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Abstract. This paper is a pedagogical introduction to avalanche models of solar flares, including
a comprehensive review of recent modeling efforts and directions. This class of flare model is built
on a recent paradigm in statistical physics, known as self-organized criticality. The basic idea is
that flares are the result of an ‘avalanche’ of small-scale magnetic reconnection events cascading
through a highly stressed coronal magnetic structure, driven to a critical state by random photospheric
motions of its magnetic footpoints. Such models thus provide a natural and convenient computational
framework to examine Parker’s hypothesis of coronal heating by nanoflares.

1. Introduction

1.1. SOLAR FLARES

Solar flares are the manifestation of a sudden, intense and spatially concentrated
release of energy in the corona, causing localized heating up to temperatures of
∼ 107 K, as evidenced by the copious emission of short-wavelength radiation.
First observed serendipitously in white light by R. C. Carrington and R. Hodgson
in 1859 (see Carrington, 1860)1 , flares have captured the attention of solar physi-
cists ever since. However, it is only recently that space-borne X-ray and extreme
ultraviolet (EUV) imaging telescopes have revealed the astonishing range of scales
characterizing the flaring phenomenon. The association of most larger flares with
magnetic active regions, and their very short onset time, leave little doubt that
magnetic reconnection is the mechanism responsible for the dynamical release
of magnetic energy (see Kulsrud, 1998; Priest and Forbes, 2000; and references
therein).

Let f (E) dE be the fraction of flares releasing an amount of energy between E

and E+dE per unit time. A striking statistical feature of the frequency distribution

1Hoyt and Schatten (1997, p. 26) mention in passing a report by one Stephen Gray of Canterbury
who, on 27 December 1705, saw a ‘flash of lightning’ near a sunspot; clearly an earlier contender for
the first observation of a solar flare.
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TABLE I

Observational determinations of flare power-law indices for integrated count rate/total
energy release (αE), peak count rate/energy release (αP ), and event duration (αT ).
Values taken from (a) Crosby, Aschwanden, and Dennis (1993); (b) Bromund, Mc-
Tiernan, and Kane (1995); (c) Crosby et al. (1998); (d) Shimojo and Shibata (1999);
(e) Aschwanden et al. (2000a); (f) Shimizu (1995); (g) Krucker and Benz (1998);
(h) Parnell and Jupp (2000); (i) Aschwanden et al. (2000b).

Data Instrument αE αP αT Ref.

HXR SMM/HXRBS 1.73 ± 0.01 2.17 ± 0.05 a

HXR ISEE 3/ICE 1.86 ± 0.01 2.40 ± 0.04 b

HXR WATCH/GRANAT 1.39 ± 0.02 1.59 ± 0.05 1.09 ± 0.03 c

SXR YOHKOH/SXT 1.7 ± 0.4 d

EUV TRACE 1.83 ± 0.07 e

HXR SMM/HXRBS 1.53 ± 0.02 1.67 ± 0.04 a

HXR ISEE 3/ICE 1.67 ± 0.02 1.92 ± 0.02 b

SXR YOHKOH/SXT 1.5–1.6 f

EUV SOHO/EIT 2.3–2.6 g

EUV TRACE 2.02–2.56 h

EUV TRACE 1.79 ± 0.08 i

f (E) reconstructed form UV, EUV, and X-ray observations is its power-law form
(Drake 1971; Datlowe, Elcan, and Hudson, 1974):

f (E) = f0E
−α, α > 0 , (1)

which currently holds for eight orders of magnitude in E. Similar power laws
are obtained for the peak energy flux (P ) and flare duration (T )2 . Table I offers
a compilation, representative rather than exhaustive, of recent determinations of
these power-law indices (see also Table I in Crosby, Aschwanden, and Dennis
(1993) and Table 1 in Aschwanden, Dennis, and Benz (1998)). The entries have
been divided into two groups, the top one relating to power laws involving directly
measurable quantities (e.g., peak count rates, total count rate, etc.), and the bottom
group to model-dependent determinations (e.g., total energy release in erg).

Converting observed flare X-ray or EUV fluxes to volumetric energy release is
a very intricate exercise, involving assumptions regarding the geometrical shape of
the flaring region, physical conditions within the flaring volume, and the mech-
anism responsible for the emission of hard radiation (see, e.g., Lee, Petrosian,

2Recall that power-law distributions of the form f (x) ∼ x−α do not have a well-behaved average
if α < 2; the average 〈x〉 is then always dominated by the largest event measured since t = 0, rather
than by the accumulating multitude of smaller events. The more one samples the distribution, the
larger 〈x〉 gets!
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and McTiernan, 1993; Brown et al., 1998; Mitra-Kraev and Benz, 2001). Further-
more, at finite spatial and temporal resolution, and in the presence of a detection
threshold, the observational definition of what constitutes a flare becomes a delicate
matter (e.g., Aschwanden et al., 2000a). These observational and data analysis is-
sues account for the significantly different values of the power-law indices reported
by different authors, even when working on the same dataset (cf., Table I; see also
the discussion in Aschwanden et al., 2000b).

While the mean flaring rate varies by about a factor of twenty in the course of
the solar cycle, the power-law indices remain essentially constant (Dennis, 1985;
Lu and Hamilton, 1991; Figure 2; Crosby, Aschwanden, and Dennis, 1993, Fig-
ure 4). Moreover, distributions constructed for distinct active regions of various
sizes show statistically undistinguishable power-law indices (Wheatland, 2000a).
Finally, flare-like X-ray emission from stars other than the Sun also appears to be
distributed as power laws with similar indices, independent of stellar parameters
such as rotation, X-ray luminosity, Rossby number, etc. (see, e.g., Shakhovskaya,
1989; Osten and Brown, 1999; Audard et al., 2000). All this suggests that the
flaring process is intrinsic to coronal magnetic fields, even though the flaring rate
may be controlled by extrinsic factors, such as magnetic flux emergence in the
photosphere.

1.2. CORONAL HEATING AND PARKER’S CONJECTURE

Ultimately, most of the magnetic energy liberated by the reconnection process ends
up heating the plasma surrounding the flaring site. If Equation (1) is taken at face
value, the total energy released per unit time by the ensemble of flares is simply

Etot =
Emax∫

Emin

f (E)E dE = f0

[
E2−α

2 − α

]Emax

Emin

, α �= 2 , (2)

(with Etot = f0 log(Emax/Emin) for α = 2). If α < 2 the largest flares dominate the
release of energy. Conversely, if α > 2 the smallest flares are energetically domi-
nant. On theoretical grounds, E. N. Parker has conjectured that the latter situation
holds: that these ‘nanoflares’ are responsible for coronal heating, and that ‘what
we see as the X-ray corona is simply the superposition of a very large number of
nanoflares’ (Parker, 1983, 1988, 1994; see also van Ballegooijen, 1986).

In a nutshell, Parker’s idea runs as follows3 . Stochastic photospheric fluid mo-
tions shuffle the footpoints of magnetic coronal loops. The high electrical con-
ductivity of the coronal gas implies that the magnetic field is frozen-in, so that
the subsequent dynamical relaxation within the loop results in a complex, tan-
gled magnetic field, essentially force-free everywhere except in numerous small

3Parker (1983, Section 1) provides a nice historical review of the development of this idea, starting
in the mid-1960s.
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electrical current sheets which form spontaneously in highly-stressed regions (see
Figure 1.5 in Parker, 1994; for numerical simulations, Mikić, Schnack, and Van
Hoven, 1989; Longcope and Sudan, 1994; and Galsgaard and Nordlund, 1996).
As the current within these sheets is driven beyond some threshold, reconnection
sets in and releases magnetic energy, leading to localized heating4 . Parker (1988)
estimates the energy of a typical nanoflare to be 	 1024 erg, and argues that they
can indeed provide the 	 107 erg cm−2 s−1 required to heat the corona (Withbroe
and Noyes, 1977).

A voluminous body of literature supports the general notion of coronal heating
by episodic small-scale energy release events (e.g., Porter et al., 1987; Sturrock
et al., 1990; Krucker and Benz, 2000). In the context of Equation (2), Parker’s
conjecture evidently requires α > 2, and observations are now getting close to
detecting 1024 erg events (Aschwanden et al., 2000b). Current data analyses for
total energy release yield a power-law index αE in the range 1.5–2.6 (cf., Table I),
which is too broad a range to confirm or refute Parker’s conjecture. Clearly, a
theoretical calculation of αE would be a useful complement to extant observational
analyses. Self-organized criticality offers an avenue toward this goal.

