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Abstract— This paper deals with the most common protection
schemes in WDM optical networks and it provides for each
scheme an algebraic analysis of the availability of protected
optical connections. We consider single or multiple link failure
scenarios: a link failure affects all the optical connections routed
on that link. Availability models and formulas are followed by
some numerical examples that allow us to compare the different
availability degree granted by each protection technique, and to
verify the accuracy of the presented formulas, even when an
approximation term is introduced. In conclusion we apply the
Monte Carlo approach to the previous cases in order to verify
our theoretical analysis.

Index Terms— Protection techniques, WDM networks, link
failure, system availability.

I. INTRODUCTION

The recent advances in photonic technologies and the grow-
ing telecommunication traf£c demand paved the road for the
deployment of WDM networks able to transmit very high bit
rate on each single £ber. In such networks, also a few seconds
interruption could mean a huge waste of data: this is why
protection techniques have become so important. In this paper
we focus our attention on the path protection strategy, which
consists of providing a backup path for each working path on
an end-to-end basis (1:1). More generally, this paradigm can be
extended to the M:N case, i.e. N optical working connections
routed between a source and a destination node are protected
by M backup alternative paths. So, path protection techniques
analyzed in this paper comprise not only the widely used 1:1
approach in both dedicated and shared scenarios [1], but also,
to obtain a wider and more complete analysis, some valuable
cases in the more generic N:M approach.

Clearly any of previous approaches are of great bene£t to
network integrity. Anyway the major concern to a service
provider is customers’ request to have some performance fac-
tors strictly guaranteed which are associated to Availability and
Reliability (A&R). Connection availability is usually de£ned
in Service Level Agreement (SLA) along with revenues and
penalties.

The majority of publications on availability analysis focused
on the quanti£cation of the path availability for ring based
networks [2], [3]. As far as mesh networks using different
protection strategies are concerned, a recent body of research

investigates availability-ef£cient routing methods [4], [5], the
effect of availability on network capacity [6], and proposes
some functional modeling description of WDM networks [7].

In this work, our aim is to provide a rigorous algebraic
approach for A&R analysis in WDM network protection
scheme referring to the combinatorial and probability theories.
We will exploit general network cases that allow us to compare
the performance of the most common protection techniques
from an availability point of view. Although the application is
focused on WDM network, the reported formulas and results
can be extended to any kind of circuit-switched networks.

The rest of the paper is organized as follows: in section II
we illustrate some principles of the theory of the reliability
and availability, that will be applied in our analytical models;
in section III we present an algebraic approach to analyze
the performances of the most common protection schemes. In
section IV we report some numerical examples to compare
the availability degree provided by the different protection
techniques and in section V some tests based on the Monte
Carlo approach are carried out to simulate failure scenarios
and validate our analytical models. Finally in section VI we
draw some conclusions.

II. THEORY OF THE RELIABILITY AND AVAILABILITY

The theory of reliability and availability analyzes the struc-
ture of a system based on a set of distinct subsystems,
connected to obtain an intended function. Reliability (R) is
de£ned as the probability that a system will perform its
intended function for a speci£ed period of time under a given
set of conditions, while the availability (A) is the probability
that a system is available for use at a given time. Roughly,
availability may be viewed as the fraction of time that a system
is in an operational state independently of how many times it
was previously broken and repaired. So, if we assume that
systems, components and subsystems are not repairable, we
will refer to reliability, while the availability is a typical feature
of restorable systems.

We may express reliability in terms of a random variable T ,
the time to system failure. R(t) is de£ned as the probability
that a system operates without failure for a length of time t:
R(t) = P {T > t} The mean value of the random variable



T is the Mean Time To failure (MTTF). Another important
parameter, strictly related to reliability, is the failure rate z(t).
z(t)dt is the probability of a failure in the interval (t, t+ dt)
given that the system has not yet failed in T = t (for more
details see [8]):

z(t)dt = P {t < T ≤ t+ dt|T > t} (1)

For repairable system a fundamental quantity of interest is
the Availability (A(t)). The most common relation used to
obtain availability is:

A =
MTBF

MTBF +MTTR
(2)

where MTTR is the Mean Time To Repair and MTBF is is
the Mean Time Between Failure. Generally a system is made
up of functional elements characterized by MTBF and MTTR
which are assigned by the manufacturer.

