequence of mode/flow pairs (s0, r0), . . . , (sk, rk) of
lengths l0, . . . , lk such that for all i ∈ {0, . . . , k},

1. if i > 0 then ((si−1, ri−1(li−1)), (si, ri(0))) ∈ Jump, and
2. if li > 0 then ((si, ri(t)), ṙi(t)) ∈ Flow, for all t ∈ [0, li], where ṙi is the derivative

of ri.

An error trajectory of a hybrid system H is a trajectory (s0, r0), . . . , (sk, rk) H such
that (s0, r0(0)) ∈ Init and (sk, rk(lk)) ∈ Unsafe. H is safe if it does not have an error
trajectory.

We use the following constraint language to specify hybrid systems and corre-
sponding safety verification problems: the variable s and the tuple of variables x =
(x1, . . . , xn) range over S and I1 × · · · × In, respectively. The tuple of variables ẋ =
(ẋ1, . . . , ẋn), ranging over R

n, denotes the derivatives of x1, . . . , xn. The variable s′ and
the tuple of variables x′ = (x′

1, . . . , x
′

n), ranging over S and I1 × · · · × In, respectively,
denote the targets of jumps. Constraints are arbitrary Boolean combinations of equali-
ties and inequalities over terms that may contain function symbols, like +, ×, exp, sin,
and cos. Based on this, the flows, jumps, initial and unsafe states of a hybrid system
are given by constraints Flow (s,x, ẋ), Jump(s,x, s′,x′), Init(s,x) and Unsafe(s,x),
respectively.



Example 1. Consider a hybrid system with Φ = {m1, m2} × [0, 2] × [0, 1] and the fol-
lowing constraints:

Init(s, (x1, x2)) = (s = m1 ∧ x1 = 0 ∧ x2 = 0)
Unsafe(s, (x1, x2)) = (x2 ≥ 2)
Jump(s, (x1, x2), s

′, (x′

1, x
′

2)) = (s = m1 ∧ x2 ≥ 1 → s′ = m2 ∧ x′

1 = x1 ∧ x′

2 = x2)
Flow (s, (x1, x2), (ẋ1, ẋ2)) = (s = m1 → ẋ1 = 1 ∧ ẋ2 = 1 ∧ 0 ≤ x1 ≤ 1)∧

(s = m2 → ẋ1 = 1 ∧ ẋ2 = −1 ∧ 1 ≤ x1 ≤ 2)

The hybrid system can switch modes from m1 to m2 if x2 ≥ 1. The continuous be-
haviour is very simple: In mode m1, the values of x1, x2 change with slope 1; in m2,
variable x1 has slope 1 and x2 has slope −1. For a flow in m1, the invariant 0 ≤ x1 ≤ 1
must hold and in m2, the invariant 1 ≤ x1 ≤ 2 must hold. Note that the constraint
0 ≤ x1 ≤ 1 in flow forces a jump from mode m1 to m2 if x1 becomes 1. In general,
an invariant that has to hold in a mode can be modelled by formulating a flow con-
straint that does not allow a continuous behaviour in certain regions. A trajectory of
the hybrid system starting from the initial state (m1, (0, 0)) is r0, r1, where the flows
r1, r2 : [0, 1] → Φ are given by

r0(t) = (m1, (t, t)) and r1(t) = (m2, (t + 1, 1 − t)) .

It is not hard to see that this hybrid system is safe, since x2 changes its slope from 1
to −1 and x2 = 1 when x1 = 1.

2.2 Abstractions and Simulations of Hybrid Systems

We assume that we have an algorithm available for computing abstractions for hybrid
systems.

Usually [15], abstractions are defined so that for every concrete behaviour, there is
a corresponding abstract behaviour (overapproximation). The rationale is that if the
abstract system is error-free, then so is the concrete system. However, for this very
rationale, all that matters is that each error behaviour is mapped to some abstract
error behaviour, while not all correct behaviours need to be captured.

Definition 3. Given a hybrid system H, let A be a directed graph whose nodes (the
abstract states) consist of subsets of the state-space Φ. Some nodes are marked as initial
(we call them initial abstract states), and some as unsafe (we call them unsafe abstract
states).

For a mode/flow pair (s, r) of length l, an abstraction is a path a1, . . . , ak̃ in A

such that there exist 0 = ℓ0 ≤ ℓ1 ≤ . . . ≤ ℓk̃ = l such that for every t ∈ [0, l] where
ℓj−1 ≤ t ≤ ℓj, it holds that (s, r(t)) ∈ aj.

For an error trajectory (s0, r0), . . . , (sk, rk) of H with corresponding flow lengths
l0, . . . , lk, an abstract error trajectory is a path

a1,1, . . . , a1,k̃1
, . . . , ak,1, . . . , ak,k̃k

in A such that a1,1 is initial, ak,k̃k
is unsafe, and for every i ∈ {0, . . . , k}, we have that

ai,1, . . . , ai,k̃i
is an abstraction of (si, ri).

We call the directed graph A an abstraction of H iff, for each concrete error tra-
jectory, there is an abstract error trajectory.

Abstractions can be useful for falsification because the abstract error trajectories
narrow down the search space for concrete error trajectories. There are several meth-
ods available for computing such abstractions [3, 14]. We use a technique where each



abstract state is a mode paired with a hyper-rectangle (box ) ⊆ I1 × · · · × In, as imple-
mented in the tool HSolver [43].

HSolver was designed for verification—its use for falsification is novel to this work.
Given an abstraction, interval constraint propagation [8] based on the auxiliary tool
RSolver [41, 42] is used to compute an incrementally more precise abstraction. In this
paper, we run HSolver in what we call “mixed mode”, i.e., we modify HSolver in
such a way that the usual verification is interleaved with falsification attempts.

Usually, each abstract state only contains elements of a single mode. In HSolver,
an abstraction that is not fine enough yet to verify the desired property is refined
by splitting a box (usually the biggest) in half. We have developed our falsification
technique for such an abstraction, but it does not seem hard to adapt it to other kinds
of abstraction.

