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Abstract: We used speckle visibility spectroscopy (SVS) to measure the time-resolved dynamcis of avalanching 

down the inclined free surface of a granular material in a half-full rotating drum operating in the slumping regime. 

The distribution of the avalanche period, td, rest time between them, tr, and peak particle velocity fluctuation, 𝛿𝑣𝑝2, are 

all Normally distributed. Whilst the distributions of the two times at the top and bottom of the free surface are very 

similar, the particle velocity fluctuation is greater at the bottom of the free surface than at the top. The rest time is 

observed to be inversely related to the drum speed. Combining this with the relation of tr and the difference of the 

upper and lower angle of repose for the granular material, ∆𝜃, we find that the latter decreases linearly with increasing 

rotational speed. We also observe that td increases in a linear fashion with the drum speed. Using the relation of tr and 

the distance that particles have to move during an avalanche, we further find that a new scaling relation of the mean 

number of avalanches required to traverse the free surface with drum speed. We find that the slumping frequency 

increases with the rotating speed before becoming constant in the slumping-to-rolling transition region. Finally, we 

find that the average peak of the fluctuation speed of the avalanche, 𝛿𝑣𝑝2, increases linearly with the drum speed. 

 

I. INTRODUCTION 

Granular flows in rotating drums are of wide 
interest not only as model systems in the study of the 
physics of granular media, but also because of their 
extensive use in the chemical, minerals, pharmacutical 
and food processing contexts where they are employed 
to effect process as diverse as mixing and granulation. 
It is well known that as the drum rotational speed 
increases, the granular flow takes on one of a number 
of regimes [1], including slumping, which occurs at 
lower rotational speeds and is of wide relevance to 
industial processes as well as environmental problems 
such as dune migration, sediment transport, landslides 
and avalanches [2, 3]. In the slumping regime, the 
granular bed at the bottom of the tumbler rotates as a 
rigid body with the rotating drum wall until it reaches 
the upper angle of repose, 𝜃𝑈 , at which point the 
grains on the bed free surface begin to slide down the 
inclined surface in the form of an avalanche as 
illustrated in Fig. 1. The grains continue to flow down 
the bed free surface until the slope of the surface drops 
below a lower angle of repose, 𝜃𝐿 . The cyclical 
process of elevation of the bed and slumping of the 
free surface layer, termed the ‘slump cycle’, depends 
on the upper and lower angles of repose and their 
variation with the rotating speeds of the drum. Whilst 
there is some appreciation of typical values of 𝜃𝑈 and 𝜃𝐿 [4, 5], the small difference between them (1-3º) and 

the large measurement errors relative to this (0.5º) 
means their variation with drum rotational speed is not 
well understood. Image analysis has suggested that the 
difference between the angles, ∆𝜃 , for dry non-

cohesive particles is constant or weakly variant with 
rotational speed [1, 6, 7]. Tegzes et al. [8], on the other 
hand, found that the difference in angles for a wet 
granular material decreased to a critical value with 
increasing rotational speed. Despite this experimental 
work, however, no mathematical model or scaling 
relation has been determined for the difference 
between the angles of repose. 

 
Fig. 1 Schematic of granular material in the rotating drum under 

the slumping regime 

A number of mathematical models for slumping of 
granular materials in rotating drums have been 
proposed over the years. They are, however, not 
without their problems. The models of Henein et al. 
[9] and other related models [3, 10] for predicting the 
slumping/rolling transition, for example, assume the 
grains fall from wedge OAB to OA’B’ in Fig. 1 in a 
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single avalanche. However, this is in conflict with the 
work of Lim et al. [11], who observed via positron 
emission particle tracking (PEPT) that the number of 
steps the particles requires to travel from the top to the 
bottom of the bed free surface decrease to one with the 
increasing speed. Another similar geometrical model, 
termed the "wedge model" [12, 13], was developed on 
the assumption of one avalanche for a half-full bed, 
but more than one avalanche otherwise as in, for 
example, the PEPT-based study of Lim et al. [11]. 
Whilst another model of Ding et al. [14] avoids this 
assumption, it assumes the avalanche duration is 
independent of the rotational speed which also 
conflicts with experimental evidence [1, 3]. 