In order to obtain the availability of a system, the fol-
lowing scheme must be observed: a) system decomposition
in functional elements; b) development of the mathematical
model which considers the relation among the subsystems; c)
availability evaluation of every subsystems using the reliability
values of each element; d) availability evaluation of the whole
system under study.

In this paper the system under study is a WDM network
topology supporting optical connections, while the subsystem
are the optical connections routed on this topology. Each
optical connection is subdivided in a set of components, the
optical links (or cable), whose availability (reliability) is £xed
a priori; each cable consists of a given number of optical £bers
and each £ber is equipped with a certain number of optical
channels (wavelengths). On the contrary nodes are modelled
as utterly reliable components (for more considerations, see
[9]). therefore we take into account only the link failure
event, which affects all the £bers and optical channels on
that link. While modeling the behavior of z(t), it is important
to choose the £ttest distribution to describe the performance
of the component under study. As far as the optical cable is
concerned we assume that the failure rate is time independent
(z(t) = λ = const). This assumption implies that: (a) the rate
of failure of a system is constant and independent of its age
and (b) the failures are independent to each other. In the case
of optical cables, the primary concerns are undoubtedly with
random failures and this approximation is acceptable.

Our notation allows us to analyze reliability and availability
in the same way:

• if Ei is the event {Ti > t}, that is the i-th element is
still operating at the time t, and H the event {T > t},
that is the system is still operating at the time t,, then
P (Ei) represents the i-th element reliability and P (H)
the system reliability;

• otherwise, if Ei is the event the i-th element is operating
at the time t independently of what occurred previously,
then P (Ei) is the i-th element availability and P (H) the
system availability.

From now on we consider systems composed of n elements
(subsystem or components). The series and parallel connec-
tions are two fundamental models that describe the relation
among functional subsystem and we will exploit them in the
following. The equations that provides the availability of a
parallel or series system are well-known and proven and can
be found in [8].

III. AVAILABILITY IN WDM NETWORKS

In this section we provide algebraic formulas to express
the availability (or reliability) of the WDM network system
and of the optical connections (subsystems), trying to model
different protected scenarios. We begin the investigation with
the dedicated 1:1 case, then we generalize this technique, £rst
increasing the number of working paths sharing the unique
backup path (1:2, 1:N cases), and then increasing the number
of shared spare paths to 2 and 3 (we provide formulas in 2:N
case, while for 3:N case we report only numerical results).
Afterwards we analyze protection strategies based on a single
working path and an increasing number of backup paths (2:1,
M:1). It is worth noting that it is dif£cult to apply M:N
protection strategies in mesh networks with low connectivity
index, especially for high values of N+M, because all the N+M
paths have to to follow disjoint routes.

Finally we focus our attention on the shared mesh path
protection, a 1:1 strategy in which more than one source-
destination pair are involved. In this kind of protection the
spare lightpaths of link disjoint working paths can share
backup capacity

From now on we refer only to availability parameter, since
the mathematical approach is the same as in reliability case,
as previously explained. The following models and formulas
are obtained enumerating all the favorable cases (the system
is working) and summing their probabilities (see for example
[10]).

A. Dedicated protection (1:1)

In the 1:1 technique (Fig. 1) the backup lightpath tis used
when a failure occurs on the link disjoint working lightpath.

protection
lightpath

source destination

working
lightpath

Fig. 1. Dedicated protection

The system availability is given by the union of two disjoint
events: in the £rst the working path is available (event Ew);



in the second the working is not available (event Ew), but the
spare is available and can be used (event Ep):

P (H) = P
{
Ew ∪ [Ew ∩ Ep

]}
(3)

A = Aw + (1 −Aw)Ap = Aw +Ap −AwAp (4)

Another possible technique is the 1+1 approach: the same
connection can be routed simultaneously on the two dis-
joint lightpath (working and protection); the destination node
chooses the signal with higher quality SNR. The probability
of H is obtained by applying the parallel scheme:

P (H) = P {Ew ∪ Ep} (5)

so the availability A of the connection is the same as (4), since
Ew and Ep are not time dependent. The availability analysis
of dedicated protection is widely studied in [4].

