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Abstract

Neuronal avalanches are a form of spontaneous activity widely observed in cortical slices and other types of nervous tissue,
both in vivo and in vitro. They are characterized by irregular, isolated population bursts when many neurons fire together,
where the number of spikes per burst obeys a power law distribution. We simulate, using the Gillespie algorithm, a model of
neuronal avalanches based on stochastic single neurons. The network consists of excitatory and inhibitory neurons, first
with all-to-all connectivity and later with random sparse connectivity. Analyzing our model using the system size expansion,
we show that the model obeys the standard Wilson-Cowan equations for large network sizes (w105 neurons). When
excitation and inhibition are closely balanced, networks of thousands of neurons exhibit irregular synchronous activity,
including the characteristic power law distribution of avalanche size. We show that these avalanches are due to the
balanced network having weakly stable functionally feedforward dynamics, which amplifies some small fluctuations into the
large population bursts. Balanced networks are thought to underlie a variety of observed network behaviours and have
useful computational properties, such as responding quickly to changes in input. Thus, the appearance of avalanches in
such functionally feedforward networks indicates that avalanches may be a simple consequence of a widely present
network structure, when neuron dynamics are noisy. An important implication is that a network need not be ‘‘critical’’ for
the production of avalanches, so experimentally observed power laws in burst size may be a signature of noisy functionally
feedforward structure rather than of, for example, self-organized criticality.
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Introduction

Neurons in the central nervous system are organized into

recurrent networks which function dynamically, firing action

potentials over time in a variety of spatiotemporal patterns. Such

networks not only respond to external input, but spontaneously

produce patterns of activity. Such spontaneous activity in isolated

pieces of cortex has been studied since the work of B. DeLisle

Burns in the early 1950s [1]. The main result was that surgically

isolated parietal cortex remained silent but excitable. A sufficently

strong depolarization of a site on the surface elicited a sustained

propagating response, with an all-or-none character, characteristic

of an excitable medium. Such a medium has a threshold for

excitation.

Recently, the behavior of isolated cortical slices near or at

threshold was studied systematically by Beggs and Plenz [2]. They

used rat somatosensory cortex, either in mature organotypic

cultures, or else in acute slices, using an 8|8 microelectrode array

to record local field potentials. The slices were silent until

stimulated with the excitatory neurotransmitter NMDA, in

combination with a dopamine D1-receptor agonist, whereupon

they produced bursts of activity in the form of local field potentials

recorded at microelectrodes.

The main result of their experiments is that these bursts of

activity are avalanches, which [2] defines as follows. The

configuration of active electrodes on the array during one time

bin of width Dt is called a frame, and a sequence of frames preceded

and followed by blank frames is called an avalanche. The size of an

avalanche is the total number of electrodes activated between the

blank frames. The weak correlations between successive frames

show that avalanche activity is neither wave-like nor periodic.

Electrode activations, while appearing to be temporally coincident

on a long time scale, are roughly self-similar, as can be seen by

their distinct activation times when observed at smaller time scales.

This is a form of synchrony, in that electrodes are more likely to be

activated closer in time to activity in other electrodes. The

avalanche size distribution is close to a power law, meaning that

for a wide range of sizes, the probability that a given avalanche has

size s is proportional to s{b.

Neuronal avalanches, by which we mean irregular synchronous

activity with a power law burst-size distribution, have since been

studied extensively. Avalanches have been observed not only in rat

cortex in vitro but also in vivo [3], in organotypic cultures [4,5],

leech ganglia [4], and in the cortex of awake macaque [6], and

used to draw inferences regarding information transmission [7].

A theory of avalanche formation
In what follows we provide a theory for the formation of

avalances using a stochastic version of the sigmoid rate model

originally introduced to represent individual neural activity [8].
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We call this the stochastic rate model [9–11]. Each neuron spikes

with a probability per unit time dependent on its total synaptic

input, while the resulting spiking activity decays at a constant rate.

The stochastic nature of the model allows for efficient simulation

via the Gillespie algorithm [12], an event-driven method.

We extend the stochastic rate model to explicitly deal with

coupled excitatory and inhibitory populations. We show that this

model, with appropriate connectivity, produces avalanches in an

all-to-all connected network of excitatory and inhibitory neurons

when a parameter is increased. We call this parameter the

feedforward strength, wff [13], since it measures the extent to which

our recurrent network functions analogously to a feedforward

network.

Analytically, we show that the stochastic rate model may

be treated as a stochastic perturbation of the deterministic

Wilson-Cowan equations [14,15]. The stochastic rate model

produces avalanches in a range of network sizes, for example

thousands of neurons, depending on the parameters; in the

limit of large network size, the model obeys the Wilson-Cowan

equations exactly, which do not themselves produce avalanch-

es. This analysis allows us to address the relation of avalanche

dynamics to other parameters, in particular the network size

and the external input to the network, showing that these

dynamics are robust to wide-ranging variations in these

parameters. Finally we obtain avalanche dynamics in a network

with random sparse connectivity by generalizing the notion of

feedforward strength.

Results

Individual neurons as input-dependent stochastic
switches
The stochastic rate model treats neurons as coupled, continu-

ous-time, two-state Markov processes (figure 1A); this may be seen

as analogous to a deterministic neuron with very noisy synaptic

input, but is agnostic about the source of the noise. Each neuron

can exist in either the active state a, representing a neuron firing an

action potential and its accompanying refractory period, or a

quiescent state q, representing a neuron at rest. In order to fully

describe this two-state Markov process, it is only necessary to

specify the transition rates between the two states. The transition

probability for the ith neuron to decay from active to quiescent

(right arrow of figure 1A) is

Pi active?quiescent, in time dtð Þ~adt ð1Þ

as dt?0, where a represents the decay rate of the active state of

the neuron. The transition probability for the ith neuron to spike

(left arrow in figure 1A), i.e. change from quiescent to active, is

Pi quiescent?active, in time dtð Þ~f si tð Þð Þdt ð2Þ

si tð Þ~
X

j

wijaj tð Þzhi ð3Þ

as dt?0. Here f is the response function, giving the firing rate as a

function of input, and si the total synaptic input to neuron i, a sum

of external input hi and network input
P

j wijaj tð Þ, where wij are

the weights of the synapses, and the activity variable aj tð Þ~1 if the

jth neuron is active at time t and zero otherwise.

Although there is no explicit refractory state in the model, in all

simulations, a~0:1ms{1, corresponding to an active state with a

time constant of t~a{1
~10ms (1ms for the action potential plus

9ms to approximate a refractory period where neurons are

hyperpolarized). This choice of a constrains neuronal firing rates

to be no greater than 100 Hz.

