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Abstract: Recently, the interest in converting waste cooking oils (WCOs) to raw materials has grown
exponentially. The driving force of such a trend is mainly represented by the increasing number of
WCO applications, combined with the definition, in many countries, of new regulations on waste
management. From an industrial perspective, the simple chemical composition of WCOs make
them suitable as valuable chemical building blocks, in fuel, materials, and lubricant productions.
The sustainability of such applications is sprightly related to proper recycling procedures. In this
context, the development of new recycling processes, as well as the optimization of the existing ones,
represents a priority for applied chemistry, chemical engineering, and material science. With the
aim of providing useful updates to the scientific community involved in vegetable oil processing,
the current available technologies for WCO recycling are herein reported, described, and discussed.
In detail, two main types of WCO treatments will be considered: chemical transformations, to exploit
the chemical functional groups present in the waste for the synthesis of added value products, and
physical treatments as extraction, filtration, and distillation procedures. The first part, regarding
chemical synthesis, will be connected mostly to the production of fuels. The second part, concerning
physical treatments, will focus on bio-lubricant production. Moreover, during the description of
filtering procedures, a special focus will be given to the development and applicability of new
materials and technologies for WCO treatments.

Keywords: waste cooking oil; biolubricant; biodiesel; recycling; vegetable oil filtration; vegetable
oil degumming

1. Introduction

Amongst the many issues currently faced by the scientific community, the interest toward the
optimization of resources, while reducing the environmental impact of new and existing production
processes, are of major interest. The amount of research focused on these transversal topics are growing,
exponentially, in many research fields [1]. As a general approach, to develop such ambitious research,
many scientists have explored routes for the employment of waste as raw material in new productions,
as well as for the reconversion of existing processes. This is not an easy road, as industry requires
to reach such targets in a very short time. The most demanding step in this scientific activity is
represented by the passage from a technology readiness level (TRL) of 3 (analytical and experimental
critical function and/or characteristic proof of concept) to 6 (system/subsystem model or prototype
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demonstration in a relevant environment) [2]. In fact, the transfer of knowledge is often hampered
by the limits of the current available technologies. In this context, the development of improved
technologies and materials for the transformation of waste-based raw materials into valuable products
represents a primary target to unlock many transformations that exist only at design level or laboratory
scale [3].

Within the restricted list of potential waste-based raw materials—which can lead, if properly
processed, to a multiple typology of products—waste cooking oil (WCO) stands out [4].

WCO pertains to the family of used vegetable oils (UVOs), which are considered waste that is
dangerous for the environment [5]. WCOs are the main representatives of such family, as most of the
collected UVOs arise from kitchens and catering industries [6]. As frying food represents the main
worldwide employed cooking method, WCOs are geographically diffused and produced everywhere
in large amounts. The yearly overall production of used vegetable oils exceeds 190 million metric tons,
with the European Union (EU) contributing about 1 million tons/year [7,8].

A proper handling of WCOs is mandatory in many countries (and currently the subject of
political discussion in others) [9–11]. The issues regarding the treatment of WCOs are mainly two: the
disposal-collection strategy, and the reconversion of the waste [12]. Disposal and collection systems
will not be discussed in the present review paper, as a good amount of information about this specific
topic can be found elsewhere [4,13].

Regarding the reconversion of WCOs, they can be used as main raw materials in many industrial
processes, such as bio-lubricant [14] or fuel [15–17] production, or as additives for asphalts [18]
and animal feed [19]. Other possible employments of WCOs are strictly related to their chemical
compositions. WCOs are basically a mixture of triglycerides and fatty acids, contaminated by some
derivatives during the frying process, as free fatty acids (FFA), heterocycles, Maillard reaction products,
and metal traces originated from pads and food leaching [20,21]. The specific composition of WCOs
can also be exploited as useful sources of chemicals for the production of bio-plasticizers, syngas, and
sorbents for volatile organic compounds (VOCs) [22,23].

In the present review paper, some technological advancements related to the employment of
WCOs as raw materials will be described and discussed. A special focus will be given to the period
that ranges from 2015 to early 2020.