B. (1:2) protection

working lightpaths

protection lightpath

source
destination

w2

w1

p

Fig. 2. 1:2 protection

The system in the Fig. 2 shows two connections protected by
a single backup lightpath. The probability that the two working
connections can be routed successfully (system availability) is
obtained by the union of three disjoint events:

P (H) = P {[Ew1 ∩ Ew2]∪ (6)

∪ [Ew1 ∩ Ew2 ∩ Ep

] ∪ [Ew1 ∩ Ew2 ∩ Ep

]}

A = Aw1Aw2 +Aw1 (1 −Aw2)Ap + (1 −Aw1)Aw2Ap =
= Aw1Aw2 +Aw1Ap +Aw2Ap − 2Aw1Aw2Ap (7)

The availability of the £rst subsystem (the connection w1
protected) is given by:

Pss1 (H) = P
{
Ew1 ∪

[
Ew1 ∩ Ep ∩ Ew2

]}
(8)

Ass1 = Aw1 + (1 −Aw1)ApAw2 =
= Aw1 +ApAw2 −Aw1ApAw2 (9)

We can obtain the availability of the connection w2 in the
same way.

s d

p

w1

wn

Fig. 3. 1:N protection

C. (1:N) protection

Now we we can extend the previous case to the general
case of N working lightpaths (as shown in Fig. 3). The system
availability is expressed by:

P (H) =




n⋂
j=1

Ewj
∪

 n⋃

i=1


 n⋂

j=1

Ewj �=i


 ∩ Ewi

∩ Ep





(10)

A = (1 − nAp)
n∏

j=1

Awj
+

n∑
i=1




 n∏

j=1

Awj �=i


Ap


 (11)

The availability of the generic connection k is given by the
union of two disjoint events: (a) the working path of k is
operating or (b) all the other working paths and the protection
path are available:

Pssk (H) = P


Ewk

∪

Ep ∩


 n⋂

j=1

Ewj �=k


 ∩ Ewk





(12)

Assk = Awk
+Ap (1 −Awk

)


 n∏

j=1

Awj �=k


 (13)

D. (2:N) protection

s d

p1

p2

w1

wn

Fig. 4. 2:N protection

This protection scheme requires two protection lightpaths
and N > 2 working lightpaths. The 2:N scheme is showed in
Fig. 4. In case of failures the protection lightpaths are assigned
giving higher priority to the connection with lower index (p1
is the £rst to be used, then p2). Availability is obtained by the



disjoint union of

(
2 +N
N

)
events:

P (H) = P {Ea ∪ Eb ∪ Ec ∪ Ed} (14)

where: Ea =
n⋂

i=1

Ewi

Eb =
n⋃

i=1

Ewi


 n⋂

j=1

Ewj �=i


 ∩ Ep1

Ec =
n⋃

i=1

Ewi


 n⋂

j=1

Ewj �=i


 ∩ Ep1 ∩ Ep2

Ed =
n⋃

i=2

i−1⋃
j=1

Ewi
∩ Ewj

∩
(

n⋂
k=1

Ewk �=j �=i

)
∩ Ep1 ∩ Ep2

A =
n∏

i=1

Awi
+ (15)

+
n∑

i=1

(1 −Awi
)


 n∏

j=1

Awj �=i


 (Ap1 +Ap2 −Ap1Ap2) +

+
n∑

i=2

i−1∑
j=1

(1 −Awi
)
(
1 −Awj

)( n∏
k=1

Awk �=j �=i

)
Ap1Ap2

The availability of a generic protected optical connection i,
belonging to the 2:N scheme, is not reported for brevity.

The same analysis has been carried out in the 3:N case, and
we will show the numerical values in section IV.