Author Summary

Networks of neurons display a broad variety of behavior
that nonetheless can often be described in very simple
statistical terms. Here we explain the basis of one
particularly striking statistical rule: that in many systems,
the likelihood that groups of neurons burst, or fire
together, is linked to the number of neurons involved, or
size of the burst, by a power law. The wide-spread
presence of these so-called avalanches has been taken to
mean that neuronal networks in general operate near
criticality, the boundary between two different global
behaviors. We model these neuronal avalanches within the
context of a network of noisy excitatory and inhibitory
neurons interconnected by several different connection
rules. We find that neuronal avalanches arise in our model
only when excitatory and inhibitory connections are
balanced in such a way that small fluctuations in the
difference of population activities feed forward into large
fluctuations in the sum of activities, creating avalanches. In
contrast with the notion that the ubiquity of neuronal
avalanches implies that neuronal networks operate near
criticality, our work shows that avalanches are ubiquitous
because they arise naturally from a network structure, the
noisy balanced network, which underlies a wide variety of
models.

Figure 1. Single neuron dynamics. A, single-neuron state transitions, with the transition rates marked; for the ith neuron, the total synaptic input
is the sum of network input and external input, si tð Þ~

P

j wijaj tð Þzhi . B, graph of the response function f sð Þ~tanh sð Þ for sw0.
doi:10.1371/journal.pcbi.1000846.g001

Avalanches in a Stochastic Network Model
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All neurons are chosen to have the same response function,

f sð Þ~
tanh sð Þ sw0,

0 sƒ0:

�

ð4Þ

As shown in figure 1B, this standard choice of response function

models a neuron’s firing rate as zero if it is below threshold,

growing close to linearly with the synaptic input as it passes

threshold, and then saturating at a maximum rate further above

threshold. Since we are studying spontaneous activity in this study,

external input is positive but small, so that even in the absence of

any network activity, some neurons have a non-zero firing rate.

Population dynamics evolve according to the population
master equation
We next consider networks of excitatory and inhibitory neurons,

initially with all-to-all connectivity depending only on the cell type;

at the end of the results section we address how our findings

extend to sparse or inhomogenous connectivities. The outgoing

synaptic weight from each excitatory neuron to each excitatory

neuron is
wEE

NE

, from excitatory to inhibitory is
wIE

NE

, from inhibitory

to excitatory is {
wEI

NI

, and from inhibitory to inhibitory is {
wII

NI

.

The effect is of one excitatory and one inhibitory population,

connected with strengths shown in figure 2A.

The network’s stochastic evolution can be thought of as a

random walk between states with k excitatory and l inhibitory

neurons active, where the number of active neurons can increase

or decrease only by one at a time, causing the state to wander

around on a lattice as shown in figure 2C. Solid lines show

movements out of the state k,lð Þ and dashed lines movements into

k,lð Þ. The rightwards (upwards) arrow is the result of a single

excitatory (inhibitory) neuron firing in response to its synaptic

input. The leftwards (downwards) arrow is associated with the

decay of an excitatory (inhibitory) neuron from active to quiescent,

reflecting the single neuron dynamics shown in figure 1A.

To treat this analytically, we consider the probability pk,l tð Þ that
there are k excitatory, and l inhibitory neurons active at time t. The

random walk on the lattice depicted in in figure 2C is reflected by

pk,l tð Þ evolving dynamically in time for each state k,lð Þ. The

probability pk,l tð Þ evolves according to the master equation (19).

The equation and its derivation are detailed in methods; in fact the

equation contains exactly the same information as figure 2C. This is

a generalization of the one population master equation for the

stochastic rate model introduced in [9]. Note here that, in the case

of identical single neurons and all-to-all connectivity the population-

level master equation is an exact description of the network

evolution; if the single neuron parameters and the connection

strengths were drawn from probability distributions, we would have

to average over these distributions to get an approximate

population-level master equation.

We use the Gillespie algorithm [12], an event-driven method of

exact simulation, for all simulations of the master equation (see

methods).

How avalanches are obtained
We now investigate the range of parameters for which the

stochastic model exhibits a transition from independent firing to

irregular bursts of synchronous activity, i.e. to avalanches. We vary

both inhibitory synaptic strength wI~wEI~wII and the excitatory

strength wE~wIE~wEE , while fixing the difference between them,

w0~wE{wI . We keep the other parameters constant; as we will

later show, this has the effect of leaving the deterministic equilibrium

or fixed point unchanged. As shown in figure 3A, when the total

synaptic strength is small, firing rates fluctuate weakly about the

fixed point predicted by the deterministic Wilson-Cowan equations,

meaning that the neurons fire asynchronously. The neurons fire

Figure 2. Network connectivity and dynamics. A, schematic of connection strengths between excitatory, E, and inhibitory, I , populations,
where an arrow indicates a synaptic input. B, schematic of functionally feedforward connectivity, where one mode of network excitation, D, excites
another mode S, but S does not directly affect D. C, network dynamics visualized. If there are k excitatory and l inhibitory neurons active, another
excitatory neuron may become active, and network state moves rightwards one spot, at net rate N{kð Þf sEð Þ, where sE is the total synaptic input to
an excitatory neuron. The rates for other transitions are shown with solid arrows and discussed in the population dynamics section of the results.
Dashed arrows represent transitions into the state k,lð Þ from adjacent states.
doi:10.1371/journal.pcbi.1000846.g002

Avalanches in a Stochastic Network Model
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roughly as independent Poisson processes, as shown by their

approximately exponential inter-spike-interval distribution in the

insets to figure 3D. The distribution of burst sizes shown in figure 3D

fits a geometric distribution consistent with independent Poisson

firing, explained in methods.

As we increase the synaptic input, fluctuations in the firing rate

grow, and we begin to see large and long-lived downwards

fluctuations away from the deterministic value of the firing rate, at

random times, shown in figure 3B–C. Episodes of near-zero firing

interpose between episodes of collective firing of many neurons

across the network. Looking at the statistics of these irregular

bursts of synchronous activity, we find that the distribution of burst

sizes, measured in number of spikes, approaches a power law

distribution as the firing becomes more synchronized, shown in

Figure 3. Transition from asynchronous firing to avalanche dynamics. Simulations with parameter values hE~hI~0:001,
w0~wE{wI~0:2, and N~800. Left column, wEzwI~0:8, middle column, wEzwI~1:8, right column wEzwI~13:8. A,B,C: Mean firing rate of
network (see Procedures) plotted over raster plot of spikes. Individual neurons correspond to rows, and are unsorted except that the lower rows
represent excitatory neurons and the upper rows inhibitory. D,E,F: Network burst distribution in number of spikes, together with geometric (red) and
power law (blue) fit; Dt, the mean inter spike interval, is the time bin used to calculate the distribution, and b is the exponent of the power law fit.
Inset, inter-spike interval (ISI) distribution in ms for a sample of 50 neurons from the network, shown in semi-logarithmic co-ordinates, with
exponential fit (green). G,H,I: Phase plane plots of excitatory and inhibitory activity showing the vector field (grey) and nullclines _EE~0 (red) and _II~0
(blue), of the associated Wilson-Cowan equations and plots of a deterministic (black dashed) and a stochastic (green) trajectory starting with identical
initial conditions. Note that the deterministic fixed point (black circle), where the nullclines cross, does not change as wEzwI increases, but the angle
between the nullclines becomes increasingly shallow, and the stochastic trajectory becomes increasingly spread out. See also figure S1.
doi:10.1371/journal.pcbi.1000846.g003