There are a range of experimental methods available 
for the study of the granular microdynamics in rotating 
drums, including particle image velocimetry [15], 
particle tracking velocimetry [16, 17], PEPT [11, 18], 
magnetic resonance imaging [19, 20], and x-ray 
microtomography [21]. Some of these are restricted to 
two components of motion (PIV and PTV) whilst the 
remainder can only resolve the granular dynamics to a 
fine scale with relatively poor temporal resolution or 
vice versa. In contrast, diffusing-wave spectroscopy 
(DWS) [22], a dynamic light scattering (DLS) 
technique, is able to resolve the average of the three 
components of motion of grains in dense systems with 
spatialtemporal resolutions [23, 24] that allow the 
probing of the microdynamics of avalanches. 
However, as it is based on temporal correlation 
functions calculated as a time average, it is not 
appropriate when bulk motion such as drum rotation is 
present. In such cases, the related method of speckle 
visibility spectroscopy (SVS) [25-27] can be used. 

In this paper, we report the SVS-based study of the 

avalanching of grains in a rotating drum under the 

slumping regime. After introducing the SVS method 

and the rotating granular drum flow system to which it 

has been applied here, we report in detail on the 

comparison of the statistics of the temporal avalanches 

that occur at the top and bottom of the inclined free 

surface of the granular material. The statistics 

considered include the avalanche duration, rest time, 

frequency and peak fluctuation velocity, and the 

average number of avalanches a particle experiences 

as it transition from the top to the bottom of the 

inclined free surface. This data is used to assess the 

existing models for slumping of granular materials in 

rotating drums and suggest improved versions of the 

models. 

II. EXPERIMENTAL METHOD 

A. Drum system 

The results reported here were obtained in a drum, 
Fig. 2, whose inner diameter, D, and length, L, are 142 
mm and 200 mm respectively. The drum, which is 

made of clear plexiglass to permit optical access, was 
half filled with granular material and placed on a pair 
of rollers turned by a DC motor in the range of 0.1-

0.37 revolutions per minute (RPM). Two points on the 
free surface of the granular material were studied here: 
the primary point, denoted by ○A  in Fig. 2, was located 
at the top of the inclined free surface, whilst the other 
point, denoted by ○B , was located at the bottom of this 
surface. The tangential velocities for these two 
measurement points are between 0.52 and 1.94 mm/s 
for the range of angular velocities used (0.1 to 0.37 
RPM). The granular material considered in the study 
reported here was a dry, cohesionless glass particulate 
material whose size distribution spanned the 500-600 
μm diameter range (Yanmoo, Guangdong, China).  

 
Fig. 2 Schematic of the experimental setup. The points ○A  

(x50 mm, y100 mm) and ○B  (x-50 mm, y100 mm) 

were the focus of the SVS analysis reported here. 

B. Angle of repose measurement 

The profile images of the granular materials in the 
drum were recorded by a CCD camera (10241024 
pixels at 50 frames/s) as shown in Fig. 3. A weight was 
hung alongside the drum as a plumb line so as to 
facilitate evaluation of the angle of repose. The upper 
and lower angles of repose were measured directly 
from snapshots just before and after an avalanche, 
respectively. This was done by fitting a straight line to 
the surface of the granular bed and comparing it to the 
plumb line. Average angles of repose and standard 
deviations were derived from measurements over ten 
successive slumping cycles. 

 

Fig. 3 Schematic of measurement of angle of repose from 
the profile image of grains in the drum at 0.15 RPM.  
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C. SVS details 

Speckle visibility spectroscopy involves 

illuminating the granular material with a 

monochromatic laser light beam of wavelength , Fig. 