2. Technologies and Materials for the Chemical Treatment of WCOs

In this section, chemical treatments of WCOs that are amenable to practical application will
be discussed.

WCOs are mixtures of long chain fatty acids (mainly linoleic, linolenic, and oleic), in form of tri-
di- and mono-glycerides, and a variable percentage of free fatty acids (FFA); they represent a platform
of raw materials for many industries [24].

The chemical composition of WCOs is quite similar to one of the parent edible oils, and differs
from the former in terms of decomposition and leaching products. During the frying process, a portion
of triglycerides, of the ester moiety, break down. The degree of such degradation depends on the
number of frying cycles, frying time, temperature, and the specific vegetable oil [25]. Moreover, during
deep frying, many volatile compounds are generated as a consequence of a combination between
high temperature and oxygen, which promotes oxidation processes, and other transformations (e.g.,
the Maillard process) [26,27]. In addition, food and tool exposure during frying promote leaching,
enriching the oil composition with metal traces, spices, and other organic molecules [28]. Analysis of
the volatile fraction of WCOs reveal a complex mixture of chemicals, which include aldehydes, alcohols,
dienes, and heterocycles. In particular, samples of commercial sunflower oil were analyzed by Mannu
et al. [29], prior to and after several cycles of frying. Many chemicals were detected in the samples
subject to frying, such as hexanal, heptanal, limonene, furan, 2-pentyl-, nonanal, 1-octen-3-ol, furfural,
cyclohexanol-dimethyl-2, benzaldehyde, 2-nonenal, 2-furan-methanol, 2-decenal, 2-undecenal, and
2,4-decadienal.
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The changes in the chemical composition of oil during the frying process can be related to food
and tool contamination and decomposition. Nevertheless, the relative amount of impurities generated
during the cooking process is not elevated. It is possible to estimate, qualitatively, the chemical
composition of WCOs through Nuclear Magnetic Resonance (NMR) analysis. 1H NMR spectra show a
low amount of contaminants (less than 5%), confirming that WCOs are very similar, in terms of overall
chemical composition, to the parent edible oils [29].

If, from one side, the low degree of contamination and degradation is enough to declare WCOs
unfit for food applications [30,31], from the other side, it allows to set-up a (not particularly difficult)
recycling process [32].

Typically, the treatment of collected WCOs involve a first gross filtration aimed to remove
solid materials dispersed in the oil. This is followed by the direct introduction of crude material as
raw material in the production, without the need of specific decontamination/transformation steps.
Then, depending to the specific application, the WCO-raw material can be subject to different kinds
of transformations.

A very diffuse procedure consists of exploiting the chemical composition of WCOs to generate
esters in basic media, and in the presence of alcohol (esterification). Common esters produced by
this route are the fatty acid methyl esters (FAMEs), derived by reaction with methanol, and fatty
acid ethyl esters (FAEEs), obtained through esterification with ethanol. The industrial destination
of FAMEs and FAEEs are usually employed in biodiesel production [33]. In that case, FAEEs show
some advantages with respect to FAME as enhanced fuel properties, in terms of stability towards
oxidation and superior lubricant power [34]. Regarding fuel application, the assessment of the acidity
of the raw material is crucial. In fact, if the free acidity (FA) results higher than 2.5%–3%, the raw
material is not suitable for biodiesel, and is subject to previous procedures in order to reduce the
amount of FA. This parameter represents one of the main economic indicators for collectors, because
it determines the selling price when WCOs are delivered to biodiesel facilities [35]. For companies
involved in collecting and delivering large amounts of WCO, the cost for reducing the amount of FA
can be elevated. However, on a small scale, collectors can blend WCOs with different acidity until
it reaches the appropriate level of FA required by the producers. The possibility to easily bypassing
the issue on a small scale allows the collectors to focus more on the optimization of the recovery step,
enhancing their competitiveness. In such conditions, the biggest cost is represented by the acquisition
of a proper warehouse for WCO storage, which need to be blended. This last aspect can double the
rental price and increase the energy consumption to maintain the oil in adequate conditions.

The acidity index of WCOs is also chemically relevant, as it influences the rate of the collateral
hydrolysis of the triacylglycerols, which occur during the basic esterification (saponification).

