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ABSTRACT: The shape of stiff chains in dilute solution was considered. An aver

age axial ratio was defined to describe the shape of the stiff chains and calculated 

using Tagami's model for stiff chains. It was found that the average axial ratio is 

approximately proportional to J.L in the stiff-chain region, where 112J. is the persistence 

length and L is the contour length of the chain. The limiting behavior agrees with 

Kuhn's result for a random chain. 
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Tagami's Model I 

It is well known that parameters such as the 

mean-square end-to-end distance <R2) and the 

mean-square radius of gyration (S 2) can char

acterize the average dimensions of a polymer 

chain in dilute solution. The shape of a poly

mer chain, however, is not expressed sufficiently 

well by (R2) or (S 2) alone, since these param

eters express the average size rather than the 

shape. Therefore, we need other parameters to 

express the shape of polymer chains. Kuhn1 ' 2 

considered for Gaussian chains the average loci 

of various points on the chain contour relative 

to the end-to-end displacement axis. Hollings

worth, 3 •4 in a study on the same subject, defined 

the transverse boundary of polymer chains as 

the average distance of the point which is far

thest from the end-to-end displacement axis. 

Recently, Sole and Stockmayer, 5 and Solc6 con

sidered the distribution function W(L1 , L2 , L 3), 

where L1 , L2 , and L 3 are the orthogonal com

ponents of the radius of gyration along the 

principal axes of inertia of the chain. They 

also examined by Monte Carlo calculations the 

shape distribution of random chains on simple 

cubic lattices. The results of these studies sug

gest that polymer chains in dilute solution are 

not spherically symmetric in shape. 

In this paper, we shall confine ourselves to 

stiff polymer chains, and consider the average 

shape of the chains. It is clear from intuition 

that stiff chains are highly extended in the di

rection of the end-to-end displacement axis. On 

the other hand, in the direction transverse to 

this axis, the distribution of segments is assumed 

to be cylindrically symmetric. Therefore, there 

may exist a considerable difference between the 

two relaxation times of rotational diffusion: the 

rotation about the axis of the end-to-end dis

placement and the rotation about the axis per

pendicular to that axis. Such a difference, 

which reflects the average shape of the chain, 

may be observed experimentally by NMR, non

Newtonian viscosity measurements, and other 

methods. In addition, since the difference is 

expected to be larger for the stiff chains than 

for the random chains, the observation would 

be easier in the former case. 

As mentioned above, stiff chains are extended 

to the direction of the end vector R. Conse

quently, the appropriate parameter to express 

the shape of the stiff chain is the average axial 

ratio x(s), which is defined by the following 

equation: 

x(s) ( 1 ) 
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Figure 1. Definitions of s, u, R, H(s), etc. 

Here (H2(s)) is the lateral dimension defined 

by Kuhn: the average square distance of the 

point of contour length s on the chain from 

the end-to-end displacement axis. It is clear 

from Figure 1 that the lateral dimension (H\s)) 

is given as follows: 

( 2) 

where ( · · · > means the average by bivariate 

distribution function of r and R. We may 

define alternatively another parameter, 

( 3) 

where ( · · · )R is the average with R kept con

stant and ( · · · > is the average over R. Math

ematically the quantity (1) can be calculated 

much more easily than eq 3. Thus we shall 

discuss exclusively the quantity defined by eq 1. 

AVERAGE AXIAL RATIO OF STIFF 

CHAINS 

From the various models of stiff chains, 7 - 10 

we choose to use Tagami's model/ 0 since its 

distribution function of end-to-end distances is 

given by a closed form. In this model, the 

Brownian motion of stiff chains is compared to 

the 0-U process (Ornstein-Uhlenbeck process) 
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of one Brownian particle. The Wiener process 

of one Brownian particle is equivalent to a 

random chain. On the other hand, in the 0-

U process, due to the diffusion in the momen

tum space, the direction of motion of the par

ticle is no longer random, which means in 

polymer language that the chain becomes stiff 

or semiflexible. The correspondence is as fol

lows: Let the time s in the 0-U process cor

respond to the contour length s of the chain; 

then the path of the particle corresponds to 

the configuration of the chain, and the momen

tum of the particle at time s corresponds to 

the derivative of the position vector of the 

point s on the chain contour. An interpreta

tion of this model in terms of the elasticity of 

the chain will be given in the appendix. 

