
ar
X

iv
:2

30
5.

06
12

0v
1

 [
cs

.D
S]

 1
0

M
ay

 2
02

3

Average Awake Complexity of MIS and Matching

Mohsen Ghaffari
MIT

ghaffari@mit.edu

Julian Portmann
ETH Zurich

pjulian@inf.ethz.ch

Abstract

Chatterjee, Gmyr, and Pandurangan [PODC 2020] recently introduced the notion of awake complexity

for distributed algorithms, which measures the number of rounds in which a node is awake. In the other
rounds, the node is sleeping and performs no computation or communication. Measuring the number of
awake rounds can be of significance in many settings of distributed computing, e.g., in sensor networks
where energy consumption is of concern.

In that paper, Chatterjee et al. provide an elegant randomized algorithm for the Maximal Independent
Set (MIS) problem that achieves an O(1) node-averaged awake complexity. That is, the average awake
time among the nodes is O(1) rounds. However, to achieve that, the algorithm sacrifices the more
standard round complexity measure from the well-known O(log n) bound of MIS, due to Luby [STOC’85],
to O(log3.41

n) rounds.

Our first contribution is to present a simple randomized distributed MIS algorithm that, with high
probability, has O(1) node-averaged awake complexity and O(log n) worst-case round complexity. Our
second, and more technical contribution, is to show algorithms with the same O(1) node-averaged awake
complexity and O(log n) worst-case round complexity for (1 + ε)-approximation of maximum matching
and (2+ε)-approximation of minimum vertex cover, where ε denotes an arbitrary small positive constant.

1 Introduction

Distributed algorithms for local graphs problems — such as maximal independent set, maximal matching,
and vertex and edge coloring — have been studied extensively over the past four decades. The primary
focus in these studies has been on the time complexity of the algorithm, e.g., the number of rounds until
all nodes terminate. Of course, there are other resources besides time whose expenditure is not captured
accurately enough by this measure. Recently, Chatterjee, Gmyr, and Pandurangan [CGP20] introduced
awake complexity as a better measure for some of the other resources, most importantly energy (which is a
critical resource, e.g., in sensor networks). Below, we review the model and this measure, and after describing
prior results, we outline our contributions.

1.1 Model and Motivation

The baseline setup is an abstraction of the network as a synchronous message passing model. Concretely,
we work with the CONGEST model [Pel00].

The CONGEST Model The network is abstracted as an n-node graph G = (V,E) and per round each node
can send one O(log n) bit message to each of its neighbors. The variant where message sizes are unbounded is
known as the LOCAL model [Lin87,Pel00]. Initially, nodes do not know the topology of the network, except
for some estimates of global parameters, i.e., a polynomially-tight upper bound on n and the maximum
degree ∆. In the end, each node should know its own part of the output, e.g., in the maximal independent
set problem, the node should know whether it is in the computed maximal independent set or not.

1

http://arxiv.org/abs/2305.06120v1

Sleeping/Awake Rounds, and Awake Complexity In their variant of the model, Chatterjee et al.
allow each node to be awake or sleeping, per round. A sleeping node receives no communication and performs
no computation. The awake complexity Av of a node v is simply the number of rounds in which v is awake,
until its termination.

Motivation Among others, one key motivation for studying the awake complexity is that it provides a
sharper bound on the energy spent. Notice that energy is one of the key resources in various distributed
systems, especially in practical settings where algorithms for local graph problems might be deployed, e.g.,
sensor networks and ad hoc networks. Since a sleeping node performs no computation or communication, it
is reasonable to model the energy spent during a sleeping round as zero (i.e., negligible). In this sense, the
energy spent by one node v can be modeled as proportional to its awake complexity Av.

Node-Averaged Awake Complexity When studying energy consumption, besides the maximum energy
spent by each node — which we will refer to as worst-case awake complexity— it is interesting (and arguably
even more relevant) to understand the energy spent by the entire network. Similar to above, the total energy
spent in the network can be modeled as (proportional to)

∑

v∈V Av, i.e., the summation over all nodes v of
the number rounds in which v is awake. Hence, to measure the total energy spent in the network, we can
focus on the node-averaged awake complexity, i.e., 1

n

∑

v∈V Av. See Section 1.5 for more on node-averaged
measures.

1.2 State of the Art

The maximal independent set (MIS) problem and the matching problems—maximal matching and approxi-
mations of maximum matching—are among the central problems in distributed graph algorithms, and there
has been extensive work on them since the 1980s. We first review the best known bounds for the standard
measure of round complexity, and then discuss known results regarding awake complexity.

State of the Art for Round Complexity — Randomized Algorithms The classic randomized
MIS algorithms, by Luby [Lub86] and Alon, Babai, and Itai [ABI86], have round complexity O(log n),
with high probability1. This also directly provides an O(log n) round algorithm for maximal matching,
as maximal matching easily reduces to MIS on the line graph. This itself implies a 2-approximation of
the maximum matching in O(log n) rounds. Lotker, Patt-Shamir, and Pettie [LPSP15] showed how to
improve the approximation to (1 + ε) for maximum matching, for an arbitrarily small constant ε > 0,
while keeping the same O(log n) round complexity2. Finally, Bar-Yehuda, Censor-Hillel, Ghaffari, and
Schwartzman [BYCHGS17] improved the round complexity of (1 + ε)-approximation to O(log∆/ log log∆),
where ∆ denotes the maximum degree, which in the worst-case of ∆ = Θ(n) leads to a round complexity of
O(log n/ log logn). Thus, to conclude, the best known round complexity of all these problems remains roughly
at O(log n), with the exception of matching approximation which is marginally faster at O(log n/ log logn)
rounds.

State of the Art for Round Complexity — Deterministic Algorithms Deterministic algorithms
for these problems are considerably slower. We still review the state of the art for completeness. For MIS,
the best known deterministic algorithm for a long time remained at the 2O(

√
logn) bound of Panconesi and

Srinivasan [PS92] but recently that was improved to O(log7 n) by Rozhoň and Ghaffari [RG20] and further
to O(log5 n) by Ghaffari, Grunau, and Rozhoň [GGR21]. For maximal matching, while the same bounds also
apply as MIS, somewhat faster algorithms have been known. Hanckowiak, Panconesi, and Karonski [HKP01]
gave an O(log4 n) round deterministic maximal matching algorithm, and the round complexity was improved
to O(log2 ∆ logn) by Fischer [Fis20], and that algorithm can also provide a (2+ε)-approximation of maximum
matching in O(log2 ∆+ log∗ n) rounds.

1As standard, we use the phrase with high probability (w.h.p.) indicate that an event happens with probability at least
1− 1/nc for a desirably large constant c ≥ 2

2We do not discuss the extensive literature of approximation of maximum weighted matching, as this paper targets only
unweighted matchings

2

Improved Algorithms for Special Graphs Ignoring the distinction between randomized and determin-
istic algorithms, the roughly O(log n) bound remains the best known round complexity, for arbitrary graphs.
However, there have been improvements in special cases, particularly when the maximum degree is not too
large.

For graphs with very small maximum degree ∆ — concretely ∆ ≤ O(log n)— a faster algorithm fol-
lows from the O(∆ + log∗ n)-round deterministic algorithm of Panconesi and Rizzi [PR01]. For moderately
small values of ∆ —concretely when log∆ = o(log n) and ∆ ≥ poly(log logn)—a faster algorithm random-
ized algorithm is known, with round complexity O(log∆) + poly(log logn), which follows from the work
of Ghaffari [Gha16], when combined with the recent results of (and as described in) Rozhoň and Ghaffari
[RG20]. This builds on the shattering approach of Barenboim et al. [BEPS16]. There is one caveat: this al-
gorithm requires large messages. For the setting with O(log n)-bit messages, improved bounds were provided

by [PPP+17,Gha19,GP19] and the best known round complexity is O(log∆ ·
√
log logn)+2O(

√
log log n). For

maximal matching, the best known complexity is O(log∆+log3 logn), by combining the work of [Gha16] and
[Fis20]. For matching approximation, the aforementioned work of Bar-Yehuda et al. [BYCHGS17] achieves
a complexity of O(log∆/ log log∆) for (1 + ε)-approximation, which is the optimal round complexity for
∆ = O(

√
logn), matching a lower bound of Kuhn et al. [KMW04,KMW16].

There are many other algorithmic results for MIS and matching for other restricted graph families, e.g.,
graphs of bounded arboricity [BE10,BE13], growth bounded graphs [SW08], etc.

Lower Bounds An Ω(log∗ n) round lower bound is known due to the seminal work of Linial [Lin87], which
holds even in the case of the network being a cycle. This applies to both MIS and maximal matching, and it

also extends to randomized algorithms [Nao91]. A lower bound of Ω(min{ log∆
log log∆ ,

√

log n
log logn}) was presented

by Kuhn, Moscibroda, and Wattenhofer [KMW04,KMW16] which holds also for randomized algorithm, and
applies to MIS, maximal matching, and even any constant approximation of maximum matching.

Finally, Balliu et al. [BBH+19] recently proved that there is no randomized algorithm with round
complexity o(∆) + o(log logn/ log log logn) and there is no deterministic algorithm with round complex-
ity o(∆) + o(logn/ log logn), either for MIS or for maximal matching. All the aforementioned lower bounds
hold in the LOCAL model where arbitrary size messages are allowed.

1.3 Beyond Worst-Case

To summarize the above, the key takeaway is that the best known round complexity for arbitrary graphs
remains at roughly O(log n) rounds [Lub86, ABI86], modulo a log logn factor in the case of maximum
matching approximation. It is also known that one cannot achieve a worst-case round complexity better

than Ω(min{
√

log n
log logn ,

log∆
log log ∆}) [KMW16], for either of MIS or matching (any constant approximation of

maximum, thus including maximal matching) problems. Even further, in a recent and independent work,

Balliu, Ghaffari, Kuhn, and Olivetti [BGKO22] show that this Ω(min{
√

logn
log log n ,

log∆
log log∆}) lower bound holds

even for the node-average round complexity of any algorithm for those problems (see Section 1.5 for some
improved bounds on node-averaged round complexity in special graph families).

Having faced with this barrier for round complexity and even the node-averaged round complexity, one
remaining hope is that perhaps the number of rounds in which nodes are awake can be much smaller.
That would for instance imply that the energy expenditure can be considerably lower. Though, since a
node performs no computation or communication during sleeping rounds, a priori, it is unclear if the awake
complexity can be much lower. Indeed, we are not aware of an algorithm with O(log n/ log logn) worst-
case awake complexity for MIS or any constant matching approximation. But for node-averaged awake
complexity, something better is known at least for MIS, as we review next.

State of the Art for Node-Averaged Awake Complexity Chatterjee et al. [CGP20] present a ran-
domized MIS algorithm that achieves a node-averaged awake complexity of O(1). Also, the worst-case awake
complexity of this algorithm is O(log n), that is, each node is awake at most O(log n) rounds. But unfortu-
nately, this algorithm ends up sacrificing the most standard measure, i.e., round complexity. In particular,
the round complexity of this algorithm is O(log3.41 n), with high probability, and even the node-averaged

3

round complexity is O(log3.41 n). This is considerably higher than the usual O(log n) bound discussed
above [Lub86,ABI86]. This leaves one natural question:

Question: Can we achieve this ideal O(1) node-averaged awake complexity while keeping round
complexity O(log n)?

Furthermore, the standard connection between MIS and (maximal) matching does not provide a node-
averaged awake complexity. Notice that if we apply an MIS algorithm on the line graph to solve the maximal
matching, then the nodes of the MIS problem are the edges of the matching problem and the node-averaged
awake complexity only would imply something about the average time that each edge is active. This certainly
does not imply anything useful for the node-averaged awake complexity of (maximal) matching. As such,
another natural question to ask is this:

Question: Can we achieve the O(1) node-averaged awake complexity also for matching, concretely
for maximal matching, or any constant approximation of maximum matching? Ideally, we would
also keep the round complexity O(log n).

