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Abstract

Point availability and expected interval availability are dependability measures respec-

tively defined by the probability that a system is in operation at a given instant and by the

mean percentage of time during which a system is in operation over a finite observation

period.

We consider a repairable computer system and we assume as usual that the system is

modeled by a finite Markov process. We propose in this paper a new algorithm to compute

these two availability measures. This algorithm is based on the classical uniformization

technique in which a test to detect the stationary behavior of the system is used to stop the

computation if the stationarity is reached. In that case, the algorithm gives not only the

transient availability measures but also the steady state availability, with significant compu-

tational savings especially when the time at which measures are needed is large. In the case

where the stationarity is not reached, the algorithm provides the transient availability mea-

sures and bounds for the steady state availability. It is also shown how the new algorithm

can be extended to the computation of performability measures.

Index terms - Repairable computer systems, dependability, availability, performability,

Markov processes, stationarity detection.

1 Introduction

In the dependability analysis of repairable computing systems, there is an increasing interest

in evaluating transient measures, in particular, the point availability and the availability over a

given period. This paper deals with the computation of the point availability and of the expected

interval availability respectively defined by the probability that the system is in operation at a

given instant and by the mean percentage of time during which the system is in operation over a
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finite observation period. Formally, the system is modeled by a Markov process. Its state space

is divided into two disjoint sets which represent theup states in which the system delivers the

specified service and thedown states in which there is no more service delivered. Transitions

from theup (resp.down) states to thedown (resp.up) states are calledfailures (resp.repairs).

The interval availability over��� t� is then the fraction of the interval��� t� during which the

process is in theup states. This random variable has been studied in previous papers as for

instance in [1], [2] and [3] where its distribution is evaluated using the uniformization technique.

This approach is interesting because it has good numerical properties and it allows the user to

perform the computation with an error as small as desired.

An approach to detect the stationarity of Markov processes has been proposed in [4], [5].

This approach is based on the uniformization method. The state probability vectors of the uni-

formized Markov chain are successively computed and the iterates that are spacedm iterations

apart are compared. When the difference between two such iterates is small enough, the compu-

tation is stopped. The main problem with this method is that, unlike the standard uniformization,

there is no ability to specify error bounds easily computable.

In this paper, we develop a new method to compute the point availability and the expected

interval availability which is also based on the uniformization technique and on the stationary

regime detection. In practice one usually does not know whether the time horizon he/she is

considering is large enough for a steady state analysis. The main advantage of our algorithm is

that the computation is stopped when the steady state availability of the system is reached giving

both transient and steady state measures with an error tolerance specified in advance. When the

stationarity is not reached, the algorithm gives the transient measures and bounds for the steady

state availability.

The remainder of the paper is organized as follows. In the following section, we recall the

classical way to compute the point availability and we derive new results to stop the computation

when the stationary regime is reached. We also give in this section the pseudo code of both

algorithms. In Section 3, we consider the expected interval availability and we show how it can

be computed using the stationarity detection. In Section 4, we show by means of a numerical

example that our new algorithm can considerably reduce the computation time of the availability
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measures considered here, when the time at which measures are needed is sufficiently large. It is

also shown that computational savings can be obtained even when the time horizon is small. In

Section 5, we show how the results obtained for the availability measures can be easily extended

to the corresponding performability measures. The last section is devoted to some conclusions.

2 Point Availability Analysis

Consider an irreducible continuous-time homogeneous Markov processX � fXt� t � �g, over

a finite state space denoted byS. The states ofS are divided into two disjoint subsets:U , the set

of the operational states (or the up states) andD, the set of the unoperational states (or the down

states). For a system, modeled by such a process, the point availability at timet is denoted by

PAV �t� and defined by

PAV �t� � PrfXt � Ug�

The processX is, as usual, given by its infinitesimal generator, denoted byA, in which the

ith diagonal entryA�i� i� verifiesA�i� i� � �
P

j ��iA�i� j�. Its initial probability distribution is

denoted by the row vector�.

