AVALANCHE TRANSISTOR PULSER FOR FAST-GNIED OPERATION OF MICROCHANNEL PI.ATE IMAGE-: XtCNSIFJERS

Arvid Lundy, Joseph R. Parker,
Jancs S. Lunsford, and A. Don Martin
Los Alamos Scientific Laboratory, Univcesity of California
Los Alamos, NM 87545

Summary

Transistors operated in the avalanche mode are employed to generate a 1000 voli 10 to 30 nsec wide pulse with < 4 nsec rise and fall times. This pulse is resistively attenuated to $=270$ volts and drives the image intensificr tube which is a load of = 200 pf. To reduce stray inductance and capacitance, transistor chips were assembled on a thick-film hybrid substrate. Circuit parameters, operating conditions, and coupling to the microchannel plate fmageintensifier (MCPI²) tube are described.

To provide de operating voltages and control of transient voltages on the MCPI ${ }^{2}$ tube a resistancecapacitance network has 1 en developed which (a) places the MCPI ${ }^{3}$ cutput phosphor at yround, (b) provides progranmable gatns in "f-stop" steps, and (c) minimizes voltage transients on the MCPI tube.

Introduction

Fast shuttering of 18 mm "Generation I$]^{\text {" micro- }}$ channel plate image-intensifiers (MCP1 ${ }^{2}$) tubes has been employed' successfully fur severa? ycars at Los Alamos. The larger plotocathode-to-channel piate capacitance of the 40 mm MCPI ${ }^{2}$ tubes concerned herein inherently lengthens the shutter time. The technique to be describeci allows gated operation of 40 nan diameter tubes with an "on-tine" of 15 nsec or less, a delay of less than 8 nsec between trigger and tube turn-on, and a triggering jl:ter of less than 200 psec. Mixing techniques alluw a single tube to be pulsed at 50 nsec ir lervals for up to ten consecutive. pulses. Shorter "on-times" are possible with 13 mm diameter tubes which have lower photocathede to channel plate capacitance.

The : $1 \mathrm{CP} \mathrm{I}^{2}$ tube is a double proximity foc ising, microchannel plate tube who.e gain can be fi. the thousands while retaining a resolution in excess of 20 line pairs/imn it is comprised of three sections. Thi fir of these is the photo cathode to channel plate gap, the first proximity fucussed section (see fig. 1). Next is the microchannel platr, a channeled clectron multiplier (MCP). The last secciom is 11 . Moximity focusse ${ }^{-1}$ MCP-to-output phosphor gap. Operation of the tube requires a lovi vollige across the photo-cathode lo RCC gap (100 valis for the ITT Type F-1t13 employed in the wort: descrited hercin), a voltage across the MCP of a few huminind to 1000 voits, and an accelerating voltage of 5000 volts across the MCP to phosphor sap. The gsin of ine assembly is linearly related to the voltagn acioss the output gap and exponentially iclated to tin voltage across the MCP. In the opelalion dejeribued lierein the tube is shuttered of r by tiasing the thput gap with -90 volts and turned on with an input pulse of +270 volt:. The outpit phospher is required to be at ground potential.

Basic Pulsing Requitrements

For the particular application (convertional high explosive detenatinn plysics studies) the MCPI ${ }^{2}$

Fig. 1. Image intensifier tube.
is used as both a cmera sinutter and a light amplifier. Fig. 1 shows the qube vollages necessary for proper operation Practically, the tube siuts of f with the photo-cathode only a few volts positive with respect to the input, tai use of 90 volts back jias makes the tube a very effective shutter - high vol.. tage can be left on the tube for many minutes without fogging film against the plosphor. This indicates that the noise in recent MCP's is very low.