1.4 Our Contribution

Contribution for MIS. Our first contribution answers the first question mentioned above about MIS.
Concretely, we prove that:

Theorem 1.1. There is a randomized (Las Vegas) distributed MIS in the CONGEST model with the following
performance, on any n-node network, w.h.p.:

• O(1) node-averaged awake complexity, and

• O(log n) worst-case round complexity.

This improves on the recent work of Chatterjee et al. [CGP20] who achieved O(1) node-averaged awake
complexity and O(log3.41 n) worst-case round complexity. Our result effectively shows that we do not need
to sacrifice round complexity, for node-averaged awake complexity. As a side remark, we note that our
algorithm is fairly simple; indeed the algorithm description and its analysis are considerably shorter than
those of Chatterjee et al. [CGP20].

Contribution for matching and vertex cover. As discussed before, unlike the case of the worst-case
complexity, an MIS algorithm with a good node-averaged (awake) complexity does not necessarily lead
to a (maximal) matching algorithm with a good node-average (awake) complexity. Our second and more
technical contribution is to provide algorithms that compute a (1+ ε)-approximation of maximum matching
and (2+ε)-approximation of minimum vertex cover with O(1) node-averaged awake complexity and O(log n)
with worst-case round complexity.

Theorem 1.2. There are randomized distributed algorithms in the CONGEST model that compute a (1+ ε)-
approximation of maximum matching and (2+ε)-approximation of minimum vertex cover, with the following
performance, on any n-node network, w.h.p.:

• O(1) node-averaged awake complexity, and

• O(log n) worst-case round complexity.

We remark that in the above statement, the awake and round complexity bounds hold with high proba-
bility, i.e., probability of at least 1 − 1/nc for a desirably large constant c ≥ 2. The approximation bounds
hold in expectation. This is a standard phrasing of approximation when discussing randomized approxi-
mation algorithms. In fact, our approximation has a stronger concentration around this expectation: the
probability of having a worse approximation decays roughly exponentially in the maximum matching size
(such a behavior is common in some randomized distributed/parallel algorithms for matching approxima-
tion, see e.g., [BYCHGS17,GGK+18]). We show our result in two versions: the easier version of expected
approximation factor, and the stronger version of the approximation factor holding with high probability, for
which we make the assumption that the maximum matching size is at least poly(logn). We defer tightening
this assumption to the full version.

4

1.5 Other Related Work on Node-Averaged Round Complexity

It is worth noting that studying node-averaged awake complexity can be viewed as following the direction
initiated by Feuilloley [Feu20], who studied node-averaged round complexity. Among other results, Feuil-
loley showed that Linial’s Ω(log∗ n) round lower bound for 3-coloring a cycle holds also for node-averaged
round complexity. He also exhibited some other sparse graphs where the node-averaged round complexity of
3-coloring is O(1), while the worst-case round complexity has to be Ω(log∗ n). Barenboim and Tzur [BT19]
provide further improvements in this direction, on various problems. For the case of MIS, they show a
deterministic algorithm with node-averaged round complexity of O(a + log∗ n), where a denotes the ar-
boricity of the graph. For the closely related problem of ∆ + 1 coloring, the classic random algorithm of
Johansson [Joh99] achieves a node-averaged round complexity of O(1), and worst-cast round complexity of
O(log n). The former is simply because, per round, each remaining node gets colored (and removed from
the problem) with a constant probability. As mentioned before, for MIS and matching, it was shown in con-

current and independent work by Alkida et al. [BGKO22] that the Ω(min{
√

log n
log logn ,

log∆
log log ∆}) lower bound

of Kuhn, Moscibroda, and Wattenhofer on the worst-case complexity can be adapted to hold even for the
node-averaged round complexity.

2 Preliminaries

We make use of some basic concentration bounds:

Theorem 2.1 (Hoeffding’s Bound). Let X1, . . . , XN be indepndent random variables, each taking values

in the range [ai, bi]. Let X̄ =
∑N

i=1 Xi. Then, for any t ≥ 0, we have

Pr
(

|X̄ − E[X̄]| ≥ t
)

≤ 2exp(− 2N2t2
∑N

i=1(bi − ai)2
).

Theorem 2.2 (Chernoff tight version). Let X1, . . . , Xn be independent random binary variables and let
a1, . . . , an be coefficients in [0, 1]. Let X =

∑n
i=1 aiXi. Then for any µ ≥ E[X] and δ > 0

Pr[X > (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

.

Besides the above, we need to make use of an extension of Chernoff/Hoeffding bound for cases where the
random variables have small dependencies among each other. This is formalized below.

Theorem 2.3 (Chernoff Bound’s Extension to Bounded-Dependecy Cases [Pem01]). Let X1, . . . , XN

be binary random variables, and let a1, . . . , an be coefficients in [0, 1]. Suppose that each Xi is mutually

independent of all other variables except for at most ∆′ of them. Let X̄ =
∑N

i=1 ai ·Xi, and µ = E[X̄]. Then,
for any δ ≥ 0, we have

Pr
(

|X̄ − E[X̄]| ≥ δE[X̄]
)

≤ 8(∆′ + 1) · exp(− E[X̄]δ

3(∆′ + 1)
).

Conveniently, setting ∆′ = 1 gives us a way to use the standard Chernoff bound, modulo constant factors,
for independent random variables.

3 The MIS Algorithm

Here, we describe the MIS algorithm that proves Theorem 1.1, i.e., achieving O(1) node-averaged awake
complexity and O(log n) round complexity.

5

Algorithm Outline The algorithm has three parts: During each part, we add some more nodes to the set
S, which is initially empty and is always kept an independent set, in a way that at the end S is a maximal
independent set. The first part brings down the maximum degree to poly(log n). The second part is the
technical core of the new algorithm; it runs in O(log logn) iterations each of which takes O((log logn)3)
rounds, and per iteration, it removes a constant fraction of the remaining nodes. This is also done in a way
that the node-averaged awake complexity remains O(1). The third part is a simple clean-up step that deals
with all the remaining nodes. Next, we describe these parts, one by one.

3.1 Part I

Algorithm, Part I For the first part, we use a partial run of the randomized greedy MIS algorithm [BFS12,
FN18]. Recall that in the randomized greedy MIS algorithm, each node v picks a random number rv in
I = {1, 2, . . . , n10} and per round, all nodes that have a strictly smaller random number than their neighbors
are added to the independent set S. Then, they are removed from the graph along with their neighbors. The
key difference with Luby’s algorithm [Lub86] is that we do not use new random numbers for each round.

We run this algorithm only on the first p = 1/ logn portion of the random numbers. Concretely, we
run the algorithm only on nodes for which the random number is in Ip = {1, 2, . . . , n10/ logn}. During this
time, the rest of the nodes sleep. In the end, using one additional round, we remove from the graph all of
these nodes for which their random number is in Ip, as well as all nodes in V \ Ip that are adjacent to the
computed independent set S.

Analysis, Part I We now show that this first part of the algorithm reduces the maximum degree of the
remaining graph to poly(log n), and has node averaged awake complexity O(1).

Lemma 3.1. With high probability, we have the following properties about Part I of the algorithm, described
above:

(A) this algorithm runs in O(log n) rounds,

(B) this algorithm contributes O(1) to the node-averaged awake complexity 1
n

∑

v∈V Av, and

(C) in the subgraph induced by the remaining nodes, each node has degree at most O(log2 n).

Proof. By [FN18], the randomized greedy algorithm terminates in O(log n) rounds. Notice that the nodes
with random numbers in Ip must terminate by then, and they are not impacted by other nodes whose
random number is larger than this range. Hence, even running the algorithm on only nodes with numbers
in Ip terminates in O(log n) rounds.

Each node is awake during this time with probability |Ip|/|I| = 1/ logn. Thus, by Chernoff bound, at
most O(n/ logn) nodes are awake during the run of the algorithm. Considering that the run takes O(log n)
rounds, this contributed at most O(n/ log n) · O(log n) = O(n) to the summation

∑

v Av of the awake
complexities of all nodes. In other words, this is a contribution of additive O(1) to the node-averaged awake
complexity 1

n

∑

v Av.
Finally, by [BFS12, Lemma 4.3], we get the property that in the subgraph induced by the remaining

nodes, each node has degree at most O(log2 n), with high probability. The argument is simple, so let us
repeat it here, to keep the article self-contained. The independent set computed during the algorithm is
identical to the one that we would obtain if we process the nodes sequentially, one by one, according to
increasing random numbers, each time putting the next node in the independent set S and then removing
all of its neighbors. Now consider an arbitrary node v. In each step of processing one node, this node
is a random one among all remaining nodes. Hence, if v has degree at least d, the probability that the
next node is one of the neighbors of v is at least d/n. In that case, v would be removed from the graph.
Hence, for one step, the probability that node v remains and has a degree of at least d is at most (1− d/n).
Over the Θ(pn) steps, we can conclude that the probability that v remains is at most (1 − d/n)pn. Setting
d = 10 logn/p = Θ(log2 n), we get that the probability of a node v remaining with degree above Θ(log2 n) is
at most 1/n2. A union bound over all vertices shows that, with probability at least 1−1/n, no node remains
with a degree of at least d = Θ(log2 n).

6

3.2 Part II

Part II is the core novelty of our algorithm. At the beginning of this part, we are left with a graph that
has maximum degree at most d = O(log2 n), with high probability. For Part II, we have an algorithm with
worst-case round complexity of O((log logn)4). This consists of O(log logn) iterations of repeating the same
O((log logn)3)-round procedure, each time on the remaining nodes. The procedure will be such that, per
iteration, the node-average awake complexity is O(1), where the averaging is among the nodes that run this
iteration. Moreover, the number of remaining nodes for each iteration i will be exponentially decreasing as
a function of the iteration number i. Hence, overall, the node-averaged awake complexity of Part II is O(1).

Algorithm, Part II We repeat the following procedure for O(log logn) identical iterations, each time
on the remaining nodes. The algorithm for each iteration has log d = O(log logn) phases, where in phase
i ∈ [1, log d], we have C(log d− i)2 rounds : per round of the ith phase, we mark each node with probability
2i/d. Then, any marked node that has no marked neighbor gets added to the independent set. Here, C is a
sufficiently large constant, which we will discuss later. At the end of the iteration, we have one extra round
where each isolated node (a node with no remaining neighbor) joins the independent set S and gets removed
from the graph.

We now explain the times that nodes are awake or sleeping: At the start of each iteration, each node
v determines all the rounds in this iteration in which v is marked. This is done according to the marking
probabilities described above. Any node v sleeps until the first time in this iteration in which v is marked,
and it stays awake from then until the iteration’s end. If there is no round in which v is marked, then v
sleeps for the whole iteration, except for the very last round, where we removed isolated nodes.

Finally, we need to ensure that we remove neighbors of nodes that already joined the independent set S,
even though the former might be sleeping. For that, we split each round into two sub-rounds. For any node
v that joined the independent set S in a round r, in any round r′ ≥ r+ 1, in the first subround of round r′,
node v informs any neighbor u that is marked (and is thus awake) in round r′ of the information that node
v is already in the computed independent set S. In such a case, node u terminates the entire algorithm and
outputs that it is not in the independent set S. The second subrounds are used for declaring whether a node
w is marked or not, and here only marked nodes w that do not have neighbor already in the independent set
S (which w would have learned in the first subround, if there was such a neighbor) declare to their neighbors
that they are marked. We note that this change of replacing each round with two subrounds does not impact
the asymptotic bounds on round complexity or awake complexity. For simplicity, we will ignore this 2 factor
and only refer to the number of rounds.

Analysis, Part II

Lemma 3.2. With high probability, we have the following properties about Part II of the algorithm, described
above:

(A) the algorithm runs in O(log4 logn) rounds.

(B) the algorithm contributes O(1) to the node-averaged awake complexity 1
n

∑

v Av, and

(C) at most O(n/ logn) nodes remain after the last iteration.

Proof. By the structure of the algorithm, it is clear that we have O(log logn) iterations, each of which takes
∑log d

i=1 C(log d − i)2 = O((log logn)3) rounds. Hence, the worst-case round complexity of this part of the
algorithm is O((log logn)4).