Note that we do not assume that abstractions cover the whole state space (or reach
set) with abstract states, but they do cover the set of all points lying on an error
trajectory. In fact, one of the main features of HSolver is that it removes points from
the abstraction for which it can prove that they cannot lie on an error trajectory. We
call this pruning. Another kind of pruning is to use the underlying constraint solver to
remove points from abstract states that do not fulfil a given (e.g., initial) constraint.
This is done whenever an over-approximation of all points fulfilling a certain constraint
is desired, and we want this over-approximation to be as tight as possible. We will come
back to this point later.

A simulation is an explicitly constructed sequence of points in Φ corresponding to
the points of a trajectory at discrete moments in time. The distance between these
moments is called step size (∆). We do not give a precise definition here, as our search
algorithm is independent of the concrete method for doing simulations (see Sec. 6). Note
however that such methods usually are not completely precise: all methods commonly
used (both in research and in industrial practice) for simulating sufficiently general
hybrid systems are prone to errors due to time-discretisation, and due to floating-point
rounding. We neglect this aspect here, i.e., we pretend the use of a simulation method
that models actual trajectories precisely enough for the user’s purposes.

Unlike actual error trajectories, a simulation might a-priori leave the abstraction,
due to the fact that our abstraction covers, in general, a set that is smaller than the
reach set, and also because the simulation might even leave the statespace, in which
case it a-fortiori leaves the abstraction.

3 The Search Algorithm

3.1 The Problem and a Näıve Solution

We have a hybrid system with possibly several modes, and for each mode, a bounded
statespace ([l1, u1] × . . . × [ln, un]). The hybrid system has a set of initial states given
by a mode paired with some constraints that specify a certain continuous subset of R

n.
We want to find an error trajectory, i.e., a trajectory leading from an initial state to
an unsafe state.

We focus on systems that are deterministic in two senses: in the continuous sense
(the flow is described by differential equations, not inequalities) and in the discrete
sense (the jumps occur deterministically). Hence the problem reduces to determining
the startpoint of an error trajectory among the initial states.

In practice, trajectories are constructed by running a simulation. Since our hybrid
systems are deterministic, the only decision to take about a running simulation is when
to cancel it.

In fact, to understand the problem, it is helpful to give a näıve solution, obtained by
running simulations exhaustively. This is shown in Fig. 1. We use grid(Φ, w) to denote



procedure find startpoint
w := 1.0; l := 100 /*values ad-hoc*/
while true

foreach p ∈ grid(Φ, w)
if simulate(p, l) return p

w := w/2; l := l ∗ 2

Fig. 1. A näıve solution

a set of grids of width w (one for each mode) consisting of points in the statespace,
and simulate(p, l) to denote a procedure which starts a simulation in p for l steps and
returns true iff this simulation is an error trajectory, i.e., it starts in an initial state,
reaches an unsafe state, and never leaves the statespace in between.

¿From this näıve solution, it is clear that we have a search problem whose search
space consists of two components. On the one hand, we search in Φ for a startpoint,
on the other hand, we search in N for determining a sufficient simulation length that
will actually produce an error trajectory.

Unfortunately, running simulations is expensive, and hence we should try to avoid
unnecessary simulation steps. The näıve procedure simulates unnecessarily on three
different levels of granularity, leading to three aims of our work:

– If the system is safe, the procedure will run forever, although one might be able
to prove safety quickly—our aim is thus to interleave verification with falsification
attempts so that we can prove safety or unsafety, as applies.

– The procedure will run simulations evenly distributed on the whole statespace, even
if some parts look more promising than others—our aim is thus to give preference
to the more promising simulations.

– Each individual simulation will run for a pre-determined amount of time, ignor-
ing the information gained during the simulation run—our aim is thus to cancel
simulations when they do not look promising enough anymore.

To address these three aims we view the falsification problem as the problem of
searching for an error trajectory, where the search procedure tries to exploit the in-
formation available from verification. The search procedure uses a quality estimate for
simulations in order to determine which startpoints are the most promising, and when
to cancel a simulation.

The definition of the quality estimate is rather involved and thus the entire Sec. 4
is devoted to it. However, its main features are discussed in the next subsection.

3.2 Main Features of the Quality Estimate

1. The estimate should measure the relative closeness of a simulation to representing
an error trajectory, i.e., if simulation A gets a better estimate than simulation B,
then A should be closer to being an error trajectory than B. However, we do not
attempt to formalise what it means to be “closer to being an error trajectory”,
since this has several aspects to it, and any weighting of these aspects is necessarily
arbitrary. Ultimately, what counts is that the estimate provides good guidance for
the search. However, in Sec. 5.2, we will formalise some criteria for good guidance.

2. The faithfulness of the estimate should improve as the abstraction is refined.

3. Computation of the quality estimate should be on-the-fly, i.e., for each simulation
step, the quality estimate of the simulation up to that point should be available
(this is important for deciding when to cancel a simulation).



4. The overhead of computing the quality estimate should be low, i.e., the overall cost
of running each simulation should not be dominated by the cost of computing the
quality estimate.

Note that our entire approach aims at systems that are well-behaved in the following
sense: the state space should be partitioned into a small number of regions where in
each region, small changes in the startpoint result in small changes of the overall
trajectory. Within such regions, the statement “A is close to being an error trajectory”
will usually imply “there is an error trajectory close to A” with high probability, which
can be exploited by the search algorithm.

Our approach can be understood without knowing the precise definition of the
quality estimate, and thus we will have three subsections addressing the above aims in
turn. The corresponding algorithm is summarised in Fig. 2.

3.3 Interaction with Verification

Recall from Sec. 2.2 that the verification algorithm maintains an abstraction of the
concrete system, and from Def. 3 that an error trajectory can only start within an
initial abstract state. Hence we only search for error trajectories in these abstract
states.