Tube on-t imes varying from 10 i:s to 30 ns were required with a trigger to tube-on jitter of less than 10 ns . In addition, it was desired to be able te scquentially pulse a tuhe at 50 ns or greater intervals for up to 10 pulses. Berause of the high cost of the tubes (: $\$ 10,000$ (eaci), as well as simplicity; a line type pulser (Fig. ?) which has limited stored energy seemed desirable to insure against

If \mid Loo - $|z|=R$
the amplitude of the the ouiput pulse at the IOAD is $1 / 2 \mathrm{~V}$. (ASSLUMING THE LINE IS FUIIY CHARGLD BLFORE S IS CLOSED)
the width of tie oulrut ruise is equal to twice the propagation delay time of the charge line. (ABOUT Sns/MEIIR FOR POLYETHYYLENE DIELECTRIC CABLL;

Fig. 2. Pasic charge line pulser.
tube danage in case of pulser malfunction. Tho multiple pulsing requirement at pulse separations as low is 50 ns dictated multiple pulsers and a mixer. The 10 ns trigger to output jitter requirement, and rise and fall times commensurate with 10 ns wide pulses, suggested avalanche transistor switching. The tube capacitance (C_{1} in Fig. 1) of 160 to 240 pF indicates that to achieve rise and fall times of less than 5 ns - pulser source impedance of < 10 ohms is required. It was decided to obtain this using resistive attenuation of high voltage pulses in a mixer box located next to the image intensifier tube.

Avalanche Pulser

Very little hard data is available on use of eodern transistors in the avalanche mode. There are no economical transistors characterized for avalanche service avallable from United States manufacturers and avalanche switching designs are usually based on experimentation and "folklore": Most transistors will not usefully avalanche. LASL had used Motorala MPSU04 transistors extensively for higher voltage avalanche switching but just prior to this work a manufacturing process change by Motorola rendered the MPSUO4's virtually unusable for avalanche mode work. A llierature search located several references ${ }^{2-5}$ dealing, with avalanche mode circuit design, two references ${ }^{6-7}$ dealing with parallel connection of avalanche Lransistors for increased current capability, one reference dealing with series connection for higher voltage operation, and three references" discussing avalanche sweep and gate generators based on up to twenty 2 N 3700 's connected in series. Numerous papers dealing primarily with low voltage applications of avalanche mode switching have been published by V. P. D'yakonov ${ }^{12}$ betwet: 1966 and the present.

References 9-11 and personal commonication with L. Coleman led us to try using 2il37J0 transistors manufactured by Hational Scniconductor Corporation. (We have not evaluated 2 N3700's manufactured by other
vendors, but often it is found that avalanche characteristics vary greatly with vendur. Over 90\% of the transistors received from National have exlibited satisfactory avalanche characteristics). Earlier experience with MPSUO4's in series indicated that best operation was obtained when a resistor divider string was used to back bias the base-emitter junctions and maintain uniform voltage across each transistor irrespective of collector-cmitter leakage current. It was also found that the most reliable triggering was obtained when a small capacitor ($=10 \mathrm{pF}$) was placed across the series combination of three or four of the transistors in the string and the trigger signal applied to one of these transistors. These techniques were tried with the 2N3700's with poor results. The simpler biasing scheme and single transistor trigger shown in Fig. 3 were luore stable and reliable (this is essentially the scheme used by Thomas, et al ${ }^{s-i 1}$). An initial current bias of approximately 100μ gives a stable reliable triggering. The circuit shown with twelve transistors in series and a 2 megohm resistor to a 3000 volt supply nor. mally achieves this. (The charge linc charges $10 \simeq 2800$ volts). Occasionally it is necessary to short out one on two transistors to get more reliable triggering. There have been no problems with self triggering. After some period of operation it has teen observed that the lias current may drop (i.e. transistor leakage curfent decreases), but there does not seem to be any cefect on triggering stabliity. The trigger transformer is a transmission-line type made by wrapping 4 turns of 50 ohm 30 AhG wire-wrappable coax (W. L. Gore EAssoc., CXN-1214) around a toroidal core (Ferroxcube 3E2A266CT125). The coax shield is used as the primary and the inner conductor as the secondary. The trigger loration in the string if. chosen to minimize voltage stress on the trigger transformer windings although they will withstand the full 3 kV power supply voltage. Reliable iriggering is obtained with 4.5 volt pulses although riorially 15 volt pulses are used. Delay and jitter are reduced with the higher voltinge.

Fig. 3. Charged line pulser with avalanche transistor switch.