2. The photons emerge from the granular material after 

diffusing within it to form a speckle pattern that is 

detected by a CCD camera in the far field. In the 

absence of any motion of the light scatters (the 

particles here), each pixel detects a constant intensity 

as illustrated by the example in Fig. 4(a). Motion of 

the scatters leads, however, to temporal fluctuations 

over the pixels, as illustrated by the example in Fig. 

4(b). For a given exposure time, the faster the 

dynamics of the grains, the more the speckle image is 

blurred and the lower the contrast – this enables the 

capture of rapid changes in the granular material with 

time such as occurs in an avalanche as illustrated in 

the example of Fig. 4(c). This variation in intensity 

can be quantified by the variance of the intensity [25] 𝑉2(𝑇) ∝ 〈𝐼2〉𝑇 − 〈𝐼〉2                      (1) 

where 〈⋯ 〉𝑇 denotes the average over pixels exposed 

for a duration T.  The proportionality constant of 𝑉2(𝑇)  is set by the laser intensity and the ratio of 

speckle to pixel size (i.e. it is set-up dependent). It can, 

however, be eliminated by considering the variance 

ratio 𝑉2(𝑚𝑇) 𝑉2(𝑇)⁄ , where the numerator is found 

from a “synthetic exposure” equal to the sum of m 

successive images [25]. As demonstrated in Fig. 4(d), 

the variance ratio equals almost one when the grains 

are jammed and decreases dramatically during 

granular collision events. For diffusely backscattered 

light from particles moving with random ballistic 

motion, whose power spectrum is Lorentzian [28, 29], 

the theory of SVS [25] gives the variance ratio as 𝑉2(𝑚𝑇)𝑉2(𝑇) = 𝑒−2𝑚𝑥−1+2𝑚𝑥(𝑒−2𝑥−1+2𝑥)𝑚2                             (2) 

where 𝑥 = (4π𝛿𝑣/λ)𝑇. The root mean fluctuation in 

the speed of the particles, 𝛿𝑣 = √〈𝛿𝑣2〉 , which is 

equal to the collision velocity and related directly to 

the so-called granular temperature [30], can be 

obtained by inverting Eq. 2, as illustrated in Fig. 4(e); 

note that the similarity in the speed fluctuations for 

different values of m indicates that the experimental 

method has been implemented appropriately, as the 

fluctuations should not depend on the exposure time 

[25]. The fluctuation speeds that can be detected with 

a particular experimental set-up is dictated by the 

wavelength of the light used and the scan speed of the 

CCD camera. This makes the approach ideal for 

probing in detail avalanche related phenomena in 

rotating tumblers.  

In the SVS experimental setup used here, a laser beam 

of wavelength 𝜆 = 532 nm and power 300 mW was 

passed through a concave lens and an aperture before 

normally illuminating a spot of around 10 mm 

diameter on the inclined free surface of the granular 

material. A line scan CCD camera of 1024 pixels, each 14 μm × 14 μm and 8-bits deep, was placed about 350 

mm away with its optical axis normal to the drum, 

such that the ratio of pixel to speckle size is about 0.5 

[31]. A polarizer, whose direction was vertical to that 

of the incident laser, was used to block the poorly 

scattered light. A line filter was used on the CCD 

camera to eliminate the ambient light. The camera was 

operated at the expose mode of line rate of 20 KHz, 

giving a sample time of  𝑇𝑠 = 50μs, and a exposure 

time of 𝑇 = 48.5μs . The difference of 𝑇𝑠  and T is 

resulted from the line transfer time of the camera 

which is about 1.5 μs and depends on the hardware of 

the camera in general. The laser power was adjusted to 

give an average grey scale level of 50. Each 

measurement for a particular condition (i.e. point/drum 

speed) involved collecting video data for 1000 seconds. 

