
1

Average-Case Analysis of Greedy Matching for
Large-Scale D2D Resource Sharing
Shuqin Gao, Costas A. Courcoubetis and Lingjie Duan, Senior member, IEEE

Abstract—Given the proximity of many wireless users and their diversity in consuming local resources (e.g., data-plans, computation
and energy resources), device-to-device (D2D) resource sharing is a promising approach towards realizing a sharing economy. This
paper adopts an easy-to-implement greedy matching algorithm with distributed fashion and only sub-linear O(logn) parallel complexity
(in user number n) for large-scale D2D sharing. Practical cases indicate that the greedy matching’s average performance is far better
than the worst-case approximation ratio 50% as compared to the optimum. However, there is no rigorous average-case analysis in the
literature to back up such encouraging findings and this paper is the first to present such analysis for multiple representative classes of
graphs. For 1D linear networks, we prove that our greedy algorithm performs better than 86.5% of the optimum. For 2D grids, though
dynamic programming cannot be directly applied, we still prove this average performance ratio to be above 76%. For the more
challenging Erdos-Rényi random graphs, we equivalently reduce to the asymptotic analysis of random trees and successfully prove a
ratio up to 79%. Finally, we conduct experiments using real data to simulate realistic D2D networks, and show that our analytical
performance measure approximates well practical cases.

Index Terms—Average-case analysis, weighted matching, greedy algorithm, large-scale resource sharing

F

1 INTRODUCTION

THANKS to advances in wireless and smartphone tech-
nologies, mobile users in proximity can use local wire-

less links (e.g., short-range communications) to share lo-
cal resources (e.g., data-plans [2], [3], computation [4], [5],
caching memory [6], [7] and energy [8], [9]). For instance,
in a busy airport, subscribed users who have leftover data
plans can set up personal/portable hotspots and share data
connections to travelers with high roaming fees [2]; in a
crowded stadium, users with unutilized storage can down-
load faster and share the cached popular game videos with
other users in the vicinity [6]; or in an exposition, users who
would like to watch the product introductory videos can use
cooperative video streaming to share video segments with
each other [10]. Given the large diversity for each user in
the levels of her individual resource utilization, device-to-
device (D2D) resource sharing is envisioned as a promising
approach to pool resources and increase social welfare.

Some recent studies have been conducted for modeling
and guiding D2D resource sharing in wireless networks
(e.g., [2-16]). As a node in the established D2D network
graph, each mobile user can be a resource consumer or sup-
plier, depending on whether her local resource is sufficient
or not. As in [5] and [6], according to their locations, each
user can only connect to a subset of users in the neigh-
borhood through wireless connections, and the available
wireless links are modelled as edges in the network graph.
Sharing between any two connected users brings in certain
benefit to the pair, which is modelled as a non-negative
weight to the corresponding edge.

All these works optimize resource allocation by match-
ing users in a centralized manner that requires global
information and strict coordination. Hence the developed

The work of Lingjie Duan was supported by the Ministry of Education,
Singapore, under its Academic Research Fund Tier 2 Grant under Award
MOE-T2EP20121-0001.

approaches cannot scale well in a scenario involving a
large number of users, due to a large communication and
computation overhead caused by the centralized nature of
the proposed solutions. Carrying this argument further, the
existing optimal weighted matching algorithms from the
literature cannot be effectively used in the case of large user-
defined networks due to their centralized nature and super-
linear time complexity [17]. This motivates the need for
developing distributed algorithms that exploit parallelism,
have low computation complexity and good average perfor-
mance for practical parameter distributions.

In the broader literature of distributed algorithm design
for matching many nodes in a large graph, a greedy match-
ing algorithm of linear complexity is proposed in [18] and
[19] without requiring a central controller. It simply selects
each time the edges with local maximum weights and yields
an approximation ratio of 1/2 as compared to the optimum.
A parallel algorithm is further proposed in [20] to reduce
complexity at the cost of obtaining a smaller approximation
ratio than 1/2. It should be noted that in the analysis of these
algorithms, complexity and approximation ratio are always
worst-case measures, but the worst-case approximation ra-
tio rarely happens in most network cases in practice. This
work is motivated by our observation from the simulation
that the greedy matching’s average performance is far better
than the worst-case approximation ratio of 50% as com-
pared to the optimum, being at least 95% of the optimum in
most cases. To our best knowledge, this work is the first
analytical study to present an average-case performance
analysis of distributed matching algorithms. The results of
our average-case analysis are important in practice because
they motivate the use of such simple greedy matching
algorithms without substantial performance degradation.

Since worst-case bounds no longer work for average-
case analysis, we develop totally new techniques to ana-

ar
X

iv
:2

30
5.

12
86

2v
1

 [
cs

.D
C

]
 2

2
M

ay
 2

02
3

2

lyze average performance. These techniques become more
accurate when taking into account the structure of the
network graph, and provide a very positive assessment of
the greedy matching’s average performance that is far from
the worst case. Since the greedy matching can be naturally
implemented in parallel by each node in the network, we
also prove that with high probability (w.h.p.), the algorithm
has sub-linear parallel complexityO(log n) in the number of
users n. Our main contributions are summarized as follows.

• Average-case analysis of greedy matching in large-scale
regular networks: For large-scale 1D linear networks,
we first use a new graph decomposition method to
compute the upper bound for the optimal matching
and then derive a recursive formula for the greedy
matching by using dynamic programming. We prove
that our greedy algorithm performs at least better
than 86.5% of the optimum, and the minimum ratio
is achieved when all the edges take similar weight
values. In 2D grids, the same analysis cannot be
directly applied. We introduce a new asymptotic
analysis method based on truncating the 2D grids
and then manage to analyze the resulting specific
sub-grids using a recursive calculation similar to
the 1D case. We prove that our greedy matching’s
average performance ratio is still above 76%. For
these types of graphs, our greedy algorithm has only
sub-linear complexity O(log n) w.h.p.. Thus, our al-
gorithm provides a great implementation advantage
compared to the optimal matching algorithms that
require super-linear complexity without sacrificing
much on performance.

• Average-case analysis of greedy matching in large-scale
random graphs: Besides the grids of fixed topology, we
develop a new theoretic technique to analyze large
Erdos-Rényi random graphs G(n, p), where each of
n users connects to any other user with probability
p. For a dense random graph with constant p, we
prove that the greedy matching will almost surely
provide the highest possible total matching value,
leading to an average performance ratio that tends
to 100% as n increases. The analysis of sparse graphs
with p < 1/n is more challenging, but we reduce
it to the asymptotic analysis of random trees since
the probability of the existence of loops in the sparse
random graphs is zero w.h.p.. By exploiting the re-
cursive nature of trees, we derive a recursive formula
for the greedy matching, which is not closed-form
but can be solved using bisection. Finally, we man-
age to obtain rigorous average performance bounds
and parallel complexity O(log n) w.h.p.. The average
performance ratio reaches its minimum (still above
79%) when the graph is neither dense nor sparse.

• Extension to multi-unit resource sharing: We extend
from single-unit to multi-unit resource sharing in our
model, where each user may have multiple units of
local resources to share. Our greedy algorithm in
the multi-unit version requires parallel complexity
O(log n) w.h.p.. By developing a new graph decom-
position method, we prove that its average perfor-
mance ratio is at least 78%.

• Application to practical scenarios: We conduct experi-
ments using real data for mobile user locations to
simulate realistic D2D networks with constraints on
the maximum allowed communication distance be-
tween devices. We show that our analytical G(n, p)
performance measure approximates well practical
cases of such D2D sharing networks. To decide the
maximum D2D sharing range among users, we take
into account the D2D communication failure due to
path-loss and mutual interference among matched
pairs. The optimal sharing range is achieved by
finding the best tradeoff between transacting with
more devices but at the higher risk that the chosen
best neighbor might not be effectively usable due to
a communication failure.

The paper is organized as follows. In Section 2, we
discuss the related work and emphasize how it differs from
our work. In Section 3, we present our network model and
the greedy matching algorithm for solving the D2D resource
sharing problem in any network graph. In Sections 4 and 5,
we analyze the average performance ratios of the algorithm
in the 1D and 2D grids. Sections 6 and 7 extend the average-
case analysis to random graphs and multi-unit resource
sharing. Section 8 shows simulation results for application
to practical scenarios and Section 9 concludes the paper.

2 RELATED WORK

We discuss the related work concerning the two main topics
related to our paper, namely D2D resource sharing ideas
and distributed matching algorithms.

Recent research efforts have been devoted to D2D re-
source sharing due to advances in wireless and smartphone
technologies. In [2] and [3], subscribed users who have left-
over data plans can set up personal/portable hotspots and
share data connections with those who face data deficits.
In [4] and [5], mobile users can share the computation
resources with each other by task offloading via cellular
D2D links. In [11] and [12], mobile devices can collaborate
with each other to process and deliver data over D2D
channels to fulfill crowdsourcing tasks. In [21], unmanned
aerial vehicles (UAVs) with residual cache capacity can help
store contents for others using inter-UAV connections. [22]
and [23] allow mobile video users to support others in
proximity to download video segments through WiFi or
Bluetooth. However, compared to our work, the key focus
in these D2D resource sharing works is to design a way to
match the supply with the demand locally, not to analyze
performances theoretically.

In the theoretical literature on the classical maximum
matching problem, most existing methods to solve it require
a central controller to gather all participants’ information
and perform the computation centrally [17]. This severely
hinders the scalability of large-scale D2D sharing. A dis-
tributed matching algorithm using the primal-dual method
is proposed in [24] to find the optimum, but requires a
prohibitively high average computational complexity. There
are some recent works focusing on finding approximation
distributed algorithms that run fast [25]. In particular, two
log-time parallel algorithms (with respect to user number)

3

are proposed in [20] and [26] for general graphs, and an-
other faster algorithm is proposed to compute an efficient
matching in an expected constant time for the special case
of tree graphs in [27]. But these algorithms’ complexity and
approximation ratio are only analyzed in the worst case and
may not hold in most cases. Our work is the first analytical
study to present an average-case performance analysis of
distributed matching algorithms.

3 SYSTEM MODEL AND PROBLEM FORMULATION

3.1 System Model for D2D Resource Sharing
We first describe our D2D resource sharing model that
involves a large number of potential users to share resources
with each other via local wireless links (e.g., short-range
communications). In this model, resources are exchanged
between participating users in repeated rounds. In each
round, we first run an algorithm to determine how to match
users that have sent requests to neighbors for exchanging
resources in this round, and then realize the actual sharing
of the corresponding resources as determined by the algo-
rithm. The set of participating users and the available D2D
links may be different for different rounds.

In each round, we depict the network graph as G =
(U,E), where U is the set of nodes corresponding to users
that are participating in the given round, and E is the set
of D2D links between participating users that are feasible
to establish with some minimum level of performance (e.g.,
signal strength, actual physical distance, etc., depending on
the application). Our model reasonably assumes a time-scale
separation between the time for users to change location
and the time to perform a round of the algorithm (that
typically should be in the order of a few seconds), in order
to establish stable D2D communication for resource shar-
ing [2-16]. This might not hold in the case of fast-moving
cars but it is the case when users typically hang around
in crowded urban areas with low mobility, e.g., walking
streets, airports, stadiums, city parks, cafes, malls, etc.. For
each user ui ∈ U = {u1, u2, . . . , un}, the subset A(ui) ⊆ U
denotes the set of her neighbors in G, i.e., there is a feasible
D2D link eij ∈ E between ui and any uj ∈ A(ui). Note that
different definitions of ‘feasibility’ for D2D links will imply
a different set of edges E between the users in U . Also the
set U is changing over time/rounds since new users may
join the sharing economy and existing users may drop out
after satisfying their needs or moving out of range.

