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Avalanche effects in phase transition modulated thermal 
convection: A model of Earth's mantle 

L. P. Solheim and W. R. Peltier 

Department of Physics, University of Toronto, Toronto, Ontario, Canada 

Abstract. We describe the development and application of an anelastic, multiphase 
model of the mantle convection process in axisymmetric spherical shell geometry. The 
radial structure of the anelastic reference state has been determined on the basis of 

elastic wave propagation data, primarily those used to construct the preliminary 
reference Earth model (PREM). The multiphase model is employed to examine the 
extent to which the pressure-induced phase transitions in the planetary mantle may 
conspire to cause the flow to become radially layered. We find that the endothermic 
phase transition at 670 km depth profoundly influences the radial mixing process in the 
high Rayleigh number regime. In the Earth-like region of parameter space the flow 
exhibits a low-frequency quasi-periodicity characterized by rather long periods of 
relative quiescence in which the circulation is predominantly layered followed by short 
periods of intense radial mixing across the endothermic horizon. These "avalanche" 
events are controlled by the periodic instability of the internal thermal boundary layer 
that develops on the endothermic horizon when the flow is layered. This hydrodynamic 
process appears to have important implications for the understanding of a number of 
characteristics of planetary evolution, especially thermal and chemical history. 

Introduction 

Many different spherical shell models of the thermal 

convection process have been presented in the recent liter- 

ature that have been employed to study various aspects of 

mantle mixing [Hsui et al., 1972; Young, 1974; Weir, 1976, 

1978; Schubert and Zebib, 1980; Zebib et al., 1980, 1983; 

Baumgardner, 1985; Zebib et al., 1985; Machetel and Rab- 

inowicz, 1986; Glatzmaier, 1988; Machetel and Yuen, 1989; 

Bercovici et al., 1989; Solheim and Peltier, 1990; Glatzmaier 

et al., 1990; Machetel and Weber, 1991]. Because the 

viscous fluid dynamics of this region of the planetary inte- 

rior, roughly the outer 50% by radius, is intimately involved 

in the process of continental drift, it is not surprising that the 

subject continues to inspire such a high level of research 

activity. Despite this activity, there remain a number of key 

issues which still need to be satisfactorily addressed. These 

issues include the fundamental question of the role of phase 

transitions in the mantle general circulation, especially con- 

cerning the degree of radial layering that may result from 

their presence. Our purpose in this paper is to describe an 

axisymmetric, anelastic model of the thermal convection 

process with which it has been possible to simulate the 
influence on the circulation of either or both of the major 

solid-solid phase transformations that exist at 400 km and 

670 km depth in the planetary mantle. The time independent, 

spherically averaged anelastic reference state is derived on 

the basis of best current estimates of the radial dependence 

of the appropriate thermodynamic parameters, primarily 

from the preliminary reference earth model (PREM) of 

Dziewonski and Anderson [1981]. Previous versions of our 

model have been employed to study various aspects of the 
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mantle convection process; in particular, the nature of the 

chaotic mixing that characterizes the dynamical state in the 

regime of high Rayleigh number [Solheim and Peltier, 1990]. 

The major seismic discontinuities that exist in the Earth 

occur at depths of 400 km and 670 km. These discontinuities 

have been shown to be a consequence of solid-solid pres- 

sure-induced phase transformations of the mantle mineral- 

ogy. The 400-km boundary is known to be due primarily to a 

transformation of the olivine constituent, (Mg(1-x)Fex)2 
SiO4, which is the dominant material of the upper mantle 

with x • 0.1, to the spinel phase. This high-pressure phase 

of olivine was first reported by Ringwood and Major [ 1966, 

1970] and Akimoto and Fujisawa [1966]. Liu [1975] first 

showed that the spinel structure transforms further at higher 

pressure to a mixture of magnesiowfistite, (Mg,Fe)O, and 

perovskite (Mg,Fe)SiO3 at temperatures and pressures that 
obtain near 670 km depth in the mantle via the reaction: 

(Mg,Fe)2SiO4--> (Mg,Fe)O + (Mg, Fe)SiO3. 

The 400-km transformation is exothermic, having a positive 

Clapeyron slope/31 between + 2.0 MPa/K and + 3.0 MPa/K 
[Akimoto et al., 1976; Jeanloz and Thompson, 1983; Weidner 

et al., 1984; Weidner, 1985; Akaogi et al., 1989; Katsura and 

Ito, 1989] and takes place over a depth range of 18 ___ 5 km 

[Akaogi et al., 1989], while the 670-km phase change is 

endothermic, having a negative Clapeyron slope/32 between 
-2 MPa/K and -3 MPa/K [Liu, 1976; Ito, 1977; Jeanloz and 

Thompson, 1983; Ito and Takahashi, 1989] and occurs over 

a much narrower depth range -<4 km [Ito and Takahashi, 

1989]. More recent results indicate that the value of the 670 

km Clapeyron slope may actually be as negative as -4.0 --- 
2.0 MPa/K [Ito et al., 1990]. 

There are, in fact, a number of transformations of upper 

mantle minerals that occur above 670 km depth. Along the 

geotherm (the depth dependent azimuthaly averaged temper- 
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Phase boundaries for the a -•/3 -• y transitions 
of (Mg0.89Fe0.11)2SiO 4 (thin solid lines) are overlain on two 
model geotherms (heavy solid lines). The phase boundaries 
are from Akaogi et al. [ 1989] and the geotherms are from two 
simulations performed with the multiphase model of chapter 
3, with Ra = 107,/31 = +3.0 MPa/K and/32 = -2.8 MPa/K. 
In one simulation there was no internal heating (left curve) 
and in the other (right curve), internal heating corresponding 
to /x = 10 was used. The geotherm in the real Earth likely 
falls somewhere in between the two curves shown. 

ature), olivine (a) transforms first to modified spinel (/3) 
through a mixed phase region consisting of a + /3, then to 
spinel (y) through a mixed phase region of/3 + y, in the 
transition zone of the mantle. There is, however, a region in 

P-T space for a + y through which cold sinking thermal 

plumes may pass. The phase boundaries for these transfor- 

mations have been computed for (Mg0.89Fe0.1•)2SiO 4 by 
Akaogi et al. [1989] and are shown in Figure 1 along with two 

model geotherms from the hydrodynamic simulations to be 

discussed below. (Mg0.89Fe0.•)2SiO 4 is representative of 
mantle olivine [Ringwood, 1975]. The light solid lines of 

Figure 1 represent the phase boundaries, and the areas 

between these lines are labeled with the appropriate phases. 
The two heavy solid lines illustrate two temporally averaged 

geotherms from our simulations in which the Rayleigh num- 

ber Ra = 107, /3• = +3.0 MPa/K and/32 = -2.8 MPa/K. 
The two simulations that result in these geotherms differ in 

that one corresponds to a case in which the fluid is heated 

entirely from below (the low-temperature curve) and one has 

internal heating corresponding to /x = 10 (the high- 

temperature curve), where/x is a parameter to be defined in 

what follows that measures the fraction of the net heating 
that drives the convective circulation that is derivative of 

internal sources as opposed to that applied through the lower 

boundary. With/x = 10, as will be discussed in more detail 
below, roughly 50% of the heating is from below and 50% is 

from within. The geotherm in Earth's mantle likely lies in the 

region between these two curves. Although the 400-km and 

670-km seismic discontinuities are by far the strongest 

reflectors of seismic energy, other discontinuities exist 

through the so-called transition zone that is bracketed by 

these horizons. In particular, Shearer [1990] has found 

evidence for the existence of discontinuities at 410 km, 520 

km, and 660 km using stacked images of long-period seismic 
data. The existence of a seismic reflector at 520 km can be 

explained by the presence of the/3 -•/3 + y -• y transition 
that appears at that depth (see Figure 1). In fact, it would be 

difficult to accept Figure 1 as a correct representation of the 

mantle phase diagram if this discontinuity did not appear in 
the seismic data. The fact that Shearer determines the 

boundaries of the transition zone to be at 410 km and 660 km 

rather than at 400 km and 670 km, the levels to which they 

correspond in PREM, provides some indication as to the 

uncertainty of these average depths. The coincidence of 

three seismic reflectors at the calculated positions of the 

three transformations of olivine through the transition zone 

suggests that Figure 1 provides a rather accurate represen- 

tation of the mantle above 670 km depth and that the 

geotherm does lie in the intermediate region between the two 

geotherms shown in Figure 1. 

It was knowledge of these phase equilibria that first 

sparked speculation as to whether the mantle may be con- 

vecting in two layers, one above 670 km and one below 670 

km. Various geophysical observations [Peltier and Jarvis, 

1982] have been employed to argue in favor of either the 

layered scenario or the "whole mantle" scenario. Propo- 
nents of the layered model have usually argued that the 

670-km seismic discontinuity was a consequence of a chem- 

ical difference between the upper and lower mantle as well as 

corresponding to the spinel --> post-spinel phase change. The 

primary reason for this was that the seismically observed 

thickness of this boundary is only a few kilometers, and it 

was thought that this was much too narrow to be caused 

entirely by an equilibrium phase change. It has recently been 

demonstrated, however, that the phase loop thickness for 

the 670-km phase change is in fact only a few kilometers [Ito 

and Takahashi, 1989], as mentioned above. There appears to 
be no good reason to believe therefore that the 670-km 

seismic horizon is associated with any effect other than that 

due to the spinel to magnesiowQstite and perovskite phase 

transformation. Even though the 670-km boundary may have 

no change of mean atomic weight across it, it is nevertheless 

possible that an endothermic phase change may strongly 

inhibit the advection of material across it. This is, in fact, 

very likely to be the state of the present-day earth as we shall 

demonstrate in what follows. Previous preliminary analyses 

of this issue have been presented by Machetel and Weber 

[1991] for the axisymmetric spherical shell whose results 

were obtained for a Rayleigh number of approximately 106, 
well below that for the modern Earth (107) and by Peltier 
and $olheim [1992] in the same geometry for a Rayleigh 

number of 107 . The former analysis revealed only weak 
layering with a Clapeyron slope for the endothermic transi- 

tion of-3 MPa/K, whereas the latter obtained quite strong 
layering with the Clapeyron slope near this same value. The 

recently published results on the impact of the endothermic 

transition in three-dimensional spherical geometry by Tack- 

ley et al. [1993] were obtained for thermal forcing very close 

to that employed by Machetel and Weber and the degree of 

layering revealed by the analysis is much less pronounced 

than that obtained by Peltier and Solheim at the higher 

Rayleigh number, suggesting that the effect of the geometri- 

cal difference may be modest. The issue of the degree of 

layering characteristic of the modern earth is important and 

therefore warrants detailed analysis in the context of the 

axisymmetric spherical shell. Our arguments are based upon 

detailed numerical simulations with a new multiphase con- 
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vection model, and the results are employed to determine 

the influence on layering of the main control variables of the 

model which include the Rayleigh number Ra, the internal 

heating parameter tz, as well as the phase loop thicknesses 

and the Clapeyron slopes of both the 400-km and 670-km 

phase transformations. We document the specific circum- 

stances under which layering arises and describe the time 

dependence of some of these highly nonlinear flows. This 

time dependence is of some interest because it displays a 

quasi-periodicity in which certain "avalanche" events re- 

peat themselves every 600-800 m.y. in our axisymmetric 

model. We begin with a complete description of the mul- 

tiphase model and continue with a detailed analysis of the 

influence of individual parameters on the simulated flows. 