1.3. SELF-ORGANIZED CRITICALITY

Following the seminal paper of Bak, Tang, and Wiesenfeld (1987, hereafter BTW;
see also Bak, Tang, and Wiesenfeld, 1988; Kadanoff et al., 1989), the sandpile
has become the exemplar of self-organized critical systems5 . Consider a circular
table on which sand grains are dropped one at a time, leading to the buildup of a
more or less conical pile. The sandpile steepens until its slope reaches a critical
angle (the so-called angle of repose) beyond which further addition of sand rapidly
leads to avalanches sweeping sand down the pile, so that the slope remains close
to its critical value6 . The sandpile is now in a statistically stationary state, with the
average rate at which sands falls off the table’s edge equal to the (constant) rate
of sand grain addition. It is a very dynamical stationary state, with relaxation oc-
curring in the form of episodic avalanches involving anywhere from a single grain

4Note that in this picture there exist a separation of timescales between energy input to the system
(minutes to hours, for photospheric fluid motions on granular scales), and energy release (seconds to
minutes, for reconnection and subsequent thermalization under coronal conditions). In other words,
the coronal loop is slowly driven by footpoint motions, a necessary property of the forthcoming
lattice models.
5That real piles of sand do not exhibit self-organized criticality (e.g., Nagel, 1992; Jensen, 1998,
Section 3.2; Duran, 2000, Chapter 4) in no way diminishes the usefulness of this gedanken-sandpile
as a pedagogical device, especially since other granular materials do behave in the manner to be
described presently.
6C.A. Coulomb (of electrostatics fame) suggested in 1773 that the angle of repose (θr ) could be
related to the coefficient of static friction (µs) between sand grains as µs = tan θr , a relation that
has survived the test of time. For an outstanding introduction to the physics of granular material, see
Duran (2000).
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to the whole slope. In the language of statistical physics, the correlation length of
perturbations extends over the whole system: no matter how big the sandpile, a
‘perturbation’ (sand grain dropped near the top of the pile) has a finite probability
of affecting, through the triggering of a large avalanche, another sand grain located
at the bottom of the pile; the system is in a critical state.

The critical behavior of the sandpile at the angle of repose is reminiscent of what
happens near a thermodynamical phase transition. Yet, here no external controlling
parameter (such as temperature) need be finely tuned to achieved criticality; the
angle of repose is attained ‘naturally’ as a consequence of the slow addition of
sand grains, and their spatial redistribution by avalanches. The critical state is an
attractor of the dynamics. It is in that sense that the system is said to be in a state
of self-organized criticality (hereafter SOC).

A central aspect of SOC systems is that they are interaction-dominated, i.e.,
their dynamical behavior is an emergent property of the relatively simple interac-
tion between many degrees of freedom. It does not matter exactly how any two sand
grains interact, as long as they do so locally and that their mechanical stability on
the slope is subjected to a threshold (e.g., friction between adjacent grains). Such
a threshold is in fact crucial, since it allows the existence of multiple metastable
states across which avalanches carry the system (for further discussion see Jensen,
1998, Chapter 6; Sornette 2000, Chapter 15).

A universal feature of physical systems in a state of SOC is that they have no
preferred scale for the release of ‘energy’. In the case of the sandpile, for example,
the spectrum f (n) of avalanche size (where n is number of sand grain involved
in an avalanche) is expected to be a power law, f (n) ∼ n−α, with α ∼ 1. The
ubiquitous existence of such power laws, often dubbed ‘1/f ’ or ‘flicker noise’, in a
wide range of physical systems exhibiting episodic activity (earthquakes and seis-
mic noise emission, landslides and avalanches, cloud formation, magnetospheric
substorms, interface growth, and forest fires, to name but a few) has led some
authors to offer SOC as the latest ‘theory of everything’ (see Bak, 1996, for a
spirited exposition; also Jensen, 1998; and Turcotte, 1999). Caution is indeed in
order here, as power-laws are merely indicative of scale-invariant dynamics, and
SOC is but one of many ways to generate scale invariance (see, e.g., Newman and
Sneppen, 1996; Sornette, 2000, Chapter 14; in the solar flare context, Rosner and
Vaiana, 1978; Litvinenko, 1996; Aschwanden, Dennis, and Benz, 1998; Wheatland
and Glukhov, 1998). Nonetheless, it is the observed power-law distribution of flare
peak energy that led Lu and Hamilton (1991, hereafter LH91) and Lu et al. (1993,
hereafter LHMB) to suggest, in these two groundbreaking papers, that the solar
coronal magnetic field is in a state of self-organized criticality, and that flares
are nothing more than the energy collectively released by an avalanche of small
reconnection events.

The remainder of this tutorial/review paper is organized as follows. In Section 2
we introduce a basic lattice model and investigate in detail the properties of the
resulting SOC state. In Section 3 we revisit various model ingredients, in the course
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Figure 1. A two-dimensional regular Cartesian lattice. A field quantity B is defined at each node
(j, k). Each interior node has four nearest-neighbors (top/down/right/left, in darker gray).

of reviewing the literature on modifications of the Lu and Hamilton model. In sec-
tion 4 we examine the various possible physical interpretations of the lattice model,
and review recent work addressing this important issue. We conclude in Section 5
with a selective overview of what we think are interesting areas for further research
in SOC flare models.

2. A Basic Lattice Model

This section is a tutorial introduction to SOC avalanche models of solar flares,
using a basic formulation adapted from LHMB.

2.1. THE LATTICE

Avalanche models of the type considered here are defined on a lattice, i.e., a
network of interconnected nodes. Figure 1 shows a simple regular Cartesian lat-
tice with nearest-neighbor connectivity; it has a spatial dimension D = 2, linear
size N = 6, and the total number of nodes is equal to ND. Consider the node
(j, k) = (4, 3), indicated by a black solid dot on Figure 1. This node, like all other
interior nodes, has four nearest-neighbors. In a D-dimensional generalization of
such a lattice, each of the (N − 2)D interior node has 2D nearest-neighbors. We
use a vector index k to label each node of a D-dimensional lattice (k ≡ j, k for the
2D lattice of Figure 1).

Although spatially discretized, the physical quantity Bk defined on each lattice
node is taken to be a continuous, scalar variable. In the context of solar flares it
is common to associate Bk with some measure of the magnetic field, so that B2

k
becomes a measure of magnetic energy. The lattice mean field (〈B〉) and lattice
energy (E l) are then

〈B〉 = 1

ND

∑
k

Bk , El =
∑

k

B2
k , (3)
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where the sums over k stands for D nested sums, each from 1 to N .

2.2. THE STABILITY CRITERION

With B defined on the lattice, each node can be tested for stability, as per some
specified criterion equivalent to declaring a sand grain unstable if the local slope
exceeds the angle of repose. In the original BTW model as well as in a large fraction
of subsequent numerical and theoretical work on SOC, a node is deemed unstable
if the corresponding value of the field B exceeds some fixed threshold Zc. Such
models are known as ‘height-triggered’. In the context of solar flares, most models
have followed LH91 in using a criterion based on a measure (�B) of the field
curvature, which for scalar B reads

�B = Bk − 1

2D

2D∑
nn=1

Bnn , |�B| > Zc , (4)

where the sum runs over the 2D nearest neighbors (‘nn’) on the Cartesian D-
dimensional lattice. While LH91 refer to �B as a ‘gradient’, the left-hand side
of Equation (4) has in fact the form of a second-order centered finite difference
expression for the D-dimensional Laplacian operator (Galsgaard, 1996). Accord-
ingly, models based on Equation (4) are best referred to as ‘curvature-triggered’.
While the numerical choice for Zc has no influence on the general behavior of
the model, it must remain non-zero, i.e., the presence of an instability threshold is
crucial.