With each edge eij ∈ E, there is an associated weight
wij ≥ 0 that models the surplus (or welfare gain) of sharing
a unit resource between users i and j if they are ‘matched’
in our terminology, usually converted in some monetary
basis (say $). Let W = {wij} be the weight vector over
all edges of G. Note that our model is very flexible and can
fit various applications of D2D resource sharing by allowing
for different ways to define the values for wij . In the case of
a consumer i with revenue ri for obtaining a unit resource
and a supplier j with cost cj for offering a unit resource,
the weight is clearly wij = ri − cj . For example, in a sec-
ondary data-plan trading market [2], [3], user ui with data-
plan surplus shares her personal hotspot connection with
neighboring user uj with high roaming fee, and weight wij
models the difference between user uj ’s saved roaming fee

Fig. 1: An illustrative instance of the D2D resource sharing model with
n = 7 users is captured spatially.

and the sharing cost (e.g., energy consumption in battery) of
user ui. In another example of cooperative video streaming
[22], user ui seeks user uj ’s assistance to download and
share video segments via a local wireless connection so as to
improve the streaming experience. The quality of experience
(QoE), which is usually referred as to user perception, is
measured in terms of download time or video rate in this
example. Then, wij becomes the difference between the QoE
improvement (in some appropriate units) of user ui and the
download/sharing cost of user uj .

Besides the cases where nodes are partitioned into sup-
pliers and consumers, there are certain applications where
edges capture the effects of collaboration between users if
these users are matched. A simple example is the exchange
of information where both parties benefit (e.g., [6], [10]).
Suppose that users i, j cache the sets Fi and Fj of popular
files respectively, and assume that each user has files that the
other user would also like to have. If they get matched by
the algorithm, they will exchange a total |Fi∪Fj |− |Fi∩Fj |
files, and the total social benefit wij can be approximated to
be proportional to the above number or some more accurate
estimate of the value of the shared information. We have
constructed a case study of such collaborative caching in a
network graph based on some real data in Section 8.1.

In any given round, our sharing model corresponds to
an instance of a random weighted graph (G = (U,E),W).
A simple interpretation of the model is that a typical user,
when participating, corresponds to a randomly selected
node in G. In particular, we don’t care for the actual identity
of the participating users (after all, we care for the total value
generated in the economy, summed over all participants).
To simplify the model, we assume certain properties for
the resulting stochastic process, i.e., in each round the set
U and the corresponding E, W are independent identically
distributed (IID), with certain distributions. In particular, we
assume that the weights wij take values from a finite dis-
crete set V ={v1, v2, . . . , vK} according to the general prob-
ability distribution Pr(wij = vk) = pk with

∑K
k=1 pk = 1.

Without loss of generality, we assume 0≤v1<v2< · · ·<vK .
A small-scale illustrative instance of the D2D resource shar-
ing model is shown spatially on the ground in Fig. 1,
which can be abstracted to a weight graph (G = (U =
{u1, u2, . . . , u7}, E = {e12, e14, e15, e23, e37, e45, e46, }),W =
{w12, w14, w15, w23, w37, w45, w46}).

In typical practices of D2D sharing (e.g., energy transfer),

4

a user is only matched to a single neighbor (if any) to
finally transact with1. Keeping this simple but practical
case of single matching per user2, given a weighted graph
(G = (U,E),W), we would like to select the pairs of users
to match in order to maximize the total sharing benefit (i.e.,
the ‘social welfare’). Assuming full and globally available
information on G and W , we formulate the social welfare
maximization problem as a maximum weighted matching
problem:

P1 : max
∑
eij∈E

wijxij , (1a)

s.t.
∑

uj∈A(ui)

xij ≤ 1, ∀ui ∈ U, (1b)

xij ∈ {0, 1}, ∀eij ∈ E, (1c)

where xij is the binary optimization variable denoting
whether edge eij is included in the final matching (xij = 1)
or not (xij = 0). Constraint (1b) tells that any user ui can
only be matched to at most one user in her set of neighbors
A(ui).

3.2 Preliminaries of Greedy Algorithm

According to [17], to optimally solve the maximum
weighted matching problem P1, one needs to centrally
gather the weight and graph connectivity information be-
forehand. Further, searching for all possible matchings
results in super-linear computation complexity, which is
formidably high for a large-scale network with a large num-
ber n of users. Alternatively, the greedy matching addresses
these two issues by keeping information local and allowing
the algorithm to be performed in a distributed fashion.
Algorithm 1 outlines the key steps of the greedy matching
algorithm (please see intuition in the text that follows).

Algorithm 1: Greedy matching algorithm for solving prob-
lem P1 for the graph (G = (U,E),W).

Initialization: U ′ = U ; A′(ui) = A(ui),∀ui ∈ U ; xij
= 0,∀eij ∈ E.
In each iteration, repeat the following two phases:
Proposal phase:
For each unmatched user ui ∈ U ′:

• User ui selects a user uj∗ among her unmatched
neighbors in A′(ui) with the maximum weight wij∗ .

• User ui sends to uj∗ a matching proposal.

Matching phase:
For a user pair (ui, uj) that both ui and uj receive
proposals from each other:

• Match ui and uj by updating xij = 1 and U ′ =
U ′ \ {ui, uj}.

• Make ui and uj unavailable for matching with oth-
ers, by updating A′(uk) = A′(uk) \ {ui} for any
uk ∈ A′(ui), and similarly for uj .

1. Allowing more concurrent matchings per user might not greatly
improve performance, since our simulations suggest that most of the
total benefit is usually obtained from one among the possible matchings
where the values of the matchings follow a Pareto distribution.

2. We extend to multi-unit resource sharing with similar results in
Section 7.

Fig. 2: A simple example of approximation ratio of 1/2 achieved by
Algorithm 1. The greedy matching returned by Algorithm 1 is the
red-colored edge e23 with weight 1 + ε, ε > 0, while the optimal
matching is {e12, e34} in blue with total weight 2. The corresponding
approximation ratio is (1 + ε)/2, taking its minimum value when
ε→ 0+.

First note that Algorithm 1 is randomized in the selection
of preferred neighbors in case there are multiple equally
best choices in the proposal phase. A way to simplify this
and make the algorithm deterministic is to assume that
nodes are assigned unique numbers and that a node assigns
priority in the case of ties to its neighbor with the highest
number. This avoids loops and guarantees termination in
O(|E|) steps. In the rest of the paper, we can assume
this deterministic version for Algorithm 1. This is a mild
assumption that shall not affect the validity of our key anal-
ysis. More importantly, Algorithm 1 can be implemented
distributedly: at each time, each user uses local information
to choose the unmatched neighbor with the highest weight
as her potential matching partner; she will stop once this
preference becomes reciprocal, or there are no available
unmatched neighbors. This algorithm calculates a matching
with total weight at least 1/2 of the optimum (see [19]).
This worst-case approximation ratio of 1/2 is achieved in
the instance in Fig. 2 when ε→ 0+, since the greedy match-
ing chooses the middle edge while the optimal matching
chooses the two side edges. Besides, when considering the
instability of the connections between matched pairs (e.g.,
due to users’ mobility or network failure), we prove that if
a fraction a% of devices become disconnected in the middle
of the matching transaction, the social welfare is reduced
by less than 2a% on average due to the different sharing
alternatives available to the remaining nodes, and failures
not being correlated with the value of the matching that
would take place. This is another robustness property of
Algorithm 1.

3.3 Our Problem Statement for Average-Case Analysis

Although the approximation ratio of Algorithm 1 is 1/2
with half efficiency loss in the worst case, see [18], [19],
this ratio is achieved in Fig. 2 only when the middle edge
has slightly larger weight than its two adjacent edges. In
such a simple three-edge instance, given that weights of
independent edges are equally likely to be either 1 or 1 + ε,
the worst-case approximation ratio 50% happens only with
probability 1/4. Here, our greedy algorithm still performs
better than 87.5% of the optimum in the average sense3.

In a large-scale network instance, given the IID distri-
bution of the choice of the weights, it is more improbable
that the graph will consist of an infinite repetition of the
above special weighted three-edge pattern which leads to

3. Here, when running our greedy algorithm, we follow that the four
nodes u1, u2, u3 and u4 in Fig. 2 are assigned decreasing ID values
(i.e., decreasing priority over ties among neighbors whose edge has the
same weight).

5

Fig. 3: The large-scale linear network model with n users.

the worst-case performance. Hence, we expect the aver-
age performance ratio of the greedy matching to be much
greater than 1/2.

Since worst-case bound no longer works for average-
case analysis, we aim to develop totally new techniques
to theoretically analyze the average performance of rep-
resentative classes of graphs with random parameters. To
start with, we first provide the rigorous definitions for our
average-case performance analysis.

By taking expectation with respect to the weights in W
that are IID with a general discrete distribution Pr(wij =
vk) = pk,∀k = 1, . . . ,K , we define the average perfor-
mance ratio PR(G) of Algorithm 1 for a given graph G
as follows:

PR(G) =
EW [f̂(G,W) =

∑
eij∈E wij x̂ij]

EW [f?(G,W) =
∑
eij∈E wijx

?
ij]
, (2)

where f?(G,W) and f̂(G,W) denote the total weights (i.e.,
social welfare) under the optimal matching and the greedy
matching, respectively, {x?ij}, {x̂ij} being the corresponding
matchings. Since over time the algorithm is repeated for new
instances, the numerator and denominator correspond to
the time-average of the social welfare obtained by running
the greedy and the optimal algorithms, respectively.

We next evaluate the performance ratio for several spe-
cial forms of practical interest for G that corroborate the
excellent performance of the greedy matching, including the
large-scale 1D and 2D grids of fixed topology, as well as
the random graph G(n, p) networks. In the case of random
graphs, we must take expectation in (2) over both G and W .
Besides, we will also prove the sub-linear computation com-
plexity to run Algorithm 1 for these large-scale networks.

4 AVERAGE-CASE ANALYSIS FOR D2D SHARING
IN 1D LINEAR NETWORKS

When many users are distributed in an avenue or road
and can locally share their resources (e.g., walking along
5th Av. at Christmas), we may use a 1D linear network
to approximate their connectivity and analyze the greedy
matching’s average performance. 1D linear networks are the
simplest case of regular graphs and are used as a theoretical
device to get insights for our later average-case analysis
of 2D regular graphs, the more general random graphs
and the extension to multi-unit resource case in Sections
5, 6 and 7. As illustrated in Fig. 3, we consider a large
weighted linear network, where each user ui (except for
starting and ending users u1 and un) locally connects with
two adjacent users ui−1 and ui+1. In such linear networks,
for notational simplicity we use ei instead of ei,i+1 to denote
the connection between users ui and ui+1, and similarly
use weight wi instead of wi,i+1. The corresponding weight
vector becomes W = {w1, w2, . . . , wn−1}.

For the linear network with n users as shown in Fig. 3,
we first analyze the running time of Algorithm 1, where

Fig. 4: Illustration of the graph decomposition method for a linear
network example with K = 2 possible edge weights v1 < v2. In the
first step, we subtract v1 from all the 9 edges’ weights, creating 4 zero-
weight edges that reduce the graph into three linear sub-graphs of size
1, 3 and 1. In the second step, for each sub-graph, we subtract v2 − v1
to result in no edges with positive weights. An upper bound for the
optimal matching is d 9

2
ev1+(1+d 3

2
e+1)(v2−v1) = v1+4v2, obtained

in a straightforward fashion using the total subtracted weights from the
maximum cardinality matching for each step.

a unit of time corresponds to one iteration of the steps of
Algorithm 1. We simulate the system in practice by running
the greedy matching in parallel by each node. Different from
the related literature (e.g., [18], [19]), we focus on analyzing
the parallel complexity of Algorithm 1 below.