Now we must decide when to start such a search and for how long to run it, i.e,
we have to strike a balance between the time devoted to verification and falsification
attempts. Secondly, speaking in the terminology of reinforcement learning [50], we have
to strike the balance between exploitation (searching in regions that looked promising
so far) and exploration (searching everywhere, including in less promising regions).

Our design decision for striking those balances is to call the falsification algorithm
after a refinement whenever an initial abstract state has been split or pruned, i.e., to
keep running the verification while this is not the case (line 6). Depending on whether
the resulting box(es) contain(s) a point found by previous searches, the search resumes
from this point or starts from scratch.

The rationale is twofold: concerning the first balance, the idea is that refinements
of the abstraction that actually affect an initial state are likely to actually affect, i.e.,
improve, the quality estimate for simulations starting in this initial state. Concerning
the second balance, the idea is that every initial state will have its turn to be affected
by an abstraction refinement, so that that part of the search space will be explored.

Note that as the boxes converge towards size 0, we ensure completeness of our search
procedure just like using the näıve procedure of Sec. 3.1. Why a refined abstraction
improves the quality estimate will be explained in Sec. 5.1.

Just like the verification procedure “decides” when to pass the baton to falsification,
the falsification procedure reciprocates (see Sec. 3.4).

3.4 Doing the Right Simulations

We have just explained that we only start simulations in points in initial abstract
states. However, we can prune the candidate startpoints much more than that.3

For an initial abstract state (box), we compute a sub-box by pruning away those
parts for which we can show that they contain no initial points. We call this sub-box
strong initial box. It can be much smaller than the entire initial box, leading to a vast
reduction of the search space.

3 Recall that when we introduced the concept of pruning above in Section 2.2, we explained
that it can occur in two forms: First, points not on an error trajectory can be removed, and
second, boxes can be pruned to smaller ones over-approximating a certain constraint. We
will use the second form here.



1: A := initial abstraction /*Initialisation*/
2: foreach B ∈ A
3: B.crossmid := mid(strongbox (B)); B.crosstips := makecross(strongbox (B))
4: while true
5: B := ∅ /*Verification part*/
6: while B = ∅
7: refine and prune A; B := set of changed initial boxes of A
8: if 6 ∃ errorpath in A then output SAFE; exit
9: moves := 0; shrinks := 0 /*Falsification part*/
10: choose B ∈ B with qual(sim(B.crossmid , A)) maximal
11: if B.crossmid /∈ strongbox (B) or
12: qual(sim(mid(strongbox (B)), A)) > qual(sim(B.crossmid , A))
13: B.crossmid := mid(strongbox (B)); B.crosstips := makecross(strongbox (B))
14: while moves ≤ cros chg and shrinks ≤ cros chg
15: choose p ∈ B.crosstips with qual(sim(p, A)) maximal
16: if qual(sim(p, A)) > qual(sim(B.crossmid , A))
17: B.crossmid := p
18: B.crosstips := shiftcross(B.crossmid , B.crosstips)
19: moves := moves + 1
20: else
21: B.crosstips := halvecross(B.crosstips)
22: shrinks := shrinks + 1

Fig. 2. Overview of our algorithm

Merely relying on the strong initial boxes to become sufficiently small to find some
startpoint of an error trajectory, as we have explained in Sec. 3.3 above, is likely to be
extremely inefficient—it is crucial to attempt to find a good simulation within such a
box quickly.

Essentially, we understand the search problem of doing the right simulations as
a numerical optimisation problem, where the objective function to be optimised is
the quality estimate (to be defined in Sec. 4). The usual numerical methods exploit
derivatives. However, due to the partially discrete nature of hybrid systems, deriva-
tives are not generally available in our context, and therefore we use so-called direct
search methods [28], specifically the compass method. The compass method guarantees
that one finds a local optimum of continuously differentiable functions with Lipschitz
continuous gradient [28, Theorem 3.11]. However, it also works well in practice for non-
differentiable or even dis-continuous functions [28, Sec. 6] which is the main reason for
their usefulness in our context.

Intuitively, this method can be explained using the metaphor of searching a certain
geographical landmark using maps. At the beginning, we do not yet have any idea where
the landmark might be. Hence we use a very coarse map to find the approximate area
where the landmark lies. After that, we switch to finer and finer maps to locate the
landmark more precisely.

We do this by taking a strong initial box B and considering an n-dimensional
cross that fits exactly into B. That is, if the midpoint of B is (s1, . . . , sn) and the
size of B is (2d1, . . . , 2dn), then we have 1+2n points (s1, . . . , sn), (s1−d1, s2, . . . , sn),
(s1+d1, s2, . . . , sn), . . . , (s1, . . . , sn−1, sn−dn), (s1, . . . , sn−1, sn+dn). For each of these
points, we start a simulation and compute a quality estimate f . If f attains an optimum
in some point other than (s1, . . . , sn), we move the cross to this point and continue. If
the optimum is attained in (s1, . . . , sn), we halve the size of the cross and continue. Note
that in contrast to the exponential growth in n needed to sample the n-dimensional
real space up to a certain maximal distance between neighbouring samples, the number



of simulation points of a given cross in the compass method is linear in the problem
dimension. The actual compass method is shown in lines 14-22.

However, we do not run the compass method for each modified initial box, but
rather, we only consider the most promising box (line 10).

The compass method terminates when either the number of cross shrinkings or
of cross moves has exceeded the threshold cros chg (see Sec. 6). The current cross
midpoint and cross size are remembered. When the falsification is later resumed, if the
cross midpoint is still contained in the modified strong initial box B (see Sec. 3.3), and
its quality is still higher than the quality of a simulation at the midpoint of B, then
search is continued using this cross. Otherwise, we assume that the abstraction has
changed so much that the optimum is not close to the cross midpoint anymore. Hence,
search is restarted with a cross that fits exactly into B (lines 11-13). Note that it is
assumed that the function sim will output an error trajectory if it finds one and exit
the entire computation.