To reduce circuit inductance, simplify printed circuit card layout, and hopefully improve rise time the transistors were bought in chip iom, epoxied in - lids ${ }^{4}$, and mounted i_{1} groups of six on a thick film hybrid substrate. Figure a shows three of the hybrid assemblies with the center one unpotted, while the end units are potted with a silastic protective coating. The pin spacing on the units is the same as a standard 16 pin dual-in-line (DIP) IC package although pins are mounted on only one side. (The additional pins are brought out to allow flexipility in triggering and in using the hybrid string in other applications where fewer than six transistors are needed). On the printed circuit card a pin layout identical to that for a 16 pin DIP IC allows plugging in two of the hybrid assenblies to form a 12 transistor avalanclie string. This is shown in Fig. 5. (Ten pulsers are mounted in a single chassis so adjacent pulser cards show in the photo). The upper left-hand corner of the DIP is the pulse outpul and the upper right hand corner is the charge line connection. Approximately 1 meter of charge ling is coiled inside the chassis, as shown, to provide a 10 ns minimum pulse width. The end of the charge line away from the avalanche string, attaches to a rear connector to allow additional charge line length to befattached externally. To minimize the source impedance a 31 ohm, 0.195 diameter coax (Amphenol $21-412$) is used for the charge line and for output cablep to the mixer box. (Since the inipedance of the avalanche switch in the "on state is appreximatey 22 ohms, a better match would be to use 50 ohun cable for the charge line. However, because of the need for low source impedance to drive the capacitarice load, this mismatch is accepted).

With the perameters given one obtains an output pulse of upproximately 1085 volts across a 31 ohm load: crorrecponding to a current of 35 amperes throug: the iransistors and a voltage drep of 64 volts across each transistor during cinnduction vs 235 volts in the "off" state. Rise and fall times are approximately 3 ns.

On the pulser chassis an output indicator showing when a given pulser has Lcen triggered is needed - both a front panel L[D indicator and a remotely readable data bus indication. Inttially we tried to achieve this using TTL Shotlky flip-flops. Extremn problens were had with cross-talk between indicater s and finally Fairchild F40175 CMOS flip-flops were tried and found to work well. The Fairchild F40175 "D" flip-flop clocks very relfably with 10 ns wide pulses, but 40175's from other vendors that were tried werc not fast enongh. The circuitry used is shown in the lower right-hand corner of Fig. 3. The coupling transfonner used for the tidicator circuil and monitor output is a Techritrol llGGA.

Figure 6 shows a hottom view of the chassis with five pulser cards and five charge lines visible. The top view is essentially identical with five addilional puleer cards. Top and bottom circults are separated by two $1 / 16^{\prime \prime}$ thick copper shects which have a lip bent up al the rear of the chassis. The rear panel connector mounting holes line up with holes in the lips of the copper shi:ets to provide good connector ground reference. This lip proved absolutely essential to prevent cross talk loesieen pulsers. 1 ground plane was usfed on both sides of the pulser printed circuit cards. The fudicator circuit printed circuit cards are mounted just behind the: front pinel and can be scen at the botton uf Fig. 6. The तata bus interface eard is itsible in the upper right hand corner of fig. G. This card uses stambard til.-LS logic without any memory elements and iriteriogetions of the unit are nol done during palsing. Ones the

Fig. 4. Hy!rid avalanche assembly.

Fig. 5. Pulser printed circuit card.

Fig. 6. Botturn view of pulser chassis.

Fig. 7. Rear view of pulser chassis.
copper plates wit; lips were added, there have been no problens with the generated 1000 volt, 35 ampere pulses affecting thin low voltage logic. Figure 7 shows the rear panel. Eaci pulser circuit has four associated connectors - trigger input (BNC), connec. tor for additional charge line (SHV), pulse out (SHV), and a monitor output (BNC), used to drive an oscilloscope or time interval meter.

Mixer \& Attenuator Circuit

The mixer-attenuator circuit is shown in Fig. 8. In normal operation the pillser chassis is located about 8 meters from the image intensiffer camera but the cable lingth is not critical. The mixer-attenuator must be very close to the image intensifier tube for proper performance - there is inherent cable impedance mismatch when driving the capacitive load of the tube and the cable inductance must be minimized to achieve fart rise and fall times. At present 30 cm of RG174/: $50 \mathrm{ohm}, 1 / 8^{\mathrm{n}}$ diameter cable is used but this does ? mait the performance. We plan to try flat ribbon cable.