Let H(ui) denote the length of the longest chain (se-
quence of edges) that has non-decreasing weights and starts
from ui towards the left or right side. Suppose that wi−1 ≤
wi−2 ≤ · · · ≤ wi−H(ui)+1 ≤ wi−H(ui) > wi−H(ui)−1 is
the longest chain. We claim that ui will terminate running
Algorithm 1 (i.e., by being matched or knowing that it
has no available unmatched neighbors) within H(ui)/2
time. This is easy to see since starting from time 0, the
edge ei−H(ui) will be included in the total matching in
iteration 1, ei−H(ui)+2 in iteration 2, etc. Hence, in less than
H(ui)/2 steps, all neighbors of ui will have resolved their
possible preferences towards users different than ui, and
subsequently ui will either be matched with one of her
neighbors or be left with an empty unmatched neighbor set.

As Algorithm 1 terminates when all users make their
final decisions, if the probability of any user in G having a
chain longer than c log n (i.e., maxui∈U H(ui) > c log n) for
some constant c is very small, then the parallel execution
of Algorithm 1 will terminate within O(log n) time with
very high probability. This is the case for large-scale linear
networks as the next proposition states. Note that in the lit-
erature, [19] just proves linear O(n) time bound for running
the greedy matching (but the execution is not parallel).
Proposition 1. In large-scale linear networks of n users,

Algorithm 1 runs in O(log n) time w.h.p..

The proof is given in Appendix A of the Supplementary
Material of this TMC submission. Next, we focus on study-
ing the average performance ratio PR(G) in (2). The exact
value of the average total weight EW [f?(G,W)] under the
optimal matching is difficult to analyze due to formidably
many matching combinations over the large network. We
aim to derive a lower bound for PR(G), by first deriving
an upper bound for the denominator EW [f?(G,W)] in (2),
and then obtaining an exact asymptotic expression for the
numerator EW [f̂(G,W)] in (2).

4.1 Average Performance Analysis of Optimal Match-
ing
To find the upper bound on the average total weight
EW [f?(G,W)] under the optimal matching, we propose

6

a new graph decomposition method to reduce network
connectivity, by creating edges with zero weight value pur-
posely. Such edges do not contribute to the total weight
of the matching, simplifying the optimal matching of the
reduced graph.

Note that in our weight set V , there are K possible
weight values satisfying v1 < v2 < · · · < vK . Our method’s
basic idea is to reduce the original network into a large
number of disconnected components, by subtracting from
all edge weights first v1, then v2 − v1, v3 − v2, etc. This
procedure takes K steps to conclude until creating a graph
consisting of zero-weight edges. An illustrative example for
K = 2 is shown in Fig. 4, where we take two steps to obtain
the performance upper bound of the optimum. The total
amount of weights that are subtracted from the maximum
cardinality matching in the reduced graph during each of
the K steps is an upper bound for the optimal matching. In
the next proposition we analytically obtain the closed-form
upper bound for EW [f?(G,W)] for any linear network.
Proposition 2. Given the weight set V = {v1, v2, . . . , vK}

with the weight distribution P = {p1, p2, . . . , pK}, the
average total weight of the optimal matching in large-
scale linear networks of n users is upper bounded by

EW[f?(G,W)]≤nv1

2
+n

K−1∑
k=1

(vk+1−vk)
1−
∑k
i=1 pi

2−
∑k
i=1 pi

. (3)

The proof is given in Appendix B of the Supplementary
Material of this TMC submission. The upper bound in (3) is
linearly increasing in user number n and increases in weight
value vk for any k ∈ {1, 2, . . . ,K}. This bound is tight only
when edges can take a single weight value, i.e., K = 1.

4.2 Average Performance Analysis of Algorithm 1
Without loss of generality, when running Algorithm 1, we
suppose that each user facing the same weights of the two
adjacent edges assigns higher priority to match with the left-
hand-side neighbor in Fig. 3.
Assumption 1. For each user ui having the same weights

wi−1 = wi with the two adjacent neighbors ui−1 and
ui+1, Algorithm 1 assigns higher priority to match with
the left-side neighbor ui−1 (see Fig. 3).

This makes Algorithm 1 deterministic and returns a
unique solution. We prove the following lemma.
Lemma 1. Given the weight set size K , an edge ei that

satisfies wi > wi−1 and wi ≥ wi+1 can be found within
the first K edges of the linear network graph.

Fig. 5 shows an illustrative example for K = 2, and
we always find such an edge (marked in red) with local
maximum weight within the first 2 edges. This edge will
be matched in Algorithm 1, and the remaining graph is
still linear but with a smaller user size. Then, we reduce
the total matching into two sub-problems: the matching of
the edges from e1 to ei and the matching of the remaining
edges to the right. Given such reduction, we are able to
derive the recursive formula for calculating the result of
the greedy matching by using dynamic programming. More
specifically, by considering all the KK weight combinations
{w1, . . . , wK} of the first K edges and the existence of edge

Fig. 5: Given the weight set size K = 2 and v1 < v2, an edge that
certainly matches is always found within the first 2 edges, as marked
in red. There are totally KK = 4 weight combination cases of the first
2 edges. In each case, after matching the red edge, the remaining graph
is still linear but with a smaller size n− 2 or n− 3.

ei that will certainly match, we derive the recursive formula
for the sequence {an}, where an denotes the average total
weight of the greedy matching with n users. In the example
of K = 2 in Fig. 5, there are four weight combination cases,
where each realized case has a recursive formula. By taking
the expectation with respect to the probabilities of the four
cases, the expected recursive formula is given by

an = p2
1(v1 + an−2) + p2(v2 + an−2) + p1p2(v2 + an−3)

= p2
1v1 + (p2 + p1p2)v2 + (p2 + p2

1)an−2 + p1p2an−3. (4)

Based on this, we derive an =
p21v1+(p2+p1p2)v2

2p2+2p21+3p1p2
n + o(n) by

using asymptotic analysis.
Moreover, for an arbitrary K , it is also possible to derive

the recursive formula for the sequence {an} as a function
of V = {v1, v2, . . . , vK} and P = {p1, p2, . . . , pK}. For a
uniform weight distribution (i.e., p1 =p2 = · · ·=pK =1/K),
this simplifies and we obtain the following closed-form
result.

Proposition 3. For an arbitrary K , if p1 = · · · = pK = 1
K ,

the recursive formula for the sequence {an} in large-
scale linear networks is given by

an =
K∑
k=1

βkvk + γkan−k−1,

where βk = (K−1)K−k

KK(K+1)−k+1 and γk = 1
Kk+1

K∑
i=k

i
(i−1
k−1

)
.

By applying asymptotic analysis for a large user number
n, we derive closed-form an for our greedy matching’s
performance below:

an =

∑K
k=1 βkvk∑K

k=1(k + 1)γk
n+ o(n). (5)

The proof is given in Appendix C of the Supplementary
Material of this TMC submission. (5) is useful later in
Sections 4.3 and 5 to derive the performance guarantee of
Algorithm 1 in linear and grid networks.

4.3 Average Performance Ratio of Algorithm 1

We first check the special case of weight set size K = 2.
Based on (3) and the general formula derived by (4), we
obtain the closed-form average performance ratio of Algo-
rithm 1 as compared to the optimal matching.

7

Proposition 4. In large-scale linear networks with K = 2,
the average performance ratio of Algorithm 1 satisfies

lim
n→∞

PR(G) ≥ p2
1v1 + (p2 + p1p2)v2

(2p2 +2p2
1 +3p1p2)(v12 +(v2−v1) 1−p1

2−p1)

≥ 8

9
≈ 88.9%,

and it attains the minimum if v2v1 → 1+ and p1 = p2 = 1
2 .

The proof is given in Appendix D of the Supplementary
Material of this TMC submission. This proposition suggests
that the greedy matching’s average performance is surpris-
ingly good (around 90% of the optimum), which is much
greater than 50% in the worst case. It may be counter-
intuitive that the average performance ratio of Algorithm 1
is the smallest when all edges have almost the same weights
(not exactly the same), but this is actually consistent with
the worst-case instance in Fig. 2. There we greedily choose
only the middle edge of weight 1 + ε instead of the two side
edges of total weight 2. As ε → 0, the greedy matching’s
performance worsens as compared to the optimum, which
is equivalent to v2

v1
→ 1+ in Proposition 4. As p1 and p2 get

close to each other, the case that adjacent edges have nearly
similar weights happens more frequently.

Similarly, for K ≥ 3, we can obtain the lower bound
for PR(G) as a function of V = {v1, v2, . . . , vK} and
P = {p1, p2, . . . , pK} and show that the greedy match-
ing’s average performance is always close to the optimum.
Moreover, based on (3) and the general formula in (5),
we prove that the ratio PR(G) is minimized when the
possible weight values are similar given a uniform weight
distribution p1 = · · · = pK = 1

K .

Proposition 5. For an arbitraryK , if p1 = · · · = pK = 1
K , the

average performance ratio of Algorithm 1 in large-scale
linear networks satisfies

lim
n→∞

PR(G) ≥
∑K
k=1 vk

(K−1)K−k

(K+1)K−k+1∑K
k=1 vk

K
(2K+1−k)(2K−k)

≥ 1− (
K − 1

K + 1
)K ≥ 1− e−2 ≈ 86.5%,

where the second inequality becomes equality when all
the possible weight values become similar (i.e., vK

v1
→

1+).

The proof is given in Appendix E of the Supplementary
Material of this TMC submission. The result here is consis-
tent with Proposition 4, and the average performance ratio
of Algorithm 1 is the smallest when all edges have almost
the same weights. The ratio slightly reduces as K increases.

5 AVERAGE-CASE ANALYSIS FOR D2D SHARING
IN 2D GRID NETWORKS

In wireless networks, 2D grids are widely used to model
social mobility of users (e.g., [28], [29]). In this section,
we analyze the average performance ratio and the parallel
complexity of Algorithm 1 to validate its performance on
planar user connectivity graphs. Note that the average-case
analysis of 2D grids is an important benchmark for the more
general random graphs analyzed in the following sections.

5.1 Average Performance Analysis of Optimal Match-
ing

It is infeasible to obtain the exact value of the average total
weight EW [f?(G,W)] under the optimal matching due to
the exponential number of the possible matchings. Instead,
we propose a method to compute an upper bound for the
denominator EW [f?(G,W)] in (2) using a methodology that
holds for general graphs. This upper bound will be used
to derive a lower bound for the average performance ratio
PR(G) in (2) later.

In any graph G = (U,E), each matched edge eij ∈ E
adds value wij to the final matching. Equivalently, we
can think of it as providing individual users ui and uj
with equal benefit wij/2. For any user ui, this individual
benefit does not exceed half of the maximum weight of its
neighboring edges. Using this idea and summing over all
users, the total weight of the optimal matching is upper
bounded by

f?(G,W) ≤ 1

2

∑
ui∈U

max
uj∈A(ui)

wij . (6)

By taking expectation over the weight distribution, we
obtain the closed-form upper bound of the average total
weight.
Proposition 6. For a general graph G = (U,E) with the

weight set V ={v1, v2,. . ., vK} and the weight distribu-
tion P ={p1, p2,. . ., pK}, the average total weight of the
optimal matching is upper bounded by

EW [f?(G,W)] ≤

1

2

∑
ui∈U

K∑
k=1

vk((
k∑
i=1

pi)
|A(ui)| − (

k−1∑
i=1

pi)
|A(ui)|), (7)

where |A(ui)| is the cardinality of A(ui).

The proof is given in Appendix F of the Supplementary
Material of this TMC submission.

5.2 Average Performance Analysis of Algorithm 1

We start with the probabilistic analysis of the parallel
complexity of Algorithm 1. The result follows a similar
reasoning as in the case of linear networks, but the proof
is more subtle. This is because in the case of 2D grids, the
number of possible chains that start from any given node ui
and have non-decreasing weights is no longer two (toward
left or right) as in 1×n grid networks, but exponential in the
size of the chain (since from each node there are 4 − 1 = 3
‘out’ ways for the chain to continue), and such chains now
form with non-negligible probability. This problem is not
an issue for Algorithm 1 since every node will need to
use priorities over ties among neighbors whose edge has
the same weight. This significantly reduces the number of
possible chains that are relevant to a user’s decisions and
we can prove the following proposition.
Proposition 7. In large-scale n × n grids, Algorithm 1 runs

in O(log n) time w.h.p..