The distribution function of the 0-U process 

of one Brownian particle obeys the well known 

Fokker-Planck equation 

where 

}_f(r, u, sjr0 , u0)=divu (q·gradu f) as 
+divu (pfu)-u·gradrf ( 4) 

(Llu)=- puLls 

(Llu 2)=6qL1s 
( 5) 

In order to be able to regard eq 4 as the equa

tion of the distribution function of stiff chains, 

we first notice that the elongation and the con

traction of stiff chains are assumed to be small. 

Therefore the requirement 

(u(s)·u(s))=l ( 6) 

is natural. From eq 5, we have 

( 7) 

where 8 is the angle between u(s) and u(s+Lls), 

and 1j2J. is the so-called persistence length. 

From eq 6, we see that q/f3=lf3; consequently 

f3=2J.. (Notice that in the theory of Brownian 

motion of one particle, we have q=pkTjm, ac

cording to the equipartition law of energy). 

Since it is conventional to use J. in the theory 

of stiff chains, we use J. instead of q and p. 
The elementary solution of eq 4 is given by 

Chandrasekhar11 as follows: 
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F(r, s; R, L)= k(R, uL, L-slr, u) 

X f(r, u, slo, u0)g(u0)duLdudu0 

= G(r, s; R, Llu0)g(u0 )du0 (10) 

s 
a=-

3A' 

where G(r, s; R, Llu0 ) is the conditional bivariate 

distribution function of r and R with u0 fixed, 

and g(u0 ) is the distribution function of u0 , which 

is assumed to be of the form 

( 9) 
1 

g(uo) =-o(luol-1) 
4n 

( 11) 

If necessary, we shall write a(s), b(s), h(s), and 

Ll(s) respectively to indicate the s dependence. 

The function G(r, s; R, Llu0 ) is calculated from 

eq 8 and 10 to obtain 

First we have to obtain the bivariate distribu

tion function F(r, s; R, L). This is written as 

follows, by making use of the elementary solu

tion f(r, u, slr0 , u0 ) given above (see Figure 1): 

( 
1 )2{ 1!"2 }3/2 

G(r, s; R, Llu0 )= 8;3 pv.:J(s).:J(L-S) 

xexp [-wr2 +D·r+r] (12) 

_ a 1(s) + a 2(L-s) 

fl- 2Ll(s) 2Ll(L-s) 

as2(L-s) 

4pL12(L-s) 

where p, v, w, D, and -r are defined by 

w=-_!_{ a 3(L-s)a4(s) }2 
_ __!_{_a 3(L-s)a5(L-s) a 4(L-s) }2 

4v 2p.:J(s)L1(L-s) 4v 2p.:12(L-s) .:J(L-s) 

_ a 3(L-s)a4(s) { a 3(L-s)a 5(L-s) a 4(L-s)} _ a 4
2(s) 

4pv.:J(s)L1(L- s) 2pL12(L- s) Ll(L- s) 4p.:J2(s) 

a 4(s)a5(L-s) a 5\L-s) + b(s) + b(L-s) 

2p.:J(s)L1(L-s) 4p.:1\L-s) 2.:J(s) 2.:1(L-s) 

D=[ _ a 3(s)a4(s){ a 3(L-s) }2 
_ a 3(s)a4(s) _ a 3(s)a5(L-s) 

2v 2p.:J(s)L1(L-s) 2p.:J2(s) 2p.:J(s)L1(L-s) 

_ a 3(s)a3(L-s) { a 3(L-s)a 5(L-s) _ a 4(L-s)} + a 5(s) ]uo 

4pv.:J(s)L1(L-s) 2pL12(L-s) Ll(L-s) .:J(s) 

_ [__!___{ a 3(L-s)a 5(L-s) _ a 4(L-s)} 2 + a 4(s)a5(L-s) + a 5\L-s) 

2v 2p.:12(L-s) .:J(L-s) 2p.:J(s)L1(L-s) 2p.:12(L-s) 

(13a) 

(13b) 

(13c) 

+ a 3(L-s)a4(s) { a 3(L-s)a5(L-s) _ a 4(L-s)} _ b(L-s)JR 

4pv.:J(s)L1(L-s) 2pL12(L-s) Ll(L-s) Ll(L-s) (l3d) 

-r- -[ _ _!_{ a 3(s)a3(L-s) }2 
_ a 3\s) + a 2(s) Ju 2 

- 4v 2p.:J(s)L1(L-s) 4p.:12(s) 2.:J(s) 0 

+ [_!_{ a 3(L-s)a 5(L-s) a 4(L-s)} 2 + _!!__52(L-s) b(L-s) JR2 
4v 2p.:12(L-s) .:J(L-s) 4p.:12(L-s) 2L1(L-s) 