Avalanches in a Stochastic Network Model
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figures 3E–F. This is therefore a candidate mechanism for

neuronal avalanches [2,4,5]. In figure 3F, we see that the size

distribution conforms to a power law for avalanche sizes between

roughly 5 and 500 spikes. Testing the goodness of fit using

ordinary least-squares linear regression on the bilogarithmically

transformed co-ordinates, the test of significance used in [2], we

find the R2 value was 0.968. However, recent research has shown

that to be is an inappropriate and unreliable method for detecting

power laws [16], a point we return to in the discussion. Using the

maximum likelihood estimator developed in [16] (see methods) we

find an exponent of 1.62. However, the goodness of fit test also

developed in [16], we reject the null hypothesis that the sample is

drawn from an exact power law, for its entire range, with

pv0:001.
Considering the population activity, (i.e. the proportion active per

population, as opposed to the spike firing rate), figure 3G–I show that

the activity also becomes increasingly prone to large fluctuations

towards zero, despite the associated deterministic Wilson-Cowan

equations having an unchanging single stable fixed point.

Avalanches result from strong feedforward dynamics
We illuminate this behaviour with the help of the system size

expansion [17–20], a standard technique from stochastic chemical

kinetics, reviewed in Text S1. The inspiration for this comes from

a Gaussian approximation: if the neurons were to fire indepen-

dently of each other, then the total activity in each population

would be Gaussian with mean proportional to N and standard

deviation proportional to
ffiffiffiffiffi

N
p

. Accordingly, we model the number

of neurons active at a given time k,lð Þ as the sum of a deterministic

component E,Ið Þ, scaled by N, and a stochastic perturbation

jE ,jIð Þ, scaled by
ffiffiffiffiffi

N
p

, so that

k~NEz
ffiffiffiffiffi

N
p

jE , and l~NIz
ffiffiffiffiffi

N
p

jI : ð5Þ

The deterministic terms obey the Wilson-Cowan equations

dE

dt
~{aEz 1{Eð Þf sð Þ, dI

dt
~{aIz 1{Ið Þf sð Þ: ð6Þ

where E and I are, respectively the (time-averaged) proportions of

excitatory and inhibitory neurons active in a given time bin, [see

[14]], and now the total synaptic inputs are the same to both

populations, s~wEE{wI Izh, where h is external input. The

fluctuation variables jE ,jIð Þ obey a linear stochastic differential

equation

d

dt

jE

jI

� �

~A
jE

jI

� �

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aEz 1{Eð Þf sð Þ
p

gE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aIz 1{Ið Þf sð Þ
p

gI

 !

ð7Þ

to order N{1=2, where the matrix A is the Jacobian of (6)

calculated at the deterministic trajectory, and gE and gI are

independent white-noise variables whose amplitude is also

calcuated via the deterministic trajectory. Since this equation is

linear, the fluctuations are approximately Gaussian for large N.

Notice that in figure 3G the trajectory of the master equation

closely tracks the trajectory of the Wilson-Cowan equations (6). In

the case of independent firing, the fluctuation term is small, but we

see in figures 3H–I that as the network transitions to synchronous

firing the fluctuations dominate and the stochastic trajectories

move away from those for the deterministic system.

It is is easier to understand the dynamics by making a change of

variables; to motivate this change of variables, note that large

fluctuations tend to occur increasingly as inhibition approaches

excitation, w0~wE{wI%wEzwI . This is sometimes called a

balanced network [13,21,22], in the sense that inhibition balances

excitation. In this case, we can express the synaptic input in terms

of the mean S and difference D of the excitatory and inhibitory

population activities, and note that the neuronal response is highly

sensitive to changes in the difference and relatively insensitive to

changes in the mean, described schematically in figure 2B. More

precisely, if

S~
1

2
EzIð Þ, D~

1

2
E{Ið Þ ð8Þ

then the total synaptic input is

s~wEE{wI Izh~w0Sz wEzwIð ÞDzh ð9Þ

where w0~wE{wI . From (9) we deduce that, in the balanced

case where w0%wEzwI , the input is much more sensitive to

changes in the difference than in the mean. Accordingly, we make

a linear change of variables from E,Ið Þ to S,Dð Þ. As shown in Text

S1, this leads to the more transparent deterministic equations

dS

dt
~{aSz 1{Sð Þf sð Þ ð10Þ

dD

dt
~{D azf sð Þð Þ ð11Þ

with unique stable solution S0,0ð Þ. The factor of D in (11) means

that D~0 at the fixed point, and that close to the fixed point D is

only weakly sensitive to changes in S. Since D0~0, and S depends

on the sum of the weights only through the term wEzwIð ÞD
which is zero at the fixed point, in fact the fixed point S0 is left

unchanged by varying the sum wEzwI while keeping the

difference wE{wI constant. This is why the fixed point is the

same in figures 3G–I.

In these new variables the linear noise approximation [see Text

S1] is expressed as

d

dt

jS

jD

� �

~
{l1 wff

0 {l2

� �

jS

jD

� �

z

ffiffiffiffiffiffiffiffi

aS0

p gS

gD

� �

ð12Þ

where l1~ azf s0ð Þð Þz 1{S0ð Þw0f ’ s0ð Þ, wff~ 1{S0ð Þ wEzwIð Þ
f ’ s0ð Þ, l2~ azf s0ð Þð Þ, and gS and gD are again independent

white-noise variables. The Jacobian matrix

{l1 wff

0 {l2

� �

ð13Þ

is upper-triangular, and has eigenvalues {l1 and {l2. If w0 is

small and positive, so are the eigenvalue magnitudes l1 and l2.

To see this, note that l2 is the sum of two small terms a~0:1
and f s0ð Þ&s0; the extra term in l1 is also small if w0 is small,

since f ’v1. Thus, the fixed point is weakly stable, and like the

location of the fixed point, its linear stability depends on the

weights only via the difference w0.

The off-diagonal term wff~ 1{S0ð Þ wEzwIð Þf ’ s0ð Þ has been

called a hidden feedforward term [13,23–25], feedforward because

fluctuations in D feed into the evolution of S but not vice versa,

and hidden because a change of variables is required to see this

structure, not obviously present in the network connectivity

Avalanches in a Stochastic Network Model
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(figure 2B). The Jacobian, with small eigenvalues but a large off-

diagonal term, leads to the amplification of small values of jD into

transient increases in jS whose magnitude increases with wff . This

effect is called balanced amplification in [13]; it may also be thought of

as a shear flow in the phase plane, and is characterized by the

nullclines crossing at a shallow angle. In figures 3G–I, one can see

that the nullclines become closer to parallel as the feedforward

term wff increases.