 
Fig. 4 (colour online) Example SVS results and analysis for 

glass beads in a drum: (a) intensity across the CCD pixels vs. 

time when the drum is stationary; (b) intensity across the CCD 

pixels vs. time when the drum is rotating at a speed of 0.15 

RPM and no avalanche event occurs; (c) the same as (b) except 

an avalanche event has occurred in the period of around 0.25-

1.25 s; (d) intensity variance ratio, Eq. (1), evaluated from the 

data in (c); and (e) root-mean-particle fluctuation velocity (δv) 

obtained from variance ratio. 
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D. Model for avalanching 

A slumping cycle may be subdivided into two 

phases: (a) elevation of the bed; and (b) slumping of 

the free surface layer. During the first step, the rest 

time between two successive avalanches, tr, equals the 

solid body rotation time 𝑡𝑟 = ∆𝜃π180𝜔                                        (3)  

where 𝜔 is the angular speed of the cylinder in rad/s. 

The duration of the avalanche, the second step of the 

cycle, can be evaluated using [9] 𝑡𝑑 = √ 2𝑠g(sin 𝜂−𝜇cos𝜂)                       (4) 

where g is the acceleration due to gravity, 𝜂  the 

average of the upper and lower angles of repose, 𝜇 = tan𝜃𝐿 the friction coefficient, and s the distance 

that the particles travel during an avalanche as shown 

in Fig. 1.  
 

III. RESULTS AND DISCUSSION 

A. Avalancing statistics 

Fig. 5 shows the typical SVS-derived time trace of 

particle velocity fluctuation, 𝛿𝑣2, over four avalanche 

events at the point ○A  on the inclined surface of the 

glass particle bed at a drum at rotational speed of 0.15 

RPM along with a filtered version thereof, which 

removes CCD camera related noise. Looking at a 

single avalanche event shows that the particle velocity 

fluctuation accelerates progressively to a maximum 

before similarly decelerating. The avalanche duration, 

td, rest time, tr, and the peak of the particle velocity 

fluctuation, 𝛿𝑣𝑝2 , can be straightforwardly measured 

from the filtered trace for many slumping cycles.  

 
Fig. 5 (Color online) Particle fluctuation velocity, 𝛿𝑣2, over 

four slump cycles for a drum rotating at a speed of 0.15 RPM. 

The grey (red online) line represents the raw SVS data whilst 

the black dash line represents the data after being subject to a 

Butterworth low pass filter to reduce the noise that originates 

from the CCD camera. 

 

Fig. 6 shows the comparison of the distributions of 

the avalanche statistics for the point ○A  and ○B  when 

the drum is rotating at a speed of 0.15 RPM. Fig. 6(a) 

and (b) show that the rest time and avalanche duration 

for these two points are very similar and both normally 

distributed with standard deviations less than 10% of 

the average (see Table 1). This normality combined 

with the relation between the rest time and difference 

in angles of repose in Eq. (3) indicates the latter 

quantity is also normally distributed. This conclusion 

agrees with the previous experimental study by 

Fischer [5]. Furthermore, using the average tr = 1.32 s 

with the rotational speed of 0.15 RPM in Eq. (3) gives 

an average ∆𝜃 = 1.2° ± 0.1° , which is close to the 

values obtained from image analysis of our 

experimental set-up: 𝜃𝐿 = 23.6° ± 0.5°  and 𝜃𝑈 =24.8° ± 0.5°, leading to ∆𝜃 = 1.2 ± 0.5°. 
Using td = 1.02 s, 𝜃𝐿 = 23.6° and 𝜃𝑈 = 24.8°  in Eq. 

(4) yields the average distance of particle travel during 

an avalanche of s ≈ 55mm. If particles travel in single 

avalanche from the top to the bottom, the mean 

distance particles travel directly down the inclined free 

surface would be s*=2D/3=95 mm (see Fig. 1).  