The proof is given in Appendix G of the Supplemen-
tary Material of this TMC submission. In conclusion, our
distributed matching algorithm has low complexity and

8

Fig. 6: Illustration of the grid reduction process in three steps for
analyzing greedy matching. Algorithm 1 adds the red-colored edges
to the greedy matching in each step.

provides a great implementation advantage compared to the
optimal but computational-expensive centralized matching.

We next analyze the average total weight of the greedy
matching, i.e., the numerator EW [f̂(G,W)] in (2). Unlike
Section 4.2, in the case of 2D grid networks we cannot
directly use dynamic programming since matching users
does not divide the grid into sub-grids. One may want
to extend our previous result in linear networks to n × n
grid, by dividing it into n linear networks of size 1 × n.
However, this provides a poor lower bound because all the
vertical edges become unavailable to match. Alternatively,
we split the grid network into sub-grids in a way that keeps
half of the vertical edges, and then estimate a tighter lower
bound by further creating sub-graphs without cycles. Our
procedure involves the following three steps (see Fig. 6).

Step 1: Split the n×n grid into n/2 sub-grids of size 2×n by
eliminating the corresponding vertical edges between sub-
grids.

Step 2: For each 2 × n sub-grid after step 1, eliminate all
the horizontal edges in the second row (i.e., the blue dashed
lines of the ‘Step 2’ sub-graph in Fig. 6) to create a graph
without cycles. Then we analyze the greedy matching’s
performance over the remaining edges by using dynamic
programming techniques.

Step 3: For all the unmatched users in the second row,
greedily match them by using the results in linear networks
(see Section 4.2).

To analyze the average total weight of the greedy match-
ing, we first note that the graph created by step 2 can
always be divided into two sub-graphs with the similar
graph structure by matching an arbitrary edge. Here, a sub-
graph with the similar graph structure refers to a sub-grid of
smaller size 2×n′ (with any 0 ≤ n′ < n) and also with all the
horizontal edges eliminated in the second row. Further, we
can show that an edge that will certainly match in Algorithm
1 can be found within the first 2K edges (including the first
K horizontal edges in the first row and the corresponding
K vertical edges) of the created graph, by using the similar

Fig. 7: Given the weight set size K = 2 and v1 < v2, an edge that
certainly matches is always found within the first 2K = 4 edges, as
marked in red. In each case, after matching the red edge, the remaining
graph still has the similar structure but with a smaller size n− 1, n− 2
or n− 3.

arguments as in Lemma 14.
Fig. 7 shows an illustrative example for K = 2, and

we always find such an edge (marked in red) with local
maximum weight within the first 2K = 4 edges. This edge
will be matched in Algorithm 1, and the remaining graph
has the similar structure but with a smaller size. Then, by
considering all the K2K weight combinations of the first
2K edges, we can similarly derive the recursive formula for
the greedy matching as in linear networks. Note that in the
example of K = 2 in Fig. 7, we reduce the totally K2K = 16
combination cases into 5 cases ((a)-(e)) by combining these
with the same certainly matched edges, and obtain the
corresponding recursive formula for each of them. The final
expected recursive formula is given by

an=(1−p4
1)v2+p2

1v1+p1p2an−1+(p3
1 + p2)an−2+p2

1p2an−3.

Based on this, we can similarly derive the general formula
for {an} when n is large by using asymptotic analysis.
Moreover, this method can also be extended for any possible
weight distribution.

Then, after the matching in Step 2, users in the second
row form linear segments with different lengths in step 3
(see Fig 6), and the greedy matching in these segments can
be similarly analyzed as in Section 4.2. Finally, we combine
the analysis in steps 2 and 3 for the greedy matching’s per-
formance, and compare to the upper bound for the optimal
matching in (7) to obtain the lower bound for PR(G).

Proposition 8. In large-scale n × n grids with the weight
set V = {v1 = 1, v2 = 1 + ∆} and uniform weight
distribution p1 = p2 = 1

2 , the average performance ratio
of Algorithm 1 satisfies

lim
n→∞

PR(G) ≥ 0.9213 + 0.6967∆

1 + 0.9375∆
,

This ratio decreases from 92.1% to 74.3% when weight
difference ∆ increases from 0+ to∞.

4. Here, without loss of generality, we assume that each user facing
the same weights of adjacent edges assigns higher priority to match
with the neighbor of smaller index. For example, the three neighbors
ui−1, ui+1 and ui+n of user ui have decreasing priority to match when
they have the same weight with ui.

9

3 4 5 6 7 8 9 10
0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Wight set size K

A
v
e
ra

g
e
 p

e
rf

o
rm

a
n
c
e
 r

a
ti
o

P
R

(G
)

∆ → 0
+

∆ = 0.2

∆ = 0.4

Fig. 8: The average performance ratio of Algorithm 1 in n × n grids
versus the weight set size K and weight difference ∆. Here we assume
edge weights are uniformly chosen from the weight set V = {1, 1 +
∆, . . . , 1 + (K − 1)∆}.

The proof is given in Appendix H of the Supplementary
Material of this TMC submission. Different from Proposi-
tions 4 and 5 in linear networks, in the case of grids similar
weight values (i.e., ∆→ 0+) no longer lead to the minimum
average performance ratio. Intuitively, even if the instance in
Fig. 2 (three horizontal edges with similar weights) happens
in grids, each user has at least a vertical neighbor to match.

Finally, we further extend our analysis for larger weight
set size K > 2. In Fig. 8, we present the average perfor-
mance ratio of Algorithm 1 in n × n grids against arbitrary
K . Consistent with Proposition 8, here the average perfor-
mance ratio bound decreases with ∆ and is larger than 76%.
It also decreases with K , which is also observed for linear
networks.

6 AVERAGE-CASE ANALYSIS FOR D2D SHARING
IN G(n, p) NETWORKS

In practice, a mobile user may encounter a random number
of neighbors. In this section, we extend our analysis to
random networks G(n, p), where n users connect with each
other with probability p and hence each user has in the aver-
age (an order of magnitude) d = np neighbors. Although the
actual spatial distribution of users is not necessarily planar,
such random graphs can still represent their connectivity on
the ground and the analysis also holds.

We study the average performance ratio of Algorithm
1 in the cases of dense random graphs with a constant p
(i.e., dense since d = np increases linearly in n) [30], and
sparse random graphs with a constant average neighbor
number d < 1 (i.e., p < 1/n) [31]. Unlike the 2D grid
networks, the structure of the random network G(n, p) is
no longer fixed due to the random connectivity. Though it
is more technically difficult to analyze the average perfor-
mance of Algorithm 1 for random graph structure, we are
able to derive the ratio using statistical analysis in the two
important cases below. For intermediate values of d where
our techniques cannot be applied, we have used exhaustive
sets of simulations.

6.1 Average-Case Analysis of Dense Random Graphs
Given p remains a constant, as n increases, each user will
have an increasing number of neighbors with the largest
possible weight value vK . Since such edges are preferred by

greedy matching, as n goes to infinity, the greedy matching
will almost surely provide the highest possible total match-
ing value of nvK/2 (n/2 pairs of users with weight vK).

Proposition 9. For a large-scale random graph G(n, p) with
a constant p, the average performance ratio of Algorithm
1 satisfies PR = 100% w.h.p..

The proof is given in Appendix I of the Supplementary
Material of this TMC submission. In this result, we have
taken expectation over bothG andW in the definition of the
average performance ratio PR. Note that the computation
complexity is not anymore O(log n) in this case due to the
increasing graph density. An obvious bound is O(|E|) =
O(n2) proved in [19].

6.2 Average-Case Analysis of Sparse Random Graphs

In this subsection, we consider that the connection probabil-
ity is p = d/n and hence each user has a constant average
number of neighbors d(n − 1)/n → d as n becomes large.
We first prove low parallel complexity for Algorithm 1 as
long as each user has a small enough number of neighbors
to pair with that depends on the edge weight distribution.

Proposition 10. For large-scale G(n, d/n) type of net-
works, Algorithm 1 runs in O(log n) time w.h.p. if
d < 2/max{p1, p2, . . . , pK}.

The proof is given in Appendix J of the Supplementary
Material of this TMC submission. Note that this condition is
always satisfied when d < 1 because the weight probability
pk ≤ 1 for any k.

Next, we focus on studying the average performance
ratio PR for sparse random graphs G(n, d/n). The average
total weight of the optimal matching can be upper bounded
by (7), which works for any graph. Then, we only need to
study the average total weight EG∼G(n,d/n),W [f̂(G,W)] of
the greedy matching. Note that when matching any graph
G, we can equivalently view that the weight of any matched
edge is equally split and allocated to its two end-nodes.
Then we can rewrite the above expression as follows:

EG∼G(n,d/n),W [f̂(G,W)] =nEG∼G(n,d/n),W [xi(G,W)], (8)

where xi(G,W) is half of the weight of the matched edge
corresponding to each user ui under the greedy matching.

We cannot use dynamic programming directly to com-
pute the average weight EG∼G(n,d/n),W [xi(G,W)] per user
in (8) since G(n, d/n) may have loops and it cannot be
divided into independent sub-graphs. Given that n is large
and assuming d < 1, then graph G(n, d/n), with very high
probability, is composed of a large number of random trees
without forming loops. In this case the matching weight
xi(G,W) of user ui only depends on the connectivity with
other users in the same tree. To analyze xi(G,W), we want
to mathematically characterize such trees which turn out
to be ‘small’ because d < 1. Note that, in G(n, d/n), each
user has n − 1 independent potential neighbors, and its
random neighbor number follows a binomial distribution
B((n − 1), d/n) with mean (n − 1)d/n → d, as n becomes
large. This binomial distribution can be well approximated
by the Poisson distribution Poi(d) (with mean d). We define
T (d) as a random tree where each node in the tree gives

10

birth to children randomly according to the Poisson distri-
bution Poi(d).
Proposition 11. Given a sparse random network G(n, d/n)

with d < 1 and sufficiently large n, the average matching
weight of any node ui is well approximated by the
average matching weight of the root node of a random
tree T (d), i.e.,

lim
n→∞

EG∼G(n, dn),W [xi(G,W)]=ET∼T (d),W [xroot(T,W)]. (9)

The proof is given in Appendix K of the Supplementary
Material of this TMC submission. We will show numerically
later that the approximation in (9) yields trivial performance
gap and remains accurate as long as d ≤ 10. By substituting
(9) into (8), we obtain approximately the average total
weight EG∼G(n,d/n),W [f̂(G,W)]. Hence, it remains to de-
rive the form of ET∼T (d),W [xroot(T,W)]. Given the recursive
nature of trees, we are able to use dynamic programming.

The root node may receive multiple proposals from its
children corresponding to different possible edge weights in
the set {v1, v2, . . . , vK}, and will match to the one (of them)
with the maximum weight. We define yk, k ∈ {1, 2, . . . ,K},
to denote the probability that the root node receives a
proposal from a child who connects to it with an edge of
weight vk. Then, by considering all the possible weight
combinations of the root’s children, we can compute the
probability to match a child with any given weight, using
the proposal probabilities yk. In a random tree T (d), given
the root node is matched with one of its children, the
remaining graph can be divided into several sub-trees which
are generated from the grand-child or child nodes of the root
node. In any case, a sub-tree starting with any given node
has the similar graph structure and statistical property as the
original tree T (d). Thus, we are able to analytically derive
the recursive equations for finding the proposal probabilities
{yk} for the root node.
Proposition 12. In the random tree T (d), for any k ∈
{1, 2, . . . ,K}, the proposal probability yk from a child
of edge weight vk to the root node is the unique solution
to the following equation:

yk = e−(pK+
∑K

j=k+1 yjpj)d
∞∑
i=0

(pkd)i(1−(1−yk)i+1)

(i+ 1)!yk
. (10)

The proof is given in Appendix L of the Supplementary
Material of this TMC submission. Though not in closed
form, we can easily solve (10) using bisection, and then
compute the probability that the root node matches to a
child with any given weight. Based on that we derive the
average matching weight ET∼T (d),W [xroot(T,W)] of the
root for (9) and thus EG∼G(n,d/n),W [f̂(G,W)] in (8). Finally,
by comparing with (7) under the optimal matching, we can
obtain the average performance ratio of Algorithm 1.