Multiphase, Anelastic Convection Model 

The system of equations we shall employ to represent the 

thermal convection process in a multiphase mantle is based 

on the usual field equations describing the pointwise conser- 

vation of mass, momentum, and internal energy for a New- 

tonian fluid (equations (1)-(3)), completed with an appropri- 

ate equation of state (4): 

Op 
--4- V. (pu) = 0 (1) 
Ot 

Du 
4 

• •tt = •- vp - v x (nv x u) + •v(nv. u) (2) 

DT Dp 
aT • = V. kVT + PX pCp Dt Dt 

D 

4- ß 4- /9 •tt (/1F1 4-/2F2) (3) 

P = Pr 1 - a(T- Tr) + •TT (p --Pr) 

4- Ai(F 1 - Frl ) 4- A2(F 2 - Fr2 ). (4) 

In this system of equations, p, u, p, and T are density, 

velocity, pressure, and temperature, respectively, while #, 

•, c v, a, k, and Kv are gravitational acceleration, molecular 
viscosity, specific heat capacity at constant pressure, ther- 

mal expansion coe•cient, thermal conductivity, and isother- 

mal bulk modulus, respectively; X is a constant heating rate 

per unit mass, and ß represents the viscous dissipation rate 

per unit volume of fluid. For spherical axisymmetric geom- 

etry the dissipation function ß has the explicit form 

2 10Uo Ur 2 Uo cot 0. 
F F 

OUo Uo 1 OUr 1 
+ + - IV. u]: Or r r O0 • . (5) 

The last term on the right-hand side of (3) accounts for the 

release (absoftion) of latent heat during a change of phase. 

The terms l I and l 2 are the energy per unit mass released (or 
absorbed) as the fluid changes from phase 1 to phase 2 

(olivine-spinel) or from phase 2 to phase 3 (spinel-perovskite 

and magnesiowfistite), respectively. The phase density func- 

tions Fl(r, 0, t) and F2(r, 0, t) are the fractions of phase 2 
or phase 3, respectively, that exist at any position in the 

mantle at any time and are specifically represented as 

Fi=• 1 +tanh (rpi(O, t)-r) . (6) 

The form of F i (equation (6)) is chosen following Richter 
[1973] and allows for a finite depth (determined by the 

parameter hi) over which the phase change takes place; 

rpi(O, t) is the radial position of the ith phase boundary at 
azimuthal location (0) and time (t), while d is the depth of the 

convecting region, here the mantle thickness. Note that 

when r = rp•, F i = 1/2. Thus the location of a given phase 
boundary is defined to be that point at which 50% of each 

phase is present. 

The equation of state (4) is simply a linear Taylor expan- 

sion of the density about a background state with the last two 

terms on the fight-hand side added to incorporate the density 

variation due to the phase changes. The spherically averaged 

reference state has density pt(r), temperature Tr(r), and 

pressure pt(r) and is characterized by the phase density 

functions Fr•(r) and Fr:(r ). A 1 = P2 - Pl and A 2 = P3 -- P2 
are the differences in densities between phase 2 and phase 1 

across phase boundary 1 and between phase 3 and phase 2 

across phase boundary 2, respectively. 

The anelastic-liquid approximation [e.g., Jarvis and Mc- 

Kenzie, 1980] is applied to the system (1)-(4). This involves 

setting 0p/0t = 0 in 1, assuming •, cp, a, k, KT, and • 
(thermal diffusivity) to be known functions of radius and 

replacing p by Pr everywhere in (1)-(3) except in the body 
force term of (2). Because the mantle has essentially infinite 

Prandtl number, the ine•ial force term in the momentum 

conservation equation may be neglected [Peltier, 1972]. 

Furthermore, owing to the extremely small velocities asso- 

ciated with the mantle convection process, the pressure 

distribution is very nearly that of a fluid in hydrostatic 

equilibrium and we may then safely assume 

Dp 
aT • -aTp9u r. (7) 

Dt 

These approximations have been discussed in greater detail 

by $olheim and Peltier [1990]. 

We nondimensionalize the system (1)-(4) according to 

relations (8), in which the subscript zero identifies a refer- 

ence value, d -- 2.89 x 10 6 m is the depth scale (mantle 
thickness), and Tc =Tcmb - Tsur is the temperature scale. 

To P oc• oTcgo d2 
r = dr', t = t', u = u', 

P oc• oTcg o d •q o 

T =TcT' + T O , P = Pogodp ', P = POP', 

ko 
a = aoa', • = •', k = ko k', (8) 

POCpo 

KT = pogodK't, g = gog', Cp '-- CpoCp, 

li = godl'i, Ra = 

2 

c• oTcgod3 p oCpo 
ko•q o 

Equations (8), together with the approximations discussed 

above, transform (1)-(4) into the nondimensional system 
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(9)-(12). After dropping the primes denoting nondimensional 
values we obtain: 

V' (pr u) = 0 (9) 

4 U} (10) 0 = -pg• - Vp + aoT•(V x (V x u) + •V. 

Dt aoTcc p Dt (/1F1 + /2F2) •aa V2T4 k Or 
tx r o CI> 

+ •q- rur(T + To) (11) 
c pR a p rC p 

{ 1 P = Pr 1 - aoT•a(T- Tr) + •TT (p --Pr) 

+ A I(F 1 - Fr• ) + A2(F 2 - Fr2 ). (12) 

This introduces three additional nondimensional groups be- 

sides the Rayleigh number R a; the internal heating param- 

eter/•, the dissipation function [Peltier, 1972] r(r), and the 
reference value for the dissipation function r0, 

PoX d2 goaod ga 
/x - ro - r(r) = ro ß (13) 

Cp koTc %0 

Numerical Formulation of the Model Equations 

In axisymmetric spherical geometry the velocity field, u 

(Ur, Uo, 0), may be written in terms of a streamfunction 
such that (9) is satisfied identically, namely, 

Ur = 2 , Uo = •. (14) 
p rr sin 0 O0 p rr sin 0 Or 

From the definition of the vorticity field w = V x u = (0, 0, 

w) we then have 

02½ 10pr c•½ 1 02½ cot 0 0½ 
+ = --Pr rw sin 0. 

Or2 Pr Or Or r 2 c30 2 r 2 O0 
(15) 

Operating on (10) with V x and transforming the vorticity to 
w - wr sin 0 delivers the following partial differential 

equation for w' 

02w 1 02w cot 00w g sin 00p 

Or 2 • r 2 002 r 2 O0 aoT c O0 (16) 
This vorticity transformation renders identical the operators 

that must be inverted to obtain 0 and w, thus reducing 

memory and cpu time requirements in the numerical solu- 
tion. With the aid of (12) we may rewrite (16) as 

02W gPr Ow 
2 + 

Or K T Or 

1 02w cot 00w 

r 2 002 r 2 O0 

= g sin 0 (p rO• 
OT A1 0F1 A2 0F2 

O0 aoT c O0 aoT c O0 

4 OPrOUr) 3KT •' O• ' 

Inspection of (11) reveals that there are two distinct terms 
that involve total time derivatives. Defining a new "temper- 
ature" as 

,r 0 

A = T- (/1F1 +/2F2) (17) 
aoTccp 

reduces to one the number of terms in the energy equation 

that involve an explicit time derivative. Because this trans- 

formation eliminates explicit time derivatives on three func- 

tions (derivatives of T and F1,2) in favor of an explicit time 
derivative on only one function (the "transformed tempera- 

ture" A), it eliminates the numerical problems that would 

otherwise be associated with the advection of three separate 

quantities. Eliminating T in favor of A, we may rewrite the 
system (17), (15), and (11) (after some algebraic manipula- 
tion) into the form 

02w gPr OW 1 02W cot 00W 4g Opr 
Or 2 + • 2 2 2 -- K T Or r O0 r O0 3KTp r Or 

.{1 02½ r 2 002 cot 0 0•} r 2 0 ' q- /9 rO•g sin 0 

OA 2hlFl(1 - F1) (roll O0 aoT c Cp A1 ) Orp• pr a O0 

2h2F2(1 - F2) (r0/2 a o rc cp /•2 ) Orp21 (18) 

020 10pr 00 1 020 cot 0 00 

+ 2 2 r 2 Or2 Pr Or Or r O0 O0 
= --Wpr (19) 

OA K 

ot Ra 
•_ • D2A _ 

J(A, ½) I• r oCI> 
+ • q- 

p rr 2 sin 0 cpRa p rCp 

r(A + T o) 0½ 

pr r2 sin 0 00 
+ (20) 

in which J( , ) = 0( 

operator, D 2 is the operator 
)/O(r, O) is the Jacobian 

D2_=•+ + + q 
Or 2 [c •rr •rr •-2 •--'• r 2 O0 

and 

aoTccp (/1F1 +/2r2) Idp ; ; )Ur 

Ra Or 2 k Or Cp Or] Cp Or/ 

+ cot 0 
+2/lhlFl(1-F1)•aa • 002 O0 

1 Ok 

kOr 
0_c_f.l + 2h (1 - 2r) 
Or/ 1 
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ß + 2t2a2r2(- r2) Ra 

ß •-•-+cot000J • • c• 5 

By incorporating phase boundaries into the model, we 

have introduced two additional unknowns, rpl(O, t) and 
rp•(O, t), which together with w, •, and A constitute a total 
of five dependent variables. We therefore require two further 

equations (besides (18)-(20)) to complete the system. These 

arise from the fact that the position of a phase boundary is 

determined by its Clapeyron slope. If we assume a linear p-T 

relationship across a phase boundary (i.e., a constant Clap- 

eyron slope for each transition), then p = P0 + •T, where 
P0 is the zero temperature pressure and • = dp/dT is the 
Clapeyron slope. We can write this in dimensionless form, 

for the ith phase boundary, as 

P = Po• + •i( T + T0) i= 1, 2. (21) 

Here, T0 is the nondimensional (scaled by T•) surface 
temperature. We may fu•her rewrite (21) in terms of the 

transformed temperature A (equation (17)) and replace p(r, 

0, t) by p•(r) (a reasonable approximation for the mantle). 