2.3. THE REDISTRIBUTION RULE

Once a node is deemed unstable, a procedure is needed to restore stability. This
redistribution rule is the model’s equivalent of having sand grains topple down the
sandpile. A natural procedure is to decrease B at the unstable node, and increase it
correspondingly at neighboring nodes. Accordingly, we adopt the D-dimensional
scalar equivalent of the 3D vector rule introduced in LHMB:

Bk → Bk − 2D

2D + 1
Zc , Bnn → Bnn + 1

2D + 1
Zc , (5)

with nn = 1, . . . , 2D, and any field redistributed to a boundary node zeroed out
(equivalent to letting sand grains fall off the edge of the table). Following the
application of Equation (5) one or more of the nearest-neighbor nodes might now
exceed the instability threshold, in which case the redistribution rule is to be applied
to those nodes, and so on until stability is everywhere restored. The sequence of
redistribution events is the model’s realization of an avalanche.

The above redistribution rule is locally conservative in the lattice variable B,
i.e., Bk + ∑

Bnn remains constant. However, a bit of algebra soon reveals that the
lattice energy decreases by an amount
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er = 2D

2D + 1

(
2
|�B|
Zc

− 1

)
Z2

c . (6)

The net energy released by the avalanche at each iteration is thus Er = ∑
er , the

sum extending over all unstable nodes. If Zc is just infinitesimally exceeded at a
single node, the energy released is

e0 = 2D

2D + 1
Z2

c . (7)

This represents the smallest ‘quantum’ of energy that can be released by the lattice,
and thus makes a convenient energy unit. Redistribution rules other than Equa-
tion (5) are of course possible, and it turns out that the character of the SOC state is
influenced by this choice. We defer discussion of this important matter to Section 3.

2.4. THE DRIVING MECHANISM

The existence of a globally stationary state requires that the physical quantity de-
fined on the lattice be externally driven. The simplest way to achieve this is to add
a succession of perturbations δB at some randomly selected interior nodes. This
is the equivalent of dropping sand grains one at a time on the sandpile, and takes
place only when the lattice is not avalanching. In other words, driving occurs much
more slowly than avalanching, so that a separation of time scales exists between
the two mechanisms. Following LH91, we restrict ourselves for the time being
to uniform driving, i.e., δB is extracted from a sequence of uniformly distributed
random deviates:

δB ∈ [σ1, σ2] , 〈δB〉 = 1
2 (σ1 + σ2) . (8)

The bounds σ1, σ2 must be chosen so the resulting distribution of perturbation δB

has non-zero mean, 〈δB〉 �= 0, so that a net mean field grows on the lattice. In
addition, for a SOC state to be attained, the driving must be weak:

|δB|/〈B〉 � 1 . (9)

For the uniform driver defined by Equation (8), 〈δB〉/〈B〉 = 10−4 is a safe upper
bound (more on this in Section 3.7)7 . Here a useful approximate expression for 〈B〉
is

〈B〉 	 Zc

6D
N2 , (10)

7LHMB introduced a more stringent condition, namely |δB|/Zc � 1. This is a necessary condition
for SOC in height-triggered models, but for curvature-triggered models (cf., Equation (4)) it leads
to unnecessarily small δB’s, especially on large lattices. Equation (9) is also in better conceptual
agreement with Parker’s tangled field picture, since the mean increment 〈δB〉 is a fixed fraction of
the mean field for any lattice; in the initial, kinematic stage of braiding magnetic fieldlines around
one another, the tangential component induced by footpoint motions is expected to be proportional
to the mean (vertical) magnetic field (see Parker, 1988, Section 5).
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which is accurate to a few percent for D = 2, 3 (and exact for D = 1). The
number of iterations needed to reach SOC from a Bk = 0 initial condition is then
∼ ND×〈B〉/〈δB〉, which can get quite high for large N and D since |δB|/〈B〉 � 1
is required8 .

2.5. ALGORITHMIC IMPLEMENTATION

We have now defined all the ingredients required to set up a simple simulation.
A minimal pseudo-code for such a simulation is shown on Figure 2. It consists
of a time-like iteration (i := 1, Ni ) involving: (1) a loop over all interior nodes,
checking for local stability; (2) a second lattice loop updating the Bk’s; and (3)
addition of a field increment at some randomly selected lattice node k∗, taking
place only if all nodes are found to be stable at the current iteration.

Note how in the first lattice loop a stability check is first made at each interior
node (k := 2, N − 1), and if instability is detected the increments/decrements in
B associated with the redistribution rule defined by Equation (5) are accumulated
in the D-dimensional work array C. Only after this first sweep over the lattice is
completed is the field synchronously updated at all interior nodes. Applying the
redistribution rules immediately upon detecting an unstable node would introduce
a spatial bias in the avalanching process, according to the manner in which the
lattice sweep is carried out, clearly an undesirable break of isotropy.

2.6. REACHING THE SOC STATE

All we need now is a good random number generator (get one, e.g., in Press et al.,
1992, Chapter 7), and we are ready to compute. Figure 3 shows the time series of
energy release (panel A) and lattice energy (panel B) resulting from running an
algorithm similar9 to that listed on Figure 2 on a ND = 482 lattice for Ni =
1.6 × 107 iterations, with model parameters Zc = 5, σ1 = −0.2, σ2 = 0.8,
and initial condition Bk = 0. As B grows on the lattice under the influence of
driving (see inset B1), equivalent to the buildup of the sandpile, avalanches start to
occur. Their peak size increases gradually as the mean field and lattice energy grow.
After about 13 million iterations, the lattice energy abruptly levels off, a transition
accompanied by an equally sudden increase in the size of the largest avalanches,
which now begin to span the whole lattice. This is the much-awaited SOC state.

As can be seen on inset A1, avalanches are discrete events, well separated
in time and showing considerable temporal structure. From the point of view of
the mean-field (inset B1), the avalanches look like very low amplitude ‘ripples’

8For fixed Zc, σ1, σ2, as in LHMB, the scaling is even worse: ∼ N2D .
9While mathematically correct and didactically preferable, the algorithm listed on Figure 2 is ineffi-
cient in a number of ways, most notably by checking stability at every interior node at each iteration,
even if the previous iteration only saw the addition of a field perturbation at a single random node
k∗!
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Figure 2. Minimal pseudo-code for the SOC lattice model described in the text. The outermost loop is
the time-like iteration, D is the lattice dimension, N the linear lattice size, and k is a D-dimensional
integer array that uniquely labels each lattice node. The work array C is used to accumulate the field
increments/decrements associated with the application of the redistribution rule to unstable nodes.
Note that the lattice loops span only interior nodes, so that Bk = 0 remains enforced at all boundary
nodes. The function irandom returns a D-dimensional integer array k∗ with each element randomly
selected from 2 to N − 1, thus identifying a randomly selected interior node. The function random
returns a number extracted from a sequence of random deviates uniformly distributed in the interval
[σ1, σ2].

propagating along the mean field, reflecting the fact that avalanches release only a
very small fraction of the lattice energy (cf., Figure 3(B) and inset B2).

2.7. PROPERTIES OF THE SOC STATE

The SOC state is stationary in the sense that over long timescales, 〈B〉 and El

neither grow nor decay. However, the way in which this happens is somewhat
peculiar. While the average driving rate is constant, energy dissipation occurs in a
bursty, intermittent manner, via avalanches that are self-similar in space and time,



AVALANCHE MODELS FOR SOLAR FLARES 331

Figure 3. Time series of energy released in avalanches (A) and lattice energy (B). The underlying
model is defined on a ND = 482 lattice, with initial condition Bk = 0 and all energies expressed
in units of the minimal single-site energy release e0 (Equation (7)). The inset A1 shows a small
portion of the energy release time series, and illustrates the fundamentally discrete nature of the
energy release process, occurring in bursts of all sizes, well separated in time. The peak energy
release P , total energy E and duration T are readily extracted from such time series. The inset B1
shows four 1D B-cuts along the middle of the lattice, extracted at epochs indicated by the solid dots
on the lattice energy curve on (B), and illustrates the growth of the ‘mean-field’ towards SOC. Inset
B2 is a closeup on the lattice energy curve, showing how sharp drops (gray vertical line segments)
correspond to peaks in the energy release time series on (A) (also flagged by gray line segments).
The SOC state sets in at the point where the lattice energy levels off to a stationary value. Note on
(A) how the peak energy release (i.e., the size of avalanches) increases abruptly once the SOC state
is reached.
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i.e., they have no characteristic spatial or temporal scale10 . It is important to realize
that large avalanches are essential to the existence of the SOC state. Because the
redistribution rule is conservative in B, and the driving is such that 〈δB〉 �= 0,
stationarity can only be maintained if B is zeroed out at the boundaries at the same
average rate at which it is added by the driving process. The required transport of B

to the boundaries is mostly accomplished by large avalanches. In other words, large
avalanches set up the long-range spatial correlations that are responsible for estab-
lishing the proper balance between B-conservative internal avalanches that only
redistribute B, and B-dissipative avalanches reaching the lattice boundaries. This
delicate balance is central to the SOC state (for further discussion, see Sornette,
2000, Chapter 15).

