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Abstract: Avarol is a sesquiterpenoid hydroquinone with potent cytotoxicity.  

Although resolving endoplasmic reticulum (ER) stress is essential for intracellular 

homeostasis, erratic or excessive ER stress can lead to apoptosis. Here, we reported that 

avarol selectively induces cell death in pancreatic ductal adenocarcinomas (PDAC), which 

are difficult to treat owing to the availability of few chemotherapeutic agents. Analyses of the 

molecular mechanisms of avarol-induced apoptosis indicated upregulation of ER stress marker 

BiP and ER stress-dependent apoptosis inducer CHOP in PDAC cells but not in normal 

cells, suggesting that avarol selectively induces ER stress responses. We also showed that 

avarol activated the PERK–eIF2α pathway but did not affect the IRE1 and ATF6 pathways. 

Moreover, CHOP downregulation was significantly suppressed by avarol-induced 

apoptosis. Thus, the PERK–eIF2α–CHOP signaling pathway may be a novel molecular 

mechanism of avarol-induced apoptosis. The present data indicate that avarol has potential 

as a chemotherapeutic agent for PDAC and induces apoptosis by activating the 

PERK–eIF2α pathway. 
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1. Introduction 

Avarol is a sesquiterpenoid hydroquinone isolated from the marine sponge Dysidea avara and has 

pharmacological properties, including antitumor, antiviral, and anti-inflammatory effects [1–3]. Avarol 

has been shown to have antitumor effects against leukemia and lymphoma and increases the production 

of intracellular superoxide anions [4]. However, the molecular mechanisms of avarol-induced apoptosis 

are poorly characterized and its antitumor activities for various cancers are largely unknown. 

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies and is the fourth 

leading cause of cancer-related deaths worldwide. Most patients with PDAC receive chemotherapy 

because of the lack of early stage detection methods for pancreatic cancer [5,6]. Subsequent treatment 

with gemcitabine (2′,2′-difuluorodeoxycytidine) is the current standard chemotherapeutic agent used for 

advanced disease [7,8]. However, the gemcitabine treatment effects are limited by the rapid 

development of gemcitabine resistance in PDAC. Therefore, the identification of new therapeutic agents 

is required for the effective treatment of PDAC. 

Endoplasmic reticulum (ER), an intracellular organelle, specializes in the proper secretion and 

folding of proteins. Several stresses, such as metabolic and hypoxic stress, induce ER stress response as 

well as the unfolded protein response (UPR) [9]. Three types of ER transmembrane proteins are 

important in the ER stress response: protein kinase R-like ER kinase/pancreatic eIF2 kinase (PERK), 

protein-kinase and site-specific endoribonuclease (IRE1), and activating transcription factor 6  

(ATF6) [10]. ER stress response maintains and restores ER homeostasis by inducing ER chaperones, 

such as the binding immunoglobulin protein (BiP) that mediates protein refolding [11]. However, 

irreversible ER stress induces apoptosis to eliminate damaged cells via induction of the C/EBP 

homologous transcription factor (CHOP), which is a transcription factor involved in downregulating 

Bcl-2 and activating BAX in response to ER stress [12–14]. Cancer cells are constantly under certain 

levels of ER stress due to conditions, such as hypoxia, low nutrients, and high loads of mutant proteins, 

and proper ER function is dependent on the UPR that suppresses ER stress-induced apoptosis under 

these conditions [15]. Thus, UPR is a potential therapeutic target for cancers, and drugs that induce 

excessive ER stress or inhibit ER stress responses have promising antitumor effects [16]. 

In this study, we screened marine metabolite compounds that have antitumor effects and demonstrated 

that avarol selectively induces apoptosis in PDAC cells. Analysis of the molecular mechanisms of 

avarol-induced apoptosis revealed induction of the ER stress response in PDAC cell lines but  

not in normal like cells. Moreover, avarol specifically activated the PERK–eIF2α pathway, and the 

consequent CHOP-dependent BAX activation was essential for avarol-induced apoptosis. Thus, 

PERK–eIF2α–CHOP signaling was characterized as a novel molecular mechanism of avarol-induced 

apoptosis, indicating that avarol targets ER stress responses and has potential as a novel chemotherapeutic 

agent for the treatment of PDAC.  