In each iteration, each node sleeps until the first round in which it is marked, and then it stays awake for

the remainder of the iteration. The probability that a node v wakes up in phase i is at most 2i

d ·C(log d− i)2.
In the case that v wakes up in phase i, it stays awake for all the remaining rounds after that, in this iteration,
which is at most

(
∑log d

j=i C(log d− j)2
)

many rounds. Hence, the expected number of awake rounds for each

7

node that participates in an iteration is at most

log d
∑

i=1

2i

d
· C(log d− i)2 ·

(

log d
∑

j=i

C(log d− j)2
)

≤
log d
∑

i=1

2−(log d−i) ·O((log d− i)5)

=

log d
∑

x=1

2−x · O(x5) = O(1).

From the above, we know that the expected number of awake rounds for a node that participates in
an iteration is O(1). Let Vk be the set of nodes that start iteration k. We will see soon, in the following
paragraph, that |Vk| ≤ O(n/2k), with high probability. Moreover, the number of awake rounds for different
nodes are independent random variables, and the maximum value of each is at most O((log logn)4). Hence,
using Hoeffding’s bound (cf. Theorem 2.1), we get that with high probability, for each k ∈ [1, O(log logn)],
the total summation

∑

v∈Vk
Av of the number of awake rounds of the nodes that participate in the kth

iteration is at most O(n/2k). This means that, with high probability, the contribution to the node-averaged

awake complexity 1
n

∑

v Av during all these iterations is
∑O(log logn)

k=1 O(1/2k) = O(1).
Finally, we show that each node v is removed with at least a positive constant probability, per iteration.

This will let us finish the proof of property (B) of the lemma, and also will allow us to prove property (C).
We prove a more general statement: Fix an arbitrary node v that starts phase k. We show that the degree

of v is upper bounded by an exponentially decreasing function throughout the phases of this iteration, with
a certain probability. In fact, we will prove this fact not only for v but for a certain radius of nodes around
v, with a certain probability. As we go further and further, this radius will decrease, and eventually, it will
reach radius zero, i.e., node v itself. Moreover, the failure probability of our guarantee will also increase over
time but will reach at most 1/2 at the end. We next make this concrete.

Let Ei be the event that, at the end of phase i, there is at least one node u within distance ri = (log d− i)

of v such that u has degree at least d/2i. We show using an induction on i that Pr[Ei] ≤ 2−2(log d−i+1)2 . The
claim holds trivially for the base case of i = 0 as there all nodes have degree at most d and thus Pr[E0] = 0.

Consider a phase i ∈ [1, log d]. From the induction hypothesis, we know that Pr[Ei−1] ≤ 2−2(log d−i+2)2 .
Moreover, suppose that Ei−1 did not happen. We already have an upper bound on the probability of Ei−1,
which we take into account using a union bound.

Consider an arbitrary node u within distance ri = (log d − i) of v. As Ei−1 did not happen, we know
that at the start of phase i, node u and any neighbor of it have a degree less than d/2i−1. If u has degree
at least d/2i, then per round of this phase, with at least a constant probability c > 0, node u or one of its
neighbors is marked and has no marked neighbor. The reason is simple: consider one such round. Let us
examine nodes in N(u) ∪ {u} one by one, each time revealing whether the node is marked or not, and we
stop the moment we find one marked node w ∈ N(u) ∪ {u}. Here, N(u) denotes the neighbors of u in this

fixed round. With probability at least (1 − 2i/d)d/2
i+1 ≥ 1/4, we find at least one marked not. Now, node

w has degree at most d/2i−1. Thus, the probability that no neighbor of w (which is not in N(u) ∪ {u})
is marked is at least (1 − 2i/d)d/2

i−1 ≥ 1/16. Hence, overall, with probability at least 1/4 · 1/16 = 1/64,
there is a marked node w ∈ N(u) ∪ {u} for which no neighbor is marked. That is, with at least a constant
probability c > 0, node u or one of its neighbors joins the independent set S. This means that node u is
effectively removed (i.e., it will be removed, the first time that it wakes up). Moreover, since the randomness
of the C(log d− i)2 rounds of this phase are independent, the probability that node u remains with a degree
at least d/2i at the end of this phase (i.e., does not get effectively removed by having an independent

set node in its inclusive neighborhood) is at most 2−5(log d−i+1)2 . This holds by choosing C large enough,
depending on the constant probability c = 1/64 above. Moreover, we can also union bound over all such
nodes u in the ri = (log d − i)-hop neighborhood of v. Since Ei−1 did not happen, the degree of each node
in this neighborhood is at most (d/2i−1), which means the number of nodes in this neighborhood is at most

8

(d/2i−1)log d−i = 2(log d−i+1)(log d−i). Hence, we have

Pr[Ei] ≤ Pr[Ei−1] + 2(log d−i+1)(log d−i) · 2−5(log d−i+1)2

≤ 2−2(log d−i+2)2 + 2(log d−i+1)(log d−i) · 2−5(log d−i+1)2

≤ 2−2(log d−i+2)2 + 2−5(log d−i+1)2

≤ 2−2(log d−i+1)2/2 + 2−2(log d−i+1)2/2

= 2−2(log d−i+1)2 .

The above completes the induction proof. Now, by applying the claim to i = log d, we get that the
probability of node v having a degree at least 1 by the end of phase log d is at most 1/2. Hence, with
probability at least 1/2, node v is isolated by the end of the log d phases and thus gets removed at the latest
in the last round of the iteration.

Finally, since different iterations use independent randomness, we get that the probability of a node v
staying after k iterations is at most 1/2k. Hence, in expectation, at most n/2k nodes remain after iteration
k. Moreover, we can apply extensions of the Chernoff bound for low-dependency random variables (cf.
Theorem 2.3) to prove that a similar upper bound holds with high probability: Notice that the events of
two nodes v and u that have distance greater than O(log 4 logn) from each other are independent, as the
algorithm, even including all the O(log logn) iterations, has round complexity O(log4 logn). Hence, for

each node v, except for at most ∆′ = (O(log2 n))O(log4 logn) = 2O(log log5 n) nodes that are within distance
O(log4 logn) hops of v, the event of v remaining is independent of all other nodes. That is, these events of
different nodes remaining have dependency degree at most ∆′. Hence, using Theorem 2.3, we can conclude
that for any k ∈ [1, O(log log n)], the probability of more than O(n/2k) nodes remaining after k iterations is
at most

O(∆′) · exp
(

−Θ(
n

2k∆′)
)

≤ exp
(

O(log5 logn)− n

2O(log5 logn)

)

≪ exp(−n0.9) ≪ 1/ poly(n).

Thus, w.h.p., at most O(n/2k) nodes remain after the kth iteration. This is the property that we used above
when calculating the node-averaged awake complexity and proving property (B) of the lemma.

Moreover, by setting k = O(log logn) iterations, we get that at most O(n/ logn) nodes remain after the
last iteration, with high probability, which proves property (C) of the lemma.

3.3 Part III

By the end of part II of the algorithm, at most O(n/ logn) nodes remain in the graph, i.e., nodes v such
that v does not have a node in the S in its inclusive neighborhood N(v) ∪ {v}. In Part III of the algorithm,
which is a simple clean-up process, we run a standard MIS algorithm— e.g., Luby’s algorithm [Lub86]—
on the remaining nodes. This algorithm runs in O(log n) rounds, with high probability. Moreover, it adds
extra nodes to the independent set S and ensures that S is a maximal independent set. Finally, since we
run this algorithm on only the remaining nodes, which are at most O(n/ log n) many, these O(log n) rounds
contribute just an additive O(1) rounds to the overall node-averaged awake complexity.

3.4 Wrap Up

Finally, we show how to combine the previous free parts, and provide a formal proof of Theorem 1.1.

Proof of Theorem 1.1. As explained in Lemma 3.1, the first part runs in O(log n) rounds. Moreover, only
O(n/ logn) nodes are awake during this time, which implies an O(n) contribution to the summation

∑

v Av.
Also, as explained in Lemma 3.2, the second part runs in O((log logn)2) rounds, and moreover, the

average awake complexity among the nodes that participate in this part is O(1). Hence, this part also
contributes O(n) contribution to the summation

∑

v Av. Finally, as shown in Lemma 3.2, at most O(n/ logn)
nodes remain after the second part.

9

The third part is simply running Luby’s O(log n)-round algorithm [Lub86] on all the remaining nodes.
Since at most O(n/ log n) nodes remain for the third part, this part also contributes at most O(n) to the
summation

∑

v Av.
Overall, considering all the three parts, we have an algorithmwith round complexityO(log n)+O((log logn)4)+

O(log n) = O(log n). Moreover, the total awake complexity is
∑

v Av = O(n)+O(n)+O(n) = O(n). Hence,
the node-averaged awake complexity is 1

n

∑

v Av = O(1).

4 Matching Approximation

In this section, we first give an algorithm that computes a (2 + ε)-approximation of maximum matching,
and show that it also allows us to obtain an algorithm for getting a (2 + ε)-approximation of vertex cover.
Finally, we show that the approximation ratio of the matching algorithm can be improved to (1 + ε), with
only a constant overhead in the round and average awake complexity, for any constant ε.

4.1 Vanilla Algorithm for Approximate Fractional Matching

We start with the following simple algorithm for computing a fractional matching. This algorithm or close
variants of it have been used throughout prior work [KMW16,GGK+18,Fis20] (though, the result has often
been mentioned as a known procedure and we are unsure where the first appearance was). This algorithm
by itself has an Θ(log∆) average awake complexity, as it requires nodes to be active at all times, and is
therefore insufficient for our purpose of having an O(1) average awake complexity. We will later discuss how
we use careful random sampling and estimation ideas to develop an alternative algorithm based on the same
framework that achieves an O(1) average awake complexity.

Vanilla Algorithm Each edge e starts with a value of xe = 1
∆ . Initially, all edges are active. Then, in

each following round, any node v for which we have cv =
∑

e∋v xe ≥ 1 − ε is called tight, and we freeze
all edges incident to tight nodes. Finally, we update the value xe of all edges that are still active (i.e., not
frozen) to (1 + ε)xe, and proceed to the next round.

Analysis Notice that this process finishes in O(log1+ε ∆) rounds, as the maximum value an edge can get
is 1. For the quality of the computed solution, we have the following guarantee.

Claim 4.1. Let M∗ be a maximum matching in G, and for each edge e, let xe be its value computed by
the above algorithm. Then, we have |M∗| ≤ (2 + 4ε)

∑

e∈E xe, i.e. the sum of all fractional values is a
(2 + 4ε)-approximation for the maximum (fractional) matching, and the values of xe form a matching, i.e.
for each vertex v we have cv =

∑

e∋v xe ≤ 1.

Proof. First, let us argue that the computed values xe form a valid fractional matching. In the first step,
we set xe = 1

∆ , so the condition cv ≤ 1 is trivially fulfilled for all vertices. For the following iterations, we
only increase the weight of an edge if both its endpoints satisfy cv ≤ 1 − ε, thus multiplying the weight of
all edges that are not frozen with a factor of 1 + ε will still guarantee cv ≤ (1 + ε) · (1− ε) = 1− ε2 ≤ 1 for
all vertices v. This concludes the first part.

For why the fractional matching is a (2+ 4ε)-approximation, note that in the end, no edge is still active,
so every edge is incident to at least one vertex v for which cv > 1 − ε. We can think of a charging process
where we start with values on the maximum (fractional) matching M∗ and we move these locally to our
computed fractional matching so that each edge e receives a charge of at most xe · 2(1 + 2ε), hence proving
that |M∗| ≤ (2 + 4ε)

∑

e∈E xe. Let us start with the maximum (fractional) matching M∗. We move all
fractional value of an edge e = (u, v) in M∗ to its tight endpoint, call it v. Since M∗ is a valid matching,
the sum of all fractional values that are moved to any node v is at most 1, which is at most 1

1−εcv. We then
spread these weights to the fractional matching that we have computed, and thus each edge e receives at
most xe · 1

1−ε from each of its endpoints, which means at most xe · 2
1−ε ≤ xe · 2(1 + 2ε) in total. Formally,

this observation can be written as

|M∗| ≤ 1

1− ε
·
∑

v∈V

cv = 2(1 + 2ε) ·
∑

e∈E

xe.