The solid-line histogram on Figure 4 is the frequency distribution of the curva-
ture measure, �B (see Equation (4)), normalized to its instability threshold Zc.
The distribution is constructed from a non-avalanching iteration snapshot of a
ND = 1282 lattice again with Zc = 5, and excluding boundary nodes. Statistically
undistinguishable distributions are obtained for other lattice sizes, or other values
of Zc. The �B distribution is sharply peaked, with a mean at �B/Zc 	 0.59. This
corresponds to the overall curvature of the mean-field set up across the lattice in the
SOC state (see solid line on B1 inset of Figure 3). In curvature-triggered models,
it is thus essential to pin down the field at the boundaries (see Galsgaard, 1996, for
more on boundary conditions), and to have a driving mechanism with a non-zero
mean. Interestingly, �B distributions for 3D models (dotted histogram on Figure 4)
have the same mean and similar overall shape, though they are statistically distinct
from the 2D distributions. Driving slowly pushes the distribution to the right, but
avalanches counteract this tendency by pushing it back to the left.

2.8. CHARACTERIZATION OF AVALANCHES

We now turn to the avalanches themselves, for which we define five quantities
to characterize temporal and spatial behavior. The peak energy release (P ) is the
maximum energy released in a single iteration in the course of an avalanche. The
duration (T ), is the number of iterations from the onset of the avalanche to the
recovery of stability across the whole lattice. The total energy E is the sum of all
energy released at all avalanching nodes in the course of the whole avalanche, i.e.,
the gray area under the energy release curve on inset A1 of Figure 3. The remaining
two measures refer to the geometrical properties of the avalanches. Figure 5 shows
a sequence of three snapshots of an ongoing avalanche, computed on a ND = 1282

lattice (see also the animation on the CD accompanying this Journal issue). The
area (A, see Figure 5) is the set of all lattice nodes having gone unstable at least

10More precisely, functional relationships such as power-laws are self-similar, in that they remains
invariant under a change of scale in either variable. For example, introduce the scaling E′ = aE in
Equation (1). It is easily verified that the rescaling f ′ → aαf recovers f ′ = f0E−α . Fractals are
the geometrical expression of self-similarity.
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Figure 4. Distribution of local curvature �B (normalized to the critical threshold Zc) for various
lattices. The distributions are constructed from a non-avalanching iteration in the SOC state. The
vertical line segments are the means 〈�B/Zc〉.

once in the course of the avalanche. The resulting cluster of nodes is the vaguely
Switzerland-like white shape on Figure 5(D). A useful estimate of its characteristic
linear size R is given by its radius of gyration:

R2 = 1

M

M∑
i=1

|ri − R0|2 , (11)

where the sum runs over the M nodes that are part of the cluster, and R0 =
(1/M)

∑
ri is the cluster’s center of mass. Physically, R is simply the radius of

the thin spherical shell (circular ring in 2D) having the same ‘mass’ and moment
of inertia as the original cluster (see Stauffer and Aharony, 1994, Section 3.2).

These five quantities are related via well-defined, albeit statistical power-law
relationships of the general form log(y) ∼ γxy log(x), where x, y stand for any two
of the five measures defined above (see LHMB, Figure 7)11 . Figures 6(A) and 6(B)
illustrates two such power-law correlations for which observational counterparts
are available (Crosby, Aschwanden, and Dennis, 1993; Bromund, McTiernan, and
Kane, 1995). The exponent γRA is the fractal dimension of the avalanche. The time-
integrated avalanche area (Figure 5(D)) is a compact object, so that γRA = D to
a percent or better. If however one uses the spatial distribution of unstable nodes

11Since they define power laws, the γ ’s are related to one another via relationships of the form γzx =
γzy × γyx ; also, γyx = 1/γxy , and, in terms of the α-indices soon to be introduced (Equation (12)
below), γxy = (αx − 1)/(αy − 1).
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Figure 5. Snapshots of an ongoing avalanche on a ND = 1282 lattice (A–C). (B) is extracted at the
peak of the avalanche. The gray scale encodes �B, with the bright checkerboard-patterned regions
corresponding to unstable nodes. Note how spatially fragmented the avalanche becomes once it gets
underway. The white cluster on (D) shows the total area of the avalanche.

at the avalanche peak (Figure 5(B)) to define A and R, then γRA(P ) < D (see
Table II further below).

2.9. STATISTICS OF AVALANCHES

Armed with the above definitions for E, P , T , A, and R, we can run the lattice
models over a great many iterations, collect avalanche data, and build frequency
distributions for these quantities. Figure 6(C–E) shows the results of this exercise
for E, P and T (histograms), for a 107 iteration run on a ND = 323 lattice, in
the course of which 	 2.5 × 106 avalanches were recorded. All quantities exhibit
well-defined power laws spanning many orders of magnitude. The solid lines on
Figure 6(A–C) are nonlinear least-squares fits of the general form
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Figure 6. Statistical properties of avalanches in a representative 107 iteration run carried out on a
ND = 323 lattice. (A) and (B) show the typical power law cross-correlation between avalanche
parameters, with power-law least-squares fits carried out using only data above the diagonal dotted
line, because of clustering of small avalanche parameters due to the discrete nature of the lattice.
Observationally inferred indices are also listed. (C–E) are normalized frequency distributions for E,
P , T , with least-square fits (solid lines) to Equation (12). The vertical line segments correspond to
the length scale xc of the cutoff function G(x, xc). (F) shows the frequency distribution of waiting
times �T , which is very well fit by an exponential distribution.
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TABLE II

Power-law indices for total energy (E), peak energy (P ), and duration (T ) of avalanches
in various lattice models, obtained by least-squares fits of Equation (12) to frequency
distributions such as plotted on Figure 6. The fractal dimension γRA(P ) of the clus-
ter of avalanching nodes at the peak of avalanches (as on Figure 5(B)) is also listed.
The leftmost columns gives the length n (in units of 107 iterations) of the sets of 10
independent time series used to build the avalanche statistics for each lattice (see text).

ND αE αP αT γRA(P ) n

322 1.429 ± 0.001 1.741 ± 0.005 1.711 ± 0.002 1.610 ± 0.022 0.5

642 1.417 ± 0.002 1.725 ± 0.007 1.715 ± 0.003 1.600 ± 0.020 1.0

1282 1.402 ± 0.002 1.704 ± 0.004 1.697 ± 0.002 1.572 ± 0.032 1.0

2562 1.408 ± 0.001 1.692 ± 0.005 1.700 ± 0.004 1.552 ± 0.021 1.5

5122 1.416 ± 0.005 1.707 ± 0.005 1.721 ± 0.007 1.561 ± 0.042 2.0

10242 1.421 ± 0.004 1.731 ± 0.005 1.723 ± 0.008 1.581 ± 0.038 2.0

163 1.451 ± 0.003 1.855 ± 0.008 1.650 ± 0.009 1.779 ± 0.025 1.0

243 1.464 ± 0.003 1.875 ± 0.007 1.705 ± 0.003 1.768 ± 0.034 1.0

323 1.464 ± 0.003 1.890 ± 0.006 1.737 ± 0.006 1.799 ± 0.028 1.0

483 1.487 ± 0.007 1.915 ± 0.009 1.793 ± 0.008 1.782 ± 0.023 1.5

643 1.491 ± 0.006 1.923 ± 0.007 1.787 ± 0.007 1.793 ± 0.031 2.0

1283 1.485 ± 0.004 1.916 ± 0.008 1.788 ± 0.005 1.777 ± 0.022 2.0

f (x) = f0x
−αx G(x; xc) , (12)

where as before x stands for E, P , etc, and G(x; xc) is a cutoff function character-
ized by a length scale which is expected to scale with grid size as yet another power
law, xc ∼ Nβ , implying finite-size scaling (Kadanoff et al., 1989). LHMB used
an exponential cutoff function exp(−x/xc) and demonstrated finite-size scaling
(see their Figure 3)12 . The fits (solid lines on Figure 6(C–E)) are carried out on
log(f ) and for logarithmically constant bin width � log x = 0.2, each bin being
assigned a weight

√
N , under the assumption of Poisson statistics. The first 2 bins

are omitted from the fits, because of the discrete nature of the grid distorts the
frequency distributions for the smaller avalanches.