2. Results 

2.1. Avarol Selectively Induces Apoptosis in Pancreatic Cancer Cells 

Using the cell-based cytotoxicity assay, we performed a marine metabolite screen to identify 

potential antitumor compounds that selectively induce cancer cell death, MEF (normal like cell), MCF7 
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(breast cancer cell line), and PK1 (PDCA cell line) were treated with 12 marine metabolites 

(Supplementary Table S1). Among these, avarol (Figure 1A) was isolated from the marine sponge  

D. avara and was previously shown to have cytotoxic activity against lymphoma and leukemic cells [4]. 

However, avarol antitumor activity in various cancers has not been investigated, and the ensuing 

apoptotic molecular mechanisms remain largely unknown. Thus, we examined the effect of avarol on 

cell viability in several cultured cancer cell lines and normal like cells. All cells were initially treated 

with avarol at approximately 70% confluence and cell viability was determined using MTT assays. As 

shown in Figure 1B, avarol selectively induced cell death in PDAC cells (Panc-1, PK1, and KLM1) 

compared with normal like cells (MEF, IMR90, HFL1, and HEK293). Furthermore, avarol suppressed 

cell viability in gastrointestinal cancer cell lines AGS and HCT116 and in the osteosarcoma cell line 

U2OS but not in the lung cancer cell line A549 or MCF7. The cytotoxic activity (IC50) of avarol for these 

cells is also shown in Table 1. To confirm avarol-induced apoptosis in PDAC cells, cleaved PARP was 

detected as an apoptosis marker. Immunoblotting analyses revealed that 40-μM avarol cleaved PARP in 

Panc-1, PK1, and KLM1 cells but not in MEF and IMR90 cells (Figure 1C), suggesting that avarol 

uniquely and selectively induces apoptosis in Panc-1, PK1, and KLM1 cells. 

 

Figure 1. Selective apoptosis induction by avarol in PDAC cells. (A) Structure of avarol; 

(B,C) Avarol treatment-induced apoptosis in PDAC cell lines but not normal cell lines. 

MEF, IMR90, HFL1, HEK293, A549, MCF7, U2OS, HCT116, AGS, KLM1, Panc-1, and 

PK1 cells were incubated with avarol at the indicated concentrations for 24 h. Data are 

presented as the mean ± standard deviation (SD) of three simultaneously performed 

experiments; (B) Cell viability was determined using MTT assays; (C) Panc-1, PK1, 

KLM1, MEF, and IMR90 cell lysates were subjected to immunoblotting with an anti-PARP 

antibody. PARP cleavage was used as an apoptosis marker. 
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Table 1. Cytotoxic effects of avarol for tested cells. IC50 were determined by using  

Figure 1B and Supplementary Figure S1. Data are presented as the mean ± SD of three 

different experiments. 

 IC50 values (μM) 

 MEF IMR90 HFL1 HEK293 A549 MCF7 U2OS HCT116 AGS KLM1 Panc-1 PK1 

Avarol >100 >100 78 ± 12 92 ± 9 82 ± 8 70 ± 12 42 ± 7 29 ± 5 19 ± 4 37 ± 9 20 ± 3 23 ± 2 

2.2. Avarol Induces ER Stress Responses and Upregulates BiP and CHOP Expression 

Previous studies revealed that avarol increases reactive oxygen species production by inhibiting 

superoxide dismutase activity, leading to induction of cell death pathways in lymphoma cells [4]. 

However, the molecular mechanisms of avarol-induced apoptosis remain undetermined. Recently, ER 

stress response was identified as an important and well-established apoptosis inducing signaling 

pathway. Thus, we hypothesized that avarol may induced ER stress response in PDCA cells. To test this 

hypothesis, we analyzed ER stress responses in PDAC cells and normal like cells after treatment with 

avarol. BiP is an ER chaperon and is also known as an ER stress marker protein [17], whereas CHOP is 

involved in ER stress response-dependent apoptosis [14]. The expression of these proteins is 

transcriptionally regulated during ER stress responses, and subsequent upregulation of protein 

expression has been shown [9]. Immunoblotting analysis showed dose-dependent increases in the 

expression of BiP and CHOP proteins after treatments with avarol in Panc-1, PK1, and KLM1 cells 

