|EEE Transactions on Computers, 48(11), November 1999
Availability Analysis of Repairable Computer Systems
and Stationarity Detection
Bruno Sericola
IRISA — INRIA, Campus de Beaulieu, 35042 Rennes Cédex, France

Abstract

Point availability and expected interval availability are dependability measures respec-
tively defined by the probability that a system is in operation at a given instant and by the
mean percentage of time during which a system is in operation over a finite observation
period.

We consider a repairable computer system and we assume as usual that the system is
modeled by a finite Markov process. We propose in this paper a new algorithm to compute
these two availability measures. This algorithm is based on the classical uniformization
technique in which a test to detect the stationary behavior of the system is used to stop the
computation if the stationarity is reached. In that case, the algorithm gives not only the
transient availability measures but also the steady state availability, with significant compu-
tational savings especially when the time at which measures are needed is large. In the case
where the stationarity is not reached, the algorithm provides the transient availability mea-
sures and bounds for the steady state availability. It is also shown how the new algorithm

can be extended to the computation of performability measures.

Index terms - Repairable computer systems, dependability, availability, performability,

Markov processes, stationarity detection.

1 Introduction

In the dependability analysis of repairable computing systems, there is an increasing interest
in evaluating transient measures, in particular, the point availability and the availability over a
given period. This paper deals with the computation of the point availability and of the expected
interval availability respectively defined by the probability that the system is in operation at a

given instant and by the mean percentage of time during which the system is in operation over a

1

finite observation period. Formally, the system is modeled by a Markov process. Its state space
is divided into two disjoint sets which represent tgestates in which the system delivers the
specified service and thdown states in which there is no more service delivered. Transitions
from theup (resp.down) states to thelown (resp.up) states are callefilures (resp.repairs).

The interval availability ovef0, ¢) is then the fraction of the intervdb, t) during which the
process is in theip states. This random variable has been studied in previous papers as for
instance in [1], [2] and [3] where its distribution is evaluated using the uniformization technique.
This approach is interesting because it has good numerical properties and it allows the user to
perform the computation with an error as small as desired.

An approach to detect the stationarity of Markov processes has been proposed in [4], [5].
This approach is based on the uniformization method. The state probability vectors of the uni-
formized Markov chain are successively computed and the iterates that are sp#deeations
apart are compared. When the difference between two such iterates is small enough, the compu-
tation is stopped. The main problem with this method is that, unlike the standard uniformization,
there is no ability to specify error bounds easily computable.

In this paper, we develop a new method to compute the point availability and the expected
interval availability which is also based on the uniformization technique and on the stationary
regime detection. In practice one usually does not know whether the time horizon he/she is
considering is large enough for a steady state analysis. The main advantage of our algorithm is
that the computation is stopped when the steady state availability of the system is reached giving
both transient and steady state measures with an error tolerance specified in advance. When the
stationarity is not reached, the algorithm gives the transient measures and bounds for the steady
state availability.

The remainder of the paper is organized as follows. In the following section, we recall the
classical way to compute the point availability and we derive new results to stop the computation
when the stationary regime is reached. We also give in this section the pseudo code of both
algorithms. In Section 3, we consider the expected interval availability and we show how it can
be computed using the stationarity detection. In Section 4, we show by means of a humerical

example that our new algorithm can considerably reduce the computation time of the availability

measures considered here, when the time at which measures are needed is sufficiently large. Itis
also shown that computational savings can be obtained even when the time horizon is small. In
Section 5, we show how the results obtained for the availability measures can be easily extended

to the corresponding performability measures. The last section is devoted to some conclusions.

2 Point Availability Analysis

Consider an irreducible continuous-time homogeneous Markov procesy X, ¢ > 0}, over
a finite state space denoted By The states of are divided into two disjoint subsets;, the set
of the operational states (or the up states) Bnthe set of the unoperational states (or the down
states). For a system, modeled by such a process, the point availability d@tirdenoted by
PAV (t) and defined by

PAV (t) = Pr{X, e U}.