Therefore, our result suggests that the particles 

experience around 2 avalanches on average at they 

travel from the top to the bottom of the drum. This is 

in line with the PEPT study of Lim. et al. [11], but at 

odds with the single avalanche assumption in the 

models of Henein et al. [9] and others [3, 10]. 
Fig. 6(c) shows that the particle fluctuation speed of 

the avalanches, 𝛿𝑣𝑝2, for point ○A  and ○B  are normally 

distributed also, but the averages are very different. 
This is indicative of a much higher collision 

frequency for the grains at the bottom of the free 

surface compared to the top. It also agrees with the 

flow imaging analysis of granular materials in a 2D 

drum under the rolling regime [33] and discrete 

element modelling results [34, 35]. 
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Fig.6 The comparison of the distributions of the following 

obtained for point ○A  (black) and ○B  (gray) in the drum when 

rotating at a speed of 0.15 RPM: (a) the rest time, tr, (b) the 

avalanche duration time, td, and (c) the peak of the particle 

fluctuation speed of the avalanches, 𝛿𝑣𝑝2 . The data was 

accumulated from 424 separate avalanches events over 1000 s. 

The solid curves represent the best fit of a Gaussian distribution 

to the experimental data, with the averages and standard 

deviations indicated in Table 1. 

 

Table 1 The averages and standard deviations of the Gaussian 

distributions of the td, tr and 𝛿𝑣𝑝2. 

Avalanche 

characteristic 
Position Average 

Standard  

deviation 

tr 
○A  1.32 s 0.11 s 

○B  1.31 s 0.12 s 

td 
○A  1.02 s 0.07 s 

○B  1.03 s 0.08 s 𝛿𝑣𝑝2 
○A  0.95 mm2/s2 0.04 mm2/s2 

○B  1.18 mm2/s2 0.05 mm2/s2 

 

Fig. 7 shows the peak of particle fluctuation 

velocity of the avalanche, 𝛿𝑣𝑝2 , against the 

corresponding duration time td at point ○A  in the drum 

when rotating at a speed of 0.15 RPM. This indicates 

that these two avalanche parameters are negatively 

correlated: higher particle fluctuation velocity tends to 

lead to shorter avalanches (i.e. higher dissipation leads 

to faster ‘cooling’). This is in line with previous study 

of Fischer et al. [5] where it was observed that 

avalanches that start at a high angle tend to stop at a 

low angle in a shorter time. 
  

 
Fig. 7 The peak of the particle fluctuation velocity, 𝛿𝑣𝑝2 , vs. 

corresponding duration time, td, for each of the 424 avalanches 

observed at point ○A  in the drum when rotating at a speed of 

0.15 RPM (open circle) and the fit to this data (solid line). The 

horizontal and vertical dashed line represents the mean 𝛿𝑣𝑝2 and 

td. 

 

Fig. 8 shows the normalized power spectrum 

density (NPSD) of the particle fluctuating velocity, 𝛿𝑣2, of the granular flow and the best Gaussian fit to 

the peak data. It is clear that the temporal particle 

fluctuating velocities of the granular materials in the 

drum is periodic, with the first harmonic being around 

0.42 Hz (equal to a period of 2.38 s), which 

corresponds very well with the average period of the 

avalanches (i.e. td + tr = 2.34 s). This suggests that the 

PSD may be an easier and faster way of obtaining the 

avalanche period than through the analysis of the 

distribution of the temporal 𝛿𝑣2  obtained from the 

likes of Fig. 5. 
 

 
 

Fig. 8 (Color online) Normalized power spectrum density of 

the 𝛿𝑣2 represented by grey (red online) curve measured in 

1000 s, with frequency, f, reduced from 0.1 to 1 Hz. The black 

dash curve represents the Gaussian fit to the peaks of the data.  