Then keeping in mind that (21) is only satisfied at the position 

of the ith phase boundary and that F i = 1/2 when r = rp,, we 
obtain the following equations which are valid at the position 

of phase boundary 1 and phase boundary 2, respectively' 

[ •l A + T0 + [/1 + 12 + 12 tanh ((rp•- rpl)h2)] 
2aoTccp 

+ P0 - P• = 0, (22) 

•2 A + T0 + [/1 + 12 + 11 tanh ((rpl- rp)hl)] 
2aoTccp 

+ P0 - P• = 0. (23) 

At a pa•icular azimuthal location 0 and time t, rpl and rp• 
will be the zeros of the coupled system (22) and (23). If only 

phase boundary 1 is present, then we may set 12 = 0 and 
is the zero of (22). Similarly if only phase boundary 2 is 

present, then we set 11 = 0 and rp• is the zero of (23). 
It will be noted that •i and I i are not independent 

parameters but rather are related through the (nondimen- 

sional) Clapeyron equation 

p 2l i 
• = (24) 

(T + To)• i 

in which p and T are the density and temperature at the 

position of the ith phase boundary. In practice, only •i WaS 
specified as a parameter of the model, and the I i were 
calculated using (24) and the average density and tempera- 

ture at the depth of the ith phase boundary. 

The system (18•(20), (22), and (23) was solved numeri- 

cally on Cray XMP/2-8 and Cray YMP/4-64 supercomputers 

using a multigrid algorithm written by J. Adams at NCAR to 

invert the elliptic operators in (18) and (19), while a modified 

Crank-Nicolson scheme (similar to that discussed by Sol- 

helm and Peltier [1990]) was used to advance A(r, O, t) in 

time using (20). The zeros of (22) and (23) were determined 

using the Levenberg-Marquardt algorithm [Morg et al., 

1980] for the coupled system or Milllet's [1956] method in 

either of the single-phase boundary cases. With each new 

A(r, 0, t), a new right-hand side of (18) can be formed; thus 

a new w and • can be calculated from (18) and (19). This in 

turn is used to update A, and so the system is stepped 

through time. The right-hand side of (18) also contains • 

which means that (18) and (19) must be solved iteratively at 

each time step until a self-consistent stream function and 

vorticity pair are determined. Note that the effect of either 

phase boundary may be eliminated simply by setting I i = A i 
= 0. Similarly, the latent heat effects or buoyancy effects of 

either phase change may be eliminated by setting I i or A i to 
zero independently. In what follows we will not be able to 

explore the full range of problems to which this model is 

applicable but will focus our attention on the impact upon 

simulated flows of variations in the primary phase transition 
related variables. 

Boundary Conditions 

Since there can be no mass flux across any external 

boundary, the kinematic condition • = 0 obtains along all 

four boundaries of the spherical axisymmetric model (r = 

rcmb, rs.r, and O = O, •r). In order for the vorticity to remain 
finite along the axes we insist that w = 0 on O = O, •r. The 

condition of zero tangential stress 

- r +- =0 

2 •rr r 

together with the relation between w and velocity 

Or O0 

applied along a boundary on which U r = 0 gives the 
boundary condition on w at a free slip radial boundary, 

either the core-mantle boundary or the surface, as 

2 
w = . (25) 

rp r Or 

The boundary conditions on A are derived from the 

conditions on T and rp,. Owing to the axial symmetry 

OT Ot'p 1 Ot'p 2 

00 00 00 
l= 0 

along the axes 0 = O, vt. Therefore 

OA OT 2r 0 

O0 O0 aoTcc p 

ß /lhlFl( 1- F1) -•-+/2h2F2( 1 -['2) 00 j 0 
(26) 
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Table 1. Definition of Reference State Curves 

f a 0 a 1 a2 a 3 Reference Value 

Pr 4 X 103 kgm -3 
lm 1.975750 -0.708466 0.267906 -0.068475 

tz 2.414630 -0.718113 0 0 

um 1.566632 -0.329520 0 0 

g 10ms -2 
lm 3.067837 -3.411438 1.854549 -0.332736 
tz 1.097924 -0.048916 0 0 

um 1.204020 -0.100267 0 0 

Ks pogod 
lm 12.217949 -7.449310 2.282883 -0.500992 

tz 14.211461 -6.083397 0 0 

um 7.584351 -2.944444 0 0 

cp 1250 J kg -1K -1 
lm 1.276325 -0.526085 0.326363 -0.0636597 

tz 0.981151 0.011989 0 0 

um 1.125889 -0.056516 0 0 

k 10Wm -1K -1 
lm 4.702851 -4.116832 1.065515 -0.051858 

tz -10.864189 24.899376 -16.390179 3.348804 

um -10.864189 24.899376 -16.390179 3.348804 

Pr 3.289767 -2.046209 0.227745 0.010324 Pogod 

The a i are nondimensional. f = ao + air + a2 r2 + a3 r3' lm, lower mantle' tz, 
transition zone; um, upper mantle. 

along the axes 0 = 0, •r. At the surface, T = 0 and at the 

cmb, T - 1 (nondimensional). We have imposed no con- 

straint on F i as rp, approaches either radial boundary, so that 
the boundary conditions on A are 

A __ 

2otoTccp(rsur) 

at the surface and 

(l• + l 2 + l• tanh [(rp•- rsur)h•] 

+ l 2 tanh [(rp2- rsur)h2] ) (27) 

•'o 

A = 1 -2øtOTcCp(rcmb) {li + l 2 + Ii tanh [(rp,- rcmb)hl] 

+ l 2 tanh [(rp2- rcmb)h2] } (28) 

at the core-mantle boundary (CMB). Note that these condi- 

tions on A may vary in space and time since rp, = r•i (0, t). 
If the phase boundaries remain sufficiently far from the 

surface or CMB ("far" depends on hi), these boundary 
values will remain essentially constant, a circumstance that 
obtains for all the numerical simulations to be described 

below. 

Spherically Averaged Reference State 

We determine the radial dependence of Pr, P r, #, and Ks 
(adiabatic bulk modulus) using PREM data [Dziewonski and 

Anderson, 1981], assume Cp to be determined by a thermal 
model [Stacey, 1977], and assume k to be determined by the 
experimental measurements of Osako and Ito [1991] for the 

lower mantle and of Kieffer [ 1976] for the upper mantle and 

transition zone. Each of these functions, excepting P r, is 
represented numerically by three distinct curves, one fit to 

the lower mantle, fire, one fit to the transition zone, ftz, and 

one fit to the upper mantle, rum' These three curves are then 
combined as follows: 

f = flm + ( ftz -- flrn) g 2 + ( furn -- ftz) g 1 (29) 

1 

gi = • [1 - tanh ((R i - r)hi)] 

gi=O 

if the ith phase boundary is not present. 

Here R• corresponds to a depth of 400 km and R2 
corresponds to a depth of 670 km. Since p r displays no large 
discontinuities, it is fit to a single curve over the entire extent 

of the mantle. This provides analytic representations for the 

reference state variables that well represent the spherically 

averaged depth variation of properties for the present-day 

Earth and are continuous at the depths of the two major 
phase changes. 

The phase loop thicknesses are controlled by the param- 

eters h i. If a phase loop thickness /i i is defined to be the 
depth range over which 95% of phase i changes to phase i + 

1, then with the scaling here employed, we have the approg.- 
imate relationship 

[in km] -• 104/hi [nondimensional] 

for values of the parameters h i used in these simulations. 
The largest values of h i employed here are h• = h2 = 400 
which correspond to a phase loop thickness of 25 km. In the 

mantle, however, the actual phase loops are much narrower, 

particularly at the 670-km phase transition; for example, 
magnesian spinel dissociates into perovskite and magnesio- 

wfistite at a pressure and temperature corresponding to 670 
km depth over a pressure interval of less than 0.15 GPa (less 

than 4 km) [Ito and Takahashi, 1989]. Twenty-five kilometer 
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Figure 2. Pictoral representation of the data in Table 1 (dashed lines) together with function values given 
by PREM (solid lines) for Pr, Pr, •/, and K s and a thermal model by Stacey [1977] (solid line) for Cp. In 
some places the dashed line is not visible because it overlays the solid line. 

phase loops are too broad to properly represent the major 
phase transitions in the mantle but are the narrowest phase 
loop thicknesses allowed at the highest numerical resolution 

achievable on the computers available to us. It is important 

to understand therefore the effect of changing phase loop 
thickness on the style of convection. 

Three other functions must be specified for use in the 

model. The thermal diffusivity K = k/PrC p is known once k, 
Pr, and Cp are determined. The coefficient of thermal expan- 
sion is related to the density in a uniphase region as: 

(30) 

if/i T (the Anderson-Gruneisen parameter) may be assumed 
independent of pressure and temperature. Anderson et al. 