The uniformized Markov chain associated to the processX is characterized by its uniformiza-

tion rate� and by its transition probability matrixP [6]. The uniformization rate� verifies

� � max��A�i� i�� i � S� andP is related toA by P � I � A��, whereI denotes the identity

matrix. Using this notation, we get

PAV �t� � �eAt1U �
��X
n��

e��t
��t�n

n�
�P n1U � (1)

where 1U is a column vector whoseith entry is� if i � U , and� if i � D. We denote byVn the

column vector defined byVn � P n1U . It follows that for everyn � �, we haveVn � PVn��

andV� � 1U . In the following, we define for everyn � �, vn � �P n1U � �Vn.
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2.1 The classical uniformization method

The classical way to compute the point availability at timet is based on Relation (1). Let� be a

given specified error tolerance andN be defined as

N � min

��
�n � IN

������
nX

j��

e��t
��t�j

j�
� �� �

��
� � (2)

Then we obtain

PAV �t� �
NX
n��

e��t
��t�n

n�
vn � e�N��

where the rest of the seriese�N� verifies

e�N� �
�X

n�N��

e��t
��t�n

n�
vn �

�X
n�N��

e��t
��t�n

n�
� ��

NX
n��

e��t
��t�n

n�
� ��

The computation of integerN can be made without any numerical problems even for large

values of�t by using the method described in [7].

The truncation levelN is in fact a function oft, sayNt. For a fixed value of�, Nt is an

increasing function oft. It follows that if we want to computePAV �t� for J distinct values of

t, denoted byt� � � � � � tJ , we only need to computevn for n � �� � � � � NtJ since the values of

vn are independent of the parametert.

The pseudo code of the classical uniformization method can then be written as follows.

input : �, t� � � � � � tJ

output : PAV �t��� � � � � PAV �tJ�

ComputeN from Relation (2) witht � tJ

V� � 1U ; v� � �V�

for n � � to N do

Vn � PVn��; vn � �Vn

endfor

for j � � to J do

PAV �tj� �
NX
n��

e��tj
��tj�

n

n�
vn

endfor

Table 1: Classical algorithm for the computation ofPAV �t�.
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2.2 Stationarity detection

The stationarity detection that we consider is based on the control of the sequence of vectors

Vn � P n1U . Let the row vector� denote the stationary probability distribution of the Markov

processX. This vector verifies�A � � and�P � �. The steady state availability is given by

PAV ��� � �1U � To ensure the convergence of the sequence of vectorsVn, we require that the

uniformization rate� verifies� � max��A�i� i�� i � S� since this guarantees that the transition

probability matrixP is aperiodic. We then have, for everyi � S,

lim
n���

Vn�i� � �1U �

We describe now the test used to detect that, for a given value ofn, the entries of vectorVn are

close to�1U . For everyn � �, we define

mn � min
i�S

Vn�i� and Mn � max
i�S

Vn�i��

Note that, sinceV� � 1U , we haveM� � � andm� � �. The following result gives bounds of

the steady state availabilityPAV ��� � �1U .

Lemma 2.1 The sequences mn and Mn are respectively non decreasing and non increasing

and, for every n � �, we have����vn � Mn �mn

�

���� � Mn �mn

�
and

�����1U �
Mn �mn

�

���� � Mn �mn

�
�

Moreover, both sequences mn and Mn converge to �1U .

Proof. For everyi � S, we haveVn���i� �
X
j�S

P �i� j�Vn�j�. It follows thatmn � Vn���i� �

Mn and so we getmn � mn�� andMn�� � Mn, which shows that the sequencesmn andMn

are respectively non decreasing and non increasing.

Sincevn �
X
j�S

��j�Vn�j�, we getmn � vn � Mn, which is equivalent to

����vn � Mn �mn

�

���� � Mn �mn

�
�

Writing now �1U � �P n1U � �Vn �
X
j�S

��j�Vn�j�, we get in the same waymn � �1U �

Mn, which is equivalent to �����1U �
Mn �mn

�

���� � Mn �mn

�
�
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The state spaceS being finite and the fact that for everyi � S, Vn�i� converges to�1U show

that both sequencesmn andMn converge to�1U . �

Remark. We have assumed that the Markov processX is irreducible. If the Markov process

X is not irreducible but contains an absorbing state denoted bya with a � D, then we have