The best-fit indices for a variety of lattice sizes and dimensions are listed in
the top section of Table II. These values are in good agreements with the results
listed in Table 1 of LHMB and Table II of Edney, Robinson, and Chisholm (1998),
the slight remaining differences being due – we strongly suspect – to the different

12The existence of finite size scaling is considered to be a sine qua non condition for a system to
be deemed critical. Systems sharing the same set of α and β indices are said to belong to the same
universality class. Here a logistic function gives a better fit to the cutoff, but this matters little in the
determination of the α-indices, except on small lattices.
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Figure 7. Variations of the least-squares fit power-law indices αE , αP and αT as a function of the
length of the time series used to construct the frequency distributions. The solid dots are the mean of
ten independent ND = 1282 runs, with the gray vertical bars spanning the 1σ r.m.s. deviation about
the mean. The dashed horizontal lines are included as a guide to the eye, and correspond to the mean
of the three rightmost data points.

manners each group went about carrying out the fits. Note how (1) the indices
converge reasonably rapidly as lattice size is increased; (2) they do not differ
greatly between 2D and 3D lattices; (3) for either D = 2 or 3, the α-indices
fall nicely within the ranges set by observational inferences (cf., Table I), with
the worst discrepancy occurring for αT , which turns out to be the hardest to infer
reliably from observations. Our basic model is doing pretty well at reproducing
flare statistics!

It is important to note that the long-range (spatial and temporal) correlations
characterizing the SOC state can lead to significantly different power law indices if
the runs are not carried out over sufficiently many iterations. This is illustrated on
Figure 7, for a sequence of ND = 1282 runs. The power law indices are calculated
for the first 5 × 105 iterations, 106 iterations, 1.5 × 106, and so on up to the full
length of the run, here 107 iterations. This procedure is repeated for 10 independent
such runs, and the average power law indices are then calculated and plotted (solid
dots) as a function of run length, together with the ± 1 σ r.m.s. deviation about the
corresponding mean values. The index values and error estimates listed in Table II
were computed in this manner. The larger the lattice, the longer the simulation must
be run to recover stable α-indices. Here for ND = 1282, a few 106 iterations are
needed for the values of the indices to stabilize to within ± 0.01, exemplifying the
natural variability of the SOC state.

2.10. THE WAITING TIME DISTRIBUTION

Another interesting quantity is the waiting time (�T ), defined as the number of
iterations between the end of an avalanche to the onset of the next. These show
no correlation with the size of the next avalanche (LHMB, Figure 6; Georgoulis,
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Vilmer, and Crosby, 2001, Section 4.3), and neither do solar flares (e.g., Crosby,
Lund, and Sunyaev, 1998; Wheatland, 1999). This is contrary to the predictions of
stochastically triggered energy loading models, such as those originally proposed
by Rosner and Vaiana (1978; see Lu, 1995c; but also Wheatland and Glukhov,
1998). Essentially, avalanche models lack such a correlation because the avalanches
only release a small fraction of the energy stored in the lattice, so that two large
flares can occur closely spaced in time, without the need for an energy ‘reloading’
interlude.

The waiting times distribution (WTD) is plotted on Figure 6(F), and is very
well fit by an exponential f (�t) = λ−1

0 exp(−λ0�t), where λ0 is the mean flaring
rate over the complete time series (number of avalanches over number of non-
avalanching iterations); this behavior indicates that the triggering mechanism is a
Poisson process, which is precisely what one would expect from the uniform driver
of Section 2.4 (see Wheatland, Sturrock, and McTiernan, 1998). It also stands in
marked contrast to observational inferences of the WTD, which are characterized
by a power law tail at large waiting times (Boffeta et al., 1999; Wheatland, 2000b;
Lepreti, Carbone, and Veltri, 2001). This apparent failure of our basic model will
be readily corrected in Section 3 below.

2.11. INITIALIZATION FORMULA

We end this tutorial section with a useful practical tip. In the SOC state, all memory
of the initial condition is lost; since it is the properties of the SOC state that are
usually of interest, initializing the lattice with Bk = 0 is far from optimal, in view
of the subsequent lengthy driving to SOC (at best ∼ ND, as per Section 2.4).
A more efficient initialization procedure can be designed upon recalling that the
stability criterion given by Equation (4) has the form of a second-order centered
finite difference representation of the D-dimensional Poisson equation:

∇2B(x) = −2DZc

N2
, 1 ≤ x ≤ N , (13)

A general D-dimensional solution to ∇2B = 1 on the unit hyper-cube with bound-
ary condition B = 0 is

B(x1, x2, . . . , xD) = 1

2
x1(x1 − 1) + (1 − δ1,D)

4

π2

∞∑
n1=0

{
sin(π(2n1 + 1)x1)

(2n1 + 1)3
×

×
[ D−1∏

k=2

(
4

π

∞∑
nk=0

sin(π(2nk + 1)xk)

(2nk + 1)

)]
cosh(π�(2xD − 1))

cosh(π�)

}
, (14)

where

�2 = (n1 + 1
2 )2 + (n2 + 1

2 )2 + · · · + (nD−1 + 1
2)2 , (15)

and δ1,D is the Kronecker delta. An exact solution to Equation (13) is then readily
constructed. Upon initializing the simulation with such a solution, SOC is rapidly
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attained13 , following an initial avalanching phase occurring primarily because the
�B distribution is not a δ-function in the SOC state (see Figure 4).

3. Variations on a Theme

Evidently, many variations on the original LH91/LHMB model can be constructed.
The past decade has witnessed the publication of many such variations and elabo-
rations, to a review of which we now turn.

3.1. SCALAR VERSUS VECTOR FIELDS

LH91 and LHMB originally formulated their model in terms of a 3D vector field Bk

defined at each lattice node, each component being independently driven
as described in Section 2.4. This leads to a mean-field configuration having
Bx = By = Bz everywhere, thus requiring a single degree of freedom per node,
e.g., |B|, to describe the 3D vector field (Robinson, 1994), which brings us back to
the basic model of Section 2. The numerical study carried out by Edney, Robinson,
and Chisholm (1998) has shown that for a given D, the vector and scalar ver-
sions of this model belong to the same universality class. With a few exceptions,
most subsequent models have adopted the less computationally demanding scalar
version.

3.2. STABILITY CRITERIA AND REDISTRIBUTION RULES

Experience with the height-triggered BTW model suggests that variations on the
instability criterion and redistribution rule are the alterations most likely to change
the character of the SOC state. This is found to carry over to the curvature-triggered
model.

Zirker and Cleveland (1993) have studied a ND = 322 model involving the
eight nearest neighbors to define the stability criterion. In addition, their redistri-
bution rule is both stochastic and anisotropic: if node k is deemed unstable, they
redistribute half of Bk to only two randomly selected neighbors. The slowly-driven
version of their Model A yields αE = 1.45, similar to the basic model of Section 2.
This suggests that both versions of the model belong to the same universality class,
as appears to be the case within the original height-triggered modeling framework
of BTW (Chessa et al., 1999).

L. Vlahos and collaborators have studied a variety of D = 3 models incorpo-
rating anisotropic stability thresholds and redistribution rules (see Vlahos et al.,

13In practice it is optimal to initialize the simulation with the solution B∗ scaled down by a numerical
factor f corresponding to the mean of the �B distribution appropriate to the lattice under study
(f = 0.59 for D = 2 or 3 on a regular Cartesian lattice, see Figure 4). We reiterate that careful
monitoring of the lattice energy is still here the safest way to ascertain whether or not the SOC has
been reached.
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1995; Georgoulis and Vlahos, 1996, 1998). In Vlahos et al. (1995)’s Model B, the
usual stability criterion (Equation (4)) is replaced by six independent criteria, one
per nearest neighbor:

�Bnn = Bk − Bnn , |�Bnn| > Zc , nn = 1, . . . , 6 . (16)

Redistribution only occurs with the n∗ (≤ 6) nearest neighbor nodes for which the
stability criterion is exceeded:

Bk → Bk − 6

7
Zc , Bnn → Bnn + 1

n∗
6

7
Zc , nn = 1, . . . , n∗ (17)

(compare to Equation (5)). Because stability is more easily violated with the sta-
bility criterion given by Equation (16), and fewer nodes take part in the redis-
tribution, the model favors smaller avalanches, and consequently, avalanche size-
distributions are characterized by steeper power laws than in the basic isotropic
model of Section 2. Vlahos et al. (1995) report αE 	 3.5, αP 	 3.6, and αT in the
range 7–11 over a wide range of lattice sizes.