Saponification gives rise to a relevant issue for industries: the formation of emulsions—they
are difficult to reduce on a big scale (in biodiesel plants, for example) [36]. The formation of soap is
also promoted by the presence of water in WCOs. For this reason, WCOs are often subject to water
removing procedures—usually based on decantation—prior to being sold to biodiesel producers.

On the other side, WCOs that are destined to be processed in soap facilities do not have such pH
limitation, as the raw materials are processed by a harsh basic treatment. This subject was recently
described in a review article by Felix and coworkers [37].

A relevant amount of research has focused on developing routes to avoid collateral saponification
during methyl ester synthesis from WCOs. Fereidooni et al. recently reported an electrolytic process
for the esterification of WCOs in the presence of MeOH and KOH to obtain FAMEs. In such conditions,
the collateral saponification does not occur even in the presence of consistent amounts of water [38].

Moreover, esterification of WCOs do not generate negligible amounts of glycerol, which can
promote a collateral transesterification reaction. In order to avoid undesired transesterification, and
considering the commercial value of glycerol, this is usually recovered and exploited in parallel
processes [39].
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As a matter of fact, acidic esterification of WCOs is also possible, and it can be employed for
the batch of raw oil, showing elevated values of acidity; thus, not being suitable for biodiesel [40].
Acid-catalyzed esterification of WCOs to FAME was achieved by Quintain and coworkers [41] by
employing a graphene oxide-based catalyst under microwave irradiation.

A general overview of the main reactivity of WCOs in different conditions is reported in Scheme 1.
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An alternative alcohol to methanol and ethanol for esterification of WCOs is the glycerol. In that
case, the reaction is known as glycerolysis, and in the case of WCOs, formally regenerates, in part, the
original composition of the oil (Scheme 1) [42].

The glycerolysis can be exploited for increasing the added value of the starting materials (WCOs)
by transforming the free fatty acids (FFA) contained in the waste into added-value chemicals. Mono-
and di-glycerides are used as surfactants [43] or as emulsifiers in the food, cosmetic, and pharmaceutical
industry [44], while tri-glycerides are employed as additives in bio-diesel production [45,46].

Regarding the effectiveness of glycerolysis, the main issue is represented by the low miscibility of
glycerol and waste oil. The problem has been faced for decades; optimized protocols, which usually
employ high temperature conditions, have been proposed. Recently, advances toward milder WCO
glycerolysis have been reported by Supradan and coworkers [47], who proposed the use of hexane
as co-solvent for undertaking mass transfer problems generated by the low solubility of glycerol.
Alternatively, Mazubert et al. [48] proposed to perform the glycerolysis of FFA in a reactor system.

Catalytic production of bio-diesel has also faced updates in previous years. Abdillah et al. [49]
described the combination of activated carbon obtained from palm oil biomass and potassium
phosphate tri-basics (K3PO4) as a heterogeneous catalyst for fatty acid methyl esters (FAME) production
from WCOs.

Moving to the homogeneous phase, Borovinskaya and coworkers [50] reported the catalyzed
trans-esterification of WCOs to obtain FAEEs, performed in a micro-/milli-reactor.

The synthesis of WCO-derived esters can also be exploited in the bio-lubricant industry. What
is interesting is the case of the trimethylolpropane fatty acid trimethyl ester, which can be used as
a lubricant base stock with superior lubricant power, stability, and biodegradability, with respect to
other pentaerythritol fatty esters (TFATEs) [51]. These lubricants can be obtained by transesterification
between FAME and trimethylolpropane (TMP) [52] or by esterification of FFAs with TMP. A recent
contribution to this specific topic has been offered by Sun and coworkers [53], who proposed the
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production of TFATEs through transesterification of WCO-derived FAME, with TMP mediated by a
catalyst based on a mixture between hydrotalcite and potassium carbonate (K2CO3). Recycling of the
catalyst, combined with waste-based raw material, makes this process economic and low-impacting.
An analogue process, which involves a different catalyst (Mg-Al/hydrotalcite) was recently described
by Costarosa et al. [54], and then optimized by the multivariate statistic and response surface analysis
(RSA). As a result of such studies, for biodiesel applications, basic catalyzed esterification seems to be
the preferred methodology, mainly due to the development of specific process conditions that avoid
the formation of emulsions. Similar optimization tools were employed by Mannu et al. [55], who
reported optimized conditions for the production of bio-lubricants from water treatment of WCOs
as result of RSA. The availability of effective tools to optimize the bio-lubricant production by water
treatment of WCOs make this last process competitive, with respect to the filtration procedures, which
have been historically employed as a main purification step in vegetable oil refining.