�1U � � and for everyi � S we easily getVn�i� �� � whenn �� �. Now, sincea � D,

we haveVn�a� � � for everyn � � and so we also havemn � � for everyn � �. Thus, in this

case, it sufficies to consider the sequenceMn which is non increasing and converges to�. �

This lemma shows that the differenceMn � mn converges to�, that is, for a fixed error

tolerance� � � there exists an integerk such that forn � k we haveMn � mn � �. Since

mn � Mn, we havemn � mn�� � Mn�� � Mn, and so the sequence�Mn � mn� is non

increasing. We can then define the following integer

K � inffn � �jMn �mn � ���g�

Using the integerK, Relation (1) can be written as

PAV �t� �
KX
n��

e��t
��t�n

n�
vn �

MK �mK

�

�
��

KX
n��

e��t
��t�n

n�

�
� e��K�� (3)

where

e��K� �
�X

n�K��

e��t
��t�n

n�
vn �

MK �mK

�

�X
n�K��

e��t
��t�n

n�
�

Using Lemma 2.1, the reste��K� verifies

je��K�j �
�X

n�K��

e��t
��t�n

n�

����vn � MK �mK

�

���� � ��	� (4)

This last inequality follows from the fact that, forn � K, we have from Lemma 2.1mK �

mn � vn �Mn �MK and so
����vn � MK �mK

�

���� � MK �mK

�
� ��	.

The timeK can be interpreted as the discrete time to stationarity with respect to the subsetU .

For everyt � � and for every integerl � �, we denote byFl�t� the function defined by

Fl�t� �
lX

n��

e��t
��t�n

n�
�Mn �mn��
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It is easy to check that for a fixed value ofl, the functionFl�t� decreases, from� to � over the

interval
���
. We can then define for every integerl � � and for every� � �, the timeTl as

Tl � infft � ��Fl�t� � ��	g�

We then have the following theorem :

Theorem 2.2 For every � � �, for every t � TK we have

jPAV �t�� �1U j � ���	 (5)

�����1U �
MK �mK

�

���� � ��	 (6)

����PAV �t��
MK �mK

�

���� � � (7)

Proof. First note that, from Lemma 2.1, we havemn � vn � Mn andmn � �1U � Mn, for

everyn � �. It follows thatjvn � �1U j �Mn �mn for everyn � �. We then have

jPAV �t�� �1U j �

�����
�X
n��

e��t
��t�n

n�
vn � �1U

�����
�

�X
n��

e��t
��t�n

n�
jvn � �1U j

�
�X
n��

e��t
��t�n

n�
�Mn �mn�

� FK�t� �
�X

n�K��

e��t
��t�n

n�
�Mn �mn�

Sincet � TK , we haveFK�t� � ��	. In the second term, sincen � K, we haveMn �mn �

MK �mK � ��� and so we get Relation (5).

Relation (6) is immediate from Lemma 2.1. Finally combining Relation (5) and Relation (6),

we get Relation (7). �

The timeTK can be interpreted as the continuous time to stationarity with respect to the subset

U .
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2.3 The new algorithm

Using these results, we obtain the following new algorithm. To simplify the writing of this

algorithm, we define

Gl�t� �
lX

n��

e��t
��t�n

n�
vn� Hl�t� � ��

lX
n��

e��t
��t�n

n�
� Sl �

Ml �ml

�
�

input : �, t� � � � � � tJ

output : PAV �t��� � � � � PAV �tJ�

ComputeN from Relation (2) witht � tJ

V� � 1U ; v� � �V�

M� � �; m� � �; K � N � �

for n � � to N do

Vn � PVn��; vn � �Vn

ComputeMn, mn andSn

if (Mn �mn � ���)

K � n; break

endif

endfor

if (K � N � �)

for j � � to J do PAV �tj� � GN�tj� endfor

mN � PAV ��� �MN

endif

if (K � N )

ComputeTK � infft � ��FK�t� � ��	g

for j � � to J do

if (tj � TK) then PAV �tj� � GK�tj� � SKHK�tj�

if (tj � TK) then PAV �tj� � PAV ��� � SK

endfor

endif

Table 2: Algorithm for the computation ofPAV �t� using stationarity detection.
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Note that it is not necessary to compute the continuous time to stationarityTK with a high

precision. It is sufficient to obtain an upper bound ofTK such as for instancedTKe which is the

smallest integer greater or equal toTK .