6.3 Numerical Results for Random Graphs

Next, we conduct numerical analysis for sparse random
graphs with d < 1 and random graphs with finite d ≥ 1. To
do that by using analytic formulas, we need to approximate
the random graph by random trees, and one may wonder
if the approximation error is significant (when d > 1). To

1 2 3 4 5 6 7 8 9 10

0.8

0.85

0.9

0.95

1

Average neighbor number d

A
v
e
ra

g
e
 p

e
rf

o
rm

a
n
c
e
 r

a
ti
o

Fig. 9: The average performance ratio of Algorithm 1 in the large ran-
dom graph G(n, p = d/n) under different values of average neighbor
number d.

answer this question, we consider large network size of
n = 10, 000, with edge weights uniformly chosen from the
weight set V = {1, 2} (‘low’ and ‘high’). Our extensive
numerical results show that the difference between the sim-
ulated average matching weight EG∼G(n, dn),W [xi(G,W)]
and the analytically derived average matching weight
ET∼T (d),W [xroot(T,W)] in the approximated tree T (d) is
always less than 0.05% when d < 1 and is still less than
1% even for large 1 ≤ d ≤ 10. This is consistent with
Proposition 11.

Fig. 9 shows the average performance ratio of Algorithm
1, which is greater than 79% for any d value. It approaches
100% as d is small in the sparse random graph regime.
Intuitively, when the average neighbor number d is small
and users are sparsely connected, both Algorithm 1 and
the optimal algorithm try to match as many existing pairs
as possible, resulting in trivial performance gap. When d
is large, each user has many neighbors and choosing the
second or third best matching in the greedy matching is also
close to the optimum. This is consistent with Proposition 9
for dense random graphs.

7 EXTENSION TO MULTI-UNIT D2D RESOURCE
SHARING

In D2D sharing, a user may have multiple units of resources
to supply or demand, and may share with multiple users
at a time. For instance, an Android phone user may open
up personal hotspot and share data connections with up
to 10 users at the same time. In this section, we extend
our average-case analysis to multi-unit resource sharing in
linear networks. Though more involved, our analysis can
also be extended to grid networks.

7.1 Problem Description

Similar to the single-unit linear network in Fig. 3, we con-
sider a large-scale linear sharing network where each user
ui locally connects with two adjacent users ui−1 and ui+1

and has qi units of resource demand (or supply) to share.
Note that, in the multi-unit resource sharing, as long as we
assume that each node cannot be both a consumer and a
supplier at the same time (within one round), the direction
of the edges is implied by the identity of the nodes. There
is no need to change to directed graph modeling. We define

11

Q = {qi} as the quantity vector for all n users and suppose
the quantity qi is IID for each user ui. Similar to problem P1,
we formulate the following multi-unit weighted allocation
problem:

P2 : max
n−1∑
i=1

wi,i+1xi,i+1,

s.t. xi,i+1+xi−1,i≤qi,∀i=2, 3, . . . , n− 1, (11a)
x1,2 ≤ q1, xn−1,n ≤ qn, (11b)
xi,i+1 ∈ {0, 1, 2, . . . }, ∀i = 1, 2, . . . , n− 1,

where constraints (11a) and (11b) ensure that the total
amount of resources allocated to user ui is constrained by
her desired quantity qi.

Note that the direct extension of Algorithm 1 to solve
the multi-unit problem above is to break each user ui
with quantity qi into qi copies of one-unit users. However,
this greatly increases the dimensionality of the problem
(with the increased network size from n to

∑n
i=1 qi) and

unnecessarily introduces competition between copies of the
same user. To solve P2 efficiently, we make changes to
the matching phase of Algorithm 1: every time an edge ei
(between users ui and ui+1) with the local maximum weight
is found by the previous proposal phase, the allocation xi
is no longer updated to 1, but increased by the minimum
quantity min{qi, qi+1}. Meanwhile, the quantities of qi and
qi+1 are decreased by the same amount.

Note that each user still runs the steps of the revised
algorithm based on local information, and will stop once her
desired quantity is fully met or she sees no available neigh-
bor. Thus, for each pair of users with the local maximum
weight, at least one of them will fully satisfy her quantity
in the matching phase and stop running the algorithm.
The linear sharing network can be split due to any user’s
termination. Then, by using the similar arguments from
single-unit case in Section 4, we prove the multi-unit version
of Algorithm 1 still has sub-linear parallel complexity.

Lemma 2. In large-scale linear networks of n users, our
revised Algorithm 1 for multi-unit resource sharing runs
in O(log n) time w.h.p..

7.2 Average Performance Analysis

To study the average performance ratio of the multi-unit
version of Algorithm 1 for solving problem P2, we also
start with the average performance analysis of the optimal
allocation. First note that, in any graph G = (U,E), the
optimal allocation for individual user ui (with the maximum
weight

∑
j∈A(ui)

xijwij) is to allocate all her qi units of
resource to the neighbors with the largest weights. As the
allocation to any edge eij is constrained not only by qi but
also by qj , the individual allocation weight of ui is upper
bounded by

|A(ui)|∑
t=1

wijtxijt . (12)

Fig. 10: Illustration of the new graph decomposition method for a multi-
unit linear network example with two possible quantity values 1 and
2 for each user. All the red-colored nodes have quantity 2 and all the
blue-colored nodes have quantity 1.

where jt is the neighbor of ui with the t-th largest weight
(i.e., wij1 ≥ wij2 ≥ · · · ≥ wij|A(ui)|

) and the allocation xijt
assigned to pair (ui, ujt) is computed as follows:

xijt =

{
min{qi, qjt}, if t = 1,

max{0,min{qi −
∑t−1
i=1 qji , qjt}}, if t ≥ 2.

(13)

Remember that in single-unit case, we derive the upper
bound in (6) for the optimal matching based on the idea that
each matched edge eij can be viewed as providing individ-
ual users ui and uj with equal benefit wij/2. Using this idea
and the maximum individual weight in (12), we similarly
derive the following upper bound of the total weight under
the optimal allocation in any graph G = {U,E}.
Lemma 3. For a general graph G = (U,E), the total weight

of the optimal allocation is upper bounded by

f?(G,W,Q) ≤ 1

2

∑
ui∈U

|A(ui)|∑
t=1

wijtxijt . (14)

In particular, when qi = 1 for all user ui, (14) degenerates
to (6). Note that in (14) we need to take expectation over
both weight W and quantity Q distributions to compute the
average performance.

Next, to estimate a lower bound of the average total
weight under the greedy allocation, we decompose the
linear network into multiple single-unit linear networks.
Different from the graph decomposition method proposed
in Section 4.1, here we decompose the graph based on user
quantities instead of edge weights. As an illustration, Fig. 10
shows the example for users with two possible quantity
values (1 and 2). We split it to a single-unit linear network
in sub-graph (1a) in Fig. 10 and the other sub-graph (1b) in
Fig. 10 to include the rest users with extra quantities. This
new graph decomposition method helps us find a lower
bound on the greedy allocation’s performance.

Note that the average total weight of the single-unit
greedy matchings in each sub-graph can be similarly an-
alyzed as in Section 4.2. Finally, by comparing the derived
lower bound for the greedy allocation with the upper bound
for the optimal allocation in (14), we obtain the average
performance ratio PR(G).
Proposition 13. In large-scale linear networks with edge

weights and user quantities uniformly chosen from the
set V = {1, 1 + ∆} and Q = {1, 2}, the average
performance ratio achieved by the multi-unit version of
Algorithm 1 satisfies

lim
n→∞

PR(G) ≥ 0.604 + 0.433∆

0.75 + 0.5∆
.

This ratio increases with weight difference ∆ and is
larger than 80.5% even when ∆→ 0+.

12

3 4 5 6 7 8 9 10
0.78

0.785

0.79

0.795

0.8

0.805

Quantitiy set size Q

A
v
e
ra

g
e
 p

e
rf

o
rm

a
n
c
e
 r

a
ti
o
 P

R
(G

)

∆ → 0
+

∆ = 0.2

∆ = 0.4

Fig. 11: The average performance ratio PR(G) of the multi-unit version
of Algorithm 1 in linear networks versus the quantity set size Q
under three different values of ∆. Here we assume edge weights and
user quantities are uniformly chosen from the sets {1, 1 + ∆} and
{1, 2, . . . , Q}, respectively.

The proof is given in Appendix M of the Supplemen-
tary Material of this TMC submission. The obtained ratio
increases with ∆ and achieves its minimum value when
all edges have the similar weights (i.e., ∆ → 0+). This is
consistent with Proposition 4 for single-unit matching in
linear networks.

We also extend our analysis to any possible weight and
quantity distributions. In Fig 11, we illustrate the average
performance ratio PR(G) of the multi-unit version of Algo-
rithm 1 against different quantity set size Q. Similar to the
case ofK = 2 in Proposition 13, the lower bound for PR(G)
increases with ∆ and is larger than 78%. It also decreases as
Q increases, as the performance gap is enlarged from the
single-unit version.

8 PRACTICAL APPLICATION ASPECTS

In practice, the network graphs that one may obtain by
restricting the D2D sharing range may have different dis-
tributions than the 2D grids and the G(n, p) graphs used in
our analysis. In addition to that, the actual performance of
the algorithm might be degraded because of communication
failures of nodes that are far or mutual interference among
pairs. In this section, we provide an investigation of the
above issues. We construct a case study of collaborative
caching in a network graph based on real data for mobile
user locations. We check how well our analytical G(n, p =
d/n) performance measure in Section 8.1 captures the actual
performance of the greedy algorithm on the above realistic
graph instances, by tuning d to match the average number
of neighbors in the instances. Later on, in Section 8.2, we
analyze the impact of D2D communication failures on the
optimal selection of D2D maximum sharing range. Finally,
in Section 8.3, we study the tradeoff in choosing T (in
minutes) for a dynamic scenario where users arrive/depart
randomly and can participate in the sharing for several
rounds.

8.1 Case Study of D2D Caching
The G(n, d/n) network studied in Section 6 assumes users
connect with each other with the same probability p = d/n,
and hence the average performance of Algorithm 1 in
G(n, d/n) is characterized by the average neighbor number

5 10 15 20 25

2.3

2.4

2.5

2.6

2.7

2.8

Average neighbor number d

A
v
e
ra

g
e
 m

a
tc

h
in

g
 w

e
ig

h
t
p
e
r

u
s
e
r

1st practical instance of the realistic network

2nd practical instance of the realistic network

3rd practical instance of the realistic network

G(n,d/n) approximation

Fig. 12: The average matching weight per user of the greedy matching
obtained by Algorithm 1 versus the average neighbor number d in the
three practical instances of the realistic network and the G(n, p = d/n)
network.

d. However, in practice, the connectivity distribution of
users can follow different laws due to the structure of the
environment and the D2D communication limitations. To
validate our analysis in scenarios of practical interest, we
run our greedy matching algorithm on the D2D caching net-
work corresponding to real mobile user data and compare
the numerical results with our analytically derived results
for G(n, d/n) using Propositions 11 and 12.

We use the dataset in [32] that records users’ position
information in a three-story university building. We choose
three instances in the peak (in term of density) time from
the dataset and each instance contains hundreds of users.
For these users, we consider random local caching where
users leverage short-range communications (e.g., Bluetooth)
to share cached files following common interests [6]. We
define the set of popular files as F = {1, 2, . . . , 10} and
each user ui caches three files from the library F randomly.
The individual caching file set for ui is denoted by Fi ⊂ F
with |Fi| = 3. Any two users who cache different files
(i.e., Fi 6= Fj), are allowed to share diverse files with
each other as long as the distance between them is less
than the range L of the short-range communication. The
corresponding weight (i.e., file sharing benefit) between
them is determined by the number of different files they
cache, i.e., wij = |Fi ∪ Fj | − |Fi ∩ Fj |.