(Figure 2). However, avarol did not affect BiP protein expression levels in normal like cells at any of the 

tested concentrations. To investigate mechanisms of BiP and CHOP protein upregulation by avarol, we 

examined the effects of avarol on BiP and CHOP mRNA expression using qRT-PCR analyses. These 

experiments demonstrated dose-dependent increases in BiP and CHOP mRNA after treatment of Panc-1 

cells with avarol. However, avarol treatment did not affect expression of BiP and CHOP mRNA in 

IMR90 cells, indicating that avarol specifically induces ER stress responses in PDAC cells via 

transcriptional activation of BiP and CHOP. 

2.3. Avarol Activates PERK–eIF2α Signaling Pathway 

ER stress sensors are known to induce IRE1, ATF6, and PERK–eIF2α signaling pathways. 

Accordingly, ER stress induced phosphorylation of PERK and IRE1 as well as cleavage of  

p90ATF6 (inactive form) to p50ATF6 (the active form of the transcriptional factor) and initiated ER 

stress responses [10]. Thus, to identify signaling pathways that are activated by avarol, we treated 

Panc-1, PK1, and KLM1 cells with avarol and examined expression as well as phosphorylation of PERK 

(P-PERK; active form), IRE1 (P-IRE1; active form), and eIF2α (P-eIF2α; active form) and the 

expression of non-cleaved p90ATF6 (Figure 3). Phos-tag binds phosphorylated proteins and facilitates 

separation from dephosphorylated proteins on SDS-PAGE gels [18]. Thus, we used Phos-tag 

SDS-PAGE and immunoblotting methods to separate P-PERK from PERK and P-IRE1 from IRE1. As 

shown in Figure 3, avarol treatment increased P-PERK but not P-IRE1 protein levels and did not affect 

expression levels of p90ATF6, indicating that IRE1 and ATF6 pathways are not activated by avarol. 

Moreover, avarol treatment increased the expression of P-eIF2α, which was phosphorylated by P-PERK. 

To confirm that avarol did not activate IRE1 and ATF6 pathways, the transcriptional activities of 
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p50ATF6 and X-box protein 1 (XBP1), which are induced by activation of the IRE1 pathway [19], were 

measured using a reporter plasmid containing ER response element (ERSE) [20]. ERSE has been 

identified in the promoter of BiP genes, and XBP1 and p50ATF6 specifically bind to ERSE to activate 

transcription [19,21]. Panc-1 cells were transfected with pGL3/ERSE plasmid and were treated with 

DMSO, avarol, or thapsigargin (Tg), which is an ER stress inducer, and luciferase activity was 

measured. Tg treatment increased luciferase activity by 2.6-fold compared with DMSO treatment, 

whereas avarol treatment did not stimulate luciferase activity (Figure 3B). These results confirm that 

avarol does not affect the ATF6 or IRE1 pathways. Taken together, these observations suggest that 

avarol specifically activates the PERK–eIF2α pathway under these experimental conditions. 

 

Figure 2. Avarol-induced ER stress in PDAC cells. (A) Panc-1, PK1, KLM1, MEF, and 

IMR90 cells were treated with avarol at the indicated concentrations for 24 h, and 

whole-cell lysates were subjected to immunoblotting with the indicated antibodies. Blots 

were excised based on protein sizes; (B) Panc-1 and IMR90 cells were treated with avarol at 

the indicated concentrations for 18 h. Total RNAs were extracted and subjected to qRT-PCR 

analysis using specific primer sets for BiP, CHOP, and GAPDH, and the data were normalized 

to GAPDH expression. Data are presented as the mean ± SD of triplicate measurements. 
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Figure 3. Avarol activates PERK–eIF2α pathway. (A) Panc-1, PK1, and KLM1 cells were 

incubated with avarol (40 μM) for the indicated times. Whole-cell lysates were subjected to 

immunoblotting with the indicated antibodies using Phos-tag SDS-PAGE or normal 

SDS-PAGE methods. Blots were cut based on protein sizes and were stripped and re-probed; 

(B) Avarol did not activate ATF6 or IRE1 pathways. Panc1 cells were co-transfected with 

pRL-SV40 (internal control plasmid carrying the R. reniformis luciferase gene) and 

pGL-3/ERSE and were cultured for 24 h. Cells were treated with Tg, avarol, or DMSO at the 

indicated concentrations for 8 h, and P. pyralis luciferase activity was measured and 

normalized to R. reniformis luciferase activity. Data are presented as the mean ± SD of 

three simultaneously performed experiments. P values were calculated using two-way 

ANOVA; n.s., not significant; ** P < 0.01 (B). 