10

Randomized Rounding Given a fractional matching, it is well-known that one can use a simple ran-
domized rounding method to obtain an integral matching, with the same size up to a constant factor (in
expectation, or in fact with a concentration exponential in the matching size). We make use of one such
known method by Ghaffari et al. [GGK+18]. To be self-contained, we provide a sketch of the rounding
procedure and discuss the expected integral matching size, but we refer to [GGK+18] for the probability
concentration argument.

Lemma 4.2 (Ghaffari et al [GGK+18]). There is an O(1) round algorithm that, given a fractional matching
M with size |M | =

∑

e∈E xe, computes an integral matching with size at least |M |/50, with probability
1− exp(−Θ(|M |)).

Proof Sketch of Lemma 4.2. Each node v either proposes to one of its neighbors, choosing neighbor u with
probability xe/10 where e = {v, u}, or does not propose to any neighbor, which happens with probability
1 −

∑

e∋v xe. An edge e = {v, u} is marked if v proposed to u or u proposed to v. We keep marked
edges that are not incident on any other marked edge. This process can be clearly implemented in O(1)
rounds of message passing. It is also easy to see that an edge e is marked with probability at least xe/10,
and conditioned on that, there is a probability of 1 − (2 · 2/10) = 0.6 that no other edge incident on
e is marked. This already shows that the expected size of the matching is at least 3|M |/50. Ghaffari
et al. [GGK+18] show, via an application of McDiarmid’s inequality, that there is indeed an exponential
concentration around this expectation and in particular the probability that the matching size is below
|M |/50 is at most exp(−Θ(|M |)).

4.2 Improving Average Awake Complexity to O(1)

The above vanilla algorithm requires all vertices that are not yet frozen to be active in all rounds. Thus, we
do not directly get an algorithm with low average awake-complexity. To improve the awake complexity to
O(1), we modify the algorithm such that in each iteration, instead of considering all neighbors to calculate
cv exactly, the algorithm will only consider a small subset of vertices as awake, and each vertex will use the
decisions of its awake neighbors to estimate cv and make its decisions accordingly.

Let us look at the first few rounds of an initial attempt towards an algorithm to highlight the main ideas.
Initially, all edge weights are set to 1

∆ as in the vanilla algorithm, so the decision of whether or not to freeze a
node is almost the same as estimating its degree. Thus, if we sample nodes with probability p1 = 10 logn 1

∆ ,
each node v can distinguish w.h.p. if it’s degree is greater than (1− ε)∆ or smaller than (1− 20ε)∆, e.g. by
comparing the number of sampled neighbors to p1 · (1− 10ε)∆.

For the second round, we have to already consider two cases to estimate the value of a node v: First, there
are neighbors of v that were frozen in the first round, an whose edge incident to v has value 1

∆ and there are
neighbors that remained active and have weight 1+ε

∆ on their incident edge. To remedy this, we sample twice,
once to estimate the number of neighbors of each kind. Let S1 be the set obtained by sampling nodes with

probability p1 = 10 logn 1
∆ , and let S2 be the set obtained by sampling with probability p2 = 10 logn (1+ε)

∆ .
We can now estimate the value of a node after two rounds as

c̃v =
|S1 ∩N(v)|

p1
· 1

∆
+

|S2 ∩N(v)|
p2

· ε

∆
.

This corresponds to the contribution of nodes that are active in the first round, and the contribution of the
nodes that remain active into the second round. After the first round, the maximum degree of active nodes
can only be roughly ∆

1+ε . Thus, the sampling probability p2 is chosen inversely proportional to the degree,
with an added factor of 10 logn to guarantee that the estimation is accurate w.h.p.

However, this approach has one crucial issue, namely that it still does not provide us with the desired

awake complexity. Once we proceed to further rounds, we will have pi = 10 logn (1+ε)i

∆ , which summed over
all i still yields an awake complexity of O(log n).3 The only way to get around this problem will be to reduce

3With slightly more care, this idea can actually be turned into an algorithm with awake complexity O(log logn).

11

the sampling probability (particularly in later rounds), which will require us to analyze what happens if
nodes make different decisions than they would in the vanilla algorithm.

For the algorithm, we will proceed in phases, where we set a sampling probability for each phase. In
phase 1, this will be p1 = C

(logn)4 . This probability guarantees that as long as the degree of active nodes

is (logn)5, the algorithm will behave the same way as the vanilla algorithm, w.h.p. For the second phase,
we will set p2 = C

(log logn)4 , however, this will then also decrease our probability of correctly estimating the

values of nodes to poly(1
log n), as long as the degree is at most (log logn)5. One final technicality is that

instead of considering the degree of active nodes, we use the inverse of the weight of the active edges as an
approximation for the degree.

Full Algorithm More generally, the algorithm is as follows, from the viewpoint of a node v: We start

in round j = 0 with all nodes being active. Let wj = (1+ε)j

∆ be the weight of active edges in round j.
We say that a round j is in phase i = i(j) if i is the smallest value such that wj ≤ 1

(log(i) n)5
. Further,

let pi =
C

(log(i) n)4
. In round j, we sample a set Sj

h for each previous round h ≤ j, by including each node

independently with probability pi(h). Then, let A
j
h ⊆ Sj

h be the set of nodes that are also active. We remark
that even for the same value of h, but different values of j we sample different sets, to preserve independence

between rounds. Then, we have that
∣

∣

∣
Aj

h ∩N(v)
∣

∣

∣
is the number of neighbors of v that were active in round

h and sampled (with probability pi(h)). For round j, a node v now estimates the value c̃v as

c̃v =

j
∑

h=1

|Ah ∩N(v)|
pi(h)

· (wh − wh−1).

Then, if c̃v > (1 − 10ε), we freeze vertex v, i.e. it will not be active in future iterations. If not, we continue
to the next iteration.

We stop this part of the algorithm when we reach a phase i, such that 1
log(i) n

> ε · log(1+ε)
1000 . At this stage,

we switch to executing the vanilla algorithm, i.e. from now on we set the sampling probability to 1 for all
future rounds.

Once the algorithm has finished, i.e. when all edges are frozen, we set the final edge weight as follows:

For edge e = (u, v), let j be the last round for which u and v were both still active. Then we set xe =
(1+ε)j

∆ .
Finally, each vertex computes its final value cv =

∑

e∋v xe, and we only keep vertices for which cv ≤ 1. That
is, for all vertices where cv > 1, we set the weight of all incident edges to 0.

Distributed Implementation We think of the algorithm in the following way: In each distributed round
k, each node v that decides to be active should be able to simulate all rounds j ≤ k of the above algorithm.
Thus, it needs to know all sets Aj

h for all h ≤ j and j ≤ k. This can be achieved recursively: All nodes

u ∈ Sj
h will need to know whether or not they were active in round h, thus they need to know if they were

frozen in round h− 1 (or before). So, for each h′ < h, they need to know all sets Aj
h′ to make said decision,

which we do recursively.
So the distributed implementation is as follows (formulating the recursion in a bottom up way): Initially,

we sample all sets Sj
h, such that each node v knows all values of j and h such that v ∈ Sj

h. In round 0, all

nodes that are in Sj
0 for any j become active and since they are all active at the beginning of round 0, they

all decide they are in Aj
0 too, which they send to all their neighbors, in this round and all future rounds,

together with all values of j for which this is case. Also in round 0, all nodes that are in Sj
1 for any j listen

to which of their neighbors are in A1
0, and use this information to decide if they are frozen in round 0 of

the algorithm, i.e. if they are in Aj
1 too. From round 1 on, the nodes that are in any Aj

1 then send this
information to all their neighbors together with the value of j. More generally, in round h − 1, all nodes
v for which there exists (at least one) j such that v ∈ Sj

h become active and receive the information about

N(v) ∩Ah′

l for l ≤ h′ and h′ < h. Then, node v uses the sets Ah′

l to simulate round h′ of the algorithm, i.e.
to decide if it was frozen in round h′ for all h′ < h, and it stops this simulation if it is ever frozen. If v is
never frozen, then it is active in round h, and thus v is in Aj

h for all j such that v ∈ Sj
h.

12

To summarize, for a node v let h be the smallest value such v ∈ Sj
h. Then, v is active from round h− 1

until the end of the algorithm. Finally, at some point all nodes will be active, from which on we simply
execute the vanilla algorithm in a distributed fashion.

4.3 Roadmap

Before giving a formal analysis, we first give an outline and explanation of our proof strategy. In particular,
we will compare our algorithm to the vanilla algorithm and see how they differ.

There are two kinds of errors that can happen in the estimation of the value of a node v; (1) the value cv
is under-estimated, which means a node could proceed to the next round, even though increasing the weight
of the incident edges could increase the value of v beyond 1. (2) cv is over-estimated, i.e. even though cv has
not reached value 1−Θ(ε) yet, the node v could mistakenly be frozen. These errors affect the quality of the
final solution in different ways: while (1) destroys the fact that the output is a valid fractional matching, (2)
makes it hard to argue about the quality of the computed solution.

Let us first focus on issue (1), and let’s call nodes that have cv > 1 heavy. In the algorithm we already
deal with this problem by just removing all heavy vertices, however, for the analysis, we also need to bound
how much value is lost this way. Note that simply bounding the number of heavy nodes is not enough, as
cv could grow to be Θ(∆). Thus, we look at the value incident to those heavy nodes and mark the value
on each of these incident edges as spoiled. Looking at edges instead of nodes allows us to more easily bound
the additional amount of fractional value that is spoiled in each round, as edges can have value at most 1.
This is formalized in Lemma 4.5 and used to show that only a very small amount of the current fractional
assignment is spoiled in every round.

For the second problem (2) let us call the nodes that are frozen with cv < 1 − Θ(ε) light. It is fairly
straightforward to show that only a small fraction of all nodes are light with high probability, however, each
of those nodes could have “blocked” up to Θ(1) total fractional value. If the size of the maximum fractional
matching is e.g. just

√
n, this means that the amount of fractional value lost due to light nodes would be

much larger than the size of the computed fractional assignment itself. To remedy this, we will look more
carefully at the probability that a light node with value cv is frozen too early, in particular we will show that
this probability is proportional to cv (see Lemma 4.8). By doing so we can show that the expected number
of light nodes that are frozen in any given round is only a small fraction of the size of the current fractional
assignment (Lemma 4.9), which we show can not get much larger than the maximum fractional matching.

Finally, we will put everything together in Theorem 4.11 to show that a similar charging argument as
in the proof of Claim 4.1 can be used to show that the size of the fractional matching computed by the
algorithm is a (2 + ε)-approximation of the optimum fractional matching, in expectation. For graphs where
the maximum matching is sufficiently large, this also holds with high probability.

4.4 Analysis of the the Matching Algorithm

We start with some preliminaries: We will assume that ε is sufficiently small, i.e. ε ≤ 1/1000, since it will
simplify some calculations. Further, we will use the following definition:

Definition 4.3. Consider a node v that is still active in round j of the algorithm. Let each of its incident
edges e = (v, u) have value xe = wk if u was frozen in round k < j and value xe = wj if u is also active in
round j. We will say that v has (true) value cv =

∑

e∋v xe at the beginning of round j.

Note that this is the same as stopping the algorithm before round j and computing the values as at the
end of the algorithm. Using this definition, we can now show that the probability of a node becoming heavy
or being heavy and not frozen is small.

Lemma 4.4. In round j of phase i, the probability that a node v with value cv > 1 − ε estimates its value
as c̃v < 1− 10ε is at most 1

1000(log(i−1) n)10
.

We can now use this statement to bound the amount of fractional value that will be newly marked as
spoiled in one round of the algorithm. Recall that we said the fractional value of an edge e is spoiled, if e
is incident to a heavy node. Thus, to bound the amount of value that is additionally spoiled in round j, we
just need to look at all nodes that become heavy or stay heavy in a round j.

13

Lemma 4.5. In every round j in phase i, the extra fractional value that will be added by nodes that have
value cv > 1− ε, i.e. the amount that is additionally spoiled, is at most 100

(log(i) n)2
·max{(logn)18, |Mj|} with

probability at least 1− n−9, where Mj is the fractional assignment at the beginning of round j. If the round
is in phase i > 1, we assume that the degree among the remaining active vertices is at most (logn)5.