The processX is, as usual, given by its infinitesimal generator, denotedibyn which the
ith diagonal entryA(i, i) verifies A(i,i) = — >, ,; A(4, 7). Its initial probability distribution is
denoted by the row vectar.

The uniformized Markov chain associated to the procéss characterized by its uniformiza-
tion rater and by its transition probability matri¥ [6]. The uniformization rate’ verifies
v > max(—A(i,7);7 € S)andP is related tod by P = I + A/v, wherel denotes the identity

matrix. Using this notation, we get

N 400 (I/ZL)n
PAV(t) = ae™ly =) e "'>——aP"1y, (1)
— n!

where %, is a column vector whosih entry is1 if - € U, and0 if i € D. We denote by, the
column vector defined by,, = P"1;. It follows that for everyn > 0, we haveV,, = PV,

andVy = 1. In the following, we define for every > 0, v, = aP"1y = aV,,.

2.1 Theclassical uniformization method

The classical way to compute the point availability at tini® based on Relation (1). Letbe a

given specified error tolerance andbe defined as

i RACL g} .)

!
j=0 J:

N:min{neN

Then we obtain
al —vt (Vt)n

PAV(t)=> e ot e(N),

n=0
where the rest of the serie§V) verifies
e(N) = Z e_”t—(y ') vy < Z e‘”t—(y '> =1- Z e_”t(y ') <e.
n=N-+1 n: n=N+1 n: n—=0 n:

The computation of integeN can be made without any numerical problems even for large
values ofvt by using the method described in [7].

The truncation levelV is in fact a function oft, say NV,. For a fixed value o, /V, is an
increasing function of. It follows that if we want to comput@AV/(¢) for .J distinct values of
t, denoted by, < --- < t;, we only need to compute, for n = 1,..., V;, since the values of
v, are independent of the parameter

The pseudo code of the classical uniformization method can then be written as follows.

input : e,t, <--- <ty
output : PAV (t),..., PAV(t,)
ComputeN from Relation (2) witht = ¢,
Vo = 1y; vg = alp
forn=1to N do
Vo= PVy_1; v, = aVy,
endfor
for j=1toJ do

PAV(t;) =Y e (wt;)"
n=0

endfor

Table 1: Classical algorithm for the computationfofV ().

4

2.2 Stationarity detection

The stationarity detection that we consider is based on the control of the sequence of vectors
V, = P"1;. Let the row vectorr denote the stationary probability distribution of the Markov
processX. This vector verifiesrA = 0 and7P = 7. The steady state availability is given by

PAV (00) = 71y. To ensure the convergence of the sequence of vetjorse require that the
uniformization rate’ verifiesy > max(—A(7,7); ¢ € S) since this guarantees that the transition

probability matrixP is aperiodic. We then have, for everg S,

lim V(i) = 71y

n—>~o0
We describe now the test used to detect that, for a given valuetbg entries of vectoy,, are

close torl;;. For everyn > 0, we define

my, = min V,,(i) and M, = max V,,(i).
€S €S

Note that, sincé;, = 1;;, we haveM, = 1 andm, = 0. The following result gives bounds of

the steady state availabilitfAV (co) = 71y.

Lemma 2.1 The sequences m,, and M,, are respectively non decreasing and non increasing

and, for every n > 0, we have

Mn n Mn_ n
B ;Lm < m

Mn n Mn_ n
+m < m'

Un and ‘W].U — < 5

Moreover, both sequences m,, and M,, convergeto 1.
Proof. For everyi € S, we havel;, (i) = > P(i,7)Va(j). Itfollows thatm,, < V,,41(i) <
JES
M,, and so we getn,, < m,; andM,, ., < M,, which shows that the sequences and M/,

are respectively non decreasing and non increasing.