E. (2:1) protection

s d
p1

p2

w1

Fig. 5. 2:1 protection

In this scheme two disjoint backup lightpaths protect a
single working lightpath. The 2:1 protection (Fig. 5) can be
used to prevent double link failure. The path p1 is used when
the working path is out of service, while the path p2 is used
only when both w1 and p1 are out of service. The equations
(16) and (17) refer to the system availability that coincides to
the single connection availability.

P (H) = P
{
Ew1 ∪

[
Ew1 ∩ Ep1

] ∪ [Ew1 ∩ Ep1 ∩ Ep2

]}
(16)

A = Aw1 + (1 −Aw1)Ap1 + (1 −Aw1) (1 −Ap1)Ap2 (17)

s d

p1

pn

w1

Fig. 6. M:1 protection

F. (M:1) protection

Let us now consider a generic number M of spare lightpaths
(Fig. 6). Thanks to spare capacity redundancy, up to N link
failures can be recovered. Equations (18) and (19) express
either system and single connection availability:

P (H) = P


Ew1 ∪


 n⋃

i=1

Ew1 ∩

i−1⋂

j=1

Epj


 ∩ Epi






(18)

A = Aw1 + (1 −Aw1)
n∑

i=1

Api

i−1∏
j=1

(
1 −Apj

)
(19)

In conclusion, we have shown how the availability of a
M:N system can be analytically obtained for speci£c values
of M and N. However, a general equation having N and M as
parameters can not be written in a closed form.

G. Shared protection

w1

w2

p1

p2

p3

p4

p5

Fig. 7. Shared protection

We call shared (mesh) protection a 1:1 protection strategy, in
which spare paths associated to disjoint working paths having
different source and or destination can share optical channels.
This strategy allows a relevant saving of network capacity,
without affecting network ability to face any kind of single
failure. Let us develop the analysis of this case using to an
example. The two working connections w1 and w2 showed
in Fig. 7 are protected by two protection lightpaths (p1 and
p2) which share an optical channel. The system availability is
the probability that both connections are routed successfully
and it can be obtained by the union of three disjoint events
(equations (20) and (21)).

P (H) = P {[Ew1 ∩ Ew2] ∪ Ea ∪ Eb} (20)



where: Ea = Ew1 ∩ Ew2 ∩ (Ep2 ∩ Ep5 ∩ Ep4)
Eb = Ew1 ∩ Ew2 ∩ (Ep1 ∩ Ep5 ∩ Ep3)

A = Aw1Aw2 +Aw1 (1 −Aw2)Ap2Ap5Ap4 + (21)

+(1 −Aw1)Aw2Ap1Ap5Ap3

To evaluate the availability of a single connection, we
have to distinguish different double-link failure scenarios. For
instance, even though the lightpath w2 and the optical channel
p2 fail, the connection 1 can be routed successfully. So the
£rst subsystem (protected connection 1) is characterized by
the following availability:

Pss1 (H) = P {Ew1 ∪ Eα ∪ Eβ ∪ Eγ} (22)

where: Eα = Ew1 ∩ (Ep1 ∩ Ep5 ∩ Ep3) ∩ Ew2

Eβ = Ew1 ∩ (Ep1 ∩ Ep5 ∩ Ep3) ∩ Ew2 ∩ Ep2

Eγ = Ew1 ∩ (Ep1 ∩ Ep5 ∩ Ep3) ∩ Ew2 ∩ Ep2 ∩ Ep4

Ass1 = Aw1 + (1 −Aw1)Ap1Ap5Ap3Aw2 + (23)

+(1 −Aw1)Ap1Ap5Ap3 (1 −Aw2) (1 −Ap2) +
+ (1 −Aw1)Ap1Ap5Ap3 (1 −Aw2)Ap2 (1 −Ap4)

The need to consider all the possible multiple-failures
combinations makes the problem intractable if the topology
is not as simple as that in Fig. 7. So, in order to avoid
the cumbersome extension of previous exact formulas, we
can apply an approximate the solution by neglecting multiple
failure scenarios. This is equivalent to consider only terms in
which (1−Awi) appears at the £rst order, neglecting higher-
order terms, It can be proven that the second order terms are
always absent even without the approximation, except when
the spare path is totally shared (but this case coincides with
the 1:N case). In the next section we will show by numerical
examples that the approximated formula converges to the real
availability values, for highly available components (rare-event
approximation). The approximated availability of connection
1 is calculated in (24) and (25).