The attenuator is made up of the 20 ohr. input resistors driving the four parallel 43 ohm resistors (10.75 ohm combined) through the sertes-parallel $1 N$ 3731 diodes. The voltage drop across the diode string during the 35 ampere pulse is approximately 20 volts. Selected 1N3731's were used which had a reverse breakdown voltage in excess of 100 volts.

Fig. B. Mixer-attenuator circuit.

The output diodes allow coupling a 270 volt, 30 us long pulse from a 50 otm lumped line pulser for anblent light photography. These output diodes do adversely affect pulse shape and also drop about 10 volts during the pulse. The layout of the mixerattenuator is shown in Figs. y-ic.

Pulser, Mixer-Attenuator Performance

Figure 11 shivs the output of the mixerattenuator with a s? ohm resistive load. The scale factors are approximately 60 volts/division vertical and $5 \mathrm{~ns} / \mathrm{division}$ horizontal. Figure 12 shows the output at the mixer-attenuator with the image intensifier connected through a 30 cm cable which is terminated with a 50 ohm resistor at the tube (R_{6} in Fig. 13). The pedestal on the output is di 3 to charge-line to load impedance mismatch. The effective load impedance is the switch impedance, - $=225$ plus the external load impedance - 31 ohm .

Since the photocathode-MCP inp1: is back blased by 90 volts the pedestal is tolerable. Rise time on the pulse is clearly less than 4 ns at this point. The pulse at the tube electrodes is smoother with little ringing hut with slower rise and fall times due to the inductance of the 30 cm coupling cable.

With this system, LASL Group M-3 has made image intensifier camera photographs with effective exposure tine of 15 ns . The measured resolution is 17 to 19 line pairs/mn. Most of the 40 mm tubes received to date, however. will not perform well at this speed. There appears to be a photocathode resistance problem on many tubes which prevents one from turning-on the central portion of the tube with suc:) a short pulse.

Electrical measurements were made with a Tektronix 7901 osctlloscop: : 7 Al 1950 hm input F Amp1ffier, and a P6057 probe. The P6057 probe provides 100x attenuation and 5000 ohms input impedance with the TA19 preamplificr but is rated for only 50 volts. Rise time for the combination is 0.8 ns . With 10 ns to 30 ns pulses it tolerates 300 volts but will not tolerate the 1000 volt pulses. For those, a Phillips PM9358, 100x probe used with a Tektronix 7A19^ preamplifier gives a rise time of better than 2.0 ns .

Measurements indicate the jitter hetween trigger signal and pulse out is less than 200 ps. The delay to the oulput of the pulser is about 8 ns with a total delay to the mixer output of about 50 ns when using 8 meter cables. Repetition rites of 1 kHz on each pulser can be run with the 1015 charge lines but normal operation is to single pulse the units. The most disappointing aspect of the perfonnance has been fallure problems with the trans!stors when Lrying to generate longer pulses. There appears in be a cumulative damage problen with the transistor, hen they are operated at this current level (35 ampere:;) which results in sudden shorting of transistors after a fixed number of pulses of a given length have been generded. With 10 ns palse length, the life is several milition pilses but when pulse length is increased to 30 ns the life drops to approximately 15,000 pulses. This is tolerable in our application but discouraging compared to the performance we had seen with Motorola MPSUOI's, which had virtually unlimited life under similar conditions. The 2N3700's in contrast have much higher useable yield from each batrh, and much lower trigger jitter and delay.
it was interesting to note in working with the pulser that wille the 1000 volt, 10 ns puises will create a visible and audible arc in air, no shock an be felt when applied to ones skin.

Fig. 9. Mixer-attenuator printed circuit card.

Fig. 10. Mixer-attenuator.

Fig. 11. Outpul of mixer witil resistaice load.

Fig. 12. Output of mixer of MEPI ${ }^{2}$ tube load.