In a noisy system, the functionally feedforward mechanism

means that small spontaneous fluctuations in jD are amplified into

transient increases in jS whose size increases with wff . An

appropriate combination of the noise being strong enough, the

feedforward term wff being large enough, and the eigenvalue

damping the fluctuations l1 being small enough, leads to large

sustained fluctuations in jS.

We may make this more explicit by examining the variance of

the activity, calculated in Text S1, from the linear noise

approximation as

Var ~SS
� �

~N{1Var jSð Þ~ aS0

2Nl1
1z

w2
ff

l2 l2zl1ð Þ

 !

: ð14Þ

Fluctuations predicted by the linear noise approximation grow

with the strength of the functionally feedforward term, and also

grow as the eigenvalues l1 and l2 go to zero.

We may relate the above findings to the fluctuations in firing

rate found in simulations, by observing how the mean and

standard deviation of the time-binned spike count varies as we

increase the feedforward strength wff . We time bin the spike

counts into bins of width T , so that the number of spikes in the ith

bin is KT ið Þ. Then the normalized firing rate is SKTT=T and the

normalized standard deviation is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var KTð Þ
p

T
.

In figure 4A we see that as the feedforward strength increases,

the standard deviation initially increases sharply. Meanwhile, the

mean firing rate drops, and continues to drop even as the standard

deviation saturates. The effect of this is that the coefficient of

variation (CV),

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var KTð Þ
p

SKTT
, which measures the typical size of the

fluctuations relative to the mean, increases, initially rapidly but

later more slowly, as shown in figure 4B. (Note that this is the CV

of the time-binned spike counts, not the much studied CV of the

inter-spike interval.)

The linear noise approximation, via equation (14), predicts the

increase in the standard deviation with wff . Although the linear

noise approximation predicts no change in the mean, correction

terms at the next order, O N{1
� �

, indicate that the mean decreases

as wff increases (see Text S1). This leads to the counterintuitive

observation that the deterministic fixed point does not even

accurately describe the mean value of the stochastic system when

fluctuations are large.

Another prediction from (14) is that the fluctuations become

small as N increases, in particular causing the firing rate to return

to its deterministic limit. In figure 5 we show the effect of varying

the size of the network. Fluctuations do indeed die away at large

size, and the firing rate barely fluctuates for N~100,000 neurons

per population; however, irregular bursts are still observed in

networks with size of up to N~10,000 neurons per population.

This indicates that, although the stochastic Wilson-Cowan model

has as its large-scale limit the deterministic Wilson-Cowan

equations, the network size may need to be extremely large for

the deterministic equations to accurately describe its behavior.

Response to changing input
We have found spontaneous dynamics organized into irregular

synchronous bursts in neural networks with very weak constant

input. To shed light on how networks of neurons process

information, we want to know what happens when the input

varies. In the simplest case - where input h to every neuron is

identical, but may change over time - a change in the magnitude

of h alone may be sufficient to cause the network to move from

irregular to regular behaviour, shown in figure 6. Here a change in

the input strength makes the fixed point more stable, so decreases

the extent to which the network at the fixed point is functionally

feedforward.

We can see this by tracking the changes caused in the Jacobian

matrix (12) at the fixed point with respect to the mean and

difference co-ordinates S,Dð Þ. Increasing the external input h

results in an increase in the synaptic input s0~w0S0zh, both

directly as h appears in the sum, and indirectly as it causes the

fixed point S0 to increase. This causes the eigenvalue

{l2~{a{f s0ð Þ to become more negative, increasingly the

stability of the fixed point. Since the response function saturates, so

has a decreasing derivative, the other eigenvalue {l1 also

becomes more negative as input increases. Similarly the feedfor-

ward term wff decreases. In other words, when input is high,

spontaneous internal network correlations quickly decrease. This

quick response to an increase in input is a computationally

Figure 4. Activity and synchrony for a range of feedforward
strengths. A: Mean and standard deviation of time-binned firing rate
and; B: coefficient of variation plotted against the sum of synaptic
weights wz~wEzwI , from simulations with other parameters fixed,
w0~0:2, h~0:001 and N~800. The timebin width is T~1ms. Note that
the feedforward strength wff is proportional to the sum of weights,
wff~ 1{S0ð Þ wEzwIð Þf ’ s0ð Þ.
doi:10.1371/journal.pcbi.1000846.g004

Avalanches in a Stochastic Network Model
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desirable property previously observed in balanced networks

[13,21,22].

The effects of altering various parameters of the model starting

from independent firing are summarized in table 1, where an

increase in the coefficient of variation means that fluctuations are

proportionately greater, or that the dynamics are more avalanche-

like.

Sparse connectivity
The number of synapses per neuron in cortex is believed to be

at most 103{104 [26], so only networks with fewer than 104

Figure 5. Avalanches persist for intermediate network size and are extinguished at larger sizes. Effect of varying the size per population,
N , with other parameters fixed as wE~5:1, wI~4:9, h~0:001. A: N = 2000. B: N= 5000. C: N= 10,000. D: N = 100,000.
doi:10.1371/journal.pcbi.1000846.g005

Figure 6. Response of network to change in input. Here, the
constant input is h~0:001 for the first 500ms and h~0:1 for the
following 500ms; the change is indicated by the green arrow. The other
parameters for this all-to-all network are, w0~0:2, wEzwI~2:8, and
N~800.
doi:10.1371/journal.pcbi.1000846.g006

Table 1. The effect of changing system parameters on the
mean, variance, and coefficient of variation, estimated from
the linear noise approximation.

parameter S0 Var ~SS
� �

CV

:l1,l2 - ; ;

:wff - : :

:wE : : ;

:wI ; ; :

:h : ; ;

:N - ; ;

doi:10.1371/journal.pcbi.1000846.t001
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neurons could have anything approaching all-to-all connectivity;

larger networks in cortex must be sparsely connected. Our results

so far deal with all-to-all connected networks, so it is reasonable

to ask whether or not a sparsely connected network could

produce avalanches via the same mechanism. The answer is yes:

we are able to generate random sparse matrices with weakly

stable fixed points and high functional feedforward connectivity

which exhibit large fluctuations grouped into avalanches, as

shown in figure 7.

We used the same single-neuron parameters and response

function as the all-to-all case, changing only the connectivity

matrix. To make this matrix, we generated random sparse positive

matrices WEzWI with large eigenvalues, and WE{WI with

small eigenvalues, so that the weight matrix

W~
WE {WI

WE {WI

� �

ð15Þ

is random, sparse and obey’s Dale’s principle that every

column, representing the synaptic weights outwards from a

single neuron, is either all excitatory or all inhibitory [27]. The

details of how to construct such a weight matrix are given in

methods. The condition that the eigenvalues of WE{WI

are much smaller than those of WEzWI is analogous to the

population condition wE{wI%wEzwI in the all-to-all case.