Pss1 (H) ∼= P
{
Ew1 ∪

[
Ew1 ∩ (Ep1 ∩ Ep5 ∩ Ep3) ∩ Ew2

]}
(24)

Ass1
∼= Aw1 + (1 −Aw1)Ap1Ap5Ap3Aw2 (25)

H. Shared protection: extended analysis m×(1 : 1)
In this paragraph we extend our analysis to a topology

comprisingm protected working connections whose protection
lightpaths share some optical channels. The scheme described
is showed in Fig. 8. The system availability formulas (equa-
tions (26) and (27)) are obtained neglecting multiple-failure
cases.

P (H) = P




m⋂
j=1

Ewj
∪
[

m⋃
i=1

(
m⋂

k=1

Ewk �=i

)
∩ Ewi

∩ Epz

]


(26)
dove: z = α, β, γ, δ, . . .

w1

w2

w3

wm

pα

pβ

pχ

pµ

Fig. 8. m*(1:1) shared protection

A =
m∏

j=1

Awj
+

m∑
i=1

(
m∏

k=1

Awk �=i

)
(1 −Awi

)Apz
(27)

Also in the formulas (28) and (29) we use the single failure
approximation.

Pssk (H) ∼= P

{
Ewk

∪
[(

m⋂
i=1

Ewi�=k

)
∩ Ewk

∩ Epzk

]}
(28)

Assk
∼= Awk + (1 −Awk

)Apzk

(
m∏

i=1

Awi�=k

)
(29)

Thanks to the approximation, the previous two formulas
express the availability of a connection k as a function of the
availability of wk and of the availability of all the working
paths, having the associated spare path which shares one or
more channels with the spare path pk. So Assk is in¤uenced
by the length of its spare path, but not by the effective number
of shared spare channels. In other words, if a spare path pk has
a length of 5 hops and it shares channels with other 3 spare
paths (associated to distinct working channel), Assk is £xed
by equation (29) and we are not interested on the number of
effectively shared channels, that can vary from 1 to 5.

IV. NUMERICAL RESULTS

In this section we analyze the protection techniques through
numerical examples. We assume each working lightpaths wi is
composed of a single hop (channel) with unavailability 10−4.
Each protection lighpath consists in a series of 3 links (each
with unavailability 10−4). The total spare path availability is
Ap = A3

pi = (1−Ui)3 = (1−10−4)3. The reported numerical
values refer to the availability of a single protected connection.

A. (M:N) protection

1) (1:N), (2:N), (3:N) protection: The unavailability values
in the Fig 9(a) are obtained by applying respectively equation
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Fig. 9. Unavailability of 1:N (a), 2:N (b), 3:N (c) protection

(4) and (13) for 1:N (a). For 3:N and 2:N cases similar
equations have been applied not shown in the paper for brevity.

Fig. 9(a) shows that unavailability get worse for increasing
values of N with a linear slope of about 1 × 10−8 per N
increment. By comparing these values to those of Fig. 9(b), we
can observe that a connection protected by the 2:N technique
is always more available than by 1:N for any value of N.
This is simply because dedicated protection recovers any
kind of single failure while the 2:N protection recovers any
kind of single and double failures by means of two backup
paths. The same consideration can be drawn for the 3:N
case. Obviously, these large improvements of availability are
paid in terms of a much higher amount of physical resources
(cables and £bers) For 2:N and 3:N techniques, we notice that
connection unavailability increases more than linearly with N.
By comparing the three graphs we can conclude that the slope
of the function U(N), which is constant when single failures
are recoverable, tends to increase more and more rapidly as
the number of recoverable failures increase.

2) (M:1) protection: The values of Table I are obtained
applying the equation (19). The unavailability values decrease
very rapidly adding protection lightpaths, since a greater
number of connection failures can be recovered.