Fig. 13. Divider network eireuit for MCPI ${ }^{2}$ tube.

Divider Network For HCPI ${ }^{2}$ Tube

The original network.' with its associated capaciturs, was desigued to meet the following criteria:
a. Place the output phosphor at ground potential.
b. Provide a low impedance path for the gating signal.
c. Provide a cut-off bias voltage across the photo-cathode to iscP gap.
d. Stored energy availaile for tube damage when arc-overs occur shall be a minimum.

The network emplcyed for the 40 mm tubes shown in Fig. 13 is essentially the same except for component types and values and the addition of zener diodes across the photo-cathode to MCP gap. The changes were made to accomodate the following additional criteria:
e. Gain stability.
f. Gain control in "f stop steps".
g. Transient vcitages at turn-on and turn-off to be within tube ratings.
h. Total current frona -6 kV supply to be less than 0.5 uA.
Criteria b, d, and g conflict, therefore compromises will be irivolved in an acceptable design.

> U.C. Analy is of the Network

The gain G of the MCPI ${ }^{2}$ tube can be closely approximated by the relation
$G=K\left[v_{c p}-v_{t h}\right]{ }^{V_{m c p}}$
where $V_{c p}$ is the channel plate to phosphor voltage,
$V_{\text {th }}$ a threshold voltage determined by phosphor back-
ing and thickness, and $V_{\text {nicp }}$ the channel plate elec-
tron multiplier voltage. By varying Vmcp froul less than 500 volts to 800 volts the gains of typical tubes can be varled by 7 or 8 stops (120 to 256 X). This is accomplished by changing R in Fig. 13 in discrete steps according to the relation
$R_{g}=\frac{\left.\left[A R_{4}+B\right]\right]_{\text {mCP }}^{V(G)}+C R_{4}}{\left[D R_{4}+E\right] \underset{\text { MCP }}{V(G)+F R_{4}}}$

Wherg $V_{\text {micp }}$ is a unique function of gain for each MCP I tube (derived from data suppliled by the manufacturer for each tube), R_{4} is the MCP resistance, and the coefficients A, B, C, D, E, and F are determined by the remaining network resistance values. Jalues for K_{4} range from 7 to 120 megohms. To make $V_{c p}$ relatively independent of Rg the current through R_{3} is made is large as pernitted by the avallable power supply.

The gain is a strong function of $V_{m c n}$, therefore it is essential that the resistors which determine yacp be very stable and preciscly the values required. Adaquate gain stablifty was cbitained by changing to 1% low voliage coefficient and low temperature

Fig. 14. Pholo-cathode to MCP gap transients.
coefficeint metal film and metal oxide resistors and operating these we'l below their maximun voltage rating wherever possible.

Transient Analysis of The Network

The digital computer network analysis program, NET-2 was enployed to 7 alyze the turn-on anci Surnof fransients. These ransients are shown for the oriytnal netviork and tive modified network in Figs. 14 and 15 . In Fiọ. 14 it may ln noted tilat the turn-on transient across the plicio-catliode to MCP gap exceeds 800 volts, far above the maximuslinting for the tube of 180 voits. This transient is caused by the dif ferent time constant: of the branch comprised of R_{b}, R_{7}, C_{3}, and C_{11}, and L ie branch comprised of R_{7}, R_{3}, and $C_{\text {, (}}$ (Fig. 13). It was not possible to chinge C_{3}

Fig. 15. MCP voltage transients voltage.
and C_{4} for it is essentiol that $C_{3} \quad: \quad C_{4} \gg C_{2}$ to preserve a low finpedance gate signal path. Therefore. C_{9} was added to slow the rise or volinge across R_{3} and R_{4}. Reasonable valucs for C, viere still not adequate, therefore a strligy of zener Hiodes were added across this gap to hold the trans it it te 180 velts. The zener diode string was actually made a back-toback etring to also hold the gating voltage to a safe valuc. The resence of the ze:ier diodes did not appreciably at.ect the gating signal rise and fall times.
gure 15 shows the transtent voltage across the MCP - as high as +2700 and -1000 volts for a tube whnse maximum rating was 800 volts! After madification of the time constants the tran ents were held within 800 volts. Therefore, though the addition of C adds to the energy available to destroy the lube If a tube arc-over should occur its presence does reduce the probability of arc-over considerably.