As in the all-to-all case, this sparsely connected network has

a single stable fixed point, and a change of variables to the

mean and difference of the activities leads to the Jacobian at

the fixed point having small negative eigenvalues and large off-

diagonal elements causing strong functionally feedforward

dynamics.

We conclude that homogenous all-to-all connectivity, which has

the effect of averaging the population activity at the input to every

neuron, is not a requirement for strongly synchronized fluctuations

grouped into avalanches. The same mechanism produces similar

fluctuations in an inhomogenous network if the functional

feedforward strength is large enough.

Discussion

Using the stochastic rate model in an excitatory and inhibitory

network, we simulated avalanche dynamics, or irregular synchro-

nous activity with a power law burst size distribution. We showed

that a network’s propensity to produce such bursts depends on it

having a functionally feedforward structure described by [13], in

the presence of noise. This is achieved by making the network

balanced, meaning that the net difference between excitation and

inhibition is small compared to the sum of excitation and

inhibition. Bursts arise from small spontaneous fluctuations in

the difference of excitatory and inhibitory activity, amplified by the

functionally feedforward structure into large fluctuations in the

activity of both populations. We demonstrated avalanche

dynamics to be robust over a wide range of system parameters.

Depending on the functional feedforward strength, this fluctua-

tion-driven behaviour persists in networks of at least tens of

thousands of neurons. Increasing the network size (Nw105

neurons, depending on other parameters) causes the network to

fire asynchronously at a rate given by the deterministic Wilson-

Cowan equations. However, the deterministic equations do not

produce avalanches and exhibit no qualitative change in their

spontaneous dynamics due to functionally feedforward connectiv-

ity, unlike the stochastic rate model. A significant increase in the

external input quickly moves the stochastic network out of the

functionally feedforward regime, also causing the network

dynamics to behave more like the deterministic Wilson-Cowan

equations. Avalanche dynamics are also robust to major changes

in the synaptic connectivity - we can produce such fluctuations in a

sparse randomly connected network by constraining the eigenval-

ue spectrum of its connectivity matrix so that it has a functionally

feedforward structure.

Limitations of our findings
Although simplified models are commonly used to study neural

network dynamics, the question remains whether a given

simplification is appropriate for modeling the network at hand.

Our model neurons, which are stochastic switches, are so simple as

Figure 7. Avalanches in a sparsely connected network. Results from an excitatory and inhibitory network with N~800, with 17% connectivity.
See text for details of sparse weight matrix. A: Raster plot and mean firing rate. B: Avalanche size distribution, calculated with bin size Dt~0:12ms and
showing poisson fit (red) and power law fit (blue) with exponent b~2:49. C: Inter-spike-interval distribution with exponential fit (green).
doi:10.1371/journal.pcbi.1000846.g007

Avalanches in a Stochastic Network Model

PLoS Computational Biology | www.ploscompbiol.org 8 July 2010 | Volume 6 | Issue 7 | e1000846



to make it difficult to relate their parameters precisely to the cells

being modeled, although not as difficult as for a purely population-

based model. Two-state Markov processes have been previously

used for modeling neurons at longer timescales, for example the

states representing a zero or nonzero firing rate in studies of

attractor networks [28], or up and down states in cortex in studies

of repeating patterns of activity [29], contrasting with our use of a

state transition to represent a single spike. Such simple stochastic

models may produce qualitatively the same network dynamics as

more biophysically detailed models, while their simplicity enables

them to give insight into the mechanisms of emergent phenomena

[14,30]; we expect that further research will show the same to hold

for our model. In addition, it would be interesting to see if

functionally feedforward connectivity could produce avalanche

dynamics at much longer timescales via the model of Roxin et al.

[29].

Another concern is that the time scales in our simulations reflect

the time scales in cortex. For example our cellular firing rates are

at the high end of those observed in cortex in the asynchronous

case. One simple way to adjust our model is to place a time

constant t in front of the time derivative term in the master

equation, or equivalently to scale all the transition rates by t{1,

thus slowing down the entire simulation, including firing rates, by

a constant factor. One could also scale the transition rates

differently for each population, since excitatory neurons tend to

have lower firing rates than inhibitory neurons in cortex [31].

Another way to slow down the rate of occurence of avalanches

without changing the single-neuron parameters is, by increasing

the size of the simulated network to match the size of a cortical

slice, so decreasing the effective noise strength which is

proportional to the square root of the size. Since the avalanches

are noise-driven fluctuations, with appropriate adjustments to the

connectivity parameters this would make the time between

avalanches longer.

The lack of conduction delays in our model raises another issue

with the time scales: the delay in activation of one neuron by

another is accounted for solely by the random exponential time to

spiking, thus meaning that a postsynaptic spike may follow a

presynaptic spike at a delay shorter than is reasonable for causality

in cortex. We would expect the introduction of delays to slow

down the network dynamics, and also be relatively straightforward

to simulate as an adaptation of the Gillespie algorithm to account

for delays already exists [32]. As neurons in larger networks are

more likely to be far apart, we might expect conduction delays to

play a bigger role in larger, spatially distributed networks.

Although we showed that self-organization is not needed to

maintain avalanching dynamics in a network, this begs the

question, what kind of self-organization can put the network in a

regime where it produces avalanches? In cortical cultures from

layers 2/3 of the rat, avalanche-like dynamics emerge after 6–8

days [3]; similarly, in cultured networks of dissociated rat

hippocampal neurons, avalanche dynamics emerge after 3–4

weeks [5]. Feedforward connectivity requires the sum of excitatory

and inhibitory synaptic inputs to be on average much greater than

the difference, and we would expect it to take time to develop

extensive enough connectivity for the total to be large. An

extension of our model to involve slow modification of network

properties, for example by synaptic plasticity, would be needed to

account fully for these experimental results.

Implications for experiments
If the proposed mechanism of functionally feedforward

connectivity generates neuronal avalanches in an experimental

system, it should be possible to probe that system in ways

analogous to varying the parameters in our model. For example,

the model predicts no activity in the absence of external input,

since the only fixed point of the model is the origin. If the network

topology already exhibits strong feedforward strength, then the

addition of small concentrations of an excitant would effectively

increase the external input parameter, so shifting the fixed point

away from the origin and causing avalanches. This was in fact the

method used by Beggs & Plenz [2], who added NMDA (N-methyl-

D-aspartic acid) to produce avalanches in cortical slices and

cultures. If too much NMDA is added, however, then we expect

an excess of excitation, so that the near balance of excitation and

inhibition responsible for the strong feedforward strength of the

network would be disrupted and avalanches would no longer

occur.