+ [ a 3(s)a3(L-s) { a 3(L-s)a 5(L-s) a 4(L-s)} + a 3(s)a5(L-s) ]uo·R+ 6AL (l3e) 
4pv.:J(s)L1(L-s) 2p.:12(L-s) Ll(L-s) 2p.:J(s)L1(L-s) 

Furthermore, 

Polymer J., Vol. 7, No. 1, 1975 81 



H. HOSHIKAWA, N. SAITO, and K. NAGAYAMA 

(14a) 

a (s)=a(s)+ h(s) + b(s) 
2 .1. 4l 

(14b) 

( ) ( ) 2ls h(s)e2' 8 + h(s) + b(s) 
a 3 s =a s e +--u- U (14c) 

a.(s)=h(s)e2""+ bi;) (14d) 

a5(s)=h(s)+ b(s) 
2). 

(14e) 

The conditional distribution function of r, F0(r, siR), with R fixed, is calculated by making use 

of the relation 

F 0(r, siR) 

where f 0(R) is the distribution function of R: 

F(r, s; R, L) 

/ 0(R) 

f 0(R)= f(R, uL, Llo, U 0 )g(u0 )duLdu0 • 

The explicit expression of eq 16 is given from eq 8 and 11, 

{ 
6;.2 }3/2 [ 3{4J.2R2+(l-e-2n)2} J 

[o(R)= n(4J.L-3+4e 2n-e •n) exp - 2(4J.L-3+4e 2n-e ••L) 

4J.L-3+4e-2n-e-•n . 6J.(l-e- 2n)R 
X smh 

6.1.(1-e 2'L)R 4J.L-3+4e 2n-e •n 

(15) 

(16) 

(17) 

From eq 15-17, the lateral dimension with R fixed <H\s))R, i.e., the mean-square of H(s) with 

R fixed, can be calculated to be 

D=t;1u0 -!;2R 

-r= -r;1u0
2 +r;2R2 +r;3u0 ·R+6J.L 

( 18) 

(19a) 

(19b) 

On the other hand, the lateral dimension <H2(s)) is obtained by averaging H 2(s) over r and R 

making use of eq 10; thus 

<H\s))= H 2(s)F(r, s; R, L)drdR 

( 1 ){ n
3 

}
3
/
2 

1 [t;1
2 

][( -16wn
3 

)
1
/
2 

= - 3 exp - -r;1 +6J.L 2 
8n pvwLl(s)Ll(L-s) 2wr;3-/;1/;2 4w 4wr;2+1;2 

[ 
(2wr;3-t;11;2)2 ]{ 4wr;3-21;11;2 + 21;12 } xexp - -

4w(4wr;2+1;22) 4wr;2+1;22 2wr;3-t;1t;2 
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where ...J 

(21) !i 
-± 
N 

In deriving eq 20, we have made use of the 

approximation 

0 
2 lj2----+ 

{ )} 

I 

/ 

I 

/ 

-1 

---.:::--

log P.L 

(20) 

<H2ti-l> 

<H't-tl>RoL•lO-l 

<H'(t)>RoL 

holds in both limits. The average axial ratio 

x(s) is readily obtained from eq 1 and 20: 

x(s) 
(H2(s)) 

(R2) 
(23) 

Figure 2. log <H2(Lj2))112jL and log <H2(Lf2>k2JL 

vs. log J.L. 

where (R2) is the well known mean-square end

to-end distance, and is given by 

(R2)= 2AL- (24) 

------------------

-1 

The quantities <H\s))R, (H2(s)), and x(s) thus + 
obtained in eq 18, 20, and 23 are general ex-

pressions which hold at any point on the chain 

contour. In particular, the values of these pa- g' -2 

rameters at the mid-point on the chain contour 

are practically useful. In Figures 2 and 3, 

(H2(Lj2)) and (H2(L/2))R, and x(L/2) are shown 

as function of J.L. 