Vlahos et al. also experimented with two models where a redistribution event
lowers the stability threshold Zc of its nearest-neighbor nodes, by an amount pro-
portional to the local field gradient �Bnn at the time of instability. This was found
to have very little effect on the resulting power-law indices. LHMB and MacKin-
non and Macpherson (1997) also reported introducing random spatial fluctuations
in Zc, without significant changes on the frequency distributions.

Georgoulis and Vlahos (1996, 1998) have presented results for a hybrid model
where the above stability criterion and redistribution rule are used concurrently
with the standard isotropic criterion and redistribution rules of Section 2.2 and 2.3.
In this case the frequency distribution of avalanche parameters are characterized
by a double power law (see Figure 1 in Georgoulis and Vlahos, 1998). The steeper
power law is confined to small events, and has indices similar to Model B of Vlahos
et al. (1995), while the power laws for larger events are comparable to those of the
standard isotropic model.

MacKinnon and Macpherson (1997) have considered a variation on the basic
model which includes non-local effects. Whenever a node becomes unstable, the
usual redistribution rule is applied; in addition, the Zc value at one or more ran-
domly selected nodes elsewhere in the lattice is halved at the next iteration. This
can ‘spontaneously’ trigger a secondary avalanche. Having more than two non-
local nodes thus perturbed per redistribution event is found to induce significant
departures from the original power-laws, and the SOC is never attained if six
nodes are perturbed. Non-local triggering of avalanches disturbs the long-range
correlations necessary to the SOC state.
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3.3. DRIVING MECHANISM

Georgoulis and Vlahos (1996, 1998) have designed a series of models where the
field increments δB are extracted from a probability distribution having the form of
a declining power-law: p(δB) ∼ δB−α . They show that the usual power law indices
αE , αP and αT vary linearly with the index α of the above probability distribution,
thus offering an attractive mechanism to tune (or induce temporal variability in)
the logarithmic slopes of the frequency distributions.

Norman et al. (2001) have considered the effects of a non-stationary driving
mechanism, by modulating the uniform driver of the basic model by a random
walk function ρ(t): δB ∈ ρ(t) × [σ1, σ2]. The resulting statistical distributions of
δB are characterized by extended tails (see their Figure 1), and lead to somewhat
steeper frequency distributions of avalanche size parameters than in the uniform-
driving case. Norman et al. also demonstrate that the average flaring rate in their
models with non-uniform driving scales with the average energy input rate as a
remarkably tight power law with index 	 1.6 (see their Figure 3).

The use of a non-stationary driver by Norman et al. (2001) was motivated by the
analysis of Wheatland (2000b), suggesting that the power-law tail of the observed
waiting time distribution could be understood in terms of a piecewise-constant
Poisson process. The WTDs obtained by Norman et al. are indeed characterized
by well-defined power-law tails at large waiting times, with the power-law index in
reasonable agreement with observational inferences, as shown on Figure 8.

What happens if the weak driving condition |δB|/〈B〉 � 1 is violated? Small
increments are better at bringing a large portion of the lattice close to the stability
threshold, without exceeding it. Lattice-spanning avalanches can only materialize
if such large clusters of marginally stable nodes have the opportunity to build up,
something that becomes increasingly difficult as 〈δB〉 becomes comparable to 〈B〉.
On the other hand, increasing 〈δB〉 also demands an increase in the frequency
of boundary-discharging avalanches, if a stationary state is to be maintained. As
a result of these two conflicting tendencies, strong driving ends up to favoring
mid-size avalanches. As exemplified on Figure 9 for the peak energy P , the result-
ing frequency distributions of avalanche parameters do not show the well-defined
power law so striking on Figure 6(B). The lattice is still stationary, still avalanch-
ing, and still dissipating energy, but it is no longer in a critical state. A similar
situation materializes when the δB’s are extracted from a distribution with zero
mean (LHMB, Figure 5).

3.4. PROBABILISTIC MODELS

MacKinnon, Macpherson, and Vlahos (1996) have put forth a probabilistic model
that reduces the stability condition and redistribution rule to the strict minimum.
Their model is basically a 1-D forest-fire cellular automaton, mathematically akin
to directed percolation (see Stauffer and Aharony, 1994, Chapter 6). Consider a
1D array of sites (nodes) that can be in either one of three possible states: loaded,
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Figure 8. Waiting time distribution (thick histogram) for the non-stationary driving model of Norman
et al. (2001). Beyond t = 20 (iteration units), the WTD is well fit by a power law with index
2.51±0.16, in agreement within error bars with the observational value 2.4±0.1 inferred by Boffeta
et al. (1999), although somewhat larger than the value 2.16 ± 0.05 obtained by Wheatland (2000b).
For comparison, the exponential WTD of the basic model with uniform driving is also shown.

flaring, or empty. The evolution rules are quite simple: if a loaded site has a nearest
neighbor in a flaring state then flare at the next time step with probability p1; else,
flare spontaneously with probability p0 (� p1). A loaded site can flare only once,
after which it remains empty14 .

The probability distribution of event size, defined as the number of sites under-
going flaring, is readily computed by considering the various ways in which events
of size N can unfold, as shown on Figure 10. For example, there are two distinct
ways to produce an event of size N = 2, each with probability p0p1(1 − p1)

2:
first, a site must be spontaneously activated (probability p0); only one of the two
neighbors must subsequently flare [probability p1(1 − p1)], but then its neighbor
must fail to flare at the subsequent iteration [probability (1 − p1)]. It follows that
the probability of producing an event of size N is

p(N) = Np0p
N−1
1 (1 − p1)

2 . (18)

Assume now that the flaring probability p1 is a uniformly distributed random
variable p1 ∈ [0, 1]. Integrating Equation (18) over p1 then leads to a frequency

14In the classical forest-fire model of Drossel and Schwabl (1992), an empty site can ‘grow a tree’
(reloading) with probability p2; a SOC state is attained in the double limit p2 � 1 and p0 � p2.
(Jensen, 1998, Section 4.5; Sinha-Ray and Jensen, 2000).
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Figure 9. Frequency distribution of peak avalanche energy in ND = 1282, Zc = 5 models with
moderate to strong driving, as measured by 〈δB〉/〈B〉 (cf., Section 2.4). Models with smaller values
for this quantity yield f (P ) distributions statistically indistinguishable from the 〈δB〉/〈B〉 = 0.0005
model. Note that the latter has 〈δB〉/Zc = 0.68, max(�B)/Zc = 2, yet reached a bona fide SOC
state.

distribution of event size: f (N) 	 2/N2 (for N � 1). A power law thus results
naturally from this simple interaction process. Branching theory suggests αE 	 1.5
for D > 1 (Litvinenko, 1998), while the 3D simulations of Macpherson and
MacKinnon (1999) yield αE in the range 1.76–2.87, depending on the assumed
value of p1, and whether and how fast empty sites are allowed to ‘reload’. Note
that this model is critical, but does not self-organize itself to criticality. Insight
gained from studies of the forest fire model suggests that true SOC behavior might
materialize upon introducing a ‘reloading’ probability p2 such that p0 � p2 � 1,
with p1 � 1.

3.5. LATTICE STRUCTURE

To the best of our knowledge all work to date on the curvature-triggered model has
been carried out on regular square (D = 2) or cubic (D = 3) lattices. Although
these lattices are computationally convenient, such extreme regularity is hard to
reconcile with Parker’s picture of a complexly tangled magnetic field. Given what
is known from percolation theory and lattice gas models, the global behavior on
a triangular lattice (for example) is likely to be described by numerically distinct
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Figure 10. Probability p(N) of observing an event of size N in the 1D cellular automaton model of
MacKinnon, Macpherson, and Vlahos (1996). The probabilities of spontaneous and induced flaring
are p0 and p1, respectively. The flaring sites are the ∗’s, and the loaded sites having failed to flare
(probability 1−p1) the ◦’s. Time runs upward, and sites having flares once already (·) remain empty
at all subsequent steps.

power-law indices. Clearly, more work is needed in exploring the consequences of
alternate lattice geometries and connectivities.