Sincev,, = Z a(7)Va(j), we getm,, < v, < M,, which is equivalent to

JES
M, + m,, M, — m,
Up — < .
2 2
Writing now nly = 7 P"1y = nV, = Z 7(7)Va(j), we get in the same way,, < 71y <
jeSs
M,,, which is equivalent to
‘ﬂ_lU_Mn;_mn SMn;mn

The state spacg being finite and the fact that for eveiyc S, V,,(i) converges tarl; show

that both sequences,, andM,, converge tarl,. O

Remark. We have assumed that the Markov proc&sss irreducible. If the Markov process
X is not irreducible but contains an absorbing state denoted With « € D, then we have
71y = 0 and for everyi € S we easily get/,(i) — 0 whenn — oc. Now, sinceaz € D,
we havel,,(a) = 0 for everyn > 0 and so we also have,, = 0 for everyn > 0. Thus, in this

case, it sufficies to consider the sequentewhich is non increasing and converge$to O

This lemma shows that the differendé¢,, — m,, converges td), that is, for a fixed error
tolerance= > 0 there exists an integér such that forn > k& we haveM,, — m, < . Since
m, < M,, we havem, < m,. < M,,; < M,, and so the sequen¢@/,, — m,,) is non

increasing. We can then define the following integer
K =inf{n > 0|M,, — m, < =/2}.

Using the integefy, Relation (1) can be written as

PAV(t)=>_ e_”t(V;') Up + —2 ;_ m (1 - Z e !) + e (K), (3)
n=0 :
where
e ([{) _ i efl/t (Vt)nv - MK + Mg i efut (yt)n
' a n=K+1 nt " 2 n=K+1 n!
Using Lemma 2.1, the rest(K') verifies
)< 3 ey, M me| y)
n.

n=K+1

This last inequality follows from the fact that, far > K, we have from Lemma 2.k x <
MK‘Q"mK‘ < Mg —myg < /4.
The timeK can be interpreted as the discrete time to stationarity with respect to the ubset

my, < v, < M, < Mg and sov,, —

For everyt > 0 and for every integer > 0, we denote byF(¢) the function defined by

F(t) = Z e‘”tﬂ(Mn — My).

!
n—=0 n.

It is easy to check that for a fixed value ipthe functionF;(¢) decreases, from to 0 over the

interval [0, oo[. We can then define for every integer 0 and for every: > 0, the timeT; as
T, = inf{t > 0; F(t) < =/4}.
We then have the following theorem :

Theorem 2.2 For every = > 0, for every t > Ty we have

|PAV (t) — mly| < 3e/4 (5)
M
‘ﬂU_M‘ < /4 (6)
M
‘PAV(t) _ W‘ <e)

Proof. First note that, from Lemma 2.1, we have, < v, < M, andm,, < 71y < M, for

everyn > 0. It follows that|v,, — 71y| < M,, — m,, for everyn > 0. We then have

0 £)"
|PAV(t> —7T1U| = Ze”t%vn —7T1U
n=0 :
o0 t n
< Z efyt(y ') |vn, — 71y |
n=0

< Ze (Mn_mn)
! n!
00 . vt
= me+ S e 0r,)
n=K+1 n.

Sincet > Tk, we haveFi(t) < ¢/4. In the second term, sinee> K, we haveM,, — m,, <
My — my < /2 and so we get Relation (5).
Relation (6) is immediate from Lemma 2.1. Finally combining Relation (5) and Relation (6),

we get Relation (7). O

The timeT can be interpreted as the continuous time to stationarity with respect to the subset

U.

2.3 Thenew algorithm

Using these results, we obtain the following new algorithm. To simplify the writing of this
algorithm, we define

! vt)" ! vt)"™ M;+m
G =Y e =1y e g Mitm

|
n=0 : n=0 n. 2

input : e,t, <--- <ty
output : PAV (t),..., PAV(t;)
ComputeN from Relation (2) witht = ¢,
Vo = 1y, vg = alp
My=1,my=0, K =N+1
forn=1to N do
Vo=PV,_1;,v, =aV,
ComputeM,,, m,, ands,,
if (M, —m, <¢/2)
K = n; break
endif
endfor
if (K =N+1)
for j =1toJ do PAV (t;) = Gn(t;) endfor
my < PAV(00) < My
endif
if (K <N)
ComputeTy = inf{t > 0; Fx(t) <e=/4}
for j =1to.J do
if (t; < Tk)then PAV(t;) = Gk(t;) + Sk Hk (1))
if (t; > Tk) then PAV (t;) = PAV (c0) = Sk
endfor

endif
Table 2: Algorithm for the computation d?AV (¢) using stationarity detection.