In the D2D caching network, by setting different values
for L the structure of the graph changes and the average
number d(L) of neighbors per user increases with L. In
Fig. 12, we show the average matching weight (per user) of
the greedy matching versus the average neighbor number
d for the three practical instances of the resulting user
network and its G(n, d/n) approximation. We observe that
the average matching weight increases in d since increasing
d (or increasing L) provides more sharing choices for each
user. Our performance measure obtained for G(n, d/n) ap-
proximates well the actual performance of our algorithm.

8.2 D2D Sharing Range under Communication Failures
Our numerical results from the previous section suggest
that, as expected, the average matching weight of the greedy
matching keeps increasing with the maximum D2D sharing
range L. But this happens only because we did not include
the deterioration of the quality of the D2D links when L
increases. In fact, for two users who are connected and share

13

10 15 20 25 30

D2D sharing range L (m)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v
e

ra
g

e
 m

a
tc

h
in

g
 w

e
ig

h
t

p
e

r
u

s
e

r

Without failures

With failures caused by long-distance

With failures caused by inteference

Fig. 13: The average matching weight per user of the greedy matching
obtained by Algorithm 1 versus the maximum D2D sharing range L
for three cases: A) without D2D communication failures, B) with D2D
communication failures caused by long-distance, and C) with D2D
communication failures caused by interference. Here we set δ1 = 0.02
and δ2 = 0.1.

resources via a D2D wireless link, a communication failure
may occur more frequently due to the long-distance trans-
mission or the mutual interference among different matched
pairs. Such failures produce no matching and reduce the
total matching weight. This suggests that after some value
of L, the performance should decrease.

To show this tradeoff in choosing the best value for
L, we assume there are two types of D2D communication
failures: type-I failure caused by long-distance and type-
II failure caused by interference. The transmission dur-
ing resource sharing between any two users fails with a
probability min{1, δ1D} for type-I failure and a probability
min{1, δ2I}) for type-II failure, where D is the distance (in
meters) between them and I is the number of interfering
pairs in proximity. δ1 and δ2 are scalar values representing
the impact of distance and interference on the communica-
tion failures. The failure probability increases in the distance
(based on a practical path-loss model) and the number of
interfering pairs (see [33]). In our simulation experiment, we
consider a large number n = 10, 000 of users uniformly dis-
tributed in a circular ground cell with a radius of R = 1000
meters, and adjust the maximum sharing range L in which
two users implement D2D resource sharing.

In Fig. 13, we depict the average matching weight (per
user) of the greedy matching versus the maximum D2D
sharing range L for three cases: A) without D2D communi-
cation failures, B) with D2D communication failures caused
by long-distance (type-I failure), and C) with D2D commu-
nication failures caused by interference (type-II failure). We
observe that the performance gap between cases A and B
increases with L, as well as in cases A and C. Intuitively,
when L is small, each user has few potential users to share
resources or have interference, and failures occur rarely to
be of an issue. But when L is large, since most of the
neighbors are located remotely and the channels between
matched pairs may cross each other, there is a higher chance
for the algorithm to choose a remote neighbor, in which case
it incurs large path-loss (type-I failure) or interference (type-
II failure). This is in contrast to the model without failures,
where the performance of the system is always increasing
in L.

100 101 102 103

Time interval T of each D2D sharing round (min)

0

20

40

60

80

100

T
o
ta

l
w

e
ig

h
t
p
e
r

m
in

u
te

=0.9, =0.005
=0.9, =0.01

=0.8, =0.005
=0.8, =0.01

Optimal T=5

Optimal T=4

Optimal T=11

Optimal T=7

Fig. 14: Time-average total weight versus the time interval T under
different values of user sharing probability γ and departure rate µ.
Here we assume users arrive with rate λ = 20 per minute.

8.3 Optimal Time Interval

So far we have studied the average performance for a
‘one-shot’ D2D resource sharing instance captured by the
static graph G. In this subsection, we extend our model
to a dynamic environment of running Algorithm 1 over
multiple sharing rounds when users remain connected in
the system for multiple rounds. An interesting question is
how frequently to repeat Algorithm 1 to meet changes in the
graph structure due to users’ random arrivals, departures
and movement. If the time interval T (e.g., in minutes)
to run the market matching algorithm is small, few new
users will arrive and the existing users may not have extra
resources to buy or sell. If T is large, many arriving users
may depart before any resource sharing happens because
they don’t want to wait for too long. Of course, the choice
of T depends on the type of resources that are being shared,
how frequently a user can replenish its resources, if users
remain active and connected to the application for a long
time, etc. Hence our goal is not to estimate exactly the right
T since this is context-dependent, but to investigate the
fundamental tradeoff between using small and large values
for T .

To characterize this tradeoff in system performance
when choosing T , we consider a dynamic scenario that a
fixed number λ per minute of new users arrive for resource
sharing in a circular ground cell with a radius of R = 1000
meters, and each user will leave the network after an ex-
ponential random time with rate µ. The maximum D2D
sharing range L is assumed to be 100m between users.
Furthermore, for those who stayed since the last round, they
are still interested to share resources again in the new round
with probability γ < 1 and thus a user has resources to
share for 1/(1 − γ) rounds on average even if it remains in
the system for a longer time. Let M be the average number
of active participants in the steady-state. In our experiment
setting, we have M = Mγe−µT +

∑T−1
t=0 λe−µ(T−t), where

the first right-hand-side term of this equation tells the av-
erage number out of M users from the last round to stay
and share in the current round, and the second term tells
the average number of new arriving users during the last
period T .

We run Algorithm 1 in this dynamic scenario and Fig. 14
shows the time-average total weight (per minute) versus

14

T under different values of γ and µ. It first increases and
then decreases with T , since a small T value does not allow
enough new users to share, while a large T value discour-
ages many users who are impatient to wait. The optimal
T decreases with the probability γ for each user to keep
sharing, since more users are available for sharing due to a
larger γ and thus we can run the matching more frequently
to minimize departures because of delayed service. The
optimal T decreases with departure rate µ, as users are
more likely to leave the network and we need a smaller
T to engage them in sharing.

9 CONCLUSIONS

In this paper, we adopt a greedy matching algorithm to
maximize the total sharing benefit in large D2D resource
sharing networks. This algorithm is fully distributed and
has sub-linear complexity O(log n) in the number of users
n. Though the approximation ratio of this algorithm is 1/2
(a worst-case result), we conduct average-case analysis to
rigorously prove that this algorithm provides a significantly
better average performance ratio compared to the optimum
in large linear and grid networks. We then extend our
analysis to random networks G(n, p) and to multi-unit
resource sharing. We also use real mobile user location data
to show that our analytical G(n, p) performance measure
approximates well D2D networks encountered in practice.
Finally, we consider the effect of communication failures
due to increasing the communication range and study the
related optimization problem.

An interesting direction for future research is to consider
the case of users staying for multiple rounds and being able
to choose when to get matched. Users become strategic:
accept a current matching or wait for a possibly better one
in the future. The equilibrium strategies in such a system
depend on parameters such as the distribution of matching
values and the rate of arrivals and departures. Even if we
restrict the topology of the graph to be linear, how do we
analyze the resulting game? We also plan to extend our D2D
resource sharing model that involves directly connected de-
vices to multi-hop networks where intermediate devices can
serve as ‘connectors’ between the source and destination.
One can capture the user connectivity graph with one-hop
D2D connections and then add the edges when considering
two-hop connections, etc.

REFERENCES

[1] S. Gao, L. Duan and C. Courcoubetis,“Average-Case Analysis of
Greedy Matching for D2D Resource Sharing,” 2021 19th Interna-
tional Symposium on Modeling and Optimization in Mobile, Ad
Hoc, and Wireless Networks (WiOPT), 2021, pp. 1-8.

[2] X. Wang, L. Duan, and R. Zhang, “User-Initiated Data Plan
Trading via a Personal Hotspot Market,” in IEEE Transactions
on Wireless Communications, vol. 15, no. 11, pp. 7885-7898, Nov.
2016.

[3] L. Zheng, C. Joe-Wong, C. W. Tan, S. Ha, and M. Chiang, “Sec-
ondary markets for mobile data: Feasibility and benefits of traded
data plans,” 2015 IEEE Conference on Computer Communications
(INFOCOM), Kowloon, 2015, pp. 1580-1588.

[4] L. Pu, X. Chen, J. Xu and X. Fu, “D2D Fogging: An Energy-Efficient
and Incentive-Aware Task Offloading Framework via Network-
assisted D2D Collaboration,” in IEEE Journal on Selected Areas
in Communications, vol. 34, no. 12, pp. 3887-3901, Dec. 2016, doi:
10.1109/JSAC.2016.2624118.

[5] X. Chen, L. Pu, L. Gao, W. Wu, and D. Wu, “Exploiting Massive
D2D Collaboration for Energy-Efficient Mobile Edge Computing,”
in IEEE Wireless Communications, vol. 24, no. 4, pp. 64-71, Aug.
2017.

[6] Y. Guo, L. Duan, and R. Zhang, “Cooperative Local Caching
Under Heterogeneous File Preferences,” in IEEE Transactions on
Communications, vol. 65, no. 1, pp. 444-457, Jan 2017.

[7] D. Wu, L. Zhou, Y. Cai and Y. Qian, “Collaborative Caching
and Matching for D2D Content Sharing,” in IEEE Wireless
Communications, vol. 25, no. 3, pp. 43-49, JUNE 2018, doi:
10.1109/MWC.2018.1700325.

[8] L. Jiang, H. Tian, Z. Xing, K. Wang, K. Zhang, S. Maharjan, S.
Gjessing, and Y. Zhang, “Social-aware energy harvesting device-
to-device communications in 5G networks,” in IEEE Wireless
Communications, vol. 23, no. 4, pp. 20-27, August 2016.

[9] A. Dhungana, and E. Bulut, “Peer-to-peer energy sharing in mo-
bile networks: Applications, challenges, and open problems,” Ad
Hoc Networks, 97, p.102029, 2020.

[10] L. Keller, A. Le, B. Cici, H. Seferoglu, C. Fragouli, and A.
Markopoulou, “Microcast: Cooperative video streaming on smart-
phones,” In Proceedings of the 10th International Conference on
Mobile Systems, Applications, and Services (MobiSys ’12), New
York, 2012, pp. 57–70.

[11] Y. Han and H. Wu, “Minimum-Cost Crowdsourcing with Cover-
age Guarantee in Mobile Opportunistic D2D Networks,” in IEEE
Transactions on Mobile Computing, vol. 16, no. 10, pp. 2806-2818,
1 Oct. 2017, doi: 10.1109/TMC.2017.2677449.

[12] Y. Liu, W. Quan, T. Wang, and Y. Wang, “Delay-constrained utility
maximization for video ads push in mobile opportunistic D2D
networks,” IEEE Internet of Things Journal, 5(5), pp.4088-4099,
2018.

[13] M. Ibrar, L. Wang, A. Akbar and M. A. Jan, “Adaptive Capacity
Task Offloading in Multi-hop D2D-based Social Industrial IoT,” in
IEEE Transactions on Network Science and Engineering, 2022, doi:
10.1109/TNSE.2022.3192478.

[14] A. A. Simiscuka and G. -M. Muntean, “REMOS-IoT-A Relay and
Mobility Scheme for Improved IoT Communication Performance,”
in IEEE Access, vol. 9, pp. 73000-73011, 2021, doi: 10.1109/AC-
CESS.2021.3080133.

[15] W. Sun, J. Liu, Y. Yue and Y. Jiang, “Social-Aware Incentive Mech-
anisms for D2D Resource Sharing in IIoT,” in IEEE Transactions
on Industrial Informatics, vol. 16, no. 8, pp. 5517-5526, Aug. 2020,
doi: 10.1109/TII.2019.2951009.