A small increase in extracellular Kz½ � effectively increases both

excitatory and inhibitory synaptic weights, thereby increasing the

feedforwardness wff while keeping the difference wE{wI

relatively unchanged, leading to increased burst frequency in our

model. This suggests that an experimental preparation could be

studied near the avalanche transition by titrating with Kz½ �. If the
network were in a state where wE{wI is slightly positive, as in the

simulations performed here, then further addition of a small

amount of an inhibitory antagonist such as bicuculline (a GABAA

antagonist) would weaken wI , thereby increasing the difference

wE{wI and leading counterintuitively to decreased burst

frequency after the addition of an inhibitory blocker. If the

synaptic weights were initially elevated by increasing extracellular

Kz½ �, this would ensure the feedforwardness to be much larger

than the difference wE{wI , so that weakening wI would make a

proportionately larger change to the difference. This may be the

effect at work in [33], where adding Kz½ � and bicuculline together

produced a lower overall burst frequency than adding potassium

alone, in a slice preparation of rat hippocampus.

If it were possible to add carefully co-ordinated amounts of an

inhibitory blocker and an excitatory blocker, the model raises the

possibility that a network, by becoming less functionally feedfor-

ward, could have higher mean firing rates but fewer bursts. In

general, if there are pharmacological manipulations corresponding

to varying the parameters as shown in table 1, we expect the

coefficient of variation of the firing rate, our proxy for the strength

of avalanche dynamics, to move accordingly.

Relation to previous modeling work
The role of noise. In a well-known paper, van Vreeswijk and

Sompolinsky [22] described the activity of a network of excitatory

and inhibitory integrate-and-fire neurons with sparse random

connectivity. They ensure that spontaneous network activity is

driven by internal fluctuations by arranging that excitation and

inhibition are balanced, meaning that both the mean and the

standard deviation of net synaptic input scale as
ffiffiffiffi

K
p

, where K is

the mean number of connections per neuron, and also scaling the

threshold of each neuron with
ffiffiffiffi

K
p

.

By contrast, the present study keeps the thresholds fixed while

scaling the connection strengths inversely with network size. This

means that the mean synaptic input scales with the threshold, as a

constant; the fluctuations scale as 1
� ffiffiffiffi

K
p

in the case of

independent firing, but become comparable to the mean input

when the network synchronizes. The analysis of [22] relies on

firing of neurons being weakly correlated, achieved via static

randomness in the weight matrix. The stochastic rate model

instead undergoes a transition between uncorrelated and corre-

lated firing achieved via random spike times of individual neurons.

Other key dynamical features of the [22] model, that without

inhibitory input a neuron fires at a high rate, but without
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excitatory input neurons are very unlikely to fire, are also found in

our model. Thus we achieve similar ends with very different

modeling assumptions, in our case relying on the network’s ability

to self-synchronize and on a different source of disorder.

The interpretation of power laws. The present paper

interprets a power law distribution to mean that for a wide range

of sizes, the probability that a given event has size s is proportional

to s{b. The avalanche size distribution in figure 3F indicates a

good power law fit for roughly two orders of magnitude. Since

biological systems are finite and measurements have limited

resolution, we don’t expect observed power laws to extend all the

way to infinity. Power law behaviour with a small exponent,

holding over significantly more than one order of magnitude, is

enough to show that a phenomenon crosses several spatial or

temporal scales. This is a sufficient condition to label a dataset as a

power law in this loose sense, a widely shared interpretation [34].

The analysis of such data is complicated by the lack of

appropriate statistical tools to estimate and test them. Since a

power law distribution corresponds to a straight line in

bilogarithmically transformed co-ordinates, it would be tempting

to use ordinary least squares linear regression analysis to calculate

the slope of this line and assess the fit through the coefficient of

determination. However, this analysis is ill-founded and the

estimate of the slope of the power law is biased, as discussed

thoroughly in [16]. This method of comparison was used in

experimental studies of avalanches [2], and so we analyzed our

simulated data with the same method for comparison. Clauset et al

[16] also developed a maximum likelihood estimator and test for

data distributed according to an exact power law; in this paper we

use their estimator. More recent studies have found that cortical

avalanche data from awake cat do not follow an exact power law

according to these newer tests [35]. We are not aware of a well-

developed goodness of fit test for data conforming to a power law

distribution for a finite range of values; the development of such

tests would be very helpful for further research in the area.

The mechanism of avalanche formation. A variety of

models have attributed avalanches to criticality in network

dynamics [36–38], meaning that avalanches occur when the

network lies on the boundary between stability and instability. In

the language of dynamical systems, this would mean that

avalanches occur when an eigenvalue equals zero. This situation

is extended by our model, which exhibits avalanches not only

when the eigenvalues are close to zero, but when the eigenvalues

are small relative to the feedforward strength. Consequently, it is

not possible to infer criticality in a network from the fact that it

exhibits large fluctuations whose size obeys a power law

distribution.

Some models for neuronal avalanches have further suggested an

underlying mechanism of self-organized criticality [38]. This

would mean that the network has some fast-changing dynamical

variables, for example firing rate, which are maintained at the

boundary of stability and instability by the movement of slow

variables, such as synaptic plasticity or dendritic growth [39].

Because such systems often have power law statistics, the

measurement of power laws is sometimes taken as evidence for

an underlying self-organized critical mechanism [40]. Our model

has neither critical behavior in the fast variables, nor slow variables

to modulate their dynamics, yet has the characteristic power law

distribution of fluctuation size. Criticality is a sufficient but not

necessary condition for the emergence of power laws.

Since the slope of the power law observed is dependent on the

choice of bin width in experimental results [2], and also in our

model (figure S1), we do not read any significance into the

particular slope observed. This makes us skeptical that an observed

slope of {1:5 in a neural network, imported from directed

percolation or critical branching models [7,10,37], actually results

from one of those models underlying the phenomenon. In our

view, any good model of neuronal avalanches must reproduce the

variability in the observed slope of the power law with temporal

bin width.

Our connectivity is homogenous, or sparse and random.

Another model used scale-free network connectivity, where the

number of synaptic connections per neuron has a power law

distribution, to generate power law distributed activity [4]. It is not

surprising that such a long-tailed distribution in the connectivity

results in a long-tailed distribution in the firing; however, our

model produces a power law distribution of activity without

requiring a power law distribution in the connectivity.

Since functionally feedforward dynamics for a network depends

only on how spectral properties of the connectivity matrix interact

with the network’s input via its response function, we expect these

bulk dynamics to be obtainable in a variety of different connection

topologies beyond the all-to-all and random connectivities

examined here. Connectivity may be made more or less sparse,

more or less homogenous, more or less random, may have small-

world or only local topology, while the eigenvalue spectrum is

constrained so that the underlying dynamics is functionally

feedforward. This may explain why neuronal avalanches are

observed in vastly different anatomical structures - only a few bulk

properties of the network need hold, and the network will exhibit

irregular synchronous firing with a long-tailed burst size

distribution. Noisy functionally feedforward structure, needing

neither precise tuning of the network to criticality, nor a postulated

mechanism of self-organization, nor strong assumptions on the

underlying connectivity, are then a simple and general mechanism

for producing neuronal avalanches.