TABLE I

UNAVAILABILITY IN THE M:1 PROTECTION

Protection technique Unavailability Uss1 = 1 − Ass1

(2 : 1) 8, 99825 × 10−12

(3 : 1) 2, 77556 × 10−15

(4 : 1) 1, 11022 × 10−16

We can conclude that the availability degree in M:N pro-
tection strategies is primarily determined by M, again corre-
sponding to the number of simultaneously recoverable failures.
The number N of working paths sharing the backup paths has
instead a marginal effect compared to M. It is important to
observe that the ratio M/N is not a signi£cant parameter to
compare the availability degree of different protection strate-
gies: M is much more signi£cant. For example let us compare

the unavailability of 3:4 and 2:1 strategies: by comparing the
results of M/N ratio (respectively O.75 and 2), 2:1 would
appear to provide a better degree of availability. Actually, 3:4
provides protection against any three link failure, achieving a
higher level of unavailability. From Table I and from Fig. 9(c)
we see that 2:1 unavailability is ≈ 9 × 10−12, while in 3:4
case unavailability is ≈ 1.2 × 10−14.

B. Shared protection

In the paragraph III-G we have obtained the single con-
nection availability using either an exact (equation (23)) and
an approximated approach (equation (25)). Table II shows the
accuracy of our approximations; In the £rst row we present an
unrealistic case for optical networks, in which link unavailabil-
ity is exaggerated on purpose. In the second row we exploited
more realistic unavailability values. We can observe that in the
£rst case the percentage error of the approximated result is
quite small while in the second is totally negligible. Since the
corresponding equations are equal due to the approximation,
then the unavailability value of the approximated case is equal
to the unavailability of the 1:2 protection shown in Fig. 9(b).

TABLE II

SHARED PROTECTION UNAVAILABILITY

Unavail Ussi exact Ussi approx % Error

Ui = 0.1 3.30049 × 10−2 3.439 × 10−2 4.2
Ui = 10−4 3.9992 × 10−8 3.9994 × 10−4 5 × 10−3

To con£rm the validity of the approximations for high
availability values, we propose two other topologies shown in
Fig. 10. In both cases we calculated the unavailability of the
protected connection 1. Also in this situation we examine the
two cases with unrealistic and realistic unavailability values.
These results are shown in table III and con£rm the previous
conclusions.

1) m*(1:1) shared protection: The values in Fig. 11 refer
to the equation (29). The graph displays the unavailability of
a generic connection k. We consider that its spare path is
composed of 5 (straight line) or 7 (dotted line) links, and we



(a) (b)

Fig. 10. (a) three and (b) four shared protected connections

TABLE III

CONNECTION UNAVAILABILITY IN FIG. 10 TOPOLOGIES

Topol Ui Ussi exact Ussi approx % Error

Fig. 10.a 0.1 1.50654 × 10−1 1.66009 × 10−1 10.2
Fig. 10.b 10−4 4.9986 × 10−8 4.999 × 10−8 8 × 10−3

Fig. 10.a 0.1 1.77069 × 10−1 1.94462 × 10−1 9.8
Fig. 10.b 10−4 5.9979 × 10−8 5.9985 × 10−8 10−2

vary the number of working-spare couples that share a backup
channel with the backup path of wk. As already observed

5 10-8

6 10-8

7 10-8

8 10-8

9 10-8

1 10-7

1,1 10-7

1,2 10-7

2 3 4 5 6

5 protection channels
7 protection channels

Number of working-spare couples, M

Fig. 11. Unavailability of the m*(1:1) shared protection

in protection technique for single fault recovery, the Fig. 11
shows a linear increase of connection unavailability, associated
to the increase of the number of connections sharing backup
capacity. It can also be seen that, in terms of availability
performance, increasing the length of the protection lightpath
by x hops is exactly equivalent to increasing the number of
sharing connections by x.

C. Final comparison

In the previous sections we have separately studied the
different protection approaches. Now we can jointly compare
the performances of the various approaches (Fig. 12).