[1990] and Reynard and Price [1990] suggest that li T is, in 
fact, constant over significant compressions and temperature 
variations and that /i T lies between 4 and 6 in the lower 

mantle. We have used (30) to determine a from Pr with/i T = 
5 for the lower mantle and a linear variation in a across the 

upper mantle and transition zone from 2.5 x 10 -5 K -1 at 670 
km depth to 3.0 x 10 -5 K -1 at the surface. The third 
function, the isothermal bulk modulus K T, is related to the 
adiabatic bulk modulus Ks as 

K s a2Ks T 
•=1+ 

K T pCp 

For a temperature ranging from 300 K at the surface to 4000 

K at the CMB, K s and Kr differ by a maximum of 5% but 
less than 1% over the majority of the mantle. In light of this, 
we shall set Ks = K r for the purpose of model calculations. 

For Pr, •1, KS, and c p the lower mantle data were fit to 
cubic expressions, while for the narrower transition zone 

and upper mantle the data were fit to straight lines. Because 
it displays no major discontinuities, the reference pressure 

P r was fit to a cubic. Since there is greater variability in the 
radial dependence of thermal conductivity near the surface 

(as compared to the other reference state functions), all three 

constituent curves of k were cubic expressions. Table 1 lists 

the nondimensional coefficients along with the reference 

value for each depth dependent function required to charac- 

terize the anelastic basic state. Recalling that the radius is 

scaled by d - 2.89 x 10 6 m allows one, with the informa- 
tion provided in Table 1, to determine dimensional and 

nondimensional values at any depth for any of the functions 
of the reference state. The reference state functions are also 

displayed in Figure 2 as dashed lines. The solid lines 

represent model data from either PREM [Dziewonski and 

Anderson, 1981] for Pr, Pr, KS, and g or a thermal model by 

Stacey [1977] for ce. 

Results: Layered Flows and Their Temporal 
Stability 

This section explores in detail the effects of varying the 

amount of internal heating and the Clapeyron slopes of both the 

400-km and 670-km phase transitions. This discussion is pre- 

ceded by a description of the quasi-periodicity that may be 

observed in the time dependence of partially layered flows that 

is the main new phenomenological result that our analyses 

have revealed. The range of values over which these param- 

eters are varied has been chosen to match the range ex- 

pected for these parameters in Earth's mantle. The Rayleigh 

number of Earth is near Ra - 10 7 [e.g., Solheim and 
Peltier, 1990], and all of the simulations described below 



7004 SOLHEIM AND PELTIER: MANTLE CONVECTION--AVALANCHE EFFECTS OF PHASE TRANSITIONS 

have therefore been performed for this value of the main 
control variable. 

It is nevertheless of great interest to understand the effect 

of varying R a on the propensity for layering in a given flow. 

Increasing the Rayleigh number, in fact, tends to increase 

the propensity for layering of a convective circulation when 

phase boundaries are present. This is understood to be a 

consequence of the greater phase boundary deflection in- 

duced by the larger temperature gradients that exist across 

sinking and rising plumes in the higher Rayleigh number 

fluid. Since it is the advection of ambient temperature across 

a phase boundary which is primarily responsible for the 

phase boundary deflection, plumes with a larger temperature 

gradient across them will produce larger deflections of the 

phase boundary. As explained in more detail below, greater 

phase boundary deflection at the endothermic 670-km tran- 

sition results in a greater propensity for layering in the fluid. 

Increasing the Rayleigh number while keeping all other 

parameters unchanged therefore results in greater layering in 

the mantle. This is significant because, in the early Earth, the 

Rayleigh number was much higher than it is currently 

[Sharpe and Peltier, 1978]. This implies therefore that the 

degree of layering was quite likely much higher in the past 

than it is at present. 
A diagnostic which will be employed below in order to 

quantify the degree of layering in a given flow is the relative 

radial mass flux diagnostic F m that we define as follows: 

(P rlUr[> 
Fm(r, t)= (31) 

fr rsur [1/(rsur - rcmb)] {Pr Url> dr 
cmb 

Here {prlttrl) represents the absolute value of the mass flux 
averaged over a surface of constant radius. This is nondi- 

mensionalized by the globally averaged absolute mass flux 
such that 

r•UrFm dr-- 1. cmb 

The value of F m at the surface and core-mantle boundary is 
always zero, and it is greater than zero between these 

boundaries. This results in a characteristic quasi-parabolic 

shape for Fm. In simulations which include phase bound- 
aries at a depth (such as 670 km), where the average mass 

flux is reduced, a local minimum develops in the curve 

Fro(r). The value of F m at this local minimum is indicative of 

the degree of layering in the flow at a particular time. Thus 

this relative mass flux function is useful for quantifying the 

degree of layering in simulations which contain phase bound- 

aries. Moreover, because F m is normalized such that the 
area under it is always one, it may be used to make 

comparisons between simulations from different regions of 

parameter space. Its utility in this regard has been demon- 

strated previously [Peltier and Solheim, 1992; Solheim and 

Peltier, 1993]. 

Temporal Variability in Partially Layered Flows 

Adjusting the parameters so that the physical configura- 

tion is "Earth-like", we inevitably discover the flow pre- 
dicted by the model to exist in what we shall term a 

"partially layered" state (as previously noted in the very 

cursory analysis of both Machetel and Weber [1991] and 

Peltier and $olheim [1992]) that displays a very interesting 

characteristic time dependence. We begin this discussion by 

describing a simulation at a Rayleigh number of 107, with no 
internal heating, Clapeyron slopes of +3.0 MPa/K for the 

400-km phase change and -2.8 MPa/K for the 670-km phase 

change, and phase loop thicknesses of 50 km at both the 

400-km and 670-km phase boundaries. This simulation is 

employed to illustrate the nature of the time dependence in 

such Earth-like flows, a time dependence characterized by 

fluctuations between highly layered and essentially whole 

mantle styles of mixing. In this simulation and in all those 

discussed below the fractional density change across the 

olivine-spinel transition is 0.05 and across the spinel- 

postspinel transition it is 0.11. 

Figure 3 displays the time dependence of the dimensional 

average absolute mass flux at the positions of the two phase 

boundaries (Figure 3c), average absolute surface velocity 

(Figure 3b), and average shell temperature (Figure 3a) for 

this simulation. Note that to obtain this and all subsequent 

time series, the model has been integrated from an initial 

state into a state of statistical equilibrium; the portion of the 

time integration containing the thermal transient character- 

izing the approach to this statistical equilibrium is always 

discarded, as explicitly discussed in our previous analysis of 

flows without phase transitions [Solheim and Peltier, 1990]. 

The most striking feature of these time series is the existence 

of a very long timescale transience. This transience is 

characterized by periods which begin with a sudden increase 

in mass flux at both 400 km and 670 km depths and a 

corresponding increase in surface velocity together with a 

sharply increasing average shell temperature. The mass flux 

and surface velocity then decrease sharply and hover near a 

minimum value for the remainder of the period. The average 

shell temperature reaches a maximum shortly after the 

maximum in average surface velocity is achieved, then 

gradually decreases for the remainder of the period. The 

peaks in mass flux imply a greater than average fluid velocity 

throughout the fixed volume, fixed mass mantle. This results 

in a high average surface velocity during these periods, as is 

apparent in Figure 3, as well as an associated higher than 

average surface heat flow. Conversely, periods of low radial 

mass flux at 400 km and 670 km depths correspond to periods 

of relatively low surface velocities. The high mass flux 

events are characterized by intense localized downwellings 

across the 670-km phase boundary that erupt and subside in 

a relatively short period of time. The upward moving return 

flow tends to be more diffuse than the downwellings during 

these "avalanche" events, although there are occasions 

when a strong rising plume is observed to cross into the 

upper mantle. After the initial avalanche of fluid across the 

670-km phase boundary subsides, the flow returns to a 

dominantly layered style of convection in which the mass 

flux at 670 km almost vanishes (see Figure 3). 

In order to understand this avalanche phenomenon more 

fully, Plate 1 includes a sequence of instantaneous temper- 

ature fields covering the period of time spanning one of these 
events. The six frames in Plate 1 are from the same simula- 

tion represented by Figure 3. The times at which these 

"snapshots" of the temperature field were taken are indi- 

cated on Figure 3 by the six vertical arrows attached to the 

top of Figure 3c. The actual times, relative to the start of the 

time series of Figure 3, are also indicated in Plate 1 beside 
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Figure 3. (a) Time series of the average mantle temperature, (b) average absolute surface velocity, and 
(c) dimensional average absolute mass flux at the positions of the 400-km and 670-km phase boundaries. 
All three time series come from a simulation in which Ra = 10 7 , /a, = 0,/31 = +3.0 MPa/K,/32 = -2.8 
MPa/K, and hi = h2 = 200. The long time scale variation associated with the presence of phase 
boundaries in this configuration of model parameters is clearly evident in these time series. The arrows in 
Figure 3c indicate the times for the temperature fields of Figure 4. 

each frame. The first two frames of this sequence (562 Ma 

and 780 Ma) come from a time when the flow is highly 

layered. There is a large number of small-scale convection 

cells operating in the upper mantle at this time and a few 

larger-scale cells in the lower mantle. An enlarged version of 

the 780 Ma plot is reproduced (Plate 2) as representative of 

the highly layered period and a more detailed discussion of it 
will follow. We shall first comment here on the manner in 

which the flow evolves through a representative avalanche 

event. The 910 Ma frame shows the temperature field at the 

time when the 670-km mass flux is at its peak (see Figure 3). 

Even though this is the time at which the azimuthally 

integrated 670-km mass flux is greatest, there are only two 

locations apparent where the mass flux across 670 km depth 

is significant; that is, at the "north" pole and at a point two 

thirds of the way toward the "south" pole. At both of these 

locations, the flow is descending. Obviously, there is a 

return flow, but the return flow is much more diffuse and so 

is not nearly so apparent in the pattern of isotherms. Fluid is 

returning to the surface in the region midway between the 

two major descending plumes, resulting in two massive 

convection cells that extend the depth of the mantle and 

cover a horizontal extent spanning two thirds of the shell. 