[16] R. Zhang, F. R. Yu, J. Liu, T. Huang and Y. Liu, “Deep Rein-
forcement Learning (DRL)-Based Device-to-Device (D2D) Caching
With Blockchain and Mobile Edge Computing,” in IEEE Transac-
tions on Wireless Communications, vol. 19, no. 10, pp. 6469-6485,
Oct. 2020, doi: 10.1109/TWC.2020.3003454.

[17] A. Schrijver, “Combinatorial Optimization: Polyhedra and Effi-
ciency,” Springer Science & Business Media, Vol. 24, 2003.

[18] R. Preis, “Linear time 1/2-approximation algorithm for maximum
weighted matching in general graphs,” in Annual Symposium on
Theoretical Aspects of Computer Science, Springer, 1999, pp. 259-
269.

[19] JH. Hoepman, “Simple distributed weighted matchings,” 2004,
[Online]. Available: https://arxiv.org/abs/cs/0410047

[20] Z. Lotker, B. Patt-Shamir, and S. Pettie, “Improved distributed
approximate matching,” Journal of the ACM (JACM), vol. 62, no.
5, pp. 129-136, Nov 2015.

[21] O. Kalinagac, S. S. Kafiloglu, F. Alagoz and G. Gur, “Caching
and D2D Sharing for Content Delivery in Software-Defined UAV
Networks,” 2019 IEEE 90th Vehicular Technology Conference
(VTC2019-Fall), 2019, pp. 1-5, doi: 10.1109/VTCFall.2019.8891497.

[22] M. Tang, S. Wang, L. Gao, J. Huang and L. Sun, “MOMD: A
multi-object multi-dimensional auction for crowdsourced mobile
video streaming,” IEEE INFOCOM 2017 - IEEE Conference on
Computer Communications, 2017, pp. 1-9, doi: 10.1109/INFO-
COM.2017.8057025.

[23] M. Tang, L. Gao, H. Pang, J. Huang and L. Sun, “A multi-
dimensional auction mechanism for mobile crowdsourced video
streaming,” 2016 14th International Symposium on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt),
2016, pp. 1-8, doi: 10.1109/WIOPT.2016.7492948.

[24] D. P. Bertsekas, “Auction algorithms for network flow problems:
A tutorial introduction,”Computational optimization and applica-
tions, 1(1), pp.7-66, 1992.

15

[25] Z. Galil,“Efficient algorithms for finding maximum matching in
graphs,” ACM Computing Surveys (CSUR), 18(1), pp.23-38, 1986.

[26] M. Wattenhofer, R. Wattenhofer, “Distributed Weighted Match-
ing,” In International Symposium on Distributed Computing, pp.
335-348, Springer, Berlin, Heidelberg, 2004.

[27] JH. Hoepman, S. Kutten, Z. Lotker, “Efficient Distributed
Weighted Matchings on Trees,” In International Colloquium on
Structural Information and Communication Complexity, pp. 115-
129. Springer, Berlin, Heidelberg, 2006.

[28] HB. Lim, YM. Teo, P. Mukherjee, VT. Lam, WF. Wong, and S.
See, “Sensor grid: integration of wireless sensor networks and the
grid,” The IEEE Conference on Local Computer Networks 30th
Anniversary (LCN’05), Sydney, NSW, 2005, pp. 91-99.

[29] W. Sun, H. Yamaguchi, K. Yukimasa, and S. Kusumoto, “GV-
Grid: A QoS Routing Protocol for Vehicular Ad Hoc Networks,”
200614th IEEE International Workshop on Quality of Service, New
Haven, CT, 2006, pp. 130-139.

[30] S. Janson, T. Luczak, and A. Rucinski, “Random graphs,” John
Wiley & Sons, Sep 2011.

[31] P. Erdos, and A. Rényi, “On the evolution of random graphs,”
Publ. Math. Inst. Hung. Acad. Sci, 1960, pp. 17-61.

[32] Z. Tóth, and J. Tamás, “Miskolc IIS hybrid IPS: Dataset for hy-
brid indoor positioning,” In 2016 26th International Conference
Radioelektronika, pp. 408-412. IEEE, 2016.

[33] T.S. Rappaport, “Wireless communications: principles and prac-
tice,” Vol. 2. New Jersey: prentice hall PTR, 1996.

Shuqin Gao received the B.S. and M.S. degrees
from Shanghai Jiao Tong University, China, in
2014 and 2017, respectively, and the Ph.D. de-
gree from Singapore University of Technology
and Design, Singapore, in 2022. Her research
interests include network economics, mecha-
nism design and performance analysis of dis-
tributed systems.

Costas A. Courcoubetis was born in Athens,
Greece and received his Diploma (1977) from
the National Technical University of Athens,
Greece, in Electrical and Mechanical Engineer-
ing, his MS (1980) and PhD (1982) from the Uni-
versity of California, Berkeley, in Electrical En-
gineering and Computer Science. He was MTS
at the Mathematics Research Centre, Bell Lab-
oratories, Professor in the Computer Science
Department at the University of Crete, Professor
in the Department of Informatics at the Athens

University of Economics and Business, Professor and Associate Head
in the ESD Pillar, Singapore University of Technology and Design, and
since 2021 Presidential Chair Professor in SDS, CUHK, Shenzhen. His
current research interests include sharing economy and mobility, eco-
nomics and performance analysis of networks and internet technologies,
regulation policy, smart grids and energy systems, resource sharing and
auctions. He received the 2022 MSOM Best OM Paper in Management
Science Award and the 2021 MSOM Service Management SIG Best
Paper Award.

Lingjie Duan (S’09-M’12-SM’17) received the
Ph.D. degree from The Chinese University of
Hong Kong in 2012. He is an Associate Pro-
fessor of Engineering Systems and Design with
the Singapore University of Technology and De-
sign (SUTD). In 2011, he was a Visiting Scholar
at University of California at Berkeley, Berkeley,
CA, USA. His research interests include net-
work economics and game theory, cognitive and
green networks, and energy harvesting wireless
communications. He is an Editor of IEEE Trans-

actions on Wireless Communications. He was an Editor of IEEE Com-
munications Surveys and Tutorials. He also served as a Guest Editor of
the IEEE Journal on Selected Areas in Communications Special Issue
on Human-in-the-Loop Mobile Networks, as well as IEEE Wireless Com-
munications Magazine. He received the SUTD Excellence in Research
Award in 2016 and the 10th IEEE ComSoc Asia-Pacific Outstanding
Young Researcher Award in 2015.

16

APPENDIX A
PROOF OF PROPOSITION 1

For any user ui in the linear network, let H(ui) denote the
length of the longest chain (sequence of edges) that has non-
decreasing weights and starts from ui towards the left or
right side. Let I(ui) be the indicator variable that H(ui) is
greater than c log n for some constant c. Let I(G) be the
indicator variable that the linear graph G has at least one
such chain with length greater than c log n. Then we have

E(I(G)) ≤ E(
n∑
i=1

I(ui)) ≤ 2nq, (15)

where q denotes the probability that c log n consecutive
edges has non-decreasing weights.

The weight of each edge is assumed to indepen-
dently take value from K kinds of weight values
{v1, v2, . . . , vK} according to the probability distribution
P = {p1, p2, . . . , pK}. Then, for any c log n edges, there are
totally:

K−1∑
k=1

(
1 + c log n

k

)(
K − 2

k − 1

)
,

kinds of non-decreasing weight combinations, and for each
of the combinations, the probability to happen is upper
bounded by (max{p1, p2, . . . , pK})c logn. Therefore, the up-
per bound of the probability q that any c log n consecutive
edges have non-decreasing weights is given by:

q ≤ (max{p1, p2, . . . , pK})c logn
K−1∑
k=1

(
1 + c log n

k

)(
K − 2

k − 1

)

≤ nK(max{p1, p2, . . . , pK})c logn.

Then, we have:

E(I(G)) ≤ 2nK+1(max{p1, p2, . . . , pK})c logn.

Note that when c > K+1
− log max{p1,p2,...,pK} , E(I(G)) con-

verges to 0 when n→∞.
Therefore, we can conclude that, in 1 × n grid, the

algorithm run in O(log n) time w.h.p. according to the first
moment method.

APPENDIX B
PROOF OF PROPOSITION 2

In the first step of the graph separation method, we create
a new graph by reducing the weights of all edges by the
smallest possible weight value v1 and the graph’s weight
vector is simplified to W ′ = W − v1 = {w1 − v1, w2 −
v1, . . . , wn − v1} with zero weight for some wi = v1 (if
any). First note that the optimal matching of the graph
with weight vector W = {w1, w2, . . . , wn} may no longer
be the optimal matching of the graph with weight vector
W ′ = W − v1 = {w1 − v1, w2 − v1, . . . , wn − v1}, and
thus we have

∑n
i=1(wi − v1)x?i (W) =

∑n
i=1 w

′
ix
?
i (W) ≤∑n

i=1 w
′
ix
?
i (W

′) = f?(W ′) where x?i (W) is the optimal
matching indicator for edge ei in a graph with weight vector

W . Thus, the relationship between f?(W) and f?(W ′)
satisfies the following inequality

f?(W)=
n∑
i=1

x?i (W)wi = v1

n∑
i=1

x?i (W)+
n∑
i=1

(wi−v1)x?i (W)

≤ v1
n

2
+

n∑
i=1

(wi − v1)x?i (W)

≤ v1
n

2
+ f?(W ′), (16)

where the first inequality uses the fact that
∑n
i=1 x

?
i (W) ≤

n
2 . This is because that, for any linear network with n users,
no matter what its weight vector W = (w1, w2, . . . , wn) is,
the total number of edges in the optimal matching of the
graph is dn2 e at most and we ignore the ceiling operation
since we consider a very large n. After taking expectation,
the average total weights of the optimal matchings in W
and W ′ satisfies

EW [f?(W)] ≤ v1
n

2
+ EW [f?(W ′)]. (17)

In the graph with weight vectorW ′ = W−v1, the weight
w′i = wi − v1 of an edge ei whose original weight wi = v1

now becomes 0 and such edge appears with probability
Pr(wi = v1) = p1. We remove all these edges as they have
no influence on computing the optimal matching. Then, the
graph becomes a lot of linear segments with different length
as in Fig. 4 and the average total number of remaining edges
is n(1− p1).

Note that each segment starts from an edge with nonzero
weight, and the following edge has zero weight with prob-
ability p1 and nonzero weight with probability 1 − p1.
Thus, a segment has length 1 with probability p1 and has
length larger than 1 with probability 1 − p1. Similarly,
a segment of length t needs t − 1 following consecutive
nonzero-weight edges and then ends with a zero-weight
edge. Thus, the probability that a segment has length t is
p1(1− p1)t−1. For any nonzero-weight edge, the probability
that this edge is within a segment of length t now is

tp1(1−p1)t−1∑+∞
k=1 kp1(1−p1)k−1

= tp2
1(1 − p1)t−1. Accordingly, the aver-

age number of edges that are in a segment with length t is
given by the average total number of nonzero-weight edges
in the graph with weight vector W ′ times the probability,
i.e., n(1− p1)× tp2

1(1− p1)t−1. Further, the average number
of segments with length t is np2

1(1− p1)t.
For a segment of length t, at most d t2e edges are

included in any possible matching. Thus, for the graph
with weight vector W ′, the average total number of
nonzero-weight edges included in the optimal matching
EW [

∑n
i=1 x

?
i (W

′)] ≤
∑+∞
t=1 np

2
1(1− p1)td t2e = n 1−p1

2−p1 . Now,
we further deduct v2 − v1 from the weights of all nonzero-
weight edges in the second step of the graph separation
method to create another new graph with weight vector
W ′′ = (W ′ − (v2 − v1))+ and obtain that

EW [f?(W ′)] ≤ (v2 − v1)
1− p1

2− p1
n+ EW [f?(W ′′)]. (18)

where the inequality is also because the total weight of the
optimal matching in graph with W ′′ must be larger than or
equal to the total weight of any possible matching.