As already explained, unavailability improves sensibly when
the protection scheme is able recover multiple failures: this
behavior is evident in Fig. 12. The shared protection and 1:N
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1 2 3 4 5 6 7 8 9 10

1:N protection scheme
2:N protection scheme
3:N protection scheme
M*(1:1) shared, 5 prot channels
M*(1:1) shared, 7 prot channels

Number of working connections, N

Fig. 12. Unavailability comparison of various protection schemes

protection techniques, able to prevent only in single failure
scenarios, give similar unavailability results. The availability
advantages of survivability to multiple failures should be com-
pared keeping the cost of the resource-consuming protection
techniques into account. A further work is currently under
study to investigating the capacity vs availability trade-off.

V. MONTE CARLO APPROACH

We have developed a simple Monte-Carlo (MC) approach
simulator to verify some aspects of our theoretical analysis.
The equations we introduced in section III are obtained by
considering a constant failure rate z(t) = λ, since it is
proved to be a correct model for a component like an optical
link (for instance, see [11], [12], [13], [14]). As previously
said, formulas are not time dependent and in some cases
simultaneous events cannot be described. For example, in the
1:2 protection scenario (see Fig. 2) in case of failures affecting
both the working lightpaths, according to equation (8), both
the connections are blocked, even though the protection path is
available and thus one at least could be recovered. By means of
MC we attempt to solve this problem introducing a random
failure sequence that allow us to protect at least one of the
failed connections.

The procedure to evaluate the connections unavailability
by means of MC method is the following. A given network
topology is decomposed in separated subnetworks each one
representing a connection, with its working and spare paths
(possibly more than one). Links that are shared by many
backup ligthpaths appear replicated in the subnetworks cor-
responding to all the sharing connections. The unavailability
of each link is simulated exploiting the generation of random
numbers uniformly distributed in the range [0, 1]. If the number
returned by random generator is lower than Ai, we assign the
value one to the link. Viceversa, if the number is above the



threshold, the value assigned to the link is zero, indicating it
is not available.

At each simulation iteration the state of all the links is
set randomly and independently as described above. Then the
connections are scanned in a sequential order which varies
randomly at each iteration. Each connection is available if
the working path is available (all its links have state one).
Else, all the associated spare paths are scanned (with a
priority sequence dependent on the protection technique). The
£rst ”all-one” free path to the destination found is used for
recovery. The links crossed by such a path are assigned to the
connection. If no free ”all-one” path is found, the connection
fails. All the subsequent connections can use only unassigned
”one” links for a possible backup. At the end of the simulation

All the favorable events, i.e. connections which could be
established successfully are counted. MC simulation is partic-
ularly useful when many connections compete for the shared
protection resources. While the analytical method of section
III, based on a time-invariant approach, assumed all these
cases as unfavorable, they are instead adequately measured
and counted by the MC simulation.

Table IV compares analysis and MC simulation results
concerning the networks represented in Fig. 13. Ai is 0.9 for
all the links and 50 million iterations are generated to gather
MC statistics. The table proves a good convergence of analysis
to simulation even for high values of link unavailability.

(a) (b)

(c) (d)

Fig. 13. Topologies used for the Monte Carlo simulations

TABLE IV

NUMERICAL COMPARISON BETWEEN MONTE CARLO APPROACH AND

ANALYTICAL METHOD

Topologies MC Analysis % error

Fig. 13.a, w1 0.9813 0.9729 0.865
Fig. 13.b, w1 0.99693 0.99477 0.217
Fig. 13.c, w1 0.99899 0.999 0.0012
Fig. 13.d, w1 0.97399 0.96715 0.707
Fig. 13.d, w2 0.97351 0.96634 0.742

VI. CONCLUSION

In this paper a rigorous methodology is proposed which can
be used to quantify the connection availability under several

protection schemes. Different protection strategies provide a
different availability degree in a set of simple topologies.

The proposed method is capable of estimating both connec-
tion and system availability of many protection techniques. In
treating shared protection we have introduced an approxima-
tion that allows us to analyze complex topologies.
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