3.5 Doing Simulations Right

Since—apart from the set of initial states—our hybrid systems are completely deter-
ministic, the only choice to be taken during a simulation is when to cancel it. Intuitively,
we cancel simulations that are not improving sufficiently quickly. In detail, we cancel
a simulation if one of the following situations occur:

– an unsafe state is hit, or
– the simulation has run outside of the abstraction for more than sim cnc (a constant)

steps, or
– the global quality estimate has not improved during the last sim cnc steps, the

local quality estimate has not improved in the very last step, and the simulation
is currently within the abstraction. The notions “global” and “local” will become
clearer in Sec. 4.

Note that any cancelling incurs the risk that a simulation might not run long enough
to prove that it could actually be a good simulation. This risk is countered by the fact
that our abstraction is refined over time, as explained in Sec. 5.1.

4 The Definition of the Quality Estimate

Slightly simplifying, the quality of a simulation consisting of points p0, . . . , pn is defined
by

ini wgh ∗ isInit(p0) + max
i

{−scaledDist(pi) ·
i

i − distAbstr(p0, . . . , pi)
} (1)

In the rest of this section we explain this formula.
The most basic aspect of a simulation being close to an error trajectory is whether it

actually starts in an initial state. We reward a simulation that does so with a constant
ini wgh . One might argue that starting a simulation in a non-initial state is a waste
since the simulation will definitely not be an error trajectory. However, depending on
the hybrid system, even just finding an initial state can be non-trivial, and moreover,
such a simulation can be still be close to an error trajectory, since, of course, a non-
initial point can be close to an initial point.

The second aspect of a simulation being close to an error trajectory is how close
the simulation eventually gets to an unsafe state. Here we rely on systems being well-
behaved as explained in in Sec. 3.2, i.e., if one simulation gets very close to an unsafe
state, then we hope that nearby there will be a trajectory that actually hits the unsafe
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Fig. 3. Illustrating the distance estimate

state. We compute the closeness of all individual simulation points to an unsafe state,
and take the optimum of these (see the max in (1)). Note that this optimum can be
easily computed on-the-fly.

We now turn to the individual points, i.e., the expression inside of the maximisation,
which we may refer to as local quality of point pi, whereas the overall formula defines
the global quality. The ideal measure for the local quality of pi would be the negation
of the length of the trajectory from pi to some unsafe state, −∞ if the trajectory from
this point never reaches an unsafe state. This is illustrated in Fig. 3, r.h.s. The curve
shows the trajectory starting from pi, and we assume that it ends in an unsafe state.
However, it is the very effort of computing this curve that we want to avoid. Therefore,
we approximate this ideal measure, in order to be able to compute it efficiently (and to
be able to compute it at all). We do this by taking the length of a certain line segment
sequence, based on information information from the abstraction.

As explained in Sec. 2.2, an abstraction is a directed graph, and in our particular
case the nodes of this graph are mode/box pairs (in the sequel, we speak of boxes and
assume that the mode the box belongs to is clear from the context). Therefore, we shall
use a geometrical rendering of this graph as an approximation of concrete trajectories,
namely, by taking the line segments between the midpoints of boxes within the same
mode, for any abstract states that are connected in the graph. This is again illustrated
in Fig. 3, r.h.s. Here a0 is an initial abstract state and a4 is an unsafe abstract state, and
P (a4) is the strong unsafe box corresponding to a4, defined in analogy to the strong
initial boxes explained in Sec. 3.3. The dashed lines are the line segments between
connected abstract states. For the point pi, the estimated distance is the length of
the solid line segment sequence, which partly coincides with the dashed line segments,
namely from a2 to P (a4). Note that the sequence resembles the actual trajectory, the
curve. For a coarser abstraction, there will be no or little such resemblance, see the
l.h.s. figure and Sec. 5.1.

We will now explain this formally. For any box a, we denote by M(a) the midpoint
of a, and by Ja the maximal distance between any two points in a, i.e.,

√

∑n
i=1 d2

i ,
where d1, . . . , dn are the sidelengths of a. For two points p, p′, we denote by |p− p′| the
Euclidean distance between p and p′.

For a moment, let us leave aside the fact that we are looking at a particular point
pi, and just consider the abstraction. Using a graph algorithm, we compute the shortest
abstract error trajectories using the edge weights w(a, a′) =















|M(a) − M(a′)| if a and a′ lie in the same mode and are connected
by an abstract transition;

Ja′ if a and a′ are connected by a jump;
∞ otherwise.



Stated briefly, the rationale for choosing Ja′ as edge weight above is that Ja′ estimates
the length of a trajectory segment within a′, making the “pessimistic” assumption that
the trajectory goes from one corner to the opposite corner.

Above, we have said that we are interested in the distance of pi to “some” unsafe
state. In order to use an approximation of the set of unsafe states that is as tight as
possible, we use the strong unsafe box of each unsafe state here. This is indicated by
the P (a4) in the figure. In analogy, for abstract states for which the next element in
the shortest path has a different mode, the trajectory has to do a jump, and so we
compute a subset containing all the points from which a jump might start. For any
abstract state a as just said, we denote this (possibly non-proper) subset by P (a). For
other abstract states, P is simply the identity, to simplify the notation.

We replace all abstract states in the shortest path by these sets and adjust the
weights accordingly, without however recomputing the shortest paths.

Now we reconsider the point pi. We determine the abstract state a1 that contains
the point pi, provided such an abstract state exists (the case that it does not exist will
be considered later). Since our abstraction only contains states that lie on an abstract
error trajectory (see Def. 3) there must be an abstract trajectory from a1 to an unsafe
abstract state. Letting a1, . . . , ak′ be the shortest one, we define the distance dist(pi)
as follows:

If k′ ≥ 2 and a1, a2 have the same mode, then we define dist(pi) as |pi−M(P (a2))|+
∑

j=2,...,k′
−1 w(P (aj), P (aj+1)).