3. Technologies and Materials for the Physical Treatment of WCOs

Physical treatment of WCOs is basically aimed at removing undesired products from crude WCOs,
and to obtain a regenerated oil enriched in fatty acids. It is possible to consider three physical routes
for achieving WCO regeneration:

(1) Separation based on solubility.
(2) Separation through filtration with specific materials.
(3) Separation based on the boiling point (distillation).

3.1. Separation Based on Solubility

Regarding the separation process based on solubility, water is the solvent of choice. In fact, as the
oil is immiscible with water, many chemicals contained in WCOs can easily be removed from WCOs by
simply washing the crude material. This procedure can also be extended to an industrial environment
by employing a metallic tank equipped with a mechanical stirrer. This (very easy) configuration has
been known, for many years as “degumming” (for its purification of vegetable oils). Its aim is to
remove phospholipids and waxes [56]. Some local industries employ this procedure for the production
of bio-lubricants from WCOs, with any further optimization. Nevertheless, recent research has revealed
non-negligible room for improvement. In fact, by tuning the pH of the water, as well as working at
specific temperatures and with determined stirring times, it is possible to increase the density, the
flash point, and the color of the resulting bio-lubricant [57]. Vlahopoulou et al. [57] reported that by
changing the degumming conditions, only small changes could be observed in the density values,
while the flash point was much more sensitive to the process parameters. In particular, WCOs subject
to different water treatments show a flash point number that ranges from 270 ◦C (pH = 4, 20 ◦C, 5 h of
stirring, and oil/water wt% ratio = 30), to 290 ◦C (pH = 6, 60 ◦C, 5 h of stirring, and oil/water wt% ratio
= 30). In Table 1, the variation of the flash point of WCOs after degumming at different conditions is
reported. The possibility to increase the flash point value by tuning the previous described parameters
is of high industrial interest as it can directly influence the quality of the refined bio-lubricant.

As the variation of the physical parameters is the result of a change in the chemical composition,
Mannu and coworkers went through the matter and studied the variation of the volatile profile of
WCO samples subjected to water degumming (Table 1) [29].

Looking at the data reported in Table 1, it is possible to confirm the formation of several volatile
compounds during the life-cycle of the vegetable oil and their partial removal as a result of the water
treatment. As expected, working on pH and temperature range, it is possible to selectively remove
specific functional groups, as heptanal and limonene, which are removed only in acidic conditions.
This methodology presents some drawbacks, as the saponification observed at pH = 9 (which generates
undesired emulsions) or the possibility of corrosion issues when the process treatment is performed at
pH = 3 [30].
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Table 1. Variation of the volatile profile in samples of edible oil M1, fried oil WCO1, and degummed
samples [29].

Entry Retention
Time M1 WCO1 1

pH = 3
and T =

25 ◦C

pH = 9
and T =

25 ◦C

pH = 3
and T =

80 ◦C

pH = 9
and T =

80 ◦C
Analyte

1 15.489 n.d. 2.7287 1.9981 1.7933 0.8577 1.8302 Hexanal
2 19.009 n.d. 0.7503 0.2685 0.3263 - 0.6493 Heptanal
3 19.573 n.d. 0.7684 - 0.4901 - 0.4494 Limonene
4 20.354 n.d. 1.8623 1.0677 1.2202 - 0.4494 Furan, 2-pentyl-
5 25.183 n.d. 4.0382 3.8689 4.0172 2.8489 2.4767 Nonanal
6 26.086 n.d. 0.8284 0.6770 0.8705 0.4485 0.7353 1-octen-3-ol
7 27.052 n.d. 0.6783 - 0.5719 0.0791 0.1544 Furfural
8 29.158 n.d. 0.5625 0.4577 0.4587 0.1700 0.5569 Cyclohexanol 2