Avalanches were not observed in the functionally feedforward

model examined in [13]. Their investigation was restricted to a

deterministic linear firing-rate model, analogous to the linear noise

approximation used here, with the same change of variables

revealing the feedforward structure. Because their model exhibits a

strong transient response to input, in the presence of noise it also

exhibits a strong transient response to fluctuations. The linear

model also required excitatory synaptic strength to be less than the

inhibitory strength to maintain the stability of the fixed point, as

feedback inhibition is the only ingredient there that stabilizes the

strong recurrent excitation. Consequently, the linear model breaks

down as the excitatory strength moves closer to the inhibitory

strength, as there is no nonlinear saturation term to damp

oscillations. In this sense, the functionally feedforward model

without noise or saturation is not robust, as addition of small

amounts of noise can drastically change its behaviour. However,

with the inclusion of these terms, such a model could be used to

study both spontaneous and input-driven activity.

Conclusions
This study of neural network dynamics shows that the stochastic

rate model may be viewed as a stochastic generalization of the

Wilson-Cowan equations. In this context neither specific types of

neural connectivity, nor tuning or self-organization to criticality,

are necessary for the emergence of avalanche dynamics, namely

spontaneous network bursts with power-law distributed burst sizes.

What is important is that the net difference between excitation and

inhibition should be small compared to the sum of excitation and

inhibition, so that the network effectively has feedforward

structure. Small random fluctuations, here provided by stochastic

single neurons, are amplified by the functional feedforward

structure into bursts involving many neurons across the network.
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Analogous deterministic models with functionally feedforward

structure do not produce avalanches. Thus stochastic functionally

feedforward networks are a sufficient and general condition for the

emergence of avalanche dynamics, and a mechanism for the

spontaneous production of network bursts.

Methods

Deriving the master equation
Here we show how to derive the master equation governing the

evolution of the network state, visualized in figure 2C.

We consider k active excitatory neurons, each becoming

inactive at rate a. This causes a flow of rate ak out of the state

k,lð Þ proportional to pk,l tð Þ, hence a term {akpk,l tð Þ. Similarly

the flow into k,lð Þ from kz1,lð Þ, caused by one of kz1 active

excitatory neurons becoming inactive at rate a, gives a term

a kz1ð Þpkz1,l tð Þ. The net effect is a contribution

a kz1ð Þpkz1,l tð Þ{kpk,l tð Þ½ �: ð16Þ

In state k,lð Þ, there are NE{kð Þ quiescent excitatory neurons,

each prepared to spike at rate f sE k,lð Þð Þ, leading to a term

{ NE{kð Þf sE k,lð Þð Þpk,l tð Þ, where the total input is

sE k,lð Þ~wEEk

NE

{
wEI l

NI

zhE : ð17Þ

Correspondingly, the flow into the state k,lð Þ from k{1,lð Þ due to
excitatory spikes is given by NE{ k{1ð Þð Þf sE k{1,lð Þð Þpk{1,l tð Þ.
The total contribution from excitatory spikes is then

NE{kz1ð Þf sE k{1,lð Þð Þpk{1,l tð Þ{NE{kð Þf sE k,lð Þð Þpk,l tð Þ:ð18Þ

There are analogous terms for the decay of active inhibitory

neurons and the spiking of quiescent inhibitory neurons. Putting

this together, the probability evolves according to the master

equation

dpk,l tð Þ
dt

~a kz1ð Þpkz1,l tð Þ{kpk,l tð Þ½ �

z NE{kz1ð Þf sE k{1,lð Þð Þpk{1,l tð Þ½
{(NE{k)f sE(k,l)ð Þpk,l(t)�
za (lz1)pk,lz1(t){lpk,l(t)½ �

z NI{lz1ð Þf sI k,l{1ð Þð Þpk,l{1 tð Þ½
{ NI{lð Þf sE k,lð Þð Þpk,l tð Þ�:

ð19Þ

Simulation method
We simulate the entire network as a single continuous-time

Markov process, using Gillespie’s exact stochastic simulation

algorithm [12]. The most general form of this starts with the

single-neuron transition rates, that for the ith neuron being:

ri~
a if ith neuron active,

f sið Þ if ith neuron quiescent:

�

ð20Þ

The algorithm takes the state of the network, i.e. each neuron is

specified as being either active or quiescent, and proceeds as:

1. Find neuronal transition rates ri, and network transition rate

r~
P

i ri.

2. Pick time increment dt from an exponential distribution of rate

r.

3. Pick ith neuron with probability
ri

r
, change its state, and update

time to tzdt.

In the case of homogenous all-to-all networks, if one only wants

to simulate the number of neurons active in each population, one

may simplify this algorithm along the lines of Gillespie’s original

presentation for a well-mixed chemical system, since the upwards

transition rates f sið Þ would be identical for all neurons in a

population. The simplified algorithm uses much less memory and

runs considerably faster.

The Gillespie algorithm is event-driven [41] in the sense that the

simulation time is moved on only when the network state is

updated, and the time intervals dt are random variables dependent

upon the network state. It is then necessary to store only a vector

of transition times and a corresponding vector of which neuron

transitioned at each time. In the case of fluctuating firing rates

found in avalanche dynamics, the algorithm, by its definition,

adapts its time-steps to the firing rates, which can be a

computational advantage.

All simulations were performed in Matlab 7.1 (Mathworks,

Natick, MA).

Temporal coarse-graining
To produce plots of the mean firing rate, we counted the

number of spikes KT in timebins of width T~0:1ms, and

smoothed the signals by convolving with a Gaussian of width

s~5ms. The phase-plane figures (3G–I) show an approximation

to the proportion active: since active neurons decay at rate

a~0:1ms{1, we may calculate the activity from the spike times as

E iz1ð Þ& 1{aTð ÞE ið ÞzKT ið Þ=N.

The mean firing rate, plotted in figure 4 and over the raster

plots (figures 3A–C etc.), and the activity, plotted in the phase

plane figures (3G–I) and used in the calculations, are closely

related. Due to the single-neuron dynamics described in (2), the

firing rate, which is the rate of transitions from active to quiescent

per neuron per second, is (2{E{I)f wEE{wI Izhð Þ in the all-

to-all case.