Before we can now use this to give a statement about the total amount of fractional that is spoiled in
the execution of the algorithm, we need to ensure that the condition of Lemma 4.5 holds, which we achieve
with the following Lemma.

Lemma 4.6. After phase i = 1, the degree in the graph induced by all active nodes is at most (logn)5 with
probability 1− n−8.

Finally, we are now able to bound the amount of fractional value that is spoiled in the entire algorithm.

Lemma 4.7. The total fractional value that is spoiled, i.e. that is incident to vertices with value cv > 1, is
at most εmax{(logn)18, |M |} with probability 1 − n−7, where M is the fractional assignment computed by
the algorithm before the final removal of heavy nodes.

We now turn our attention to vertices that are light, i.e. that were frozen too early by the algorithm.
Our first result says that vertices are unlikely to be light, in fact we even prove a stronger statement than
for the heavy case. We show that the probability that a node with a small value cv is frozen too early is
proportional to cv, i.e., the smaller the value, the less likely the node is to be frozen.

Lemma 4.8. The probability that a vertex v of value cv < 1− 20ε is frozen in round j in phase i is at most
cv · 1

10(log(i−1) n)10
.

Proof. Let X be the random variable denoting the value of c̃v in round j. Since c̃v is an unbiased estimator
of cv, we have E[X] = cv. We are interested in bounding Pr[X > 1 − 10ε], which is exactly the probability
that node v is (mistakenly) frozen. First, note that in the same way as in Lemma 4.4 we have that the
probability that

Pr[X > 1− 10ε] ≤ Pr[|X − E[X]| ≥ 9ε]

≤ 1

1000(log(i−1) n)10

Thus, for cv ≥ 1/100 the statement is true, and we will assume cv ≤ 1/100 in the following.
Note that we can write X as follows:

X =
∑

h≤j

wh

pi(h)

∑

u∈N(v)
u active in round h

Xu,h,

where Xu,h is the indicator variable for the event that node u is sampled in round h. We can rewrite the
probability that a note is prematurely frozen as:

Pr[X > 1− 10ε] = Pr[X > (1 +
1− 10ε− cv

cv
)cv].

In the following, let δ = 1−10ε−cv
cv

. Note that since ε ≤ 1/1000 and cv ≤ 1/100, we have that δ ≥ 980 and

trivially δ ≤ 1
cv
.

In order to get a stronger bound from Theorem 2.2 we aim to maximize the expected value of the analyzed
random variable X while ensuring that each of the coefficients of the random binary variables is less than
1. We have that the coefficients are of the form wh

pi(h)
where h ≤ j. This is at most 1

C(log(i) n)
as argued

14

previously. Thus we can apply Theorem 2.2 to C(log(i) n)X and obtain

Pr[C(log(i) n)X > (1 + δ)E[C(log(i) n)5X]]

≤
(

eδ

(1 + δ)(1+δ)

)C(log(i) n) E[X]

≤ exp
(

(δ − (1 + δ) ln(1 + δ))C(log(i) n)cv

)

≤ exp
(

(1 − ln(1 + δ))δC(log(i) n)cv

)

≤ exp
(

(− ln(1 + δ)/2− 1)(1/cv)C(log(i) n)cv

)

≤ cv ·
1

10(log(i−1) n)10
.

In the next Lemma, we will make use of the fact that the probability that a light node is frozen is
proportional to its value to show that the total number of light nodes that are frozen is proportional to the
size of the current matching.

Lemma 4.9. The number of vertices v that are frozen in round j of phase i despite having cv < 1−20ε, is at
most 100

(log(i) n)2
·max{(logn)18, |Mj|} with probability at least 1−n−9, where Mj is the value of the fractional

assignment at the beginning of round j. If the round j is in phase i > 1, we assume that the degree among
the remaining active vertices is at most (logn)5.

Proof. Let Xv be the indicator random variable that is one if node v estimates its value c̃v > 1− 10ε despite
having cv < 1− 20ε. From Lemma 4.8 we know that E[Xv] ≤ cv · 1

10(log(i−1) n)10
. Further, as

∑

v cv = 2 |Mj |
we have that for X =

∑

v Xv it holds E[X] ≤ 2 |Mj| 1
10(log(i−1) n)10

. By definition, X is the number of nodes

that are prematurely frozen in round j.
Let us first look at rounds in phase i = 1. There we have that each individual node v is prematurely

frozen with probability at most 1
10n10 , which implies by a union bound that any of the n nodes in the graph

are prematurely frozen is at most n−9.
For nodes in round i > 1, we have to be more careful with our analysis, as the failure probabilities

of individual nodes are too small for us to just union bound over all nodes. Instead, we will aim to use
Theorem 2.3 and bound the dependency degree. Note that the event of a node being prematurely frozen
is only dependent on which neighbors are sampled Thus two nodes that do not share any neighbors are
independent. By our assumption we have that the degree among active vertices is at most (log n)5, meaning
the dependency degree is ∆′ ≤ (log n)10.

For the final step, we consider two cases: (1) |Mj| ≤ (log n)18 and (2) |Mj| > (log n)18. In the first case,
we will analyze Pr[X ≥ 100

(log(i) n)2
· (log n)18], while we know that E[X] ≤ 1

5(log(i−1) n)10
(logn)18. Thus, we

have

Pr[X ≥ 100

(log(i) n)2
· (log n)18]

≤ Pr[|X − E[X]| ≥ 99

(log(i) n)2
(logn)18]

≤ 8((logn)10 + 1) · exp
(

− 99(logn)18

3((logn)10 + 1)(log(i) n)2

)

≤ 8((logn)10 + 1) · exp
(

−10(logn)2
)

≤ n−9,

For case (2) where |Mj | > (logn)18, we have the same argument, except that instead of (log n)18 we have
|Mj |, and we obtain (at worst) the same probability of failure since we have |Mj | > (log n)18.

Finally, we are now able to bound the total number of light nodes at the end of the algorithm.

15

Lemma 4.10. The number of vertices that are frozen too early, i.e. that have value cv < 1 − 20ε, is at
most εmax{(logn)18, |M |}, where M is the fractional assignment computed by the algorithm, with probability
1− n−7.

Proof. Our goal is to repeatedly apply Lemma 4.9, however, we have one condition after phase 1 that needs
to be satisfied. We can use Lemma 4.6 which says that this condition is satisfied with probability at least
1− n−8, allowing us to assume that the degree among active vertices is at most (log n)5.

We call a round successful if it satisfies the statement of Lemma 4.9. Since we have at most log1+ε n ≪ n
rounds overall the probability that all rounds are successful is at least 1− n−8.

In order to know how often we need to apply Lemma 4.9, we will also need to know the number of rounds
in a phase i. By the condition that a round j is in phase i such that i is that smallest value for which

wj ≤ 1
(log(i) n)3

, and wj =
(1+ε)j

∆ we have that phase i consists of less than 5 log(i) n
log(1+ε) rounds.

This allows us to bound the total number of nodes that are prematurely frozen by

log1+ε ∆
∑

j=1

100

(log(i(j)) n)2
·max{(logn)18, |Mj |}

≤
∑

i

5 log(i) n

log(1 + ε)
· 100

(log(i) n)2
·max{(logn)18, |M |}

=
500

log(1 + ε)
·max{(logn)18, |M |}

∑

i

1

(log(i) n)
.

As we stop the algorithm once 1
log(i) n

> ε · log(1+ε)
1000 we can again bound this by

ε ·max{(logn)18, |M |}.

Overall, the probability of failure is at most n−8 + n−8 ≤ n−7, proving our statement.

We are now able to prove the main result of this section. Combining Lemma 4.7 and Lemma 4.10 allows
us to show that the charging argument from Claim 4.1 can still be used, while only losing a small amount of
the fractional value due to the nodes that behaved different than in the vanilla algorithm. We remark that
we did not attempt to optimize the constants, especially the exponent of the lower bound on the matching
size.

Theorem 4.11. Let M̄ be the matching computed by the algorithm. With probability 1 − n6 this matching
M̄ is a (2 + 100ε)-approximation of a maximum (fractional) matching M∗, i.e. (2 + 100ε)

∣

∣M̄
∣

∣ ≥ |M∗|, in
graphs where |M∗| ≥ Ω((log n)18).

Proof. First, note that M̄ is indeed a valid matching, as each node has value cv ≤ 1, independent of
the execution of the algorithm. Let M be the fractional assignment computed by the algorithm before
the deletion of all nodes v with value cv > 1. First, we will give an upper bound on the value of M in
terms of M∗. Lemma 4.7 says that the fractional value incident to nodes which have cv > 1 is at most
|M | −

∣

∣M̄
∣

∣ ≤ εmax{(logn)18, |M |}, with probability 1 − n−7. Since M̄ is a valid matching
∣

∣M̄
∣

∣ ≤ |M∗|.
Combining this we get

|M | − εmax{(logn)18, |M |} ≤ |M∗| ,
from which follows, using |M∗| ≥ (log n)18,

|M | ≤ (1 + 2ε) |M∗| .

With this observation, we can now also get a lower bound on |M | by using Lemma 4.10, which holds
with probability 1 − n−7. Out of all vertices that the algorithm froze, all but εmax{(logn)18, |M |} have
value at least 1− 20ε. In order to use a similar argument as for the vanilla algorithm, let us think that we
add fractional value 1 to all vertices that were prematurely frozen, which means we add at most a value of

16

εmax{(logn)18, |M |} overall. Now, every edge is incident to at least one endpoint with a value of at least
1− 20ε. Thus, we have

|M∗| ≤ 2

1− 20ε
(|M |+ εmax{(logn)18, |M |}).

For |M∗| = Ω((logn)18) large enough, this implies |M | ≥ (logn)18, which allows us to simplify

|M∗| ≤ 2(1 + ε)

1− 20ε
|M | ≤ (2 + 50ε) |M | .

Finally, as previously observed, we have |M | ≤ 1
1−ε

∣

∣M̄
∣

∣. Combining this with the above we get

|M∗| ≤ (2 + 50ε)

1− ε
|M | ≤ (2 + 100ε)

∣

∣M̄
∣

∣ .

The failure probability is n−7 + n−7 ≤ n−6.

Remark 4.12. Using a similar line of argumentation, it can also be shown that a fractional matching which
is a (2 + 100ε)-approximation in expectation can also be computed, with no lower bound on the maximum
matching size.

Having shown that the algorithm computes a good approximation of the maximum matching, we now
also show that it is implementable in the sleeping model with low awake complexity.

Corollary 4.13. We can compute a (2+100ε)-approximation of maximum fractional matching in any graph
G with maximum fractional matching size at least Ω((logn)18), in the distributed sleeping model with awake
complexity O(ε−3) with probability 1− n−5 and round complexity O(log∆) (always).

Proof. Note that the approximation guarantee holds from Theorem 4.11 with probability 1−n−6, so we only
need to know the second part of the statement, i.e. the complexity in the sleeping model. For the round
complexity, we have that the algorithm trivially stops when edge weights wj are 1, so the round complexity
is bounded by log1+ε ∆ = O(log∆). The awake complexity is analyzed in two parts, first, we have the awake
complexity that occurs due to nodes being awake in phases with sampling probability pi < 1 and then we
also have to bound the number of rounds where we just simulate the vanilla algorithm.

For the first part, we have that for each set Sj
h where h ≤ j the nodes in Sj

h become active in round h− 1

and stay active for the remainder of the algorithm. If h is in phase i, the set Sj
h has expected size pi · n, and

we can use Theorem 2.1 to conclude that with probability at least n−10, we have
∣

∣

∣
Sj
h

∣

∣

∣
≤ 2 · pi · n. Further,

with probability at least n−9 this holds for all rounds and all sets Sj
h. Note that from the start of phase i to

the end of the algorithm, there are at most 5 log(i) n
log(1+ε) rounds. Thus, for a fixed value of h in phase i = i(h),

we have that there are at most 5 log(i) n
log(1+ε) many sets Sj

h. For each of these sets, all nodes are active for at most

10 log(i) n
log(1+ε) rounds. And finally note that there are also at most 5 log(i) n

log(1+ε) rounds in phase i. Putting all this

together, we get a total awake complexity of

∑

i

250(log(i) n)3

(log(1 + ε))3
· 2C · n
(log(i) n)4

=
500 · C · n

(log(1 + ε))3

∑

i

1

log(i) n

≤ 500 · C · n
(log(1 + ε))3

· 2 · ε · log(1 + ε)

1000
= O(n/ε3).