Physical Configuration of Network

A donut shape for the retwork nicely adapts to the MCPI ${ }^{2}$ tube. The pe biard carrying the network is shown in Fig. 16 with all components mounted. All external leads are brought out along one radius to fit with existing hardware. These leads are two coaxes, one for high vollage and one for the gate signal pulse and a twinax for the external gain control resistors and switch. All resistors are 1% low voltage coefficient units. Tiie larger ones are Victorech metal oxide, type fiox-1, and the smialer ones are metal filin units.

The reliability of the capacltors in the network are a cause of concern beci:se a capacitor sherting could destroy the image intensifier tubn. Space consideritions distate that ceramic dicleraric fo used. Units destoned for high reliability end with special individual pre-testing have been obtained irun seintech Corporation.

The entire network assembly is potted in EpoCast 202 and installed concentric with the tubc.

Fig. 16. Unpotted divider network for Milil? tube.

Acknowledgenents

We wish to acknowledgr the support of I.ASL Group M-3 in this vori: and in pa:ticular that of William Morien, Jr. Orville Winslow and Leonard Stoval?. Robert Spauiding, LASL Group WX-7 provided helpful advice. Robert Cowan, Jeffrcy Bradley, and Catherine Markhom of LASL Group E-2 disigned and tuilt the hybrid assemblies and did the transistor testing and selection.

Referonces

1. A. J. Lieber, "Nanosecond Gating of Proximity Focussed Channel Plate Intensifiers," Review of Scientiric instruments, January i972, VoT. 43. No. 1, pp. 104-E.
2. W. D. Rochr and D. Thorpe, Editors; Switching Transistor Handbook, Chap. 2, 3, and 9 ,
Motorola, Inc., Semiconducior Products Division, 1963.
3. D. J. Hamilton, P. G. Griffith, and F. H. Shaver, "Avalanche Transistor Circuits for Generating Rectangular Pulses," Electronir. Engineering, December 1962, Vol. 34, pp. 80̃-12.
4. H. G. Magnuson, "Variable-Width Pulse Generation Using Avalanche T-ansistors," IEEE Transactions on Instrumentation and Moasurciinent, September 1963, КоТ. 15:-12; pp: З6-6л.
5. P. Spirito, "Static and Cymamic Behavior of Transistors in the Avalanche Region," IEEE Journal of Solid StaLe Circuits, April 1971, VoT. SC-6, No. 2, Pp. 83-7.
G. P. R. Prince, "Paral:cling Avalanche Transistors," Procedings of the IRFF. March 1965, Vol. 63, Nō. 3, p. 304 .
6. J. P. Hincen, "A Fast Riset ime Avalanche Transistor Pulse Generator for Driving Injection Lasers," Proceedines of the IFF.E, February 1967, Vol. 55, तर्रo. 2, pp. 210́-17.
7. T. H. O'Dell, "Series Operstion of Avalanche T: ansistors," Electronics Ledlers (GB), March 6,

8. S. W. Thomas, G. R. Tripp, and L. W. Coleman "Ultrafast Streaking Cancra ror Picosecond Luser Diagnostics," John Wiley, Ed., Proc. 10th Int. Congress on High Speed Photography, (1972) pp. 127-133.
9. S. H. Thomas, R. 1. Carmen, H. R. Spract:1en, G. R. Tripp, end L. W. Coleman, "Ten-picosecond Streak Canera for the laser fusion Program at LLL." Pruc. Electro-optical Systems Design Conference, (New York 1973) pp. 301-309.
10. S. W. Thomas, J. H. Houghton, G. R. Tr lpp, and L. W. Coleman, "The LIL Compact $10-\mathrm{ps}$ Streak Comera - 1974 Update," Proc. of the llth Int. Congres on High Speed Photography, Augist 1974, pp. 101-6.
11. V. P. D'yakonov, "Avalanche Semiconductor Negatrons and their Application," Pribory i Tekinnikn [ksperimenta (USSR) Vol. 3, (May-June 1973) мו." 7-7.