2.4. CHOP Is the Key Factor in Avarol-Induced Apoptosis 

Numerous reports show that CHOP induces apoptosis via the PERK–eIF2α pathway under 

conditions of ER stress [9]. Because avarol treatment increased CHOP expression in PDAC cells 

(Figure 2), we investigated whether CHOP induction is essential for avarol-induced apoptosis by 

transfecting Panc-1, PK1, and KLM1 cells with siRNA against CHOP in the presence or absence of 

avarol (Figure 4B). Under these conditions, silencing of CHOP expression significantly suppressed 
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avarol-induced cell death and apoptosis (Figure 4A,B). Thus, in further experiments, we examined the 

effects of the downstream proapoptotic effector Bax on avarol-mediated upregulation of CHOP 

expression and examined the requirement of CHOP for avarol-induced Bax translocation from the 

cytosol to the mitochondria [22]. Bax activation was examined in avarol-treated cells using 

immunofluorescence and confocal microscopy with an antibody that is specific for activated Bax. 

Following avarol treatment, Panc-1 cells showed punctated mitochondrial staining of active Bax  

(Figure 4C). In contrast, CHOP knockdown in Panc-1 cells efficiently suppressed avarol-induced Bax 

accumulation in mitochondria (Figure 4C). Taken together, these observations indicate that avarol-induced 

CHOP activates BAX and facilitates its translocation from the cytosol to the mitochondria, suggesting 

that CHOP–BAX signaling is central to avarol-induced apoptosis in PDAC cells. Next, we analyzed 

whether avarol-dependent induction of CHOP expression is involved in the selectivity of avarol-induced 

cell death in several types of cell line. We treated HEK293, A549, MCF7, HCT116, AGS, Panc-1, and 

PK1 cells with 40 μM avarol (Figure 4D). Avarol increased CHOP expression in Panc-1 and PK1 cells, 

and also slightly induced CHOP expression in HCT116 and AGS cells. However, avarol did not induce 

CHOP expression in HEK293, A549, and MCF7. The avarol-induced CHOP expression levels are 

consistent with avarol-induced cell death levels in the tested cell lines (Figures 1B and 4D). In  

Figures 1B and 2B, we observed similar results, that avarol did not induce CHOP mRNA and cell death 

in IMR90 cells. Thus, these results suggested that selectivity of avarol-induced cell death might be 

involved in CHOP induction levels in tested cells. 

 

Figure 4. Cont. 
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Figure 4. ER stress response-induced CHOP plays a key role in avarol-induced apoptosis. 

(A,B) CHOP knockdown suppresses avarol-induced apoptosis; Panc-1, PK1, and KLM1 

cells were manipulated with siControl or siCHOP for 24 h and were then treated with 

40-μM avarol for 18 h. (A) Cell viability was determined using MTT assays. Data are 

presented as the mean ± SD of three simultaneously performed experiments; (B) Whole-cell 

lysates were subjected to immunoblotting with the indicated antibodies. Blots were cut 

based on protein sizes; (C) The effect of CHOP knockdown on Bax translocation to 

mitochondria upon avarol treatment. Using the same procedure described in (A,B), 

endogenous active Bax was visualized using an anti-Bax antibody (N-20) and confocal 

microscopy. MitoTracker (red) was used as a mitochondria-specific marker. Merged 

images are shown, and the yellow color (white arrow) represents co-localization of Bax 

(green) and MitoTraker (red; scale bar, 20 μm). Percentage BAX translocation was determined 

by counting three different fields (20–40 cells/field). Data are presented as the mean ± SD 

of three different experiments. P values were calculated using two-way ANOVA;  