8

Note that it is not necessary to compute the continuous time to statiofigfityith a high
precision. It is sufficient to obtain an upper boundl@f such as for instancgl’yc | which is the
smallest integer greater or equalfig.

It must be also noted that, in this algorithm, the truncation 8tepa function of the time ; as
in the classical unformization algorithm but the times to stationdtitgnd7 i are independent
of the time parameter, when the discrete timés reached.

The computational time complexity of both algorithm is essentially due to the computation
of the vectorsl,,. To compute this vectors, the classical algorithm requivematrix-vector

products and our new algorithm requires onlin (K, N') matrix-vector products.

3 Expected Interval Availability Analysis

We show in this section how the new algorithm proposed above for the point availability com-
putation can be adapted to compute the expected interval availability taking account of the sta-
tionarity detection.

The expected interval availability represents the mean percentage of time during which the
system is in operation over a finite observation pefiad). The interval availability ove(0, ¢)

is denoted by AV (¢) and its expectation is given by
t
EIAV (1) = = / PAV (s)ds.
t Jo

Using Relation (1) and by integration oV, ¢), we obtain

_ = —vt (Vt)n 1 = k
EIAV(t) =) e 1 > aP*1y.

n=0 k=0

n!
We denote by’ the column vector defined by
1 n

> PF1y,

k=0

I _

non41

and we define], = «'V,!. By definition ofV;, andv, in the previous section, we get, for every

n > 0,
1 n

1 n
Ve andv! = —— Y v,
" n+1k§::0k n n—i—lkz::[)k

!

It follows thatV! andv/, are recursively given, for > 1, by

n 1
V! = VI 4+ ——V,,
"on1 M 41"
and
! r + L (8)
V. =
n n+1"1 el

with Vj = Vp = 1 and thusy| = vy. For everyn > 0, we haved < v;, < 1. It follows that,
using the truncation stepy defined in Relation (2), we get the classical algorithm to compute
the expected interval availability, by writing

EIAV(t) = i\f: e‘”twv' +¢'(N),

| n
n=0 :

where

SI(N): Z e—ut(n) ;S Z e—ut i _1_Ze—ut Sf

n=N+1 : n=N+1
This algorithm is basically as the one depicted in Table 1. More precisely the computatipn of

in Table 1 must be followed by the the recursion (8), with= vy, and in the last loop ove,
v, must be replaced by/, in order to getE' AV (¢,) instead ofPAV (¢;).

3.1 Stationarity detection for the expected interval availability

Using the results obtained for the point availability, we can derive a new method to obtain the
expected interval availability using the stationarity detection. This method is based on the two
following theorems. Both theorems will be used in the case where the discrete time to stationar-
ity K is such that < N. The first theorem states that in order to compute the expected interval
availability, EIAV (t), we only need the values of for n» < K. The second theorem states that
in order to compute the expected interval availabilRyAV (), for ¢t > Tk, we only need the
value FIAV (t') at a timet’ such that > ' > Tk.

We denote by7'(¢) the function

K t n
Gl = > e,
n=0 n.
and recall that
K n M
ety =1- 3 e ands, = Sl

Theorem 3.1 For every ¢t > 0, we have

K+1
vt

‘EIAV(t) _ {G'K(t) 4 (ke — Si)Hicon (£) + SKHK(t)} ‘ <:/4)
Proof. For everyt > 0, we have

EIAV(t) = G (t) + o(t),

where
) L vt)n
o=y ey
n=K+1 n.
Forn > K + 1, we have
1 n
v = v
" n+1kz::0 F
1 K n
= ka—f— Z Vg
n+1 1= k=K+1
K+1, 1 &
= Vi + v
n+1 K n—i—lkzzK:Jr1 k
K+1, 1> (n— K)
= v v — Sk) + S
n+1 K n+1k:;+l(’“ W) O
K+1, (n—K)
= S
T e e
where
1 & 1 - (n—K)e
Tyl = |—— v — S < — v — Si| < — < e/4.
7a n+1k;+1(k x) _n+1k;+1| ’ Kl < n+1l 47 /