9 29.475 n.d. 0.4908 0.4230 0.4550 0.2407 0.2646 Benzaldehyde
10 29.692 n.d. 0.6348 0.6042 0.5006 0.4925 0.7101 2-Nonenal
11 32.182 n.d. - - - - - 2-Furan-methanol
12 32.423 n.d. 1.4988 1.4236 1.4708 1.3255 1.5066 2-Decenal
13 34.587 n.d. 1.0504 1.0649 1.0810 1.0060 0.6942 2-Undecenal
14 34.79 n.d. 1.2092 1.1551 1.1331 1.0718 1.0759 2,4-Decadienal 2

1 Determined by HS-SPME-GC MS [58], the results are expressed as absolute peak area (×106) obtained by total ion
current (TIC) chromatogram. 2 Not identified isomer. n.d. stands for not-detected.

3.2. Separation Through Filtration with Specific Materials

Particle sequestration and separation represents the essence of the recycle process and its efficiency
depends on the particulate that can be retained, the volume of the filtrate that can flow through the filter,
and physicochemical properties of the filtered oil upon the process. Physical and chemical regeneration
of waste frying oils can be typically divided into three main technological approaches: membrane
treatment, conventional, and activate filtration. Both the aforementioned approaches exploit different
solid materials, which characterize performance, cost, and sustainability of the whole recycling process.

In the last two decades, membrane technology application in vegetable oil processing has received
increasing attention due to different advantages, including low energy consumption (approximately
50% with respect to the conventional filtration), and retention of nutrient components [59]. Membranes
can be defined as a semipermeable barrier, allowing the passage of components (in this case the
vegetable oil) and the retention of others (i.e., the undesired products produced after frying at a
high temperature). Membrane filtration is a process driven by the pressure applied and the size
of by-products. Two main classes of materials are used for producing commercial membranes:
(i) polymers consisting of cellulose acetate, polyamide, polysulfone, and polyvinylidene difluoride
(PVDF); and (ii) ceramic and metals materials, including alumina and stainless steel. Moreover, ultra-
(UF) and nano-filtration membranes, characterized by their specific pore dimensions (<1 µm), have
been largely explored to remove, for example, triglycerides and phospholipids during the degumming
step [60]. As an example, a membrane based on PVDF can sequestrate over 98% of phospholipid, with
excellent resistance to fouling during the degumming process, and high permeate fluxes, making this
membrane very promising for industrial application [61,62]. Furthermore, in addition to phospholipids,
these specific membranes can remove up to 80% of color from WCOs [63]. Typically, the filtration
process, which involves membrane apparatus at lab scale, is carried out under pressure of 2–5 bars,
flow velocity of 0.3–0.4 L/m3, and in a temperature range of 40–60 ◦C [62]. Ultrafiltration of membrane
prepared from polyethersulfone (PES), removed up to 89% of phospholipid leading to a color reduction,
expressed in yellow units of 25% [64]. Recently, Onal-Ulusoy and coworkers improved, significantly,
PES-based membrane sequestration activity for waste frying oil recycling, modifying their surfaces by
radio frequency (RF) plasma treatment [65]. During membrane filtration, triglyceride components
permeated preferentially compared to the polar compounds including oxidation and hydrolysis
products and polymers. The experimental results showed that PES membranes, surface modified with
HMDSO at 75 W for 5 min, retain selectively free fatty acids (FFAs) of waste frying oil, up to 35.3%–40%,
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and reduced the oil viscosity 9.4% to 12.8%. Finally, the use of membrane technology appears as a
promising alternative to the conventional method of waste oil processing, due to its suitability to be
applied at different stages of the whole recycle process (degumming, refining, etc.) and its low energy
consumption. However, in order to drastically improve their performance, and to overcome some
barriers represented by the optimization of the permeate flow rates, a deeper investigation on the
materials is necessary.