** P < 0.01 (A,C); (D) Avarol induces CHOP expression in Panc-1 and PK1 cells. 

HEK293, A549, MCF7, HCT116, AGS, Panc-1, and PK1 cells were treated with 40 μM 

avarol for 24 h, and whole-cell lysates were subjected to immunoblotting with the indicated 

antibodies. Blots were excised based on protein sizes. 
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3. Discussion 

In the present study, we identified novel mechanisms of avarol and showed that avarol selectively 

induces apoptosis in PDAC cells. In addition, the pro-apoptotic transcriptional factor CHOP played key 

roles in avarol-induced apoptosis, indicating that avarol specifically activates the PERK–eIF2α pathway 

(Figure 5). 

 

Figure 5. Proposed mechanism of avarol-induced apoptosis. 

In further experiments, we demonstrated that silencing of CHOP using siRNA suppresses 

avarol-induced apoptotic ER stress responses, corresponding with recent reports that show CHOP as a 

central signal transducer of ER stress-induced apoptosis [23]. We also showed that avarol activates the 

PERK–eIF2α pathway, which is a cytotoxic ER stress response pathway that is induced downstream of 

CHOP [9]. Thus, the present observations of activated PERK–eIF2α–CHOP signaling indicate a 

fundamental role for avarol in the therapeutic induction of apoptosis signaling. Moreover, avarol  

did not affect the ATF6 and IRE1 pathways, which are associated with cytoprotective ER stress 

responses [9], suggesting that avarol is an effective cytotoxic agent that targets ER stress response. In 

agreement, previous studies show that CO and β-amyloid selectively activate the PERK–eIF2α 
pathway. However, the molecular mechanisms of this selectivity remain uncharacterized [24,25], 

warranting further studies to identify primary targets of avarol and to reveal specific mechanisms of 

PERK–eIF2α pathway activation.  

Accumulating evidence suggests that induction of ER stress induces cell death and that solid tumors 

moderate UPR to accommodate ER stresses, such as hypoxia and low nutrient availability, offering a 

novel chemotherapeutic target for cancer [15,16]. Thus, excessive ER stress and inhibition of UPR may 

offer specific targets for inducing apoptosis in cancer cells. Accordingly, several ER-targeted antitumor 

agents have been examined in clinical and pre-clinical studies, including the proteasome inhibitor 

bortezomib, cyclooxygenase-2 inhibitor celecoxib, and tyrosine kinase inhibitor sorafenib, which target 

ER stress responses [26–28]. The present data indicated that avarol selectively induces cell death and ER 

stress responses in PDAC cells but not in normal like cells. In agreement, Muller et al. [4] showed that 

avarol did not induce cell death in several normal cells types. Furthermore, because the pancreas is 
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exposed to strong ER stresses such as low blood vessel-induced hypoxia and protein secretions of 

digestive enzymes, pancreatic cells are particularly dependent on ER function [29,30]. Therefore, PDAC 

cells may be particularly sensitive to ER stress-induced cell death by avarol compared with normal cells.  

4. Materials and Methods 

4.1. Cell Lines  

Human PDAC cell lines Panc-1, PK1, and KLM1, the human fibroblast cells IMR90 and HFL1, the 

human embryonic kidney cell line HEK293, the human lung cancer cell line A549, the human breast 

cancer cell line MCF7, the human osteosarcoma cell line U2OS, the human colorectal cancer cell line 

HCT116, and the human gastric cancer cell line AGS were maintained in DMEM supplemented with 

10% FBS, 100-U/mL penicillin, and 100-μg/mL streptomycin. Mouse embryonic fibroblast (MEF) cells 

were maintained in DMEM supplemented with 10% FBS, 1% NAEE, and 0.5% 2-mercaptoethanol. All 

cells were maintained at 37 °C in an atmosphere containing 5% CO2. PK1, and KLM1 cells were 

obtained from RIKEN (Ibaraki, Japan). MEF cell was obtained from Dr. Lee (Harvard University, 

Boston, MA, USA). The other cell lines were obtained from ATCC (Manassas, VA, USA). 

4.2. Immunoblotting Analysis 

Immunoblotting experiments were conducted as previously described [31], and SDS-PAGE was 

performed using normal polyacrylamide and Phos-tag poly-acrylamide gels (Wako, Tokyo, Japan). 