The limiting behavior of these parameters in 

the case of J.L-> oo, i.e., in the random coil 

limit, is 

(25a) 

lim / H 2(!:__)) = __!_ !:__ (25b) 
\ 2 6 A 

These results agree with Kuhn's result. On the 

other hand, in the limit J.L-> 0, i.e., in the 

rigid rod limit, all of these parameters approach 

zero. 
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-1 0 

log i\L 

Figure 3. log x112(Lj2) vs. log J.L. The broken line 
corresponds to lim xlf2(L/2)=log (1/6)1/2, 

J.L-+oo 

DISCUSSION 

As shown in Figure 2, (H2(Lj2)/1 2 jL has a 

maximum in the region 1, or in the stiff 

chain region. This is understood as follows: in 

the region J.L« 1, i.e., in the rigid rod region, 

we have evidently (H2(Lj2))1; 2/L« 1; as AL in

creases, the bending of the chain becomes larger 

and therefore (H2(Lj2)/12jL increases; in the 

region J.L» 1, i.e., in the random coil region, 

83 



H. HosHIKAWA, N. SAITO, and K. NAGAYAMA 

not only the mid-point but any point on the 

chain contour can be far from the end-to-end 

displacement axis, thus we expect that (H2(Lj 

2)//2/L decreases and tends to (lj6J.L)112 in the 

limit ).L---> co, as shown in eq 25b. 

In Figure 2 the quantity (H2(Lj2)/}/jL is also 

shown. We can see that in the region J.L« 1, 

(H2(Lj2))i/!L!L coincides with (H2(Lj2)) 112jL, 

because in this region the contribution of the 

highly extended state to the quantity (H2(L/2)) 

is large. As J.L increases, the difference between 

(H2(Lj2)) and becomes larger, but 

when J.L increases further (J.L » 1 ), the difference 

becomes smaller and the three functions, (H2(Lj 

2))R=L• (H2(Lj2))R«L• and (H\L/2)) coincide 

with one another, in accordance with eq 25a 

and 25b. 

We see in Figure 3 that the function x(Lj2) 

increases with increasing J.L, and tends to 1/6 

for the random coil limit, which implies that 

x(s) is an appropriate parameter to describe the 

shape of stiff chains. It should be noted that 

in the stiff chain region (10-1;SJ.L;Sl), x(Lj2) is 

approximately proportional to ).L. 
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APPENDIX 

The distribution function of the 0-U process 

of one Brownian particle can be written in the 

form of a path integral12 as 

f(u2, s2[ur, Sr)=( exp[--1- ( 82Lds]Du 
) 2'kT ).1 

(A-1) 

where ' is the friction constant. The Lag

rangian L is given by 

L=t(mu+,u)2 (A-2) 

The distribution function of Tagami's model 

can also be written in the path integral form: 

(A-3) 

where the Lagrangian L is given by 
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L= {C:;f2
u+(3J.kT/ 12u}2 

3kT.2+3kT(. + ') 3J.kT 2 =-u - U•U U•U +--U 
8). 4 2 

(A-4) 

We can easily obtain from eq A-3 and A-4 the 

Fokker-Planck equation of Tagami's model by 

the method described in ref 12. Comparing eq 

A-3 with the path integral representation for 

Kratky-Porod model of stiff chains, 9 we see 

that the term of u2 in the Lagrangian is the 

bending elastic energy, but its coefficient is dif

ferent from that of the Kratky-Porod model 

by the factor 3j2. The remaining terms are 

regarded as the potential which characterizes 

Tagami's model. The contribution of the second 

term of the right hand side of eq A-4 to the 

path integral is 

(A-5) 

This term can be interpreted as the coupling 

energy between bending and stretching. The 

third term of the right hand side of eq A-4 is 

regarded as the stretching elastic energy of 

Tagami's model. This term can be rewritten as 

u2=([u[-l)2+2[u[-l (A-6) 

where the first term gives rise to the stretching 

elastic energy in Hookian approximation, and 

the remaining terms are some sort of non

Hookian terms. Contrary to the usual mecha

nical model, 9 however, the stretching elastic 

coefficient is temperature-dependent as in the 

rubber elasticity provided that ). is temperature

independent. It seems at first sight that the 

chain can be elongated to infinity in the limit 

J.L---> 0, and the elongation of the chain is zero 

in the limit J.L---> co, since the coefficient of u2 

is proportional to ).. However, it can be easily 

shown that 

(A-7) 

and 

5 for J.L ---> co 

(u4)= r (A-8) 
1 for ).L---> 0 

In other words the fluctuation of the chain 

elongation is Gaussian in the random coil limit 
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(A.L--> oo ), but is absent in the rigid rod limit 

(J..L--> 0). The latter fact can be understood 

from the form of the Lagrangian (A-4). In the 

limit A. --> 0, the coefficient 3J..kTj2 of the last 

term (stretching elastic constant) is zero, and 

therefore the chain seems to be stretched easily, 

but by virtue of the large coefficient 3kTjSJ.. of 

the first term, u should be nearly zero (u:::::O). 

In other words, since < u2) = 1, the chain is rod

like. 
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