The inequalityjv, — S| < ¢/4, for k > K, follows from Lemma 2.1; it has already been used

to bound the erroe; (K') in Relation (4). Ify(t) is the function defined by

771’(t) = Z 6_Vt@xna
n=K+1 1
we obtain|y(t)| < /4. We then have
&) (K+1, (n—K)
#t) = n:zK:H ‘ n! (ntl KT T i | +ulD):

11

By writing (n — K') = n + 1 — (K + 1) in this last expression, we get

_K+1
ot

o(t) (v — Sk)Hircy1(t) + Sk Hic(t) +1(t).

We then obtain

K+1, ,

‘EIAV(t) - {G'K(t) + (vl — Sk)Hrc4a(t) + SKHK(tﬂ ‘ = [¢(1)],

which completes the proof sin¢e(t)| < = /4. O

Theorem 3.2 For every = > 0, for every t and ¢’ suchthat ¢t > t' > Tk we have

‘EIAV(t) — <e (10)

t' '
SEIAV(M') + (1 - ?> Sk

Proof. For everyt andt’ such that > t' > Tk, we have
1 t
EIAV(D) = - / PAV (s)ds
0

' t
= - l PAV (s)ds + PAV(s)ds]
0 ¢

~ | =

= % l Ot’ PAV (s)ds + (t —t')Sk + t,t [PAV (s) — Sk ds]

t t 1 rt
= ?EIAV(tI) + (1 - ?> SK + ? [PAV(S) - SK] ds
tl

Using Relation (7), we have, sin¢e> T,

‘1 /tf [PAV (s) — Si] ds

1 rt !
< —/ |PAV (s) — Sklds < (1—t—>5§5,
t tJy t

which completes the proof. O

Note that Theorem 3.2 is still valid if we repladg; by [Tx]. So, as for the point avail-
ability, we can usé T | instead ofl'x to make easier the computation of the expected interval
availability.

Using these two theorems, we obtain a new algorithm to compute the expected interval avail-

ability which is similar to the one described in Table 2 for the point availability. It suffices

12

to perform the following changes in the algorithm given in Table 2. The computatier) of
given by Relation (8) must be added just after the computation, ofvith v{ = v,. The re-
lation PAV'(t;) = G k(t;) must be replaced b IAV (t;) = G’ (t;) and the computations of
PAV (t;) inthe case wher&” < N must be replaced by those BAV (¢;) given in Relation (9)

for t; < Tx and in Relation (10) fot; > 7. To use the Relation (10), we ne@d AV (t) for

one value oft such thatt > 7. Such a value can be obtained by using one more time the
Relation (9) for the smallest value of such that; > T%. Note that we have the well-known
stationary relatiol?’AV (co) = EIAV (00).

4 Numerical Example

We consider a fault-tolerant multiprocessor system with finite buffer stages. This system was
first considered in [8] for two processors without repair and has been extended in [9] to include
repair for the computation of the moments of performability. Its has been also used in [10] to
obtain the distribution of performability. We use here the same model for the computation of
the point availability with our new method. It consistsioidentical processors ardbuffer
stages. Processors fail independently at kedad are repaired singly with rate Buffers stages
fail independently at rate and are repaired with rate Processor failures causes a graceful
degradation of the system and the number of operational processors is decreased by one. The
system is in a failed state when all the processors have failed or any of the buffer stages has
failed. No additional processor failures are assumed to occur when the system is in a failed
state. The model is represented by a Markov process with state transition diagram shown in
Fig. 1. The state space of the systen¥is- {(i,7);0 < i < n, j = 0,1}. The component of
a state(7, j) means that there aieperational processors and the comporéstzero if any of
the buffer stages is failed, otherwise it is one. It follows that thesef operational states is
U={(i1);1<i<n}.