Conventional filters, used in the filtration apparatus, include a pad of cellulose fibers and metal
screens. Cellulose filters, for example, are very cheap if compared to other materials. Recently,
Malagon-Rometo et al. [66] developed and standardized a process to treat Colombian waste cooking
oils, which removes 79% of the solid particles, employing paper filter (cellulose). However, cellulose
pads absorb an important amount of the filtered oil and they can only retain particles with dimensions
larger than 1 µm. Furthermore, they present poor mechanical properties and are often damaged after
removing particulates adsorbed after filtration, reducing their use for multiple filtration cycles (up to
600 kg of oil). Stainless steel filter screens, on the other hand, can be reused indefinitely, but are more
expensive then cellulose pads, and their efficiency separation is limited to particles large than 80 µm.
In order to increase filtration efficiency, typically, a powdered filter aid can be used in combination with
a conventional filter. Such filter aids are deposited in the main filter surface, increasing the filtration
surface area and then enhancing the retention of smaller particles (around 1 µm). At the same time,
filter aids also include adsorbents or neutralizing agents to provide active filtration, as a consequence
of chemical interaction and/or electrostatic bonding with free fatty acid contaminants. Examples of
filter aids include inorganic compounds, such as diatomaceous earth, clays, silicates, and activated
carbons. In the past, synthetic calcium and magnesium silicate has been extensively used to reduce FFA
and color, respectively [67]. During the last 20 years, new filter aid products have been synthesized,
including blends of silicates with magnesium and aluminum oxides, which have been included into
the process for treating used cooking oil in frying operations [68,69]. With the same purpose, filters
composed by synthetic fibers of polyester, polypropylene, and nylon, have been developed and tested
in a very efficient process, able to remove 93%–98% of fatty acids from cooking oil used [70,71].

Currently, it is possible to find on the market some small-scale machines for WCO regeneration.
The exploitability of such technological solutions is strongly influenced by local legislation, as in
some countries, the recycling of WCO for food purposes is strictly regulated [72]. For example, some
companies sell recycling apparatuses to extend the life of frying oil, claiming to reach up to 50% of
additional cooking time [73].

Despite the high performing capacity to remove particulates displayed by conventional, powdered,
and fiber filters, the retention of smaller, undesired particles (<0.5 µm) remains a not-yet solved problem.
These materials are, in fact, characterized by medium-low surface areas (<500 m2/g) and macroporosity
(d > 0.1 µm). For this reason, increasing attention has been addressed, in previous years, to mesoporous
and microporous materials with pore size dimensions of 2–50 nm, and very high specific surface
areas (>500 m2/g) to act as sorbent systems for small particles formed in the cooking oil during the
frying process. Recently, for example, it was found that aluminum-, zinc- and titanium-containing
metal–organic frameworks (Al-, Zn-, and Ti-MoF) improve significantly, with respect to traditional
filters, taste, and odor properties of unrefined vegetable oils, due to the binding of free fatty acids and
peroxide compounds [74]. Unfortunately, the high cost synthesis and regeneration treatment are main
barriers for rapid commercialization of this class of materials, for this specific purpose. Therefore, it is
no surprise that the attention from part of the scientific community, even if only recently, has moved to
test natural porous materials, such as bentonites [75]. For example, montmorillonite (the dominant
component of bentonite), tested for WCO purification, seems to retain specific chemical groups, such
as carboxylic acids or double bonds, significantly improving the color quality of the filtered oil [76].

A transfer of knowledge attempt, based on a combination of water treatment and filtration on
porous materials, has been made by Mannu and coworkers, by designing a recycling mini-plant aimed
to produce bio-lubricants from WCOs (Figure 1) [29].
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The proposed process can be schematized as follows: WCO is subject to water treatment while
the waste-water is discharged. The degummed waste oil is then pushed through a pressure pipeline
until the filtering module, where it is treated with a porous material. Pressure filtration (4 bar) was
described by the authors for pushing the intermediate oil through a fiberglass container containing the
filtering material. A “deep bed” filtration was proposed, where the oil crosses the length of the filter.
The combination between degumming and filtration affords a refined, recycled vegetable oil.