Otherwise, we either have k′ = 1 (i.e., a1 is an unsafe box)), or a1 is a jump
source box. In this case, we would like to compute the distance of pi to P (a1).
Let us call this distance δ. But what exactly do we mean
by the distance from a point to a box? The answer is illus-
trated by the figure to the right: the boundary of P (a1) is
drawn with thick lines; for the midpoint we have δ = 0, and
each rectangle (possibly with rounded corners) contains points
with identical δ. Given that P (a1) has sidelengths d1, . . . , dn,
we formally define δ as follows: If pi is inside of P (a1), then
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Fig. 4: Level sets

δ := max{|x1

d1

|, . . . , |xn

dn
|} d1+···+dn

n
, where x1, . . . , xn is the distance of pi to the indi-

vidual components of M(P (a1)). If pi is outside of P (a1), then δ is defined as the
Euclidean distance to the nearest point on the box boundary plus d1+···+dn

2n
The lat-

ter expression is the distance assigned to a point lying on the box boundary. Finally,
we define dist(pi) as δ +

∑

j=1,...,k′−1 w(P (aj), P (aj+1)). Observe that the summation

of w(P (aj), P (aj+1)) starts with j = 1, unlike in the previous paragraph, because δ

only “covers” the distance to the jump source point within a1, whereas the expression
|pi − M(P (a2))| “covers” some of the way within a2.

In order to make the quality measure independent of the actual size of the state
space, all distances are scaled to the interval [0, 1] by dividing them by the length of
the diagonal of the statespace in the corresponding mode. The result is denoted by
scaledDist(pi), see (1).

We now consider the situation that a simulation contains points outside of the ab-
straction. This is possible due to the fact that our abstraction covers, in general, a set
that is smaller than the reach set (see the end of Sec. 2.2). A simulation that leaves the
abstraction, or even the statespace, cannot be an error trajectory; but in analogy to
simulations not starting in an initial state, it can still be close to an error trajectory.
Therefore, we penalise such simulations but we do not reject them altogether. We do
this by weighting the quality estimate for each simulation point according to the pro-
portion of simulation points having lied outside of the abstraction up to that point (see
the term i

i−distAbstr (p0,...,pi)
in (1)). Simulation points that lie outside of the abstraction

themselves receive distance ∞, so they do not have any influence on the overall quality



of the simulation. The degree to which a simulation leaves the abstraction is thus a
third aspect of a simulation being close to an error trajectory.

Why do we use the shortest abstract error path to estimate how far a point is from
an error state? In fact, it might happen that some or the actual error trajectory follows
some longer abstract error path. However, the probability that we are able to find an
error trajectory in short time is highest in the case where this error trajectory is short.
Hence we try to aim our search at areas likely to contain such a short error trajectory.

5 Analysis of our Method

5.1 Discussion of the Quality Estimate

In Sec. 3.2 we mentioned four desired features of our quality estimate. We now discuss
these features. Concerning the first two, we also have some formal results, see Sec. 5.2.

Concerning the first feature, the evidence, besides the fact that the quality mea-
sure was designed with this feature as foremost feature in mind, is in the successful
experiments in Sec. 6.

Now consider the second feature. As explained in Sec. 3.5, any cancelling incurs the
risk that a simulation might not run long enough to prove that it could actually be a
good simulation. In fact, if the flow is such that from a point p it first moves away from
the unsafe states and then approaches them, then simply using Euclidean distance for
quality measurement would wrongly suggest that the simulation starting in point p

is deteriorating at the beginning. This is illustrated in Fig. 3, r.h.s.: if the simulation
from point pi stays very close to the solid line in its first steps, it actually moves away
from P (a4). However, we also see that the abstraction shown is fine enough, so that
the quality will increase during the first steps, i.e., the quality function is sufficiently
faithful to recognise that the simulation is “really” improving. This is in contrast to the
l.h.s. figure, where the abstraction is coarse. Note that the refinement has two effects:

1. The “really” good simulations are more likely to run longer than the “really” bad
ones.

2. In situations as illustrated in Fig. 3, where it requires a reasonably fine abstraction
to realise that initially moving away from the unsafe states is “really” good, the
effect of the refinement is that All “really” good simulations will run longer than
on previous tries.

The first effect will help the first component of the search (see Sec. 3.1): finding the
right startpoint. The second effect will help the second component of the search: making
simulations run long enough eventually, ensuring that an error trajectory is not missed
due to premature cancelling.

Concerning the third feature, the fact that the measure is computed on-the-fly is
clear from construction.

For the fourth feature, we now analyse the cost of computing the quality estimate.
Clearly, the few basic arithmetic operations of (1) can increase the cost of running
a simulation only by a fixed amount for each simulation point. However, computing
the distance dist(p) is costly, since it involves a shortest path computation on the
abstraction graph, computation of subsets, and so on. Fortunately, the abstraction
remains constant throughout a given simulation, and usually even throughout several
simulations. Hence we can factor out this part and pre-compute it once and for all
for a given abstraction. As a consequence, computing the quality estimate does not
increase the complexity order of the simulation computation. It has to be said though
that looking up, for each simulation point, the abstract state it is in, may incur a
considerable overhead.



5.2 Formal Analysis

In this section, we will first formally prove that our definition of quality estimate fulfils
a formalisation of the first two desired features of Section 5.1. Based on this, we will
then prove that our algorithm finds all error trajectories that are robust in a certain,
yet to be defined sense. All formal results in this section (as well as all related results
in the literature) depend on the assumption that we do our simulations with enough
precision concerning floating-point computation and time discretisation.

We rely on the assumption that we can compute arbitrarily precise abstractions:

Definition 4. A sequence of abstractions A1, A2, . . . is convergent iff for every tra-
jectory that is not an error trajectory there is a k such that for all i ≥ k there is no
corresponding trajectory in Ai.

Now we formalise what it means for a quality estimate to become arbitrarily precise:

Definition 5. A sequence of functions f1, f2, . . . in Φ → R is convergent iff for two
points p and q on the same error trajectory h such that p occurs earlier than q on h,
there is a k such that for all i ≥ k, fi(q) < fi(p).

Based on this, we can formally prove Item 2 of our desired features. In the following,
we denote by distA the distance function (see Sec. 4) based on abstraction A.