It must be also noted that, in this algorithm, the truncation stepN is a function of the timetJ as

in the classical unformization algorithm but the times to stationarityK andTK are independent

of the time parameter, when the discrete timeK is reached.

The computational time complexity of both algorithm is essentially due to the computation

of the vectorsVn. To compute this vectors, the classical algorithm requiresN matrix-vector

products and our new algorithm requires onlymin�K�N� matrix-vector products.

3 Expected Interval Availability Analysis

We show in this section how the new algorithm proposed above for the point availability com-

putation can be adapted to compute the expected interval availability taking account of the sta-

tionarity detection.

The expected interval availability represents the mean percentage of time during which the

system is in operation over a finite observation period��� t�. The interval availability over��� t�

is denoted byIAV �t� and its expectation is given by

EIAV �t� �
�

t

Z t

�

PAV �s�ds�

Using Relation (1) and by integration over��� t�, we obtain

EIAV �t� �
��X
n��

e��t
��t�n

n�

�

n� �

nX
k��

�P k1U �

We denote byV �n the column vector defined by

V �n �
�

n� �

nX
k��

P k1U �

and we definev�n � �V �n. By definition ofVn andvn in the previous section, we get, for every

n � �,

V �n �
�

n � �

nX
k��

Vk andv�n �
�

n� �

nX
k��

vk�
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It follows thatV �
n andv�n are recursively given, forn � �, by

V �n �
n

n � �
V �n�� �

�

n� �
Vn�

and

v�n �
n

n � �
v�n�� �

�

n� �
vn� (8)

with V �� � V� � 1U and thusv�� � v�. For everyn � �, we have� � v�n � �. It follows that,

using the truncation stepN defined in Relation (2), we get the classical algorithm to compute

the expected interval availability, by writing

EIAV �t� �
NX
n��

e��t
��t�n

n�
v�n � e��N��

where

e��N� �
�X

n�N��

e��t
��t�n

n�
v�n �

�X
n�N��

e��t
��t�n

n�
� ��

NX
n��

e��t
��t�n

n�
� ��

This algorithm is basically as the one depicted in Table 1. More precisely the computation ofvn

in Table 1 must be followed by the the recursion (8), withv �� � v�, and in the last loop overj,

vn must be replaced byv�n in order to getEIAV �tj� instead ofPAV �tj�.

3.1 Stationarity detection for the expected interval availability

Using the results obtained for the point availability, we can derive a new method to obtain the

expected interval availability using the stationarity detection. This method is based on the two

following theorems. Both theorems will be used in the case where the discrete time to stationar-

ity K is such thatK � N . The first theorem states that in order to compute the expected interval

availability,EIAV �t�, we only need the values ofv �n for n � K. The second theorem states that

in order to compute the expected interval availability,EIAV �t�, for t � TK, we only need the

valueEIAV �t�� at a timet� such thatt � t� � TK .

We denote byG�K�t� the function

G�K�t� �
KX
n��

e��t
��t�n

n�
v�n�

and recall that

HK�t� � ��
KX
n��

e��t
��t�n

n�
andSK �

MK �mK

�
�
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Theorem 3.1 For every t � �, we have

����EIAV �t��
	
G�K�t� �

K � �

�t
�v�K � SK�HK���t� � SKHK�t�


���� � ��	 (9)

Proof. For everyt � �, we have

EIAV �t� � G�K�t� � 	�t��

where

	�t� �
�X

n�K��

e��t
��t�n

n�
v�n�

Forn � K � �, we have

v�n �
�

n� �

nX
k��

vk

�
�

n� �

�
� KX
k��

vk �
nX

k�K��

vk


�

�
K � �

n� �
v�K �

�

n� �

nX
k�K��

vk

�
K � �

n� �
v�K �

�

n� �

nX
k�K��

�vk � SK� �
�n�K�

n � �
SK

�
K � �

n� �
v�K �

�n�K�

n � �
SK � xn

where

jxnj �

������
�

n� �

nX
k�K��

�vk � SK�

������ �
�

n� �

nX
k�K��

jvk � SK j �
�n�K�

n� �

�

	
� ��	�

The inequalityjvk � SK j � ��	, for k � K, follows from Lemma 2.1; it has already been used

to bound the errore��K� in Relation (4). If
�t� is the function defined by


�t� �
�X

n�K��

e��t
��t�n

n�
xn�

we obtainj
�t�j � ��	. We then have

	�t� �
�X

n�K��

e��t
��t�n

n�

�
K � �

n� �
v�K �

�n�K�

n� �
SK

�
� 
�t��
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By writing �n�K� � n� �� �K � �� in this last expression, we get