There is third large cell that operates between the "south" 

pole and a point roughly 60 ø distant, but the associated deep 

circulation is inhibited by the fact that the flow remains 

layered in the vicinity of the "south" pole. Thus the flow 

exhibits a quasi-three-cell pattern at the time of the peak 

670-km mass flux that is dominated by two intense down- 

wellings. This pattern persists to the next frame. The 960 Ma 

field is similar to this, although there is some indication that 

the downwelling that exists two thirds of the way between 

the "north" and "south" poles is beginning to subside. By 

the next frame (1060 Ma) the downwelling at the "north" 

pole has collapsed almost completely and a rising polar 

plume is emerging from the bottom boundary layer. The 

other major sinking plume is still present but is also dimin- 

ished significantly. At the same time the many minor plumes 

that were rising from the lower thermal boundary layer 

between the two major sinking plumes have grouped to- 

gether and have formed a single upwelling that is more 

intense than any of the now amalgamated constituent 

plumes. By the last frame (1196 Ma) both of the previously 

dominant descending plumes have been cut off completely at 

the 670-km boundary. A new downwelling has emerged near 

the "south" pole, but across most of the latitudinal extent of 

the 670-km boundary there is little mass flux and the fluid is 

once again in a highly layered state. 

The extent to which the flow is dominated by the two 

downwelling plumes is usefully quantified by the ratio of 
maximum downward radial velocity to maximum upward 

radial velocity at a particular point in time. This ratio is 4.5 

for the 910 Ma flow of Plate 1 at the time of peak 670-km 

mass flux. In comparison, the ratio is very nearly unity for 
both the 562 Ma and 780 Ma flows, it decreases to 2.5 for the 

960 Ma flow and is near unity again for both the 1060 Ma and 

1196 Ma flows. This further indicates that the high 670-km 

mass flux events are dominated by intense downwellings. As 
we have seen these avalanches of fluid across the 670-km 

phase boundary onset very abruptly and violently. They 
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Ma ?80 Ma , 910 Ma \ 

960 Ma 1060 Ma 1196 Ma 

Plate 1. Sequence of isotherms showing the variation in the flow as it goes through an "avalanche" 
event. These times correspond to the time in Fig. 3 and the exact position of each temperature field in this 
sequence is indicated in frame c of Fig. 3 by the vertical arrows pointing down from the top of the frame. 

transform a highly layered flow into a flow which is essen- 

tially whole mantle in style, although there may be pockets 

of layering that persist throughout the event. As quickly as 

these avalanches begin, however, the major descending 

plumes crossing the 670-km boundary are cut off and the 

fluid returns to its former layered state. The detailed physics 
of the mechanism responsible for this characteristic behavior 
is discussed below. 

Another useful piece of information that may be derived 

from Figure 3 concerns the extent to which the instanta- 

neous geotherm (the depth dependent azimuthally averaged 

temperature) deviates from the time average geotherm. 

Several time-averaged geotherms are presented below, and 

in the discussion of these, one should always bear in mind 

that any particular instantaneous profile will differ slightly 

from the average. The differences between instantaneous 

and time-averaged profiles occur primarily in the interior 

region away from the thermal boundary layers and are 

manifest as shifts of the temperature of this central core to 

higher or lower values. In the time series of average shell 

temperature in Figure 3, the minimum average temperature 

is 1786 K and the maximum average temperature is 1811 K. 
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Plate 2. A "snap-shot" of isotherms (right) and radial velocity contours (left) from the simulation of Fig. 
3 at a time of 780 Ma showing the structure of the flow when it is in a highly layered state. 

Variations in the average shell temperature correspond to 

shifts in the temperature characteristic of the geotherm core. 

^ total variation in the average shell temperature of roughly 

30 K therefore corresponds to a shift of the instantaneous 

temperature in the geotherm core by +__ 15 K. This is roughly 

the magnitude of shifts in the instantaneous geotherm away 

from the time average that are characteristic of all of these 
simulations. 

It is often informative to view "snapshots" of the temper- 
ature field (as in Plate 1) or of some other field from these 

simulations in order to develop some understanding of what 

constitutes typical structures in these flows. In Plate 2 we 

show the contoured temperature field on the right and radial 

velocity on the left for a flow from this simulation at the time 

of 780 Ma. This corresponds to a time following completion 

of a cycle in which the flow is highly layered but when an 

avalanche event is just about to occur (see Figure 3). The 

two curves, one dashed and one dotted, running parallel to 

the surface and slightly below it, represent the positions of 

the 400-km and 670-km phase boundaries, respectively. 

Negative (dashed line) contours in the velocity plot repre- 

sent downward moving fluid, while positive (solid line) 

contours represent upward moving fluid. It is clear from both 

these diagrams that there is little mass transfer across the 
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Figure 4. F m averaged over four different time periods from the simulation of Figure 3. This provides a 
clear indication that in this simulation there are periods when the flow is highly layered as well as periods 
when there is high mass flux across the 670-km phase boundary. As mentioned in the text these flows may 
be characterized as statistically stationary only when averaged over sufficient long time. 

670-km phase boundary. It is also clear from both these 

diagrams that there is little mass transfer across the 670-km 

phase boundary. It is also clear that the scale of the 

convection cells in the upper mantle are markedly smaller 
than those in the lower mantle. There are some 25 to 30 cell 

pairs in the upper mantle while there are only eight in the 
lower mantle at this particular instant of time. Most of the 

cells are operating with an aspect ratio less than 1, both in 

the lower and upper mantle. There is one notable exception 
to this general rule, however. A very large aspect ratio cell 
will be seen to exist in the upper mantle near 2 o'clock and 
10 o'clock in the complementary images of Plate 2. This is 

typical of the flow pattern that develops following one of the 
avalanche events described above. There are a great many 
small aspect ratio cells operating in the fluid, and the flow is 
highly layered. 

The extent of the layering over various parts of a cycle 

may be determined using the mass flux diagnostic Fm. 
Figure 4 presents the temporal average of F m over four 
separate time segments of this simulation. The time series of 

Figure 3 has been subdivided into four segments: 0-200 Ma, 

200-450 Ma, 450-800 Ma, and 800-1250 Ma, and F m is 
averaged over each period individually. These four functions 

are plotted in Figure 4. The time periods from 0-200 Ma and 

450-800 Ma display significant layering, while during the 
other two time periods there is very little layering. Figure 4 
corroborates and verifies the previous assertion that in this 

region of parameter space, the flow spends alternate periods 
of time in a highly layered state and in a whole mantle state. 

In neither of these states is the flow perfectly layered nor 
perfectly whole mantle in style. Rather there is a spatial 
nonuniformity of layering in which plumes cross the 670-km 

phase boundary in some locations, but elsewhere along this 
boundary there is essentially no radial mass transfer. The 

number and intensity of plumes that do traverse this bound- 
ary fluctuate in time. This characteristic behavior was al- 

luded to previously by Solheirn and Peltier [1993], but it was 

not nearly so evident. This suggests that this behavior is 

indeed typical of a flow as it approaches a layered regime 

from an unlayered regime through variation of model param- 
eters such as hi, Ra or •i. It should be noted that these 
episodically layered flows are statistically stationary only 
when the averaging timescale is sufficiently long. 

Impact of Individual Phase Boundaries 
on Radial Mixing 

Both the effect of latent heating and the effect of phase 
boundary deflection are factors which influence the flow of 

fluid through a phase boundary as originally discussed by 
Busse and Schubert [1971] from the perspective of linear 

stability analysis. Thermal expansion of downward moving 

fluid, due to latent heat release, at an exothermic phase 
boundary, for example, will result in an added positive 
buoyancy and therefore will tend to reduce the vigor of 
descending flow. Conversely, thermal contraction, due to 

latent heat absorption, of downward moving fluid at an 

endothermic phase transition will result in an added negative 
buoyancy and tend to accelerate the flow of fluid across the 
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transition. It is clear on a priori grounds that the endothermic 

transition tends to cause phase boundary deflection in the 

direction of the fluid flow across it, whereas the exothermic 

transition causes phase boundary deflection in a direction 

opposite to the fluid flow. Consequently, a column of sinking 

fluid crossing the exothermic transition would contain more 

of the heavy phase, relative to the ambient fluid, and thus 

experience an added downward force. A sinking column 

crossing the endothermic transition, however, would contain 

relatively more of the light phase and thus experience an 

upward force. Similar reasoning applies to rising fluid, and 

we see that latent heating and phase boundary deflection 

have opposite effects at both exothermic and endothermic 

phase transitions. In the linear regime, at a Rayleigh number 

corresponding to the onset of convection, the latent heating 

effect dominates [Peltier, 1985; Peltier et al., 1989] and an 

exothermic transition would tend to inhibit convection 

whereas an endothermic transition would enhance convec- 

tion. This is actually opposite to the original predictions of 

Schubert et al. [1975] whose calculations were improperly 

scaled, as pointed out by Peltier [1985]. At suflSciently high 

Rayleigh number one expects that the influence of phase 

boundary deflection will eventually overwhelm the effect of 

latent heat release as the latter should increase as Ra 2/3 (i.e., 
proportional to vertical velocity), whereas the former should 

increase as Ra (i.e., proportional to the lateral temperature 

heterogeneity in downwelling plumes). The results of the 
initial simulation described above demonstrate that the 

"Earth-like" Rayleigh number of 107 is suflSciently high that 
the endothermic 670-km horizon is already controlling the 

radial mixing. 

We describe one further measure of the degree of layering 

in such flows. This is a single number that when it is zero 

implies there is no layering, when it is between zero and one 

implies that there is some degree of layering (one implies 

perfect layering), and when it is negative implies that the 

670-km mass flux is greater than normal. Using the dimen- 
sional value for the 670-km absolute mass flux of 43.9 

kg/m2/yr from the no phase boundary simulation as a refer- 
ence, we can define a number (P0 say) defined as 

670 km mass flux (kg/m2/yr) 
P0=l - , 

43.9 

that has these properties. The subscript zero indicates that 

the reference value that was used came from the/x = 0 no 

phase boundary case. As we will see in the next section, this 

reference value changes as/x changes. The values of P0 for 
four cases are listed in Table 2. These four cases correspond 

to simulations with two phase boundaries present, only one 

phase boundary at 400 km present, only one phase boundary 

at 670 km present, and no phase boundaries present. For 

comparison sake, dimensional values of both the 400-km and 
670-km absolute mass flux from these same four simulations 

are presented as well. These values of P0 give clear indica- 
tion that the 670-kin phase boundary tends to induce layer- 

ing, while the 400-kin phase boundary tends to promote 

increased radial mass flux. In combination, the two phase 

boundaries can, at least in this instance, produce a flow in 

which there is some degree of layering but for which the 

degree of layering is diminished from the 670-km phase 

boundary only case. 