We evaluate the point availability given that the system started in Statg. The number of
processors is fixed t6, each with a failure raté = 0.01 per week and a repair rate= 0.1666

per hour. The individual buffer stage failure rateyis= 0.22 per week and its repair rate is

13

7 = 0.1666 per hour. The error toleranceds= 0.00001.

nA (n-1 2\ A
n,1 n-1,1 1,1 0,1
M M M M
by T by T by T by T

Fig. 1. State-transition diagram foraprocessor system

In Fig. 2, we plot the point availability?AV'(¢), as a function of for different values of the
number of buffer stagels The largest value of, that is the value of; in the algorithm, has

been chosen equal 1©000 hours.

1

0.95

0.9

0.85

0.8

0] 10 20 30 40 50 60 70
t
Fig. 2: From top to the bottomPAV (t) for b = 2, 4,8, 16, 32

For that largest value dfwe show in Fig. 3 the truncation stép = N0, the discrete time

to stationarityx” and the continuous time to stationarity (in fact we give| T |) for different

14

values of the number of buffer stagiesThis figure shows for example that whén= 16 the
classical algorithm need%81 matrix-vector products and our new algorithm needs dmly
matrix-vector products, the continuous time to stationarity being equél.td®Vhent = 1024

the classical algorithm need$616 matrix-vector products and our new algorithm needs only
86 matrix-vector products, the continuous time to stationarity being equil. ttMoreover our
algorithm also computes the steady state point availability with a precision eqyal.t&ig. 3

also shows that both situations, < Tx and K > Tk, are possible.

b 2 4 8 16 32 64 128 | 256 | 512 | 1024

N 3581 | 3581 | 3581 | 3581 | 3581 | 3581 | 3602 | 5334 | 8776 | 15616

K 19 19 18 18 18 18 18 28 48 86
e 81 81 80 78 7 5 7 70 66 62

Fig. 3: Stationarity detection for different numbers of buffer stages

We consider in Fig. 4 smaller valuesgf The number of buffer stages is fixedite= 8. For
t; < 10 we getVyg < 14 and the discrete time to stationar#yis not reached. This means that
K > 14. Fort; > 20 we getN,, > 20 and the discrete time to stationarity is reached. Its value
is K = 18 and the continuous time to stationarity|i; | = 80. Fig. 4 shows that even for
small values of ; (¢, < Tk), our algorithm can reduce the computation time with respect to the
classical algorithm. For instance when= 60, the classical algorithm need8 matrix-vector

products and our new algorithm needs ottymatrix-vector products.

ty; || 1020|3040 |50]|6070]|80]|90 | 100
Ny

14 120 |26 | 32 | 37|42 | 47 | 51 | 56 | 61

J

Fig. 4: Stationarity detection for small values of the time.

5 Extension to the performability analysis

The method proposed for the computation of the point availability and the expected interval
availability using the steady state availability detection can be extended to more general mea-

sures such as the point performability and the expected interval performability.

15

In performability modeling (see, for instance, [8, 9, 10, 11, 12, 13, 14, 15] and the references
therein) reward rates are associated with states of the model to quantify the ability of the system
to perform in the corresponding states. We denote{y the reward rate associated to the
statei € S. The reward rateg(i) are assumed to be nonnegative real numbers. The point
performability at timef, denoted byPP (), and the expected interval performability, denoted by
EIP(t), are defined by

1 rt
PP(t) = ¥ pli) Pr{X, = i} and EIP(1) = - / PP(s)ds.
i€S 70
We definep = max;cs p(i) andr(i) = p(i)/p and we denote by the column vector whosih

entry is equal to'(i). We then haveP P(t) = pf(t) andEIP(t) = pg(t), where

f(t) = aetrandg(t) = %/Otf(s)ds.

Since for everyi € S, we have0 < r(i) < 1, all the results and algorithms obtained for
the computation of the availability measures can be easily extended to the computation of
andg(t). To do that it suffices to replace the column vecterlly the column vector. The

values M, andm, becomeslV/, = max;cs7(i) andmy = min;cs7(i). Moreover we have

f(00) = g(o0) = 7.