Theorem 1. Let A1, A2, . . . be a convergent sequence of abstractions. Then the se-
quence distA1

, distA2
. . . , is convergent.

Proof. (Sketch) Let p and q be two arbitrary but fixed points on an error trajectory
h, with p occurring earlier than q. We assume that for all i ∈ N, distAi

(q) ≥ distAi
(p)

and derive a contradiction.
Let i ∈ N be such that p and q are in different abstract states of Ai (this will be

the case for every i that is large enough). Then distAi
(p) ≤ distAi

(q) implies that the
shortest abstract path from p, call it p⊲, cannot lead over an abstract state containing q.
However, since our hybrid systems are deterministic, there is only one unique trajectory
leaving p—the error trajectory leading to q. Hence, due to convergence of the sequence
of abstractions, and the definition of abstraction, there is a j such that p⊲ will not be
in Aj , a contradiction. ⊓⊔

Now call an error trajectory h robust iff there is an ε > 0 such all trajectories
starting with a distance smaller than ε from h is also an error trajectory. We call a
hybrid system that has a robust error trajectory robustly unsafe.

Theorem 2. Our falsification algorithm finds an error trajectory for every robustly
unsafe hybrid system H.

Proof. (Sketch) Our simulations are dense in the set of initial sets of error trajectories.
Hence the falsification algorithm will eventually simulate in a distance smaller than ε

from the robust error trajectory. Moreover, due to the convergence of dist the quality
estimate will eventually monotonically improve on such a trajectory, and hence the
simulation will not be cancelled before reaching an unsafe point. ⊓⊔

Note that the above are theoretical completeness results: we will eventually find
every error trajectory thanks to the fact that our abstractions will eventually be ex-
tremely precise. In practice, relying on this alone is extremely inefficient, just like the
näıve algorithm of Sec. 3.1, for which the same completeness result also holds. Hence,
the theorems should be interpreted in the sense of: “Although our method cancels sim-
ulations whenever the abstraction suggests no further improvement, the method is still
complete”.



Example ver. mixed ref. sim. sim. steps

2-tanksSAFE 5.0 45.4 63 626 130513
2-tanksSAFE2 10.4 115.8 111 1193 250198
2-tanksSAFE3 68.1 517.6 546 4815 1023456

convoi-1SAFE 0.1 0.1 0 0 0

ecoSAFE 88.6 108.3 224 511 257271

s-focusSAFE 3.0 4.0 9 119 21138

Table 1. Safe Systems

6 Implementation and Experiments

We implemented our method and tested it on some well-known benchmarks.
In our prototype we use a simple Euler method for solving ordinary differential

equations (ODEs, e.g. [47]) with only näıve handling of jumps. In practice, more so-
phisticated ODE-solvers and precise jump detection [35] could be used. Due to re-use of
HSolver (i.e., verification) code, this prototypical implementation runs quite slowly
(3 orders of magnitude slower than hard-coded C simulation) but serves as an experi-
mentation platform.

Concerning the impact of the implementation parameters, we have no systematic
analysis but the choices are partly based on our experience, and we will discuss them
now.

We set ∆ = 0.01, assuming that the continuous behaviour within a timespan of
0.01 can be described as a straight line with reasonable accuracy. This is the case for
most benchmarks we discuss below, although on rare occasions ∆ is either too big (so
that the simulations will be grossly inaccurate) or too small (so that simulations will
take prohibitively much time). In particular, this is the case for mutant, see Table 2.

We set cros chg = 2, which is much smaller than what we intuitively expected to be
reasonable, but we found that for bigger values, the compass method will get trapped
in local minima of a poor quality estimate.

We set sim cnc = 200, which seems rather small to us, and yet, to demonstrate
that simulations eventually “survive” thanks to the faithfulness of the quality estimate,
rather than a generously chosen value of sim cnc, we set sim cnc much smaller for some
experiments reported below.

We set ini wgh = 0.5, which roughly means that whether a simulation starts in an
initial state is as important as the other aspects mentioned in Sec. 4.

For the experiments, we used a machine with two Intel Xeon processors running at
3.02 GHz with 6 GB RAM.

Our benchmarks were obtained by modifications of various well-known bench-
marks from the literature. The original benchmarks can be found at http://hsolver.
sourceforge.net/benchmarks/benchmarks.html, and the modified ones at http:

//hsolver.sourceforge.net/benchmarks/falsification. The modifications were
necessary because the benchmarks were mostly safe, and so we injected an error into
those systems by relaxing some constraints describing the initial or unsafe states or the
jump guards.

Recall that HSolver is originally [43] a verification tool. Our method is imple-
mented as a special running mode of HSolver where verification is interleaved with
falsification. To give an idea of the cost of falsification attempts, we ran some exper-
iments for a few safe systems. Table 1 shows the results: it compares the HSolver
runtime in seconds for pure verification mode and mixed mode. Moreover, it shows
the number of abstraction refinements, the number of simulations, and the total number
of single simulation steps. We see that HSolver can run about an order of magnitude



slower in mixed mode. This indicates that on examples suspected to be safe, it might
be a good idea to adjust the parameters so that less time is devoted to falsification
attempts.

Table 2 shows the results for the unsafe examples. In addition to Table 1, the table
shows the number of jumps of the trajectory that was found. We consider the main
figure for evaluating efficiency to be the number of simulation steps, since this number
is independent of the actual implementation of the method.

In addition to showing the figures for our new algorithm, Table 2 also shows the
figures for the the näıve algorithm of Sec. 3.1 (as will be discussed in the next section, all
related work assumes systems with inputs and behaves similarly to the näıve algorithm
in our case without inputs). In our implementation of the näıve algorithm, l was initially
chosen to be 100 as stated in Fig. 1. However, a simulation is started only in grid points
that are initial. Thus it may happen that l is increased before the start of an actual
simulation, which explains, for example, why we have 327 simulation steps for eco in
spite of having just one simulation.