4. Physical Interpretation

The success of SOC models at reproducing many statistical properties of solar
flares has motivated a large body of work aimed at clarifying their underlying
physical basis. We now turn to this important issue.

4.1. WHAT IS Bk ANYWAY?

The most straightforward physical association of the nodal field Bk is to the mag-
netic field B, in which case Equation (3) for lattice energy and Equation (6) for
nodal energy release make sense. However, in general this leads to ∇ · B �= 0.
LHMB point out that associating instead Bk with a vector potential A such that
B = ∇ × A not only solves (trivially) the ∇ · B problem15 , but also offers a
plausible interpretation of the driving process. Adding an increment δA to the
lattice amounts to locally twisting the magnetic field. Another attractive feature
of this Bk ↔ A ansatz is that it provides a physically meaningful interpretation for
the instability threshold. As noted previously, Equation (4) has the form of a finite
difference expression for the Laplacian operator, so that the threshold condition
implies that ‘reconnection’ sets in once the local electric current (∼ ∇2A for a
suitably selected gauge) exceeds a threshold value, which is physically appealing
for reconnection-triggering plasma instabilities. However,

∑
B2

k is then no longer
an obvious measure of lattice energy, which calls into question the whole idea of
comparing model time series to flare observations.

15Another trivial solution to the ∇ · B �= 0 problem is to consider a 2D lattice where Bk is the
strength of a magnetic field oriented perpendicular to the lattice plane (e.g., Vassiliadis et al., 1998).
Evidently, this ‘trick’ is of limited applicability.
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Interpreting the threshold and redistribution rule in term of anomalous diffusion
(e.g., Isliker et al., 1998; also Section 4.2 below), Isliker, Anastasiadis, and Vlahos
(2000, 2001) also argue that Bk should be identified with a smooth vector potential,
but sampled at finite spatial intervals corresponding to the characteristic diffusive
length. They go on to argue that the redistribution rule can be interpreted in terms
of current dissipation, and show that the frequency distributions of event sizes
constructed using measures of current dissipation do not differ significantly from
those arising from the traditional Bk ↔ B interpretation (see Isliker, Anastasiadis,
and Vlahos, 2000, Figure 3).

Alternately, one can associate Bk with a dynamically significant characteristic
of a macroscopic physical object, such as a magnetic flux tube. Model B of Zirker
and Cleveland (1993), as well as Chou’s (1999) model, are of this type. Chou’s
ND = 502 model associates Bk with the internal twist of flux tubes oriented
perpendicular to the lattice plane (see also Chou, 2001). His stability criterion
is defined in terms of the twist ‘gradients’ between pairs of neighboring nodes.
Provided the redistribution conserves the twist (i.e., Bk), the model behaves in
manner analogous to the basic model of Section 2, and yields comparable power-
law indices. In Zirker and Cleveland’s (1993) Model B, only a small (20%) fraction
of lattice node are occupied by flux tubes. Driving takes place by randomly moving
flux tube footpoints to neighboring empty lattice nodes. In addition to twisting,
the flux tubes can also wrap about one another (‘braiding’). The braiding-related
events lead to a power-law tail in the frequency distribution of energy release, but
the power law index is found to be rather sensitively dependent on some model
parameters.

Longcope and Noonan (2000) have constructed a ND = 302 model where the
dynamical elements are currents flowing along separatrix surfaces. The separatrix
currents are driven by shearing in the lattice plane, and the threshold and redistrib-
ution rules both involve these currents. Tuning of a parameter results in power-law
distributions of event sizes, with indices once again close to the corresponding
indices for the basic 2D model at comparable N . This avalanche model is critical,
but again lacks self-organization.

4.2. THE CONTINUUM LIMIT

It was already noted (Section 2.2) that the stability criterion given by Equation (4)
has the functional form of a second-order centered finite difference expression for
the D-dimensional Laplacian operator. This analogy can be exploited to construct
a PDE describing the avalanching process. We first do so using the slightly (but,
as we shall soon see, significantly) different redistribution rule introduced in the
original LH91 paper. The D = 1 scalar stability criterion and redistribution rule
are:

�Bn
i = Bn

i − 1

2

∑
Bn

i±1 , (19)
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Bn+1
i = Bn

i − 2
3�Bn

i , Bn+1
i±1 = Bn

i±1 + 1
3�Bn

i , (20)

where i and n are the spatial and temporal indices, respectively. Note that �Bn+1
i =

0 immediately after the distribution, unlike the LHMB rule adopted in our basic
model of Section 2. In a region where contiguous nodes are avalanching, each node
is subjected to three distinct increment/decrement operations, as per Equation (20).
If nodal updates are carried out synchronously, as done in the algorithm of Figure 2,
then the field variable at node i is updated according to

Bn+1
i = Bn

i − 2
3�Bn

i + 1
3�Bn

i+1 + 1
3�Bn

i−1 . (21)

Making judicious use of Equation (19), this can be rewritten as

Bn+1 − Bn = − 2
3 [S][S]Bn , (22)

where B ≡ Bi , and the elements of the matrix [S] are given by

[S]i,j = δi,j − 1
2δi,j+1 − 1

2δi,j−1 , (23)

where δi,j is the Kronecker delta (see Liu et al., 2001). Clearly, [S] has the form of
a second-order centered finite difference stencil for (−1/2)∂2/∂x2. Equation (22)
is thus equivalent to the spatial discretization of the fourth-order hyperdiffusion
equation:

Bt = −κBxxxx , (24)

with second-order centered differencing in space (grid spacing �x = 1), forward
differencing in time (time step �t = 1), and with a hyperdiffusion coefficient
κ = 1/6 (subscripts ‘x’ and ‘t’ are used hereafter to indicate partial derivatives
with respect to space and time).

Some authors (Galsgaard, 1996; Macpherson, personal communication) have
reported being unable to reproduce the LH91 results using their original redistri-
bution rule. Our own numerical model, based on the algorithm given on Figure 2,
eventually diverges if the LH91 rule is used, suggesting some sort of numerical
instability. A standard von Neumann stability analysis (e.g., Press et al., 1992,
Section 19.1) can be applied to Equation (24), and yields an amplification factor

p = 1 − 2

3

�t

�x4
(cos k�x − 1)2, (25)

where the perturbation wavenumber k is real and non-negative. For �x = 1,
�t = 1, max |p| = 5

3 > 1 (for k such that cos k = −1). Therefore, numerical
integration of the difference equations (20) is unconditionally unstable. If instead
only a fraction f �Bi (0 < f < 1) is redistributed in Equations (20), then the
hyperdiffusion coefficient in Equation (24) becomes κ = f/6. It is easy to show
that if f < 3/4, max |p| < 1 ∀k. Numerical experiments readily confirm this
stability analysis.
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The derivation leading to Equation (22) does not carry through if the LHMB
redistribution rule is used, but evidently that rule is equivalent to introducing a
multiplying factor Zc/|�Bi| (< 1, since nodes are avalanching) to the redistrib-
uted quantity, and thus also to the hyperdiffusion coefficient associated with the
LH91 rule. Although f now varies from node to node, this still suggests enhanced
numerical stability, and indeed the use of the LHMB rule is found (empirically) to
lead to a numerically stable model16 .

Equation (24) holds only in avalanching regions, but it should be nonetheless
clear that in the continuum limit of �x → 0 and �t → 0, the lattice model of
LH91 can be expressed as a randomly driven fourth order hyper-diffusive system
with anomalous diffusion coefficient:

Bt = −(κ(Bxx)Bxxx)x + f (x, t) (26)

(written now in conservative form), where f is a low frequency random forcing,
and

κ(Bxx) =
{

0 if |Bxx| < Zc,

1
6 if |Bxx| > Zc.

(27)

This conclusion actually carries over to the basic lattice model of Section 2, which
uses instead the redistribution rule of LHMB. This is readily verified upon com-
puting the power spectrum density of B in the SOC state, which yields a slope of
−4, precisely what one would expect from a randomly driven fourth order diffusive
system (see Liu et al., 2001).