 

B. Variation of avalanches statistics with drum 

speed 
Fig. 9(a) shows the comparison of the average rest 

times, tr, and the average avalanche duration time, td, 

for the point ○A  with drum rotational speed and the 

related Froude number (Fr), which is defined as 𝐹𝑟 = 𝜔2D 2𝑔⁄ . As can be seen from this figure, the 

average rest time under the slumping regime decreases 

with increasing drum rotational speed according to 

(coefficient of determination, R
2
=0.99)  𝑡𝑟 = 0.024 𝜔⁄ − 0.23                    (5) 

Using this in Eq. (3) indicates that ∆𝜃 is not constant 

but, rather, decreases linearly with rotational speed as 

shown in Fig. 9(b). This has an important implication 

for the wedge model [12, 13], where this parameter is 

the only input (i.e. the method here can form the basis 

for application of this model to study influence of 

rotational speed on solid mixing).  Fig. 9(a) shows that 

the duration, td, increases linearly with the rotating 

speeds (R
2
=0.99) as per 𝑡𝑑 = 9.36𝜔 + 0.87                    (6) 
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Fig. 9 (a) The comparison of the average rest time, tr, (open 

circles) and the average avalanche duration time, td, (triangle) vs. 

drum speed and Froude number, along with the best reciprocal 

law to tr  (solid line), and line fit to the td (dash line) for the 

point ○A . (b) The variation of ∆𝜃 with the rotating speeds. Error 

bars are standard deviations of the distribution of these 

parameters. 

 

Using this with Eq. (4) gives the following 

expression for the number of steps the particles require 

to travel from the top to the bottom of the bed free 

surface 𝑛 = 𝑠∗𝑠 = s∗0.5g(𝑠𝑖𝑛 𝜂−𝜇𝑐𝑜𝑠𝜂)(9.36𝜔+0.87)2         (7) 

Fig. 10, which shows this function for 𝜂 = 24.2° and 𝜇 = 𝑡𝑎𝑛 23.6° [8], shows that the average number of 

avalanches experienced by a particles as it moves from 

the top to the bottom of the inclined surface in the 

tumbler studied here varies from around 2 at the 

lowest speed considered to nearly 1 at the highest 

speed. 

  
Fig. 10 The variation with drum rotational speed (in the form of 

Froude number) of the average number of avalanches 

experienced by particles as they travel from the top to the 

bottom of the free surface, n, (open circle) as determined from 

Eq. (7). Gray area represents expected transition region 

according to previous study of similar systems [1, 3, 36]. 

  

Mellmann [3] argues that the slumping-to-rolling 

transition occurs when tr = td, which corresponds to 

when the shear wedge OAB in Fig. 1 can empty itself 

as fast as it is filled anew. Fig. 9(a) shows that this 

simple criterion is satisfied at about 0.18 RPM. This is, 

however, at odds with the visual observations here, 

where the slumping regime prevailed up to about 0.38 

RPM, the highest rotation speed accessible with the 

apparatus used here. This discrepancy may have its 

origins in the assumption that a particle requires to 

undergo just one avalanche to pass from the top to the 

bottom of the free surface, which is at odds with our 

experiment as well as that of others [11].  

More generally, the literature [1, 3, 36] suggests the 

slumping-to-rolling transition will occur for Froude 

numbers between 110
-5

 to 210
-5

, which is shown as 

a grey area in Figures 10 and 11. Interestingly, this 

figure indicates that the average number of avalanches 

experienced by particles as they travel from the top to 

the bottom of the bed approaches unity in this region. 

However, the transition from slumping-to-rolling 

regime is fuzzy [36], with documented temporal 

intermittency between discrete avalanche and 

continuous flow at the transition regime [37]. Further 

studies are planned in this region to elucidate if this 

parameter does indeed become unit at the start of this 

transition region.   