Table 2. Values of the Layering Parameter P0 for 
Four Cases 

Mass Flux, 
-2 -1 

km m yr 

400 km 670 km P0 

Two phase boundaries present 
670-km phase boundary only 
400-km phase boundary only 
No phase boundaries 

30.0 33.8 0.23 

25.5 27.0 0.38 

34.1 49.4 -0.13 

31.6 43.9 0.00 

Also included are the average values of the dimensional 
absolute mass flux at 400 km and 670 km. 

Influence of Internal Heating on the Propensity 
for Layered Flow 

To this point in the analysis, all of the simulations dis- 

cussed have been characterized as having no internal heat- 

ing. Since there is likely significant internal heating in 

Earth's mantle due to the decay of long-lived radionucleides 

such as 235'238U, 232Th, and 4øK, it is important to under- 
stand the influence of adding internal heating on such flows. 

The most obvious effect of the addition of internal heating to 

the mantle is to raise its average temperature. This effect is 

evident in Figure 5. Figure 5 shows the temporally averaged 

geotherms for four simulations. The solid and the dotted 

curves represent geotherms from two simulations in which 

there are no phase boundaries in the fluid and the Rayleigh 

number is 107 . These two simulations differ only in the fact 
that one contains no internal heating (solid curve) and one 

contains internal heating corresponding to /x = 10 (dotted 

curve). The dashed and the dashed-dotted curves represent 

geotherms from two simulations which contain both phase 

boundaries with/31 = +3.0 MPa/K and/32 = -2.8 MPa/K. 
The dashed curve corresponds to results from a simulation 

that has phase loop thickness parameters h l = h2 = 200, 
while the dashed-dotted curve is for a simulation that has 

phase loop thickness parameters h l = h2 = 400. The effect 
of changing h i over this range is small and is discussed 
below. Clearly, the first-order effect of adding internal heat- 

ing is to increase the core temperature of the geotherm as the 

temperature drop across the upper and lower thermal bound- 

ary layers adjusts to the altered heat distribution. The net 

effect is to raise the average temperature of the mantle. For 

the simulations with no phase boundaries, the overall aver- 

age temperature for the /x = 0 case is 1680 K, while the 

overall average temperature for the/x = 10 case is 2078 K, a 

difference of 398 K. For the simulations with phase bound- 

aries included, the average overall temperature for the/x = 0 

case is 1800 K and the average overall temperature for the 

/x = 10 case is 2200 K, a difference of 400 K. Therefore 
adding this amount of internal heating raises the average 

temperature of the mantle by around 400 K. The increase 

temperature is characterized by a shift of the geotherm 
to higher temperatures, but the shape of the geotherm is not 

altered. It is apparent from Figure 5 that adding internal 

heating does not affect the average temperature gradient 

across the mantle. Nor does it influence, qualitatively, the 

internal thermal boundary layer that exists at 670 km or the 

abrupt change in slope that exists at 400 km (in the simula- 

tions with both phase boundaries present). 
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Figure 5. Effect of internal heating on the temporally av- 
eraged geotherm. All four geotherms shown are from simu- 
lations with a Rayleigh number of 10 7. The solid and the 
dotted curves are from simulations in which there are no 

phase boundaries, while the other two curves come from 
simulations in which both phase boundaries are present with 
/31 = q- 3.0 MPa/K and/32 = -2.8 MPa/K. The two curves on 
the right come from simulations in which there is internal 
heating corresponding to/x = 10. The most obvious effect of 
adding internal heating is to raise the average temperature of 
the mantle by increasing the temperature characteristic of 
the geotherm core (•400 K for these cases). The error bars 
and vertical lines with attached arrows represent constraints 
on an "Earth-like" geotherm as discussed in the text. 

A useful additional piece of information that may be 
determined from these geotherms is the ratio of internal 

heating to total heating from within and below (the Urey 

ratio). Note that this is not/x (except when/x = 0) in these 
simulations, as it was in the uniphase model [Solheim and 
Peltier, 1990] due to the fact that both the upper and lower 

boundaries are taken to be isothermal in the multiphase 

model. This ratio is determined by calculating the time 

averaged heat flux across the cmb and across the surface, 
taking the difference and dividing by the surface heat flux. In 
this fashion we have determined this ratio to be 0.04 for the 

solid curve of Figure 5 (/x = 0), 0.02 for the dashed curve 

(/x = 0), 0.42 for the dotted curve (/x = 10) and 0.53 for the 
dashed-dotted curve (/x - 10). One would expect that in the 
time average, this ratio would be zero for the/x - 0 cases. 

The fact that it is not exactly zero here indicates either that 

the average has not been taken over a sufficiently long period 
of time or that the flow still retains remnant heat from the 

initialization. In either case it is very nearly zero. The more 

interesting numbers are for the /x - 10 cases; /x = 10 

corresponds to roughly 50% heating from within, according 
to the values given above, determined from the geotherms of 

Figure 5. A value of/x = 10 translates to an internal heating 
rate per unit mass of 10 -l• W/kg using the definition of/x 
(equation (13)), values from Table 1, and the fact that Ra - 

10 7 (meaning that T c = 3 314.3 K). Using a density of P0 = 
4 x 103 kg m -3 this constant heating per unit mass 
translates into a constant heating rate per unit volume of 4 x 

10 -8 W m -3. This is, of course, only an approximate value 
since the internal heating rate is in fact constant per unit 

mass in the multiphase model, but a number is required for 

comparison with estimates of the amount of internal heating 
in the actual Earth. A typical estimate of the radioactive 

heating rate in the Earth is 2 x 10 -8 W m -3 [Jeanloz and 
Morris, 1986]. From this perspective therefore, /x - 10 is a 

reasonable value, if not somewhat high. If we assume a value 

of/x _< 10, then we must accept a ratio of internal heating to 
heating from within and below _<0.50. This ratio is at the 
extreme lower limit of most current estimates which range 

from 0.5 [Davies, 1980] to 0.9 [Turcotte, 1980] based on the 

parameterized convection ideas developed by Sharpe and 
Peltier [1978, 1979]. The higher value of 0.9 has generally 

been preferred in the most recent literature. If the quasi- 
steady state analyses that are under discussion here are 
relevant to the secularly cooling planet, then this currently 

preferred value is excessive. 
There do, of course, exist direct constraints on the mantle 

geotherm from high-pressure experiments such as those 
used to determine the phase diagram of its constituent 

silicate mineralogy as well as from experimental constraints 

on the melting temperature of iron at the core-mantle bound- 

ary. Figure 5 incorporates constraints on the geotherm 
derived from various sources. In the upper mantle, temper- 

atures of 1000-1800 K occur at depths ranging from 100 to 

250 km. This is indicated by the error bars at this depth in 

Figure 5. These temperatures are determined from the study 
of xenoliths brought up volcanically from these depths in the 
mantle as reviewed, for example, by Jeanloz and Morris 

[1986]. The temperature at the top of the transition zone at 

400 km depth may also be bracketed by determining the 
range of temperatures over which the olivine-spinel transi- 
tion can take place at the pressure corresponding to this 
depth. This estimate suggests an absolute temperature of 
1700 -+ 300 K at 400 km depth [Jeanloz and Thompson, 

1983]. The temperature at the top of the lower mantle cannot 
be greater than the melting point of perovskite at pressures 

typical of this depth. The melting point of (Mg0.9Fe0.1)SiO3 
perovskite was found to be 2600-3200 K [Jeanloz and Heinz, 
1984]. A maximum temperature for the top of the lower 
mantle is then 3200 K as indicated on Figure 5. The core- 

mantle boundary temperature can be constrained by the 

melting point of the iron-dominated liquid that makes up the 
outer core. High-pressure measurements of the melting of 
appropriate iron mixtures place the CMB temperature at 
3600 -+ 500 K [Brown and McQueen, 1986]. This estimate is 
also indicated on Figure 5. One can see from Figure 5 that a 

value of/x = 10 puts the geotherm above the upper limit of 
these constraints (at least of the ones in the upper mantle) 

and increasing the value of /x would push the geotherm 
farther outside these limits. On the basis of this evidence we 

would have to say that /x = 10 is the largest value of /x 

permissible for an "Earth-like" mantle. This would also 
seem to indicate therefore that the Urey ratio is no greater 

than •0.5 if the assumption that heat flow may be considered 

quasi-static is valid. 
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Another well-known effect of adding internal heating is 

that the vigor of hot plumes rising from the CMB is dimin- 

ished in favor of cold plumes sinking from the surface. A 

consequence of this added relative importance of cold 

plumes sinking from the upper thermal boundary layer is an 

increased propensity for layering as internal heating is added 

to the fluid. A line of physical argument that makes this fact 
understandable is as follows: 

1. It is the magnitude of the deflection of the 670-km 

phase boundary away from its average depth that determines 

the degree of layering. 

2. It is the advection of ambient temperature across 670 

km that is primarily responsible for this deflection. 

3. Cold sinking plumes from the surface have a larger 

temperature gradient across them in a fluid with internal 

heating than in a fluid without internal heating due to the 

hotter mantle interior (Figure 5) and so produce a greater 

phase boundary deflection. 

4. Because the 670-km boundary is much nearer to the 

surface than the core-mantle boundary, there will be more 

cold plumes from the surface reaching 670 km than hot 

plumes from the CMB. This implies that although adding 

internal heating decreases the temperature gradient across 

hot rising plumes and thus decreases the magnitude of phase 

boundary deflections caused by them, the net effect of 

adding internal heating is to increase the magnitude of the 

670 km phase boundary deflections in the regions of de- 

scending flow that control mixing. 

Two simulations with Rayleigh number of 107, ]31 = +3.0 
MPa/K, /32 = -2.8 MPa/K, and h i = h 2 = 200 were 
performed, one with no internal heating and one with inter- 

nal heating corresponding to/z = 10. A value of the layering 

parameter P0 for the/z = 0 case was determined to be 0.32. 

The layering parameter P10 for the tz = 10 simulation was 
determined to be 0.50. Since larger values of the layering 

parameter mean a greater degree of layering, it is apparent 

that increasing the amount of internal heating from tz = 0 to 

tz = 10 does indeed increase the propensity for layering in 
the fluid. 