The avalanche equation possesses self-similar and traveling-wave solutions,
just as the Kuramoto–Sivashinsky (Chang, 1986), the Cahn-Hilliard (Elliott and
French, 1987), and the thin-film (Boatto, Kadanoff, and Olla, 1993), equations.
These related higher-order diffusion equations have received significant attention
in the literature (Smyth and Hill, 1988). Consider, for example, the curvature trig-
gered hyper-diffusion equation

Bt = −(|Bxx|νBxxx)x . (28)

This avalanche equation admits a self-similar solution of the form

B(x, t) = B0 t−β b(xt−β) , (29)

with β = 1/(4 + 3ν). In terms of the variable ξ ∼ xt−β , one immediately deduces
the nonlinear governing ODE,

|bξξ |νbξξξ = βξb , (30)

16The derivation of Equation (22) and subsequent stability analysis are pre-empted on synchronous
update of all avalanching nodes. H. Isliker (personal communication) has indicated to us that a stable
model based on the LH91 redistribution rule can be constructed by forsaking strict synchronicity in
nodal updating.
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for b(ξ) an even function about ξ = 0, whose form is set by the adopted value of
ν. The linear case (ν = 0) admits solutions in terms of generalized hypergeometric
functions. The avalanche front moves according to the power-law, y ∼ t1/4, as
dictated by the form of the self-similar variable. For the general non-linear situation
(ν �= 0), the motion of the front is slightly retarded, since y ∼ t1/(4+3ν).

We note finally that avalanching behavior is not restricted to fourth-order dif-
fusion equations. Lu (1995b) has studied numerically the behavior of the second-
order 1D avalanche equation

Bt = (κ(Bx)Bx)x + f (x) , (31)

with steady driving and κ(Bx) described by a time-dependent threshold equation.
He has shown that this system does produce self-similar energy dissipation via
avalanches with sizes distributed as power laws. In the continuum limit as with
the lattice model, a self-stabilizing threshold instability causing local transport
emerges as the key ingredient. The exact form of the diffusion coefficient (≡
stability condition) and diffusion operator (≡ redistribution rule) is of secondary
importance.

4.3. SOC-LIKE BEHAVIOR IN MHD TURBULENCE

It has now been amply demonstrated that energy dissipation in MHD turbulence
occurs in a manner that is strongly intermittent, both spatially and temporally (e.g.,
Longcope and Sudan, 1994; Einaudi et al., 1996; Galsgaard and Nordlund, 1996;
Dmitruk and Gómez, 1997; Galtier and Pouquet, 1998; Georgoulis, Velli, and Ein-
audi, 1998; Einaudi and Velli, 1999; Galtier, 1999, and references therein). Such
simulations are often characterized by a separation of timescales between driving
and dissipation, and analysis of the time series of global energy dissipation yields
flare-like time series, with the size distribution of dissipative events taking the form
of a more or less well-defined power law. These features are attractively SOC-
like. Yet, recall that the defining feature of SOC is interaction-dominated threshold
dynamics. Can the large dissipative events measured in MHD simulations be inter-
preted as the superposition of numerous smaller events triggering one another? Or,
do the observed power-law distributions of event sizes simply reflect the ‘natural’
size spectrum of the current sheets, each building up and dissipating independently?
Expressed differently, does MHD turbulence exhibit avalanching behavior, or just
self-similarity in the buildup of dissipative structures? Such questions are at the
heart of the SOC interpretation of MHD turbulence, and at this writing remain
unanswered.
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5. Concluding Comments

We close this tutorial/review paper with a selective, brief overview of remaining
problems or challenges, as well as areas where, in our opinion, the full potential of
avalanche models has not yet been exhausted.

5.1. FLARES AND CORONAL HEATING

Perhaps the most impressive success of the avalanche model for solar flares remains
its ability to reproduce the power-law form of the inferred frequency distributions
of flare parameters, and to yield logarithmic slopes that are in good agreement
with observations. The basic model of Section 2 does so without any fine tuning
of model parameters, and is robust with respect to most aspects of the model’s
formulation.

This good agreement does not augur well for coronal heating, however. Recall
from Section 1.2 that Parker’s nanoflare conjecture requires αE > 2, which is not
supported by most avalanche models, which (in principle) yield the true frequency
distribution of energy release size. The situation is troublesome, because it is not
easy to modify the model to get αE > 2 and, if one succeeds, the agreement with
flare observations might well vanish. To the best of our knowledge the only extant
construct that manages to satisfy both constraints is the ‘double power law’ hybrid
model put forth by Georgoulis and Vlahos (1996, 1998; also Section 3.2 herein).
This works provided that the steeper power law still lies below current detection
thresholds. The recent determinations of flares energies down to about 1024 erg
(Aschwanden et al., 2000b), with no sign of a significant steepening of the fre-
quency distribution, renders this position increasingly untenable (but see Mercier
and Trottet, 1997).

5.2. FLARE PREDICTION

The conjectured SOC state of the solar corona has some disturbing consequences
for flare forecasting, a topic of great interest among space weather aficionados. In
the SOC state, whether large or small, an avalanche begins with one node exceeding
the stability threshold following an external perturbation. It is certainly the case that
‘kicking’ a lattice already in its SOC state with a large perturbation (mimicking
magnetic flux emergence in an existing active region, say), is very likely to trigger
a large avalanche. On the other hand, an equally large avalanche can be triggered
by a very small, unobservable perturbation. The former avalanche/flare can perhaps
be predicted by identifying suitable precursors of flux emergence; the latter typifies
a class of large flares that is quite simply unpredictable. This lack of predictabil-
ity can be ascertained quantitatively by computing the Hurst exponent (H ) of the
model’s energy release time series (e.g., Hastings and Sugihara, 1993, Chapter 4;
Steeb, 1999, Section 2.4) compressed to the driving timescale (i.e., avalanches are
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replaced by their peak energy release at a single iteration; see LHMB, Figure 2).
This results in H 	 0.5, implying no ‘memory’, and thus no predictability17 .

5.3. THE FRACTAL NATURE OF AVALANCHES

If solar flares are indeed the manifestation of reconnection avalanches in a tangled
coronal magnetic field, then the analysis of flare observations must come to grips
with the fractal nature of avalanches in the SOC state. Specifically, the relationship
between the volumetric energy release (E) and (observed) projected area (A) of
X-ray or EUV emission is neither E ∼ A (cylinder model with constant column
depth; see also Mitra-Kraev and Benz, 2001), nor E ∼ A3/2 (loop model; cf.,
Aschwanden et al., 2000b, Section 2.1). The situation is further complicated by
the fact that the avalanche area (Figure 5(D)), which would presumably be the
structure ‘seen’ (in projection) by observations with exposure times comparable to
the avalanche lifetime, has a fractal index significantly different from that of the
avalanche at its peak (Figure 5(B)), which is presumably what observations at high
temporal resolution would ‘see’. Some of these issues are explored in McIntosh
et al. (2001), where it is argued that such observations offer a unique observational
test of SOC models for solar flares (see also the animations on the accompanying
CD).

5.4. THE SOLAR CORONA AND SELF-ORGANIZED CRITICALITY

Is the solar coronal magnetic field in a self-organized critical state? We concur with
Lu (1995a) that the coronal field does meet the requirements for the appearance of
SOC: self-stabilizing local threshold instability; open boundaries; and separation
of timescales between driving and avalanching. Moreover, Parker’s picture of a
complexly tangled coronal magnetic field driven to episodic localized reconnection
by slow, random photospheric footpoint motions provides a sound physical under-
pinning to what is otherwise a model containing embarrassingly little of the MHD
physics relied upon by the overwhelming majority of extant flare models. Naturally,
this does not necessarily imply that the solar corona is in fact in a SOC state. We
do hope at least to have convinced our readers that if it is, the consequences for our
understanding of flares and coronal heating are many and far reaching.

17Unpublished Hurst exponent calculations carried out by J. Norman during his summer 2000 stay
at HAO as an undergraduate research intern. Note, however, that Lepreti, Carbone, and Veltri (2001)
have suggested that the solar flare WTD distribution is best fit with a Levy distribution, which
would imply some level of memory (see Sornette, 2000, Section 4.1.4). The memory question clearly
warrants further investigation.
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