Thus, the average awake complexity due to that part is O(ε−3).

For the second part, we stop once we would start a phase i, where 1
log(i) n

> ε · log(1+ε)
1000 . As before, note

that from the start of phase i until we have that weights wj ≥ 1, there are at most 5 log(i) n
log(1+ε) rounds. We can

rewrite this as
5000

ε(log(1 + ε))2
= O(ε−3).

Thus, the average awake complexity of the entire algorithm is O(ε−3) + O(ε−3) = O(ε−3), and the overall
probability of failure is n−6 + n−9 ≤ n−5.

17

4.5 Vertex Cover

In this section we consider the vertex cover problem, which is the dual of the matching problem discussed
previously. We will first show that we can also obtain a (2+ ε)-approximation to the minimum vertex cover
using the vanilla algorithm, and then give a corresponding proof for the algorithm with low awake complexity.

Claim 4.14. Let C∗ be a vertex cover of minimum size in G, and let C be the set of all vertices that are
frozen in the vanilla algorithm. Then, C is a valid vertex cover, and we have |C| ≤ (2 + 4ε) |C∗|.
Proof. First, let us argue that C is indeed a vertex cover. As every edge has at least one frozen endpoint at
the end of the algorithm, the set of all frozen vertices is a vertex cover. Now for the approximation guarantee
we use a similar charging argument as in the matching case. Let us place one dollar on each vertex v in C.
Now, distribute this dollar to all incident edges, proportional to their fractional value xe at the end of the
algorithm. Thus, each such edge receives at most 1

1−εxe dollars from v, as v was a vertex with cv ≥ 1 − ε.

Since an edge can receive this amount from each endpoint, overall an edge receives at most 2
1−εxe dollars.

Now we move the value from all edges to their endpoint that is in C∗, breaking ties arbitrarily. Since we
have that each vertex had cv ≤ 1, each vertex from C∗ receives at most 2

1−ε dollars this way. Thus, we have
|C| ≤ (2 + 4ε) |C∗|.

Theorem 4.15. Let C be the set of all vertices that are frozen by the algorithm in Section 4.2. Then, C is
a vertex cover, and with probability 1 − n−6 it is a (2 + 100ε)-approximation of the minimum vertex cover
C∗, in graphs where C∗ ≥ Ω((log n)18).

Proof. First, note that C is a valid vertex cover, as every edge is incident to at least one vertex that was
frozen. Since C∗ is a minimum vertex cover, we have that |C∗| ≥ |M∗| and |C∗| ≤ 2 |M∗| for a maximum
matching M∗. Note that this also implies that |M∗| ≥ Ω((logn)18). Let M be the fractional assignment
computed by the algorithm, before the removal of all heavy nodes v with cv > 1 in the final step. As in the
proof of Theorem 4.11 we have that |M | ≤ (1 + 2ε) |M∗| ≤ (1 + 2ε) |C∗| with probability 1 − n−7. Using
Lemma 4.10, we get that the number of nodes that finish with value cv < 1− 20ε is at most ε |M | ≤ 2ε |C∗|
with the same probability. Further, we also have that the total amount of fractional value incident to nodes
that have cv > 1 is at most ε |M | ≤ 2ε |C∗| by Lemma 4.7 with probability 1 − n−7 too. Thus, the overall
failure probability is 3n−7 ≤ n−6.

We can now do the same kind of charging argument as in the vanilla case. Let us place 1 dollar on
every vertex in C. We remove this one dollar from all the light vertices with cv ≤ 1 − 20ε. As argued
previously, this amounts to at most 2ε |C∗| many dollars being removed. Then, we distribute all remaining
dollars proportional to the weight of the incident edges xe. As we have that cv ≥ 1 − 20ε for all vertices
that do this, each edge receives value at most 2

1−20εxe, since it can receive this value from both endpoints.
Now, we would like to redistribute this again to the vertices that are in C∗, however, we might have nodes
that have cv ≫ 1. As in the beginning, we remove all fractional value incident on these nodes with cv > 1.
This means we remove at most 2

1−20ε2ε |C∗| dollars. With those vertices removed, we can now move the

remaining dollars to vertices of C∗ such that every vertex in C∗ obtains at most 2
1−20ε dollars. Overall, this

yields the following inequality:

|C| − 2ε |C∗| − 4

1− 20ε
ε |C∗| ≤ 2

1− 20ε
|C∗| ,

which implies

|C| ≤ 2 + 6ε

1− 20ε
|C∗| ≤ (2 + 100ε) |C∗| .

In the same way as for the matching, the algorithm can be implemented in the distributed sleeping model,
which gives us the following:

Corollary 4.16. We can compute a (2+100ε)-approximation of minimum vertex cover in any graph G with
minimum vertex cover size Ω((logn)18), in the distributed sleeping model with awake complexity O(ε−3) with
probability 1− n−5 and a deterministic round complexity of O(log∆).

18

4.6 Improved Approximation of Maximum Matching

In this section, we present a generic and black-box way of transforming any algorithm that computes a
constant approximation for the maximum matching problem into an algorithm that computes a (1 + ε)-
approximation, via a constant number of invocations of the former, for any constant ε > 0. In terms of
the method, our reduction is inspired by the classic work of Goldberg et al. [GPV93] which provided a
sublinear-time parallel algorithm for computing the maximum matching.

There is also an algorithm due to McGregor [McG05], which provides a somewhat similar reduction
from (1 + ε)-approximation of maximum matching to the maximal matching problem (this was primarily
presented for the semi-streaming model, but it can be adapted to the distributed models of computing).
This reduction is randomized (even in bipartite graphs) and requires (1/ε)O(1/ε) invocations. However, this
reduction is not directly sufficient for our setting, as we do not have an algorithm for maximal matching
with O(1) average awake complexity. We believe that the reduction of McGregor [McG05] can be extended
to produce an alternative reduction from (1 + ε)-approximation to constant approximation of maximum
matching. Furthermore, subsequent to the conference version of our paper, such a reduction was also given
by Fischer, Mitrović, and Uitto [FMU21] in an updated version of their published work [FMU22]. Their
reduction has a better ε-dependency of poly(1/ε) and it also works deterministically in general graphs.

However, we find our reduction significantly simpler than both of the above results. Our reduction is
deterministic in bipartite graphs and requires only poly(1/ε) invocations of the constant approximation
subroutine. In general graphs, where it becomes randomized, it involves 2O(1/ε) invocations.

Before we state the algorithm in its full generality, we will first make two simplifying assumptions: The
black-box algorithm computes a maximal matching, and the input graph is bipartite. We will later discuss
how to remove these assumptions.

Definition 4.17. Given a graph G and a matching M a path P = (v0, v1, . . . , v2ℓ+1) is an augmenting path
with respect to M , if the following hold: for each 1 ≤ i ≤ ℓ the edge (v2i−1, v2i) ∈ M and both v0 and v2ℓ+1

are free vertices, i.e. there are no vertices u,w such that (v0, u) ∈ M or (v2ℓ+1, w) ∈ M .

Augmenting paths are one of the standard tools in algorithms for maximum matching, this dates back
to Berge’s theorem [Ber57], and it has been used extensively since the seminal work of Hopcroft and
Karp [HK73]. The path has its name due to the fact that it is possible to use it to increase the size of
M , or augment M . Namely, if the edges on P are e1, e2, . . . , e2ℓ+1, with e2i ∈ M for 1 ≤ i ≤ ℓ, then we
can remove all edges e2i from M and add all edges e2j+1 for 0 ≤ j ≤ ℓ to obtain a matching M ′ with
|M ′| = |M |+ 1.

Another property of augmenting paths used in [HK73] is the following: If we consider a graph G and a
matching M such that there are no augmenting paths of length at most 2ℓ − 1. Let S be a set of disjoint
augmenting paths of length 2ℓ+ 1, such that S is maximal, i.e. no augmenting path of length 2ℓ+ 1 can be
added to it without violating the disjointedness of all pairs of paths. Then, augmenting along all paths in S
gives a matching for which no augmenting path of length at most 2ℓ+ 1 exists. Thus, the minimum length
of any augmenting path increased, which will be our notion of progress. We will then combine it will the
following result, allowing us to bound the quality of the computed matching.

Lemma 4.18 (Hopcroft, Karp [HK73]). Let M∗ be a maximum matching in G and M be a matching. If
we have that |M∗| > (1 + ε) |M | there is an augmenting path of length at most 4ε−1 + 1.

Proof. Let us look at the graph G′ = (V (G),M∗ ⊕M ′), which is the symmetric difference of M∗ and M .
Note that G′ contains isolated vertices, cycles of even length, and paths of odd and even length. Further,
note that any path of odd length must be an augmenting path, whereas all other structures contain the
same number of edges for M and M∗. Also note that augmenting along all these paths would turn M into a
matching of the same size as M∗, and augmenting along each such path increases the size of M by one. Thus
there have to be at least |M∗| − |M | > ε/2 |M∗| many such augmenting paths. Suppose for contradiction
that all augmenting paths are longer than 4ε−1 + 1. Then, each augmenting path would contain at least
2ε−1 many edges from |M |. As we have at least ε/2 |M∗| such paths, this would imply that |M | > |M∗|, a
contradiction. Thus an augmenting path of length 4ε−1 + 1 must exist.

19

Bipartite Graphs We will first state the algorithm for bipartite graphs. The general outline is to start
with a matching and improving it step by step. In a first step, we will try to make it maximal, i.e. augmenting
along all paths of length 1. For the subsequent steps, we will go from a graph where there is no augmenting
path of length at most 2i − 1 to a graph where there is no augmenting path of length at most 2i + 1. We
first assume that we have access to an algorithm that computes a maximal matching, since it simplifies part
of the description and argument, while preserving the main ideas.

Lemma 4.19. Suppose there is an algorithm A, which computes a maximal matching in a bipartite graph.
Suppose that we are also given a bipartite graph H = (L ∪ R,E), and a matching M in H such that there
is no augmenting path of length ≤ 2i− 1 where i ≤ O(1/ε). Then, by invoking A at most Θ(ε−3) times, we
can compute an induced subgraph H ′ of H, together with a set S of augmenting paths of length 2i+ 1 which
is maximal in H ′ and such that |V (H)| − |V (H ′)| ≤ ε2 |M |.

Proof. We will proceed with the proof in 3 steps: First, we will show how to find a subgraph of H that
captures all relevant information, then we discuss how the algorithm works on this subgraph, and finally we
give an analysis for why the algorithm performs as stated.

Layer graph First, we create a layer graph as follows: Layer L0 contains all unmatched vertices in L.
Layer L1 contains all neighbors of vertices in L1. Then, layer L2 contains all vertices that are connected by
an edge from M to a vertex in L1, Then, we create layer L3 in the same way as L1, only considering vertices
that are not already contained in some layer, and so on. We stop at layer L2i+1, in which we only include
vertices from R that are not incident to any edge in M .

An alternative way of defining the same graph is as follows: First, we orient all edges that are not in
M from L to R and all edges in M from R to L. Then, we perform a breadth-first search (BFS) according
to this orientation, for 2i+ 1 steps, and starting from all unmatched vertices in L simultaneously. We then
discard any edge that are not between consecutive layers, any vertices that were not added to any layer
during these 2i+ 1 steps, and we discard also vertices that were added to L2i+1 but are matched.

The rest of the algorithm is performed only on this layer graph. Note that any augmenting path P =
(v0, . . . , v2i+1) of length 2i + 1 is contained in this layer structure such that vj ∈ Lj . This is since on one
hand P must be contained in the layer graph by construction, and if we assume that any vj /∈ Lj , then we
also have that v2i+1 is in a layer before L2i+1 which would mean there exists an augmenting path of length
at most 2i− 1. Thus we know that we only have to consider augmenting paths that respect the structure of
the layer graph.