Fig. 11 shows the variation of the slumping 

frequency [1], fsl, the inverse of the sum of tr and td as 

obtained by the PSD, increases with the rotating 

speeds. The trend of the frequency is very similar to 

the measurement by Henein et al [1]. Using the 

relationship that fsl =1/(tr + td), and the Eq. (5) and (6), 

we obtain the relation of fsl with the rotating speed as 𝑓𝑠𝑙 = 19.36𝜔+0.024𝜔−1+0.64                    (8) 

which is represented by the solid line in Fig. 11. It is 

clear that the calculated variation of the slumping 

frequency with the rotating speeds fits our 

measurements very well. Extrapolating this 

relationship indicate that the slumping frequency 

should become constant in the transition region. 

Further studies are planned in this region to confirm 

this finding. 

 
Fig. 11 The slumping frequency, fsl, (open circle) vs. rotating 

speed. The solid line represents the calculated frequency using 

Eq. (8) with R square of 0.99 to the measured value. Error bars 

are standard deviations of the slumping frequency. Gray area 

represents expected transition region according to previous 

study of similar systems [1, 3, 36]. 

 

Figure 12 shows that the comparison of the averages 

of the peak of particle fluctuation speed of 
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avalanche, 〈𝛿𝑣𝑝2〉 , from all the avalanches over 1000s 

with the rotating speeds for the point ○A  and ○B . It is 

clear that both of the 〈𝛿𝑣𝑝2〉 increases linearly (R
2
=0.99) 

with rotational speed   〈𝛿𝑣𝑝2〉 = 𝑘𝜔 + 𝑐                      (9) 

where k = 3.25 & 4.11 and c = 8.6 & 10.51 for point 

○A  and ○B  respectively. This shows that the 

instantaneous particle fluctuation speed of the granular 

flow during avalanche increases linearly with the drum 

speeds which is in line with our previous study [21] 

that the average granular temperature scales with 

forcing velocities in various granular systems, 

although these systems were time independent whilst 

it is time-dependent here. 
 

 
Fig. 12 Comparison of the average of the peak of particle 

fluctuation speed, 〈𝛿𝑣𝑝2〉, of the avalanches for the point ○A  (top) 

and ○B  (bottom) vs. the rotating speeds and Froude number. The 

solid and dash line represents the best line fitting to the data for 

the point ○A  (top) and ○B  (bottom) respectively. 

 

IV. CONCLUSION 

In this paper we used speckle visibility spectroscopy 

(SVS) to the resolve in time avalanching of granular 

material down the surface of a granular bed in a 

rotating drum. These experiments lead to the following 

observations: 

(1) The avalanche processes at the top and bottom 

of the free surface are periodic with a duration, td, and 

rest time, tr, that are uniformly distributed with similar 

means and standard deviations. These avalanche 

characteristics appear to not vary with position on the 

inclined free surface. 

(2) The peak particle velocity fluctuation, 𝛿𝑣𝑝2, of 

the avalanches are similarly normally distributed, but 

the average at the bottom is substantially greater than 

that at the top of the free surface. This avalanche 

characteristic appears to vary substantially with 

position on the inclined free surface. 

(3) The rest time between avalanches, tr, decreases 

with increasing rotational speed. Combining this 

observation with the relation of tr suggested by the 

model of Henein [9] leads to observation that the 

difference in the upper and lower angles of repose, ∆𝜃, 

decreases linearly with increasing rotational speed. 

(4) The avalanche duration, td, increases linearly as 

a function of the drum speeds. Using the Henein et al. 

[9] relation for tr and the distance that particles move 

during an avalanche, a scaling relation between the 

mean number of avalanches required to traverse the 

free surface and the drum speed is isolated. 

(5) The commonly used criterion for transitioning 

from the slumping to the rolling regime, namely when 

tr = td, appears to be incorrect, probably due to 

incorrect assumption that a particle experiences just 

one avalanche as it transitions from the top to the 

bottom of the bed free surface in the drum 

(5) The slumping frequency increases with the 

rotating speed before becoming constant in the 

transition region between slumping and rolling flow.  

(6) The averages of the peak fluctuation speed of 

the avalanche, 𝛿𝑣𝑝2 , increases linearly with the 

rotational speed of the drum. 
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