Dependence of the Extent of Layering on the C!apeyron 
Slope of the Spine!-Postspinel Transition 

In order to understand the impact of varying the value of 

the 670-km Clapeyron slope we will describe geotherms and 
mass flux functions from two sets of simulations. The first 

set of simulations all have a Rayleigh number of 107,/z = 0, 
/31 = +2.0 MPa/K, and h l = h2 = 50. The flows in this 
sequence differ only in the value of the 670-km Clapeyron 

slope;/32 varies from -2.0 to -4.0 MPa/K with intermediate 

values of -2.5, -2.8, -3.2, and -3.6 MPa/K. Figure 6 

shows time averaged geotherms from three of these simula- 

tions, /32 = -2.0 MPa/K (solid line), /32 - -2.8 MPa/K 
(dashed line), and/32 - -4.0 MPa/K (dotted line). Figure 7 
shows the mass flux function F m for all simulations in this 

sequence. Decreasing the value of the 670-km Clapeyron 

slope from -2.0 to -4.0 MPa/K in these simulations drives 

the flow from an essentially unlayered state to a strongly 

layered state. This is evident in both Figures 6 and 7. In 

Figure 6 we see the appearance of an internal thermal 

boundary layer in the /32 = -4.0 MPa/K time-averaged 
geotherm. A small 670-km thermal boundary layer is evident 

in all three geotherms, but the magnitude of the temperature 

drop across it increases with decreasing/32. It is really only 
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Figure 6. Time-averaged geotherms from three simula- 
tions at a Rayleigh number of 107 with no internal heating. 
These flows all have two phase boundaries present (h 1 = h2 
= 50) with the Clapeyron slope of the 400-km phase change 
being +2 MPa/K. The three flows differ only in the value of 
the 670-km Clapeyron slope, the three values being -2.0, 
-2.8, and -4.0 MPa/K as indicated. As the Clapeyron slope 
of the 670-km phase boundary decreases, an internal thermal 
boundary layer develops at 670 km. 

the /32 = -4.0 MPa/K simulation in which the boundary 
layer is fully developed. In Figure 7 the 670-km dip in the 

relative mass flux curves grows steadily as the value of/32 

decreases from -2.0 to -4.0 MPa/K. This implies, of 

course, that the relative mass flux at 670 km decreases, on 

average, as the Clapeyron slope of the 670-km phase bound- 

ary decreases. This fact, coupled with the fact that a 

substantial internal thermal boundary layer develops at 670 

km as /32 decreases, indicates that the magnitude of the 
670-km Clapeyron slope is an important factor, perhaps the 

most important factor, in determining the degree of layering 

in a particular flow. 

We may quantify the degree of layering using time aver- 

aged values of the absolute mass flux at 670 km. We have 

determined values of the layering parameter P0 for this set of 

simulations. These values are given in Table 3. P0 ranges 

from 0.07 for the/32 = -2.0 MPa/K simulation to 0.53 for the 
/32 - -4.0 MPa/K simulation. A value of P0 = 0.50 implies 
that, on average, the 670-km mass flux is only 50% of the 

value it would be if no phase boundaries were present. The 

flow is far from steady, however. Because of the magnitude 

of fluctuations in F m (670 km) a value of P0 = 0.53 implies 
significant layering in the flow (P0 -> 0.5) about half the 
time. When making reference to the real Earth, the instan- 

taneous flow structure is what is important. In a simulation 

in which P0 = 0.5 the instantaneous flow structure is as 
likely to be highly layered as it is to be unlayered. 

The nature of the time dependence of the radial mass flux 
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Figure 8. Time series of the (dimensional) spatial average of the absolute value of the mass flux at the 
position of the 400-km (solid line) and 670-km (dashed line) phase boundaries. All three time series come 
from simulations in which the Rayleigh number is 107, there is no internal heating, and the 400-kin phase 
boundary has a Clapeyron slope of +2 MPa/K (hi = h2 = 50). The time series in Figure 8a comes from 
a simulation in which the Clapeyron slope at 670 km is -2 MPa/K, in Figure 8b the 670-km Clapeyron 
slope is -2.8 MPa/K, and in Figure 8c the 670-km Clapeyron slope is -4.0 MPa/K. The decrease in mass 
flux at 670 km with a decrease in the 670-kin Clapeyron slope is clearly evident in these time series. 
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at 400 km and at 670 km in this set of solutions is portrayed 

in Figure 8. Figure 8 shows time series of the variation of the 
400-km and 670-km dimensional absolute mass flux for the 

same three simulations from which the time-averaged geo- 

therms of Figure 6 were determined. Figure 8a is for the flow 

with a 670-km Clapeyron slope equal to -2.0 MPa/K; for 

Figure 8b,/•2 = -2.8 MPa/K, while for Figure 8c,/•2 = -4.0 
MPa/K. These three time series show the characteristic 

behavior of the mass flux from three simulations which are 

essentially unlayered (Figure 8a), partially layered (Figure 

8b), and very significantly layered (Figure 8c). In Figure 8a 

the 670-km mass flux spends virtually all of its time above 

the 400-km mass flux, indicating that there is little, if any, 

time in which the flow could be said to be layered. In Figure 

8b there is at least one period of time (from about 300 Ma to 

500 Ma) during which the flow is layered. The rest of the time 

the 670-km mass flux is rising and falling in bursts. These 

bursts of mass flux at 670 km correspond to localized 

"avalanches" of fluid across the 670-km phase boundary as 

previously described. In Figure 8c the fluid is in a layered 

state for the majority of the time (the time during which the 
670-km mass flux is near zero and well below the 400-km 

mass flux). It recovers from the layered state for a relatively 

short period (from about 600 Ma to 900 Ma) and then returns. 

As the flow shifts into a region of parameter space in which 

there is a greater propensity for layering, the time depen- 

dence of certain functions (such as the average absolute 

mass flux at 400 km or 670 km depth as well as Nusselt 

number, surface velocity, and total kinetic energy) under- 

goes a characteristic change similar to that which we see in 

the three time series presented in Figure 8. 

A second set of simulations was performed in which the 

parameters were set to more "Earth-like" values. These 

three simulations all have a Rayleigh number of 107,/x = 10, 
/31 = +3.0 MPa/K, and h l = h2 = 400 (25-km phase loops). 
They differ only in the value of the 670-km Clapeyron slope 

which varies from /32 = -1.4 MPa/K through /32 = -2.1 
MPa/K to /32 = -2.8 MPa/K. Figure 9 displays the time- 
averaged geotherms and Figure 10 shows the relative mass 
flux functions for these three cases. The solid lines in both 

figures represent the /32 = -1.4 MPa/K simulation, the 
dashed lines represent the/32 = -2.1 MPa/K simulation, and 

the dotted lines represent the/32 = -2.8 MPa/K simulation. 

The flow goes from an unlayered flow for the /32 = -1.4 

Table 3. Values of the Layering Parameter P0 for 
Six Simulations That Vary Only in the Value of the 

Clapeyron Slope at 670 km 

Mass Flux, 

km m -2 yr -1 

/32, MPa/K 400 km 670 km P0 

-2.0 33.7 40.7 0.07 

-2.5 30.1 36.7 0.16 

-2.8 30.0 33.8 0.23 

-3.2 25.9 27.4 0.38 

-3.6 24.2 22.2 0.49 

-4.0 22.5 20.6 0.53 

The dimensional values of the 400 km and 670 km average 

absolute mass flux are included. /x = 0;/31 = -2.0 MPa/K; 
200 km phase loops. 
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Figure 9. Geotherms showing the effect of decreasing the 
670-km Clapeyron slope over a range through which the flow 
moves from a nonlayered regime to a layered regime. All 
three curves are from simulations with a Rayleigh number of 
107, internal heating corresponding to /x = 10, /31 = +3.0 
MPa/K and h l = h2 = 400. The only difference between 
each of these runs is in the value of the 670-km Clapeyron 

slope;/32 varies from -1.4 MPa/K representing a flow with 
no tendency toward layering to -2.1 MPa/K to -2.8 MPa/K 
representing a flow with significant layering (compare Figure 
10). 

MPa/K case to a layered flow for the/32 = -2.8 MPa/K case. 
This fact is apparent in Figures 9 and 10. In Figure 10 the 

value of F m at 670 km decreases significantly from the/32 = 

-1.4 MPa/K case to the/32 = -2.8 MPa/K case, indicating 
a substantial increase in the degree of layering. This de- 

crease in F m (670 km) coupled with the existence of an 
internal thermal boundary layer at 670 km, apparent in the 

/32 = -2.8 MPa/K geotherm of Figure 9, clearly demon- 
strates that there is significant layering in the /32 = -2.8 
MPa/K simulation. Therefore the effect of decreasing the 

value of the 670-km Clapeyron slope is to increase the 

propensity for layering in these simulations. This is in 

agreement with the above set of results from the /x = 0 

model, in which /31 was +2.0 MPa/K and there were 
200-km-thick phase loops. Table 4 gives dimensional values 

of the average absolute mass flux at 400 km and at 670 km 
that have been determined from the time series of these three 

simulations along with the calculated value of the layering 

parameter P 10. Although the range of/32 is narrower for this 
set of three simulations than the previous set of six, the 

change in the layering parameter is greater. This greater 

sensitivity to the value of/32 of the layering parameter is not 
all that surprising when one recalls that thinner phase loops 

(25 km versus 200 km), larger negative 670-km Clapeyron 

slope, and added internal heating (/x = 0 versus/x = 10) all 

increase the propensity for layering in the flow. A larger 
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Figure 10. Temporally averaged mass flux functions (Fro) for three simulations in which the Rayleigh 
number is 10 7 and there is internal heating corresponding to/x = 10. In all three simulations the Clapeyron 
slope of the 400-km phase boundary is +3 MPa/K and h l - h2 = 400 (compare Figure 9). The three 
simulations differ only in the value of the 670-km Clapeyron slope. These values of/32 are indicated. 

400-km Clapeyron slope (+3.0 MPa/K versus +2.0 MPa/K) 
tends to decrease it, but this effect was found to be relatively 
small. 