Despite the many progresses achieved in the field of such filters, further efforts are necessary
to improve the performance and cost sustainability. In particular, fervent research is still required
to decrease the amount of oil absorbed on the cellulose filters, to reduce the cost of synthesis and
regeneration of synthetic materials and, last but not least, to understand the microscopic mechanisms
behind the sequestration process, fundamental for improving the adsorbing properties of these
materials up to their industrial scale-up and commercialization.

3.3. Separation Based on the Boiling Point (Distillation)

Distillation of WCOs also deserves to be described. In fact, the simplicity of such treatment,
which is mainly aimed at removing volatile compounds and water from crude WCOs, allowed the
commercial production of machines for small-scale WCO recycling. Nowadays, it is possible to buy a
waste oil recycling machine for less than 15,000 USD [77].

These machines, for WCO recycling, are basically mini distillation plants. The general process
applied to the raw material can be resumed as follows: the crude oil is subject to a gross filtration,
aimed to remove solid contaminants, and then heated under vacuum. Through reduced pressure
distillation, the crude oil is purified from the volatile fraction, resulting in a regenerate oleic product.
After the deodorization procedure, the recycled vegetable oil can be sold as low quality lubricant, or as
raw material for other industries, as fuel, high quality bio-lubricant, or soap productions.

This technology presents some evident advantages, as the reduced dimensions (from 1 m × 1.5 m
× 1.2 m), fast processing time (flow rate from 10 L/min.), and low working temperature (less than
100 ◦C) [78]. On the other hand, it requires continuous electricity consumption, and it works under
reduced pressure, which could reveal important issues in a working environment.

The energetic request is not very high (from 38 kW) and the process can be considered quite
economic. It is possible to estimate a consumption of 1.583 kWh to produce 25 tons of purified oil,
which corresponds to an overall energetic cost of approximately 7 € (euros) per ton of purified oil,
based on the average energy prices in Europe for non-household consumers (0.11 €/kWh) [79].

Regarding the quality of the recycled oil, it depends on the specific configuration of the machine,
as well as the quality of the raw WCO. As a matter of fact, these machines can be employed to produce
low quality lubricants from waste, which can be employed or sold as such, or can be further processed
for refinement. This technology can be used directly from the end-user, also, to regenerate exhausted
lubricants employed in close circuits. In particular, the bio-lubricants market share is fast growing, and
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during previous years, showed a Compound Annual Growth Rate (CAGR) of 5%, with US and Europe
playing the role of major consumers [80].

Recycled cooking oils obtained by distillation, filtering, or by combination of the formers, can be
sold as chainsaw lubricants, or as solvents. In the first case, depending to the required quality, some
further refining could be necessary, especially for increasing the oxidation stability and pour point,
e.g., by esterification and/or by addition of antioxidants [81]. In the second case, recycled vegetable
oil can be transformed in many derivatives, such as alkyds, poly(esteramide)s, poly(etheramide)s,
polyurethanes, epoxies, and glycerol, which, blended with natural pigments, can find applications as
biodegradable coatings and paints [82].

4. Conclusions

Waste cooking oils (WCOs) represent a valuable source of raw materials with a wide range of
applications, from energy to lubricants or soaps. Moreover, due to their waste-nature and to a huge
and diffused availability, WCOs fit well in the circular economy model, resulting in interest for their
integration into existing processes, as well as for the development of new sustainable productions. Old
techniques and technologies regarding the transformation of vegetable oils are, nowadays, object to
specific updates in order to be adapted to the current characteristics requested by modern companies.
This modernization in WCO treatment includes, not only a research activity on more convenient
chemical syntheses, but also the development of new materials, and the definition of new combined
treatments, which involve different techniques integrated. Looking at the recent bibliography related
to the recycling of WCOs, a first chemical transformation of the crude material, mainly through
esterification, represents a transversal topic; many authors deal with biodiesel as well as bio-lubricant
applications. Nevertheless, technological advancements, both in terms of processes and materials,
aimed to recycle WCOs in a more efficient and sustainable way, are gaining attention. In this regard,
mini plants based on fast physical treatment of waste oils (mostly by distillation), are nowadays
available on the market. Looking at the future, the integration between academic and industrial
research activities will be fundamental in order to develop recycling treatments that are truly able to
substitute existing productions, which involve non-waste raw materials.
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