The näıve algorithm performs very well on some apparently easy examples, where
the method we propose here also performs well, but on numerous examples the näıve
algorithm does not terminate within several hours, indicated by ∞. For hard examples,
using a more sophisticated method such as ours is absolutely crucial, while for easy
examples, one might easily hit an error trajectory by chance.

One observation when doing the modifications was that for some benchmarks, re-
laxing the constraints to some extent still resulted in a safe system. In fact, ideally
what happens when one gradually relaxes a safe system is that it gradually tran-
scends from “easy to prove safe” to “hard to prove safe” to “impossible to prove either
way” to “hard to prove unsafe” to “easy to prove unsafe”. This is the case e.g. for
2-tanks, and partly for real-eigen (see Table 2, where real-eigen5 is the hardest
and real-eigen is the easiest). However, we found numerous exceptions from this
ideal, where some of the changes are very abrupt or not monotonic: clock, convoi,
real-eigen, van-der-pole2.

Note that we have several examples where an error trajectory containing one or
two jumps is found. For eco, we verified that these jumps are necessary, i.e., when we
remove the jumps, the system becomes safe. This indicates that our quality estimate
works reasonably well even for simulations that contain a jump. However, we have
no way of knowing whether an improved method might find error trajectories with
more jumps for harder examples, on which our current implementation exhausts the
computational resources.

We did an experiment with focus showing that even for a too small value of
sim cnc, simulations will eventually “survive” long enough thanks to the refinement of
the quality function. The example is extremely easy for HSolver, provided sim cnc is
not too small. For sim cnc = 20, an error trajectory is found but after 434 refinements.
In this experiment, the startpoint found eventually is tried dozens of times before, but
each time the simulation is cancelled prematurely. The same effect occurred for eco

and eco2.

We have also created an example where we isolate the aspect just mentioned:
parabola. In this example, the flow is y = 20x2, and the initial and unsafe states
are small boxes around the points (−1, 20) and (1, 20), respectively. That is, the error
trajectory looked for is an extremely tight parabola. The search for the right startpoint
is trivial; the problem is though that if sim cnc is too small and the quality function is
not faithful enough yet, then the simulations will be cancelled prematurely. This can
be seen in the table where we tried values for sim cnc ranging from 30 to 105.

For mutant, choosing ∆ = 0.01 is inappropriate, because 0.01 is minute relative to
the state space size. We therefore chose ∆ = 0.5.



our algorithm näıve algorithm

Example time ref. sim. sim. steps jumps time sim. sim. steps

2-tanks 11.5 7 130 23943 0 230.7 2372 554303

car 0.5 0 6 1033 1 0.6 3 272

clock 0.3 0 21 4387 0 4.3 175 59264

convoi 0.04 0 1 7 0 ∞ ∞ ∞

eco sim cnc = 400 0.1 0 1 328 2 0.1 1 327
eco 2.1 10 63 21154 2 0.1 1 313
eco2 sim cnc = 400 0.1 0 1 328 2 0.1 1 327
eco2 45.3 152 422 118862 2 0.1 1 313

focus 0.1 0 10 2626 0 0.04 1 131
focus sim cnc = 20 29.7 434 288 13218 0 0.04 1 131

mutant ∆ = 0.5 196.7 6 150 1421803 0 ∞ ∞ ∞

navigation 1.6 0 22 5454 1 2.9 3 241
navigation2 1937.7 14 506 138206 1 ∞ ∞ ∞

parabola sim cnc = 105 0.0 0 1 201 0 ∞ ∞ ∞
parabola sim cnc = 100 0.3 4 43 4443 0 ∞ ∞ ∞
parabola sim cnc = 50 1.0 35 71 4751 0 ∞ ∞ ∞
parabola sim cnc = 30 18.0 353 113 7495 0 ∞ ∞ ∞

real-eigen 0.7 1 44 8523 0 ∞ ∞ ∞
real-eigen2 2.5 4 126 24165 0 ∞ ∞ ∞
real-eigen3 4.5 10 214 41853 0 ∞ ∞ ∞
real-eigen4 58.1 87 816 166450 0 ∞ ∞ ∞
real-eigen5 250.8 314 1521 312567 0 ∞ ∞ ∞

van-der-pole 0.4 1 36 3725 1 0.2 1 35
van-der-pole2 1.7 3 88 14546 1 ∞ ∞ ∞

Table 2. Unsafe Systems

7 Related Work

Our work has some resemblance with heuristic search in artificial intelligence (AI), [45]
namely with pure optimisation problems, where the aim is to find a node in a graph
which is good or optimal according to some objective function. One may also introduce
such an objective function just for providing guidance in search algorithms. This is
similar to our approach. It is distinctive of our work that the objective function itself
improves over time. Our search method, the compass method, is similar to local search
methods in AI, which move from state to state striving for improvements.

Just like for local search in the AI context, completeness of the search is a critical
issue for us. The basic compass method (shrinking and moving the cross) runs the risk
of getting stuck in a local optimum. We achieve completeness thanks to the fact that
the abstraction will eventually become extremely fine. In a practical sense, we try to
avoid getting stuck in a local optimum by frequently considering a restart (see lines
10-13 in Fig. 2).

In spite of the fact that we search for an error trajectory (=path), there is not much
analogy between our approach and AI path search problems, because we do not use the
objective function to decide “where to go next within this trajectory”. There would
be such an analogy if we looked at our search problem more generally, in particular,
consider the problem of choosing the right jumps for non-deterministic systems. This
has been done for timed automata, where it is an instance of directed model checking
[48, 29]. Doing it in our context, i.e., for hybrid systems, is a topic for future work.

In contrast to heuristic search in AI, we do not decide whether to do a simulation
depending on the cheaply pre-computed quality of that simulation, but rather, we



compute the quality as we do the simulation, and depending on this quality we will do
other simulations in the neighbourhood. This is similar to reinforcement learning [50].

The traditional approach to falsifying safety of dynamical systems is manual or
semi-automatic simulation using according tools [30, and references therein].