Augmentation algorithm on the layer graph The augmentation algorithm work as follows: We start
with a set of paths S0 which is all paths of length zero starting at the vertices of L0. In the first step, we
compute a matching between S0 and all their neighbor vertices, which is precisely L1. We expand the paths
of all vertices that were matched by two hops, first to their matched neighbor and then along the edge in M
which connects this neighbor to L2. All unmatched vertices are removed from further consideration in the
algorithm. For future steps, the procedure is almost the same: in each step j we try to expand the paths of
Sj by computing a matching between their endpoints and all their outgoing neighbors. However, if a path of
length > 1 is not matched, we do not delete it, but instead we “backtrack” and deactive its last two vertices,
meaning they won’t participate for the rest of this algorithm. Then, we add it to the sets of paths Sj+1 for
the next iteration. All paths that are matched are then expanded as in the first step and added to Sj+1. If
a path reaches L2i+1, i.e. the last layer, it will stop participating in the algorithm and say that it becomes
inactive. Overall, we execute this process for Θ(ε−3) iterations. Finally, we return the set of all paths that
reached L2i+1 as S, and remove all vertices on paths that are still active, to get the subgraph H ′. However,
all vertices that were deactivated during the algorithm as part of the backtracking, are still part of H ′.

Analysis We claim that after Θ(ε−3) iterations, at most ε3 |M | active paths remain. We will show that
there are at most 6 |M | updates that can occur (after the first iteration) and each active path causes at least
one update per iteration. Note that in layers L1 to L2i there are at most 2 |M | vertices, as all vertices of
those layers are incident to edges from M . Further, each of these vertices can be updated at most twice,
once when it is added to and once when it is potentially deleted from a path. The remaining 2 |M | are due

20

to vertices from L0, of which at most |M | remain after the first iteration, and which can only be deleted
once after, and from vertices of L2i+1, which can only be updated when a path becomes inactive, which can
happen at most once for each of the at most |M | paths. Suppose we had more than ε3 |M | active paths after
10ε−3 iterations. Each of those paths has caused at least one update for each iteration it was updated, thus
overall there would be 10 |M | updates, which as we argued before is not possible. As every active path has
at most 2i− 1 ≤ 1/ε vertices, removing all active paths will remove at most ε2 |M | vertices.

Finally, we need to argue that S is a maximal set of augmenting paths in H ′. An alternative formulation
of this maximality condition is to argue that removing all vertices on paths in S will disconnect the first and
last layers, i.e. L0 and L2i+1, in H ′. We will prove this by showing that in each step of the algorithm, after
the first one, we have two properties: (1) removing the paths from Sj disconnects the layers L0 and L2i+1

in H , and (2) for all edges e = (vk, vk+1) ∈ M that were deleted up to (and including) step j, there is no
path from vk+1 to L2i+1 in H \ Sj. Let us start with the first step of the algorithm. Since we compute a
maximal matching between L0 and L1, removing the endpoints of this matching will disconnect L0 and L1.
The second property is trivially true, since there are no such edges yet.

So suppose that properties (1) and (2) are satisfied after step j of the algorithm, and we want to show
that they hold after step j+1. We will start with property (2), which will then imply property (1). Consider
an edge e = (vk, vk+1) ∈ M that was removed in step j + 1 of the algorithm. For each neighbor u of vk+1

in layer Lk+2, there are several reasons why vk+1 was not matched to u. If u is already part of an active
path, or was matched in this round to another active path, we have that property (2) trivially holds. If u
(together with its incident edge from M) has been deleted in a previous iteration, then we can just use the
inductive hypothesis and also immediately get property (2). So the remaining case is that u was also deleted
in iteration j + 1 due to backtracking. However, in this case we can say we blame the edge (u,w) ∈ M for
vk+1 not being matched in step j+1. Note that e can blame multiple edges. If a similar situation occurs for
why w was not extended, we also blame this new edge. Note that in each of theses blaming steps we advance
one layer, and finally in layer L2i+1 we cannot blame any more edges in M , since all vertices in L2i+1 are
unmatched. Thus, this procedure must end, or we would have an active path that could be extended to
L2i+1 contradicting the maximality of our computed matching. Now for property one, we have that for all
paths that were extended, this trivially still holds, and for all other paths we have just shown property (2),
so the set Sj+1 still disconnects L0 and L2i+1.

We are now ready to extend the argument to the case when we only have an algorithm that computes
a constant approximation of the maximum matching, and not a maximal one. First, we will introduce an
alternative notion of an approximation guarantee that an algorithm can have.

Definition 4.20. We say that a matching M is δ-maximal in G, if the maximum matching size of G\V (M)
is at most δ · |M |.

In words, this means that removing the matching M from G gives a graph that does not contain a large
matching. We can also easily obtain such a δ-maximal matching, given an algorithm for computing any
constant approximation of maximum matching.

Lemma 4.21. Given an algorithm A that computes a c-approximation of maximum matching, we can find
a δ-maximal matching M using at most O(1/c log 1/δ) invocations of A.

Proof. We have I = Θ(1/c log 1/δ) iterations. In each iteration, we apply algorithm A on the subgraph
induced by the remaining nodes, we add the matching that it computes to our output matching, and we
remove all matched vertices from the graph, before proceeding to the next iteration. Let |M∗| be the size
of the maximum matching in the original graph. In the first iteration, algorithm A finds a matching with
size |M∗|/c and thus, the size of the maximum matching in the subgraph induced by the nodes that remain
is at most (1− 1/c)|M∗|. In the second iteration, algorithm A finds a matching whose size is at least a 1/c
fraction of the maximum matching in the graph that remained after the first iteration. Hence, the size of the
maximum matching in the graph that remains after the second iteration is at most (1−1/c)2|M∗|. Similarly,
and by simple induction, we see that after i iterations, the size of the maximum matching in the graph that
remains after the ith iteration is at most (1− 1/c)i|M∗|. Let M be the output matching computed during I
iterations. We then know that |M | + (1 − 1/c)I |M∗| ≥ |M∗|/2, because the output matching along with a
maximum matching of the remaining graph form a maximal matching of the entire graph and thus have size

21

at least |M∗|/2. We conclude that |M | ≥ (1/2 − (1 − 1/c)I)|M∗| ≥ |M∗|/3. Therefore, M is a δ-maximal
matching as ((1 − 1/c)I · |M∗|)/(|M∗|/3) = 3(1− 1/c)I ≤ 3e−Θ(log 1/δ) ≤ δ.

Using this notion of δ-maximality, we can now extend the result to algorithms that compute a c-
approximation of maximum matching.

Lemma 4.22. Suppose there is an algorithm A, which computes a c-approximation of maximum approx-
imation in bipartite graphs. Suppose we are also given a bipartite graph H = (L ∪ R,E), and a match-
ing M in H such that there is no augmenting path of length ≤ 2i − 1. Then, by invoking A at most
O(1/c · ε−3 · log 1/ε) times, we can compute a subgraph H ′ of H, together with a set S of augmenting paths
of length 2i + 1 which is maximal in H ′. Further, we have that |V (H)| − |V (H ′)| ≤ ε2 |M |, and that the
graph H ′′ = (V (H ′), E(H) \ E(H ′)) does not contain a matching of size ε2 |M |.

Proof. First, we will use Lemma 4.21 and assume that instead of algorithm A we have an algorithm A′,
which computes a δ-maximal matching. This only incurs a O(1/c · log 1/δ) overhead in the number of calls to
algorithm A. The algorithm for finding the augmenting paths is the same as in Lemma 4.19, except that we
compute a δ-maximal matching, instead of a (fully) maximal one. After computing a matching, we remove
all edges that are between unmatched vertices (note that in the case of a maximal matching, there would be
no removed edges). At the end of the algorithm, we do the same as in Lemma 4.19, except that H ′ is not
an induced subgraph anymore, since we also removed some edges between unmatched nodes.

Note that H ′′ contains all edges that were removed due to their endpoints being unmatched. In each
step of the algorithm, the largest matching in this set of edges is at most δ |M |, thus over all iterations the
matching in H ′′ can have size at most Θ(ε−3)δ |M |, which is at most ε2 |M | for δ = Θ(ε5).

We have that |V (H)| − |V (H ′)| ≤ ε2 |M | still holds the same way as in the case for maximal matching,
so the only thing we need to argue is that the computed set S is maximal in H ′. Note that this is also still
true, since all edges that could be added to extend the computed matching to a maximal one are removed,
thus still keeping L0 and L2i+1 disconnected.

We compute a δ maximal matching in each of the Θ(ε−3) iterations, which each time incurs O(1/c·log 1/ε)
calls to A. Thus, overall, the algorithm A is invoked O(1/c · ε−3 · log 1/ε) times.

Finally, we can now repeatedly use this to find augmenting paths of length 2i + 1, augment them, and
proceed with a graph that does not contain any more augmenting paths of length at most 2i+1. We do this
until we reach a stage where there are no more augmenting paths of length 5ε−1, at which point we know
from Lemma 4.18 that the computed matching must be a (1 + ε)-approximation.

Theorem 4.23. Suppose we are given an algorithm A which computes a c-approximation of maximum
matching in bipartite graphs. Suppose we are also given a bipartite graph H. Then, we can find a (1 + 3ε)-
approximation of maximum matching in H using at most O(1/c · ε−4 · log 1/ε) calls to A.

Proof. We start with an empty matching M0 and use the algorithm from Lemma 4.18 (which in turn uses
A) on H0 = H to find a set of augmenting paths of length 1 in a subgraph H1. We augment along all these
paths, i.e. add these edges to M0 to create M1. By the guarantees of Lemma 4.18, we get that after this
augmentation there are no more augmenting paths of length 1 in H1, so we continue to the next iteration.
We invoke the algorithm from Lemma 4.18 again, this time on the graph H1, and setting i = 1. This yields
another subgraph H2 together with a set of augmenting paths. We again augment along all these paths,
flipping their edges with respect to their membership in M1, resulting in M2. This leaves us with no more
augmenting paths of length 3 in H2, and we continue like this for a total of ℓ = 2ε−1 + 1 iterations, at
which point we have a matching Mℓ in a subgraph Hℓ such that there are no augmenting paths of length
2ℓ − 1 = 4ε + 1 in Hℓ with respect to Mℓ. By Lemma 4.18, we have that Mℓ is a (1 + ε)-approximation
of maximum matching in Hℓ, but what can we say about the approximation quality of Mℓ in H? We set
M = Mℓ and will show that M is also a (1 + 7ε)-approximation of maximum matching in H .

In each step, we removed ε2 |M | vertices, so over all ℓ = 2ε−1 + 1 iterations we removed at most 3ε |M |
vertices from H to obtain Hℓ. However, we also removed some edges. In each iteration we removed a set of
edges, which does not contain a matching of size larger than ε2 |M |. Thus, the matching in the union of all
those edges can have size at most ℓ · ε2 |M | ≤ 3ε |M |. Thus, the maximum matching M∗ in H can have size
at most |M∗| ≤ (1 + 7ε) |M |.

22

For the number of calls to algorithm A, we have that each iteration yields O(1/c · ε−3 · log 1/ε) calls, so
we have O(1/c · ε−4 · log 1/ε) over all iterations.

General Graphs We will now show how to use the algorithm for bipartite graphs to also compute an
improved matching in general graphs. The main idea is to randomly bipartition the graph, and then try to
augment the matching using just the edges that cross the bipartition.

Theorem 4.24. Suppose we have an algorithm A that given a bipartite graph H computes a c-approximation
of the maximum matching in H. Then, for any graph G, we can find a matching that is a (1 + ε)-
approximation of the maximum matching in expectation, using at most 2O(1/ε) invocations of A.

Proof. To compute an initial matching M0, we randomly partition the vertices of G into two parts, delete
all edges that are within the same partition, resulting in a graph H , and use A on H to compute a c-
approximation of the maximum matching in the resulting graph. Note that looking at a maximum matching
M∗, each edge of M∗ is preserved in H with probability 1/2, so the expected size of the maximum matching
in H is at least |M∗| /2. Thus, in expectation M0 is at least a 2c-approximation of the maximum matching
in G.