Antibodies against P-eIF2α, PERK, IRE1, BiP, CHOP, and PARP were purchased from Cell Signaling 

Technologies, and those against β-actin and ATF6 were purchased from Sigma (St. Louis, MO, USA) 

and Santa Cruz (Dallas, TX, USA), respectively. Antibodies were diluted to 1:1000, except for 

anti-β-actin, which was diluted to 1:10,000. Secondary anti-rabbit and anti-mouse antibodies were 

purchased from Promega (Madison, WI, USA) and were used at a dilution of 1:5000. 

4.3. Cell Viability Assays 

Cell viability was determined using the 3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) method [32]. After treatment with indicated drugs, cells were incubated with MTT solution  

(1 mg/mL) for 2 h. Isopropanol and HCl were then added to final concentrations of 50% and 20 mM, 

respectively, and the optical density at 570 nm was determined using a spectrophotometer with a 

reference wavelength of 630 nm. The IC50 values were calculated on the basis of percentage inhibition 

using the linear regression method. 

4.4. Real-Time Quantitative PCR and RT-PCR 

Real-time quantitative PCR (qRT-PCR) was conducted as previously described [17]. Total RNA was 

normalized in each reaction using GAPDH cDNA as an internal standard. Forward and reverse primers 

included BiP, 5′-TAGCGTATGGTGCTGCTGTC-3′ and 5′-TTTGTCAGGGGTCTTTCACC-3′; GAPDH, 

5′-CTCAGACACCATGGGGAAGGTGA-3′ and 5′-ATGATCTTGAGGCTGTTGTCATA-3′; and 

CHOP, 5′-TGCCTTTCTCTTCGGACACT-3′ and 5′-TGTGACCTCTGCTGGTTCTG-3′, respectively. 
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4.5. Luciferase Assay 

pGL-3/ERSE plasmid was constructed by inserting ERSE (5′-CCAATCAGAAAGTGGCACG-3′) 
immediately upstream of the luciferase gene [20] and was kindly provided by Dr. Gotoh (Kumamoto 

University, Kumamoto, Japan). Luciferase assays were performed as previously described [32]. Briefly, 

cells were transfected with 1 μg of Photinus pyralis luciferase reporter plasmids (pGL-3/ERSE) and 

0.125 μg of the internal standard plasmid bearing the Renilla reniformis luciferase reporter (pRL-SV40).  

P. pyralis luciferase activity in cell extracts was then measured using the Dual-Luciferase Assay System 

(Promega, Madison, WI, USA) and was normalized to R. reniformis luciferase activity. 

4.6. siRNA Experiments 

Panc-1, PK1, and KLM1 cells were transfected with a specific siRNA for CHOP  

(5′-AAGAACCAGCAGAGGUCACAA-3′) [33] and a control siRNA (Santa Cruz, St. Louis, MO, 

USA) at final concentrations of 50 nM using the X-tremeGENE transfection reagent (Roche, Basel, 

Schweiz) according to the manufacturer’s instructions. 

4.7. Immunostaining  

Cells were cultured on poly-L-lysine-coated coverslips and were fixed in 4% formaldehyde before 

permeabilization in 0.1% Triton X-100. Immunostaining was performed using polyclonal anti-Bax 

(N-20, Santa Cruz, St. Louis, MO, USA) as a primary antibody and FITC-conjugated rabbit IgG 

(Molecular Probes, Carlsbad, CA, USA) as a secondary antibody. Mitochondria were stained using 

MitoTracker Orange (Molecular Probes, Carlsbad, CA, USA). All images were collected using a confocal 

microscope and were processed using Adobe Photoshop software (version 13.0.5). 

4.8. Statistical Analysis 

Differences between mean values were evaluated using two-way ANOVA followed by Tukey’s test. 
Differences were considered significant when P < 0.05. 

5. Conclusions 

In conclusion, activation of PERK–eIF2α–CHOP signaling represents an essential mechanism of 

avarol-induced apoptosis in PDAC cells, suggesting that ER stress responses are a novel therapeutic 

target for PDAC. Finally, the present data indicated the potential of avarol as a novel chemotherapeutic 

agent for the treatment of PDAC. 
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