Work on methods that directly try to falsify hybrid systems (in contrast to work that
uses simulation for verification, as discussed below) usually consider the case of hybrid
systems with inputs, searching for inputs that drive the system from an initial to an
unsafe state. One major approach in this direction is to adapt techniques from robotic
motion planning [10, 37] to compute an under-approximation of the set of trajectories
of a given hybrid system. Another approach studies how to avoid redundant simulations
as much as possible by merging similar parts of simulations [32].

Even though these methods were designed for systems with input, it is possible to
apply them to systems without input (i.e., with deterministic evolution). However, the
strategy of the above algorithms is to try to fill the state space as much as possible
(according to some measure) with simulations. As a result, they would start a huge
number of simulations in parallel—either from a grid (similar to our näıve algorithm
from Sec. 3.1) or from random sample points. In the case of highly non-deterministic
systems, such a strategy is promising since by filling the set of possible trajectories
fast, the probability of hitting upon an error trajectory is high. However, for systems
with only a small amount of non-determinism, and especially, completely deterministic
evolution, this creates a huge number of useless simulations. We avoid this by guiding
our search using abstractions in order to quickly arrive at a simulation close to an error
trajectory, and to avoid simulating in areas of the state space for which we know that
they do not lie on an error trajectory.

Tools for counterexample guided abstraction refinement [14, 2] based on flow pipe
computation may terminate with a concrete counterexample. For a given counter-
example, several simulation runs are tried according to a certain strategy.

Searching for counter-examples is also related to optimal control [9]. Work on op-
timal control for hybrid systems [12, 24, 7, 5, 49, 38] determines inputs that optimise a
certain continuous objective function. In our work, instead of such an optimisation
problem we consider a decision problem (”is/is not a counterexample”) for systems
without inputs. Moreover, work on optimal control usually does not take information
from safety verification into account, while we tightly integrate verification and falsifi-
cation.

Recently a new paradigm of verification by simulation has received attention [22,
17, 13, 31, 4]. For these methods (unlike in our case) the main goal is verification of a
correct input system. Error trajectories may be computed as a by-product.

An alternative approach to the verification/falsification paradigm is to use test
coverages [11, 25, 34, 21, 46], where—instead of trying to verify a property fully—one
defines a function that measures how large a part of the hybrid system is covered by a
given set of simulation runs. Then one tries to find simulation runs that optimise this
test coverage function. In some of these methods [21, 46], model checking is used to
guide simulation in order to increase coverage as fast as possible.

Such methods for verification by simulation or for computing test coverages have
to cover the whole state space densely with simulations, where the interpretation of
the word “densely” depends on the individual method. In contrast to that, we do not
concentrate on covering the state space, but try to find one single error trajectory as
fast as possible (similar to some methods in software model checking [23, 36], see the
discussion below).

Prajna and Rantzer [40] show that—in analogy to Lyapunov functions—the exis-
tence of certain functions implies the reachability of given sets in (non-linear) ODEs.
Such functions can be computed using sum-of-squares (SOS) tools [39].



For linear discrete-time systems with input, another approach [26] exhaustively
simulates the system using a time and state discretisation of the input, and tries to
avoid redundant computation by merging nearby trajectories.

In software model checking, the synergy between verification and falsification (i.e.,
testing, debugging) is the subject of a lot of recent research, see for example, Gula-
vani [23] and the references therein. Also, the idea to use abstraction to define a heuristic
function for local search has been studied in software model checking (e.g., [36]). In
contrast to that, hybrid systems have a partially continuous state space with corre-
sponding geometrical properties which we exploited in our search algorithm and our
definition of quality estimate.

8 Conclusion

We have presented a method for finding error trajectories of hybrid systems. The
method combines ideas from AI heuristic search, abstraction-based verification, nu-
merical optimisation, and reinforcement learning. We run simulations searching for
one that corresponds to an error trajectory. For each simulation, the point at which it
is cancelled depends on a quality estimate computed on-the-fly, using information from
the HSolver abstraction. The neighbourhood in which new simulations are started is
also determined using this quality estimate.

We have demonstrated on several well-known benchmarks that our method is able to
find error trajectories. Various lessons learnt were explained in Sec. 6. What we consider
the most important point is that the quality estimate based on the abstraction, which
is a byproduct of the verification algorithm, becomes more faithful as the abstraction
becomes refined. We would have liked to phrase this as “thanks to the improving quality
estimate, it is a good idea to choose sim cnc very small”, but based on our experiments
we should say more modestly that “thanks to the improving quality estimate, we will
eventually recover from a too small choice of sim cnc”.

There are various directions for future work.

1. We consider the main challenge to be the exploitation of the partially continuous
nature of hybrid systems, that is, the fact that sometimes (but not always) trajec-
tories depend smoothly on their initial point. Numerical analysis provides a myriad
of optimisation algorithm for differentiable functions. One might be able to adapt
such algorithms to our case and use corresponding derivatives in the optimisation
algorithm.

2. We would like to extend our approach to systems with non-deterministic evolution,
in particular, non-deterministic jumps. In this case, the simulation will have to make
decisions. Our idea is that these decisions should be based on the abstract error
paths.

3. In analogy to heuristic global search in AI [45], e.g. greedy best-first search or A∗,
we might improve our method by keeping several simulations run so far in a search
queue, and selecting the most promising of those simulations for being continued
for a certain while.

4. Another idea is to improve the simulations by running them backwards as well as
forwards [10].

5. It would be desirable to make the method less dependent on arbitrary choices for
the implementation parameters.

6. Lyapunov functions [27] decrease their value on trajectories of ordinary differential
equations. We will try to improve the quality estimate by using such Lyapunov
function for estimating the length of a trajectory from a given point to a box.
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2. R. Alur, T. Dang, and F. Ivančić. Counter-example guided predicate abstraction of hybrid
systems. In H. Garavel and J. Hatcliff, editors, TACAS’03: 9th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, volume 2619 of
LNCS, pages 208–223. Springer, 2003.
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