	�t� �
K � �

�t
�v�K � SK�HK���t� � SKHK�t� � 
�t��

We then obtain

����EIAV �t��
	
G�K�t� �

K � �

�t
�v�K � SK�HK���t� � SKHK�t�


���� � j
�t�j�

which completes the proof sincej
�t�j � ��	. �

Theorem 3.2 For every � � �, for every t and t� such that t � t� � TK we have�����EIAV �t��

�
t�

t
EIAV �t�� �

�
��

t�

t

�
SK

������ � � (10)

Proof. For everyt andt� such thatt � t� � TK, we have

EIAV �t� �
�

t

Z t

�

PAV �s�ds

�
�

t

�Z t�

�

PAV �s�ds�
Z t

t�
PAV �s�ds

�

�
�

t

�Z t�

�

PAV �s�ds� �t� t��SK �
Z t

t�

PAV �s�� SK� ds

�

�
t�

t
EIAV �t�� �

�
��

t�

t

�
SK �

�

t

Z t

t�

PAV �s�� SK� ds

Using Relation (7), we have, sincet� � TK,

�����t
Z t

t�

PAV �s�� SK� ds

���� � �

t

Z t

t�
jPAV �s�� SK jds �

�
��

t�

t

�
� � ��

which completes the proof. �

Note that Theorem 3.2 is still valid if we replaceTK by dTKe. So, as for the point avail-

ability, we can usedTKe instead ofTK to make easier the computation of the expected interval

availability.

Using these two theorems, we obtain a new algorithm to compute the expected interval avail-

ability which is similar to the one described in Table 2 for the point availability. It suffices
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to perform the following changes in the algorithm given in Table 2. The computation ofv �n

given by Relation (8) must be added just after the computation ofvn, with v�� � v�. The re-

lationPAV �tj� � GK�tj� must be replaced byEIAV �tj� � G�K�tj� and the computations of

PAV �tj� in the case whereK � N must be replaced by those ofEIAV �tj� given in Relation (9)

for tj � TK and in Relation (10) fortj � TK. To use the Relation (10), we needEIAV �t� for

one value oft such thatt � TK . Such a value can be obtained by using one more time the

Relation (9) for the smallest value oftj such thattj � TK . Note that we have the well-known

stationary relationPAV ��� � EIAV ���.

4 Numerical Example

We consider a fault-tolerant multiprocessor system with finite buffer stages. This system was

first considered in [8] for two processors without repair and has been extended in [9] to include

repair for the computation of the moments of performability. Its has been also used in [10] to

obtain the distribution of performability. We use here the same model for the computation of

the point availability with our new method. It consists ofn identical processors andb buffer

stages. Processors fail independently at rate� and are repaired singly with rate�. Buffers stages

fail independently at rate and are repaired with rate� . Processor failures causes a graceful

degradation of the system and the number of operational processors is decreased by one. The

system is in a failed state when all the processors have failed or any of the buffer stages has

failed. No additional processor failures are assumed to occur when the system is in a failed

state. The model is represented by a Markov process with state transition diagram shown in

Fig. 1. The state space of the system isS � f�i� j�� � � i � n� j � �� �g. The componenti of

a state�i� j� means that there arei operational processors and the componentj is zero if any of

the buffer stages is failed, otherwise it is one. It follows that the setU of operational states is

U � f�i� ��� � � i � ng.

We evaluate the point availability given that the system started in state�n� ��. The number of

processors is fixed to�, each with a failure rate� � ���� per week and a repair rate� � ���

per hour. The individual buffer stage failure rate is � ���� per week and its repair rate is
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� � ��� per hour. The error tolerance is� � �������.