6 Conclusions

A new algorithm has been developed to compute the point availability and the expected interval
availability of repairable computer systems modeled by Markov processes. This new algorithm

is based on the uniformization technique and on the detection of the steady state availability. It
compares favorably with the classical uniformization algorithm when the time horizon is large
and it is shown through a numerical example that computational savings can be obtained even
when the time horizon is small. Moreover our algorithm gives the steady state availability if
the stationarity is reached and bounds of the steady state availability otherwise. Finally this
method can be easily extended to the computation of more general measures such as the point

performability and the expected interval performability.

16

References

[1]

E. de Souza e Silva and H. R. Galil, “Calculating cumulative operational time distributions
of repairable computer system$BEE Trans. Computers, vol. C-35, pp. 322-332, April
1986.

[2] G. Rubino and B. Sericola, “Interval availability distribution computatidebceedings

[3]

[4]

[5]

[6]

[7]

[8]

[9]

IEEE 23-th Fault-Tolerant Computing Symposium, Toulouse, France, pp. 49-55, June
1993.

G. Rubino and B. Sericola, “Interval availability analysis using denumerable Markov pro-
cesses: application to multiprocessor subject to breakdowns and réfpakE, Trans. Com-

puters. Soecial issue on fault-tolerant computing, vol. C-44, pp. 286—-291, February 1995.

G. Ciardo, A. Blakemore, P. F. Chimento, J. K. Muppala, and K. S. Trivedi, “Automated
generation and analysis of Markov reward model using stochastic reward ndtgjéan
Algebra, Markov Chains, and Queueing Models(C. D. Meyer and e. R. J. Plemmons, eds.),
pp. 145-191, Springer-Verlag, 1993.

M. Malhotra, J. K. Muppala, and K. S. Trivedi, “Stiffness-tolerant methods for transien-
t analysis of stiff Markov chains,Microelectronics and Reliability, vol. 34, no. 11, p-
p. 1825-1841, 1994.

S. M. Ross Stochastic Processes. John Wiley and Sons, 1983.

P. N. Bowerman, R. G. Nolty, and E. M. Scheuer, “Calculation of the Poisson cumulative
distribution function,”IEEE Trans. Reliability, vol. 39, pp. 158-161, 1990.

J. F. Meyer, “Closed-form solutions for performabilityEEE Trans. Computers, vol. C-
31, pp. 648-657, July 1982.

B. R. lyer, L. Donatiello, and P. Heidelberger, “Analysis of performability for stochastic
models of fault-tolerant system3EEE Trans. Computers, vol. C-35, pp. 902-907, Octo-
ber 1986.

17

[10] V. G. Kulkarni, V. F. Nicola, R. M. Smith, and K. S. Trivedi, “Numerical evaluation of
performability and job completion time in repairable fault-tolerant systeRregeedings
IEEE 16-th Fault-Tolerant Computing Symposium, Vienna, Austria, pp. 252-257, July
1986.

[11] G. Ciardo, R. Marie, B. Sericola, and K. S. Trivedi, “Performability analysis using semi-
Markov reward processesEEE Trans. Computers, vol. C-39, pp. 1251-1264, October
1990.

[12] R. M. Smith, K. S. Trivedi, and A. V. Ramesh, “Performability analysis: measures, an
algorithm, and a case studyEEE Trans. Computers, vol. C-37, pp. 406—-417, April 1988.

[13] H. Nabli and B. Sericola, “Performability analysis: a new algorithrBEE Trans. Com-
puters, vol. C-45, pp. 491-494, April 1996.

[14] E. de Souza e Silvaand H. R. Galil, “Calculating availability and performability measures of
repairable computer systems using randomizati@ACM, vol. 36, pp. 171-193, January
1989.

[15] J. F. Meyer, “On evaluating the performability of degradable computing systéEEEZ
Trans. Computers, vol. C-29, pp. 720-731, August 1980.

18