Now we proceed in iterations i = 1, 2, . . . , where in iteration i we start with a matching Mi. Suppose that
Mi is not a (1 + ε)-approximation yet, i.e. we have that |M∗| − |Mi| > ε/2 |M∗|. We randomly bipartition
G into two sets L and R and delete all edges that are within the same partition. Further, we also delete the
endpoints of all edges in Mi that are in the same partition. Let H be the resulting graph. First, note that
no matter how we change the matching in H , we can always add it back to G. That is, because we deleted
all endpoints of matching edges that are in the same partition, thus those vertices cannot be matched in H .

We will now argue that H contains a sufficiently large potential for improvement: Since Mi is not a
(1 + ε)-approximation, by a similar argument as in Lemma 4.18 we have that there are at least ε/4 |M∗|
disjoint augmenting paths of length at most ℓ = 8ε−1 +1. Each of those paths is preserved with probability
at least 2−ℓ, i.e. all its edges are across the partition L ∪ R. Thus, in expectation, we preserve at least
ε/4 ·2−ℓ |M∗| many augmenting paths of length up to ℓ. Let MH ⊆ Mi be the subset of Mi that is preserved
in H and let M∗

H be a maximum matching in H . Note that in expectation, M∗
H ≥ M∗/2. Since for

each preserved augmenting path, we can increase the size of MH by one, we have that (in expectation)
|MH |+ ε/4 · 2−ℓ |M∗| ≤ |M∗

H |. We can now use Theorem 4.23 to compute a (1 + ε/8 · 2−ℓ)-approximation
of M∗

H in H , we call it M ′
H . Comparing this to MH we get in expectation

|M ′
H | − |MH | ≥ (1− ε/8 · 2−ℓ) |M∗

H | − (1 − ε/4 · 2−ℓ) |M∗
H |

≥ ε/8 · 2−ℓ |M∗
H | ≥ ε/16 · 2−ℓ |M∗| .

This means that assuming the matching Mi is not a (1 + ε)-approximation, we can compute a matching
Mi+1, that is by ε/16 · 2−ℓ |M∗| larger than Mi.

This can only happen at most 2O(1/ε) times, as after that we would have a matching of size larger than
M∗. Thus, within 2O(1/ε) iterations we must reach a matching M , which is a (1 + ε)-approximation to M∗

in expectation. We execute the algorithm A 2O(1/ε) time in each iteration, and there are 2O(1/ε) iterations,
so the total number of calls to A is 2O(1/ε).

Remark 4.25. The augmentation also works if instead of a deterministic algorithm for computing a c-
approximation of maximum matching we have an algorithm that outputs a c-approximation in expectation
or with high probability.

4.7 Wrap Up

Theorem 1.2 has two parts, one about matching, and about vertex cover. For the vertex cover, the proof is
given in Theorem 4.15. For the matching, two more steps are necessary. First, the algorithm only computes
a fractional matching. To get an integral matching, we can use Lemma 4.2, giving us a constant approximate
integral matching (in expectation). Finally, we can use this combination as a black-box in Theorem 4.24 to
improve it to a (1 + ε)-approximation. For the node-averaged awake complexity, we have that it is constant
for finding a constant approximation of maximum matching as shown in Theorem 4.13, the rounding takes a
constant number of rounds in total, and then we only repeat it a constant number of times in the framework
of Theorem 4.24.

23

5 Conclusion

We showed that a maximal independent set can be computed with average awake complexity O(1) while
maintaining the round complexity of O(log n) of the standard Luby algorithm. Further, we showed that
the same bounds can be achieved to compute a (1 + ε)-approximation of maximum matching as well as a
(2 + ε)-approximation of minimum vertex cover in expectation.

In future work, it would be interesting to investigate if one can obtain guarantees about the worst-case
awake complexity that are better than the round complexity as well as if it is possible to compute a maximal
matching with (any measure of) low awake complexity.

Acknowledgements

The first author is grateful to Yuval Emek for discussions on an earlier attempt at the MIS problem. The
second author was supported by the Swiss National Foundation, under project number 200021 184735.

24

References

[ABI86] Noga Alon, Lazlo Babai, and Alon Itai. A fast and simple randomized parallel algorithm for
the maximal independent set problem. Journal of Algorithms, 7(4):567–583, 1986.

[BBH+19] Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka
Suomela. Lower bounds for maximal matchings and maximal independent sets. In Proceedings
of the Symposium on Foundations of Computer Science (FOCS), 2019.

[BE10] Leonid Barenboim and Michael Elkin. Sublogarithmic distributed mis algorithm for sparse
graphs using nash-williams decomposition. Distributed Computing, 22(5-6):363–379, 2010.

[BE13] Leonid Barenboim and Michael Elkin. Distributed Graph Coloring: Fundamentals and Recent
Developments. Morgan & Claypool Publishers, 2013.

[BEPS16] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of
distributed symmetry breaking. Journal of the ACM, 63:20:1–20:45, 2016.

[Ber57] Claude Berge. Two theorems in graph theory. Proceedings of the National Academy of Sciences
of the United States of America, 43(9):842, 1957.

[BFS12] Guy E Blelloch, Jeremy T Fineman, and Julian Shun. Greedy sequential maximal independent
set and matching are parallel on average. In Proceedings of the twenty-fourth annual ACM
symposium on Parallelism in algorithms and architectures, pages 308–317, 2012.

[BGKO22] Alkida Balliu, Mohsen Ghaffari, Fabian Kuhn, and Dennis Olivetti. Node and edge averaged
complexities of local graph problems. manuscript, 2022.

[BT19] Leonid Barenboim and Yaniv Tzur. Distributed symmetry-breaking with improved vertex-
averaged complexity. In Proceedings of the 20th International Conference on Distributed Com-
puting and Networking, pages 31–40, 2019.

[BYCHGS17] Reuven Bar-Yehuda, Keren Censor-Hillel, Mohsen Ghaffari, and Gregory Schwartzman. Dis-
tributed approximation of maximum independent set and maximum matching. In Proceedings
of the International Symposium on Principles of Distributed Computing (PODC), pages 165–
174, 2017.

[CGP20] Soumyottam Chatterjee, Robert Gmyr, and Gopal Pandurangan. Sleeping is efficient: Mis in
O(1)-rounds node-averaged awake complexity. In Proceedings of the Symposium on Principles
of Distributed Computing (PODC), 2020.

[Feu20] Laurent Feuilloley. How long it takes for an ordinary node with an ordinary id to output?
Theoretical Computer Science, 811:42–55, 2020.

[Fis20] Manuela Fischer. Improved deterministic distributed matching via rounding. Distributed
Computing, 33(3):279–291, 2020.

[FMU21] Manuela Fischer, Slobodan Mitrović, and Jara Uitto. Deterministic (1+ε)-approximate
maximum matching with poly(1/ε) passes in the semi-streaming model. arXiv preprint
arXiv:2106.04179, 2021.

[FMU22] Manuela Fischer, Slobodan Mitrović, and Jara Uitto. Deterministic (1+ε)-approximate maxi-
mum matching with poly(1/ε) passes in the semi-streaming model and beyond. In Proceedings
of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages 248–260, 2022.

[FN18] Manuela Fischer and Andreas Noever. Tight analysis of parallel randomized greedy mis.
In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2152–2160. SIAM, 2018.

25

[GGK+18] Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrović, and Ronitt Ru-
binfeld. Improved massively parallel computation algorithms for mis, matching, and vertex
cover. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing,
pages 129–138, 2018.

[GGR21] Mohsen Ghaffari, Christoph Grunau, and Václav Rozhoň. Improved deterministic network
decomposition. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2904–2923, 2021.

[Gha16] Mohsen Ghaffari. An improved distributed algorithm for maximal independent set. In Proc.
27th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 270–277, 2016.

[Gha19] Mohsen Ghaffari. Distributed maximal independent set using small messages. In Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 805–820. SIAM,
2019.

[GP19] Mohsen Ghaffari and Julian Portmann. Improved network decompositions using small mes-
sages with applications on mis, neighborhood covers, and beyond. In 33rd International
Symposium on Distributed Computing (DISC 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2019.

[GPV93] Andrew V Goldberg, Serge A Plotkin, and Pravin M Vaidya. Sublinear-time parallel algo-
rithms for matching and related problems. Journal of Algorithms, 14(2):180–213, 1993.

[HK73] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on computing, 2(4):225–231, 1973.

[HKP01] M. Hańćkowiak, M. Karoński, and A. Panconesi. On the distributed complexity of computing
maximal matchings. SIAM Journal on Discrete Math., 15(1):41–57, 2001.

[Joh99] Öjvind Johansson. Simple distributed ∆+ 1-coloring of graphs. Information Processing Let-
ters, 70(5):229–232, 1999.

[KMW04] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. What cannot be computed
locally! In Proc. 23rd ACM Symp. on Principles of Distributed Computing (PODC), pages
300–309, 2004.

[KMW16] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local computation: Lower and
upper bounds. Journal of the ACM, 63(2), 2016.

[Lin87] Nathan Linial. Distributive graph algorithms – global solutions from local data. In Proc. 28th
IEEE Symp. on Foundations of Computer Science (FOCS), pages 331–335, 1987.

[LPSP15] Z. Lotker, B. Patt-Shamir, and S. Pettie. Improved distributed approximate matching. Journal
of the ACM, 62(5), 2015.

[Lub86] Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM
Journal on Computing, 15:1036–1053, 1986.

[McG05] Andrew McGregor. Finding graph matchings in data streams. In Approximation, Randomiza-
tion and Combinatorial Optimization. Algorithms and Techniques, pages 170–181. Springer,
2005.

[Nao91] Moni Naor. A lower bound on probabilistic algorithms for distributive ring coloring. SIAM
Journal on Discrete Mathematics, 4(3):409–412, 1991.

[Pel00] David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.

[Pem01] Sriram V Pemmaraju. Equitable coloring extends chernoff-hoeffding bounds. In Approxi-
mation, Randomization, and Combinatorial Optimization: Algorithms and Techniques, pages
285–296. Springer, 2001.

26

[PPP+17] Shreyas Pai, Gopal Pandurangan, Sriram V Pemmaraju, Talal Riaz, and Peter Robinson.
Symmetry breaking in the congest model: Time-and message-efficient algorithms for rul-
ing sets. In 31st International Symposium on Distributed Computing (DISC 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[PR01] Alessandro Panconesi and Romeo Rizzi. Some simple distributed algorithms for sparse net-
works. Distributed computing, 14(2):97–100, 2001.

[PS92] Alessandro Panconesi and Aravind Srinivasan. Improved distributed algorithms for coloring
and network decomposition problems. In Proc. 24th ACM Symp. on Theory of Computing
(STOC), pages 581–592, 1992.

[RG20] Václav Rozhoň and Mohsen Ghaffari. Polylogarithmic-time deterministic network decompo-
sition and distributed derandomization. In Proceedings of the ACM Symposium on Theory of
Computing (STOC), pages to appear, arXiv:1907.10937, 2020.

[SW08] Johannes Schneider and Roger Wattenhofer. A log-star distributed maximal independent set
algorithm for growth-bounded graphs. In Proceedings of the twenty-seventh ACM symposium
on Principles of distributed computing, pages 35–44, 2008.

27

	1 Introduction
	1.1 Model and Motivation
	1.2 State of the Art
	1.3 Beyond Worst-Case
	1.4 Our Contribution
	1.5 Other Related Work on Node-Averaged Round Complexity

	2 Preliminaries
	3 The MIS Algorithm
	3.1 Part I
	3.2 Part II
	3.3 Part III
	3.4 Wrap Up

	4 Matching Approximation
	4.1 Vanilla Algorithm for Approximate Fractional Matching
	4.2 Improving Average Awake Complexity to O(1)
	4.3 Roadmap
	4.4 Analysis of the the Matching Algorithm
	4.5 Vertex Cover
	4.6 Improved Approximation of Maximum Matching
	4.7 Wrap Up

	5 Conclusion