1,1 0,1

λ

ττττ γγγ bbbγb

µµµµ

µµµµ

λλ2

n,1 n-1,1

n,0 0,0

(n-1)

n-1,0 1,0

λn

Fig. 1: State-transition diagram for an-processor system

In Fig. 2, we plot the point availability,PAV �t�, as a function oft for different values of the

number of buffer stagesb. The largest value oft, that is the value oftJ in the algorithm, has

been chosen equal to����� hours.

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70
t

Fig. 2: From top to the bottom:PAV �t� for b � �� 	� �� �� ��

For that largest value oft we show in Fig. 3 the truncation stepN � N�����, the discrete time

to stationarityK and the continuous time to stationarityTK (in fact we givedTKe) for different
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values of the number of buffer stagesb. This figure shows for example that whenb � � the

classical algorithm needs���� matrix-vector products and our new algorithm needs only��

matrix-vector products, the continuous time to stationarity being equal to��. Whenb � ���	

the classical algorithm needs��� matrix-vector products and our new algorithm needs only

� matrix-vector products, the continuous time to stationarity being equal to�. Moreover our

algorithm also computes the steady state point availability with a precision equal to��	. Fig. 3

also shows that both situations,K � TK andK � TK , are possible.

b � 	 � � �� 	 ��� �� ��� ���	

N ���� ���� ���� ���� ���� ���� ��� ���	 ��� ���

K �� �� �� �� �� �� �� �� 	� �

dTKe �� �� �� �� �� �� �� ��  �

Fig. 3: Stationarity detection for different numbers of buffer stages

We consider in Fig. 4 smaller values oftJ . The number of buffer stages is fixed tob � �. For

tJ � �� we getN�� � �	 and the discrete time to stationarityK is not reached. This means that

K � �	. For tJ � �� we getNtJ � �� and the discrete time to stationarity is reached. Its value

is K � �� and the continuous time to stationarity isdTKe � ��. Fig. 4 shows that even for

small values oftJ (tJ � TK), our algorithm can reduce the computation time with respect to the

classical algorithm. For instance whentJ � �, the classical algorithm needs	� matrix-vector

products and our new algorithm needs only�� matrix-vector products.

tJ �� �� �� 	� �� � �� �� �� ���

NtJ �	 �� � �� �� 	� 	� �� � �

Fig. 4: Stationarity detection for small values of the time.

5 Extension to the performability analysis

The method proposed for the computation of the point availability and the expected interval

availability using the steady state availability detection can be extended to more general mea-

sures such as the point performability and the expected interval performability.
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In performability modeling (see, for instance, [8, 9, 10, 11, 12, 13, 14, 15] and the references

therein) reward rates are associated with states of the model to quantify the ability of the system

to perform in the corresponding states. We denote by��i� the reward rate associated to the

statei � S. The reward rates��i� are assumed to be nonnegative real numbers. The point

performability at timet, denoted byPP �t�, and the expected interval performability, denoted by

EIP �t�, are defined by

PP �t� �
X
i�S

��i� PrfXt � ig andEIP �t� �
�

t

Z t

�

PP �s�ds�

We define� � maxi�S ��i� andr�i� � ��i��� and we denote byr the column vector whoseith

entry is equal tor�i�. We then havePP �t� � �f�t� andEIP �t� � �g�t�, where

f�t� � �eAtr andg�t� �
�

t

Z t

�

f�s�ds�

Since for everyi � S, we have� � r�i� � �, all the results and algorithms obtained for

the computation of the availability measures can be easily extended to the computation off�t�

andg�t�. To do that it suffices to replace the column vector 1U by the column vectorr. The

valuesM� andm� becomesM� � maxi�S r�i� andm� � mini�S r�i�. Moreover we have

f��� � g��� � �r�

6 Conclusions

A new algorithm has been developed to compute the point availability and the expected interval

availability of repairable computer systems modeled by Markov processes. This new algorithm

is based on the uniformization technique and on the detection of the steady state availability. It

compares favorably with the classical uniformization algorithm when the time horizon is large

and it is shown through a numerical example that computational savings can be obtained even

when the time horizon is small. Moreover our algorithm gives the steady state availability if

the stationarity is reached and bounds of the steady state availability otherwise. Finally this

method can be easily extended to the computation of more general measures such as the point

performability and the expected interval performability.
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