The mass flux data in Tables 3 and 4 have been plotted in 

Figure 11. Figure 11a shows the average absolute 400-km 

mass flux as a function of 670-km Clapeyron slope, while 

Figure 1 lb shows the 670-km mass flux versus/32. The points 
with error bars drawn as solid lines come from the set of 

simulations in which/x = 0,/3• = +2.0 MPa/K, and h l - h2 
: 50, while the points with error bars drawn as dashed lines 

come from the set of simulations with m - 10, /31 = +3.0 

MPa/K, and h l = h2 : 400. All four sets of points (i.e., 
400-km and 670-km mass flux for both sets of simulations) 

have been fit to quadratic polynomials (of the form a0 + 

air 2 + a2f122), and these curves have been added to Figure 
11 along with the values of the coefficients. Figure 11 clearly 

indicates the increased dependence on/32 of the degree of 
layering in the latter set of simulations discussed above. 

Figure 11 indicates that it can be misleading to think that the 

degree of layering depends solely on the value of the 670-km 

Clapeyron slope. It is important therefore to keep this in 
mind when considering works in which only the Clapeyron 

slope is varied, such as those by Christensen and Yuen 
[1985] or Machetel and Weber [1991]. 

There are significant differences between the three geo- 

therms of Figure 9. These three geotherms differ in a very 

obvious way, their shape, throughout the transition zone 

between 400 km and 670 km. In the layered flow (dotted line) 

there is clearly a thermal boundary layer with a negative 
gradient across it, as is characteristic of such flows. In the 
other two geotherms, however, the average temperature is 
raised a few degrees (•90 K) at 400 km and lowered a few 

degrees (•60 K) at 670 km. This raising and lowering of the 
average shell temperature at 400 km and 670 km, respec- 

tively, is a result of the release of latent heat into the mantle 
at the exothermic 400-km phase transition and the absorp- 

tion of heat at the endothermic 670-km phase transition. In 

the simulation represented by the solid line, there is no 

layering at all. In fact, the mass flux at 670 km is larger than 
it would be if there were no phase boundaries present (see 

Table 4. Values of the Layering Parameter P10 for 
the Three Simulations of Figure 9 and 10 

Mass Flux, km m 
-1 

yr 

-2 

fi2, MPa/K 400 km 670 km P lO 

-1.4 42.1 55.0 -0.13 

-2.1 36.9 41.9 0.14 

-2.8 22.1 21.2 0.56 

The dimensional values of the 400-km and 670-km average 

absolute mass flux are included;/x = 10;/31 - + 3.0 MPa/K; 
25-km phase loops. 
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Figure 11. Temporally averaged values of the (a) 400-km and (b) 670-km mass flux as a function of the 
Clapeyron slope at 670 km. All the points shown are determined from simulations in which the Rayleigh 
number is 10 7. The two points not on any curve are values from a simulation in which no phase boundaries 
are present and there is no internal heating. These two points are indicated separately. The data points 
with error bars drawn as solid lines and fit by quadratic polynomials drawn as solid lines come from 
simulations in which there is no internal heating, the value of the 400-km Clapeyron slope is +2 MPa/K 
and h • = h2 = 50. The data points with error bars drawn as dashed lines and fit by quadratic polynomials 
drawn as dashed lines come from simulations in which there is internal heating corresponding to Ix = 10, 
the value of the 400-km Clapeyron slope is +3 MPa/K and h• = h2 = 400. The values of the coefficients 
of the quadratic fits are shown, outlined by their respective line types. 

Table 4). Without the reduced mass flux that results in an 

internal thermal boundary layer at 670 km the effect of latent 

heat release on the geotherm becomes very evident. 

On the Mechanism Responsible for Episodic Layering 

In this final section we describe the physical mechanism 
responsible for the observed quasi-periodic nature of simu- 
lations in which the parameters are set so as to cause the 

flow to become layered. The nature of this time dependence 
has been described above. A simulation in which Ra = 10 7 

/• = 0, •1 = +3.0 MPa/K,/32 = -2.8 MPa/K, and h 1 = h 2 
-- 200 was used in that discussion. We employ this same 
simulation as a basis for discussing the underlying cause of 
this behavior. 

Figure 12 shows five time series derived from the simula- 

tion under discussion. Figure 12a shows the 670-km average 
absolute mass flux that was shown in Figure 3. The times of 
occurrence of the avalanche events are clearly visible. 
Figures 12b-12e show aspects of the internal thermal bound- 
ary layer that develops across the endothermic transition at 

670 km depth. The shaded area in Figure 12b represents the 

radial extent of this boundary layer as a function of time. 

Note, in particular, how the boundary layer grows to maxi- 
mum thickness at the same point in time at which the 

avalanche events occur. It then thins abruptly and begins to 
thicken once more. Figure 12e presents the actual width of 

this boundary layer (/5670) as a function of time. Figure 12d is 
the time dependence of the temperature drop across this 
boundary layer (AT670). Finally, in Figure 12c we have 

determined a boundary layer Rayleigh number (Ra670) 
based on/5670 and AT670 together with values of thermody- 
namic parameters at 670 km determined from the anelastic 

reference state functions. This Rayleigh number is defined as 

Ra670 -- 

3 

g670 ce 670 A T670• 670 

670 b' 670 

It is the time dependence of this internal Rayleigh number 

that is of interest. Figure 12 clearly shows that Ra670 
increases gradually and reaches its maximum just prior to 
the occurrence of an avalanche event, then decreases 

abruptly, and begins to grow slowly once more. There 
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Figure 12. Time series showing the quasi-periodic behavior of the internal thermal boundary layer that 
develops at 670 km in flows that reside in the layered regime. These time series are from a simulation with 
a Rayleigh number of 107, no internal heating,/31 = +3.0 MPa/K,/32 = -2.8 MPa/K, and hi = h2 = 200. 
This is the simulation used in text to portray the nature of time dependence in a layered flow. See the text 
for a complete description of Figures 12a-12e. 

clearly appears to exist a threshold in Rayleigh number 

below which the boundary layer is stable. As the Rayleigh 

number passes this threshold, which on the basis of the data 

in Figure 12c has a value near 10 6, the boundary layer 
suddenly become unstable and an avalanche event occurs. 

The large radial mass flux characteristic of the avalanche 

reduces the local Rayleigh number until it falls below the 

critical value at which time the boundary layer becomes 

stable once more and the avalanche ceases. The temperature 

drop across the boundary begins to increase once more as 

the radial mass flux is inhibited by the phase transition. As 

the boundary layer broadens, Ra670 grows until it reaches its 
critical value again, and the cycle repeats. This scenario 

explains Figure 12 quite nicely. We see that Ra670 grows 
slowly, then suddenly decreases at the time of the avalanche 

event. AT670 undergoes a similar evolution, as does the 
boundary layer thickness •i670. The observed temporal be- 
havior of the layered solutions can therefore be explained as 

a growing and decaying internal boundary layer instability. 

This instability occurs when the boundary layer Rayleigh 
number exceeds its critical value. 

The onset of this instability is localized in space and time 

at the points where the avalanches occur (see Plate 1). Ra670 

of Figure 12 was determined based on instantaneous geo- 
therms taken from the numerical simulation and thus is not a 

truly local Rayleigh number but rather a spatially averaged 

value at a particular instant of time. Because of this fact, 

Figure 12 is not appropriate for determining the precise value 

of the critical Rayleigh number. Moreover, a precise defini- 

tion of where the extremities of the boundary layer are is 

required to determine any such critical value. This parame- 

ter does provide the basis for a clear qualitative explanation 

of the process, however, since the local Rayleigh number at 

any point remote from an avalanche will remain unchanged 

(or change very little) throughout the avalanche event, and 

so the variation in the local Rayleigh number at the actual 
avalanche site will dominate the time series. 

Conclusions 

We have developed a multiphase, anelastic, axisymmet- 
ric, mantle convection model which incorporates an Earth- 

like basic state. Numerical solutions of the governing system 

of equations were constructed for a number of parameter 

configurations, and these solutions were employed to isolate 

the influence of these parameters on the flow. In this analysis 
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we focused our attention on the impact upon the propensity 

for layering of each of the control variables. It was deter- 

mined that either increasing R a or Ix or decreasing/32 or the 

phase loop thickness had the effect of increasing the degree 

of layering in the flow. Increasing the value of •1 tends to 
decrease the degree of layering. All of these results are valid 

for (at least) the parameter range + 2.0 MPa/K -< •1 • q-3'0 
MPa/K, -4.0 MPa/K < •2 -< 0.0 MPa/K, Ra = 10 7, 50 -< 
h 1,2 -< 400 (200-km to 25-km phase loop thickness), and 0 -< 
/z -< 10. This is the parameter range in which Earth lives 
(except for phase loop thickness which is less than 25 km) 

and so is of particular interest. Whether Earth should be 

operating in a highly layered or partially layered state may 

only be determined once the parameter values are known 

more precisely (in particular, the value of/32), but it seems 
safe to conjecture that the mantle is at least partially layered. 

When the flow is in a partially layered state, an interesting 

quasi-periodic behavior is observed in the time dependence. 

The flow goes through periods of low mass flux across 670 

km broken by shorter periods of high mass flux (a fact 

previously noted in the cursory analyses of both Machetel 

and Weber [1991] and Peltier and Solheim [1992] but not 

previously explained). During the high mass flux at 670-km 

events, localized "avalanches" of fluid are observed to 

penetrate the boundary. These avalanches appear suddenly 

and tend to cease just as abruptly. This intermittency in the 

degree of radial layering can be explained in terms of a 

growing and decaying instability that occurs in the internal 

thermal boundary layer which develops across the endother- 

mic phase transition at 670 km depth in flows that exhibit 

partial layering. This growth and decay are driven by the 

difference in efficiency between the predominantly advective 

radial heat transport outside the 670-km thermal boundary 

layer and predominantly conductive radial heat transport 

within the thermal boundary layer. This difference causes a 

growth of the internal thermal boundary layer. When the 

temperature difference across the boundary layer and the 

boundary layer thickness become large enough to raise the 

local Rayleigh number above its critical value, an avalanche 

occurs in which fluid from the transition zone abruptly 

descends into the lower mantle, thus reducing the tempera- 

ture gradient within the boundary layer and decreasing the 

local Rayleigh number below its critical value once more. 
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