Defining neuronal avalanches
We define a neuronal avalanche as a sequence of spikes such

that no two consecutive spikes in the avalanche are separated by

a time greater than dt. The size of an avalanche is defined as the

total number of spikes belonging to the sequence. Clearly, if dt is

small, then avalanche sizes will be small. Indeed, in the limiting

case that dt is smaller than the minimum time interval between

any two consecutive spikes in the network, each spike becomes its

own avalanche, so all avalanches have size unity. Similarly, if dt is

chosen to be large, then avalanches will be large. Again consider

a limiting case, where dt is on the order of the entire simulation

time. Then all of the spikes belong to a single avalanche. We

estimate an appropriate dt, dtavg as the average time interval

between consecutive spikes in the network [2,42]. More precisely,

let tif g be the ordered sequence of spike times in the network,

then

dtavg~S tiz1{tif gT: ð21Þ

This is the same as the total number of spikes in the simulation

divided by total simulation time.
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Avalanche size distributions
We fit two distributions to the avalanche size. Firstly, if each

neuron spikes independently as a Poisson process, then the entire

network fires as a Poisson process, with a rate m. Then, the

distribution of avalanche size S is

P S~sð Þ~P s consecutive ISIsvdtð ÞP next ISIwdtð Þ

~ 1{emdt
� �s

emdt
ð22Þ

which is a geometric distribution with parameter emdt. This is the

red line in figure 3D–F.

It has been hypothesized that avalanche size distributions are

consistent with a power law distribution, with the size S given by

P S~sð Þ!s{b ð23Þ

for some reasonably large range of s. Note that this means the

distribution is linear in bilogarithmic coordinates. The best fitting

power law distribution to the avalanche size data was obtained by

using a maximum likelihood estimator (MLE) for the slope of a

power law probability distribution for discrete data (avalanche

sizes are integer values only); the derivation and uses of this of this

estimator are clearly explained by Clauset et al [16]. According to

the MLE the slope b is given by the equation

b^1zn
X

n

i

ln
xi

xmin{
1

2

0

B

@

1

C

A

{1

, ð24Þ

where n is the number of avalanches greater than size xmin and xi is

the size of the ith avalanche. We take xmin =10. This is the blue line

in figure 3D–F. Note that this is a different method for obtaining

slope values than the more common ordinary least squares linear

regression analysis (LRA) of the bilogarithmically transformed data.

LRA is based on the assumption that the noise in the dependent

variable is independent for each value of the independent variable

and normally distributed. Although this is true when the dependent

variable is the probability of a certain size avalanche, it does not

hold after the bilogarithmic transformation. The transformed

probability distribution has log-normally distributed noise, and so

a calculation of the slope from LRA methods can give spurious

results [16], and a biased estimate of the avalanche slope.

Making the sparse connectivity matrix
Here we show how to make the sparse matrix with functionally

feedforward connectivity; the construction is closely related to the

supplementary information from [13].

For a network with N excitatory and N inhibitory neurons, we

make a connectivity matrix

W~
WE {WI

WE {WI

� �

ð25Þ

The N|N matrices WE and WI are created from random

orthogonal matrices MD and MS and sparse diagonal matrices CD

and CS, by

WE{WI~M{1
D

CDMD

WEzWI~M{1
S

CSMS:
ð26Þ

Since CD and CS have sparse diagonal entries, we ensure thatW is

sparse. By choosing the non-zero diagonal components of CD to be

much smaller than those of CS, we pick the eigenvalues of

WE{WI to be much smaller than those of WEzWI ;

this condition is analogous to the population condition

wE{wI%wEzwI in the all-to-all case, and means that there will

be a large feedforward component to the network dynamics. The

fact that MD and MS are orthonormal means that both WE{WI

and WEzWI are normal, i.e. their eigenvectors are mutually

orthogonal.

Next we recoverWE andWI from their sum and difference in the

obvious way, but adjust any negative elements of these to zero so that

the resulting matrix (25) obeys Dale’s principle. This perturbation of

WE and WI leads to a perturbation of WEzWI and WE{WI ,

making them no longer exactly normal. A normal matrix A satisfies

AAT
{ATA~0, and we may measure the deviation from normalcy

of A by taking the Frobenius norm, i.e. the sum of the squares of the

elements, of AAT
{ATA. For the particular matrices under study

this deviation from normalcy is very small, remaining less than 10{6

for both matrices after the perturbation.

Now we introduce a generalized Wilson-Cowan equation for

the vector of neural activities E,Ið Þ so that

_EE~{aEzf WEE{WI Izhð Þ 1{Eð Þ
_II~{aIzf WEE{WI Izhð Þ 1{Ið Þ

ð27Þ

where we interpret the response function as the diagonal operator

f sð Þij~f sið Þdij .
This set of equations has a single fixed point E0,I0ð Þ for the

given weight matrix, due to the symmetry in input currents,

E0~I0. Accordingly, we change variables to sum and difference

modes

S~
1

2
M{1

D
EzIð Þ

D~
1

2
M{1

S
E{Ið Þ

ð28Þ

so that equations (27) become

_SS~{aSzM{1
D

f sð Þ 1{MDSð Þ
_DD~{ azM{1

S
f sð ÞMS

� �

D

ð29Þ

where the synaptic input is s~WEE{WI Izh~WE{WIð ÞMDSz

WEzWIð ÞMSDzh.

If we replace f s0ð Þ with the population average

Sf s0ð ÞT~ 1

N

X

i
f sið ÞI , the Jacobian of the system at the fixed

point S0,D0ð Þ~ M{1
D

E0,0
� �

is approximated by

{ azf s0ð Þð ÞI{CDf ’ s0ð Þdiag 1{MDS0ð ÞÞ
0

 

M{1
D

MSCSf ’ s0ð Þdiag 1{MDS0ð Þ
{ azf s0ð ÞIð Þ

!

,

ð30Þ

which is upper triangular since CD is diagonal. It can be shown

that since the elements of CS are large, the off-diagonal elements

of this matrix will be much larger than the diagonal ones, leading

to strong feedforward dynamics. It should be noted that if the net

Avalanches in a Stochastic Network Model

PLoS Computational Biology | www.ploscompbiol.org 12 July 2010 | Volume 6 | Issue 7 | e1000846



input current to each neuron is the same at the fixed point, as it is

in the all-to-all case, then Sf s0ð ÞT~f s0ð Þ, and (30) becomes exact.

Supporting Information

Figure S1 Avalanche size and duration distributions for different

time bin sizes. Avalanche distributions from a single simulation

with parameter values hE~hI~0:001, w0~wE{wI~0:2,
wEzwI~5:8, and N~800. Left column, Dt~0:024~SISIT;

right column, Dt~1&4SISIT. Upper graphs show the distribu-

tion of avalanche size in numbers of spikes, and lower graphs show

the distribution of avalanche duration, i.e. the elapsed time

between the first and last spike in an avalanche, in msec. Note that

the data shows power law fit in all cases, but the slope of the

distribution changes with the time bin size.

Found at: doi:10.1371/journal.pcbi.1000846.s001 (0.71 MB EPS)

Text S1 Calculations supporting main paper.

Found at: doi:10.1371/journal.pcbi.1000846.s002 (0.10 MB PDF)
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