17

If weight space size K = 2, by aggregating the in-
equalities (17), (18) and the fact that f?(W ′′) = 0 as
W ′′ = (W − v2)+ = 0, we finally obtain the upper bound
of EW [f?(W)] in the case of K = 2 as follows:

EW [f?(W)] ≤ v1
n

2
+ (v2 − v1)

1− p1

2− p1
n.

For a graph with weight set size K larger than 2, similar
to the case of K = 2 with {v1, v2}, we first deduct the
weights of all edges with nonzero weight by v1 in step 1
and by v2−v1 in step 2. For the graph created in step 2 with
weight vectorW ′′ = (W−v2)+, the edges with zeros weight
appear with probability p1 + p2. Then, we can also remove
all the edges with zero weight in this graph, and prove that
the average total number of nonzero-weight edges included
in the optimal matching,

∑n
i=1 x

?
i (W

′′) must be less than or
equal to n 1−(p1+p2)

2−(p1+p2) using the similar arguments. Moreover,
similarly, we further deduct v3 − v2 from the weights of
all nonzero-weight edges to create another new graph with
weight vector W ′′′ = (W − v3)+ and prove that

EW [f?(W ′)] ≤ (v3 − v2)n
1− p1 − p2

2− p1 − p2
+ EW [f?(W ′′′)].

By repeating such deducting procedure for K steps in the
separation method, we can finally create a new graph with
zero weight vector (W − vK)+ = 0 and the relationship
between the total weight of the optimal matching in the
original graph with weight vector W and the total weight
of the optimal matching in the decomposed graphs is

EW [f?(W)] ≤ v1
n

2
+(v2−v1)n

1−p1

2−p1
+(v3−v2)n

1−p1−p2

2−p1−p2
+

· · ·+ (vK − vK−1)n
1−

∑K−1
i=1 pi

2−
∑K−1
i=1 pi

+ EW [f?((W − vK)+])

= v1
n

2
+ n

K−1∑
k=1

(vk+1 − vk)
1−

∑k
i=1 pi

2−
∑k
i=1 pi

.

The proof is completed.

APPENDIX C
PROOF OF PROPOSITION 3
In the case of K = 2, the recurrence formula of the average
total weight under the greedy matching is given by:

an = p2
1v1 + (p2 + p1p2)v2 + (p2 + p2

1)an−2 + p1p2an−3,

and in the case of K = 3, we also have

an = p1(p2p3 + p1)v1 + p2(p1 + p2)(p1 + 1)v2

+ p3(p1p2 + p1 + p2 + 1)v3 + (p2
1 + p2

2 + p1p2 + p3)an−2

+ (p1p
2
2 + p1p3 + p2

1p2 + p2p3)an−3 + p1p2p3an−4.

Thus, we can imply that, for any arbitrary K, the recurrence
formula of sequence {an} has the following structure:

an =β1v1 + β2v2 + · · ·+ βKvK

+ γ1an−2 + γ2an−3 + · · ·+ γKan−K−1,

where γi denotes the probability that edge ei is the first edge
must be added in Algorithm 1 (i.e., the first edge satisfying
wi ≥ wi+1 and wi > wi−1), and βk denotes the probability

that an edge with weight vk is added because we add the
first edge must be added (e.g., edge ei is the first edge
must be added and edges ei−2, ei−4, and so on will also
be added).

To obtain the general formula, we have to study the
expression of γi and βk. First note that, given edge ei is
the first edge must be added and wi = vj (probability is
Pr(wi = vj) = 1

K), then we have w1 < w2 < w3 · · · <
wi−1 < vj (probability is (1

K)i−1
(j−1
i−1

)
) and wi+1 ≥ vj

(probability is j 1
K). Thus, we have

γi =
K∑
j=i

j(
1

K
)i+1

(
j − 1

i− 1

)
.

Next, we focus on finding the expression of βk. We first
consider the case of k = K and βK denote the probability
that an edge with the largest weight vK is added because
we add the first edge must be added. Note that, if an edge
ei is added because of adding the first edge must be added,
then the first edge must be edge ei itself or an edge that
is in position after ei and has higher weight than ei. Since
vK is the largest weight, an edge ei with weight vK will be
added if and only if itself is the first edge must be added, i.e.
w1 < w2 < · · · < wi−1 < wi = vK ≥ wi+1 (the probability
is (1

K)i
(K−1
i−1

)
). Thus, βK is given by

βK =
K∑
i=1

(
1

K
)i
(
K − 1

i− 1

)
=

1

K
(1 +

1

K
)K−1.

Similarly, we consider the case of k = K−1. Note that, if an
edge ei with weight vK−1 is not the first edge must be added
but it is added because of adding the first edge, then the first
edge must be in one of the position i+ 2, i+ 4 or above. In
such a case, we must have wi+2 > wi+1 > wi = vK−1. But
this is impossible since we only have one possible weight
value larger than vK−1. Thus, similarly, an edge ei with
weight vK−1 will be added if and only if itself is the first
edge must be added, i.e., w1 < w2 < · · · < wi−1 <
wi = vK−1 ≥ wi+1 (the probability is (1

K)i
(K−2
i−1

)
K−1
K).

Accordingly, βK−1 is given by

βK−1 =
K−1∑
i=1

(
1

K
)i
(
K − 2

i− 1

)
K − 1

K
=
K − 1

K2
(1 +

1

K
)K−2.

Different from the above two cases, an edge ei with weight
vK−2 can be added not only when itself is the first edge
must be added, i.e., w1 < w2 < · · · < wi−1 < wi = vK−2 ≥
wi+1 (the probability is (1

K)i K−2
K

(K−3
i−1

)
), but also when the

edge ei+2 is the first edge must be added and wi+1 = vK−1

and wi+2 = vK , i.e., w1 < w2 < · · · < wi−1 < wi = vK−2 <
wi+1 = vK−1 < wi+2 = vK ≥ wi+3 (the probability is
(1
K)i

(K−3
i−1

)
(1
K)2). Thus, βK−2 is given by

βK−2 =
K−2∑
i=1

(
1

K
)i
(
K−3

i−1

)
(
K−2

K
+

1

K2
)=

(K−1)2

K3
(1+

1

K
)K−3.

18

In general, we can obtain the expression of βK−t for any
t ≥ K as follows:

βK−t =
K−t∑
i=1

(
1

K
)i
(
K − t− 1

i− 1

)
(

1

K
(K − t)

+ (
1

K
)3(

t−1∑
j=1

(j +K − t+ 1)

(
j

1

)
)

+ (
1

K
)5(

t−1∑
j=3

(j +K − t+ 1)

(
j

3

)
) + · · ·)

= (1 +
1

K
)K−t−1 1

K
(

1

K
(K − t)

+
∑

i=3,5,...,K+1

(
1

K
)i(

t−1∑
j=i−2

(j +K − t+ 1)

(
j

i− 2

)
)),

(19)

where the second term can be simplified as follows:∑
i=3,5,...,K+1

(
1

K
)j(

t−1∑
j=i−2

(j +K − t+ 1)

(
j

i− 2

)
)

(c)
=

t−1∑
j=1

∑
i=3,5,...,j+2

(
1

K
)i(j +K − t+ 1)

(
j

i− 2

)

=
t−1∑
j=1

∑
i=1,3,...,j

(
1

K
)i+2(j +K − t+ 1)

(
j

i

)
(d)
=

t−1∑
j=1

(
1

K
)2(j +K − t+ 1)

+∞∑
i=1

(−1)i + 1i

2
(

1

K
)i+2

(
j

i

)

= (1− 1

K
)t − K − t

K
,

where (c) exchanges the integration order and (d) is based
on the formula

∑n
i=1 ia

i
(n
i

)
= na(1+a)n−1. By substituting

the above equation back into (19), we obtain

βK−t = (1 +
1

K
)K−t−1 1

K
(1− 1

K
)t

= (1 +
1

K
)K

(K − 1)t

(K + 1)t+1
, (20)

and it can be rewritten as

βk =
(K − 1)K−k

KK(K + 1)−k+1
.

The proof is completed.

APPENDIX D
PROOF OF PROPOSITION 4
In the case that k = 2, we have the following recurrence
formula for {an}:

an = p2
1v1 + (p2 + p1p2)v2 + (p2 + p2

1)an−2 + p1p2an−3.
(21)

Note that a general solution to (21) is given by

an =
p2

1v1 + (p2 + p1p2)v2

2(p2 + p2
1) + 3p1p2

n+ b,

=
p2

1v1 + (p2 + p1p2)v2

2 + p1p2
n+ b, (22)

where b can be any constant value. However, in our problem
with a1 = 0, a2 = p1v1 + p2v2, the first two terms of
the sequence do not follow an arithmetic progression. To
obtain the converged b as n goes to infinity, we first list the
following equations based on (21):

a1 = 0;

a2 = p1v1 + p2v2;

a3 = p2
1v1 + (p2 + p1p2)v2 + (p2 + p2

1)a1;

a4 = p2
1v1 + (p2 + p1p2)v2 + (p2 + p2

1)a2 + p1p2a1;

. . .

an−1 = p2
1v1 + (p2 + p1p2)v2 + (p2 + p2

1)an−3 + p1p2an−4;

an = p2
1v1 + (p2 + p1p2)v2 + (p2 + p2

1)an−2 + p1p2an−3.

By summing them up, we obtain that

an + an−1 + p1p2an−2 =

(p2
1v1 + (p2 + p1p2)v2)(n− 2) + p1v1 + p2v2.

(23)

Therefore, by substituting (22) into (23), we can show that b
converges to (2+p1p2)(p1v1+p2v2)−3(p21v1+(p1+p1p2)v2)

(2+p1p2)2 as n →
∞. We finally obtain the general formula for the sequence
{an} in the limit of large enough network size as follows:

lim
n→∞

EW [f̂(W = {w1, w2 . . . , wn})]

= lim
n→∞

an =
p2

1v1 + (p2 + p1p2)v2

2p2 + 2p2
1 + 3p1p2

n+O(1), (24)

Based on (3) and (24), the average performance guaran-
tee of Algorithm 1 is given by

lim
n→∞

PR(n) ≥ p2
1v1 + (p2 + p1p2)v2

(2p2 + 2p2
1 + 3p1p2)(v12 + (v2 − v1) 1−p1

2−p1)
,

(25)

Then, by substituting p2 = 1− p1 into (25), we have

lim
n→∞

PR(G) ≥ p2
1v1 + (1− p2

1)v2

(2 + p1 − p2
1)(p1

4−2p1
v1 + 1−p1

2−p1 v2)
, (26)

which is a function of v1, v2 and p1. Note that when v2 and
p1 are fixed, this function is decreasing in v1 since the ratio of
the coefficients of v1 in the numerator and the denominator
p21
p1

4−2p1

is less than or equal to the ratio of the constant terms

in the numerator and the denominator 1−p21
1−p1
2−p1

for any 0 ≤
p1 ≤ 1. Moreover, the intrinsic bound for v1 is 0 ≤ v1 < v2.
Therefore, the average performance guarantee must achieve
the minimum value when v1 infinitely approaches v2, i.e.,
v1 → v−2 . Now, given v1 → v−2 , (26) can be further rewritten
as

lim
n→∞

PR(G) ≥ 2

(2 + p1 − p2
1)

=
2

9
4 − (p1 − 1

2)2
.

This guarantee achieves its minimum value 8
9 when p1 = 1

2
obviously.

Thus, we can conclude that the average performance
guarantee given in (26) achieves its minimum value 8

9 when
v2
v1
→ 1+ and p1 = p2 = 1

2 . The proof is completed.

19

APPENDIX E
PROOF OF PROPOSITION 5

For any general weight set size K , we can similarly derive
the general formula of sequence {an} as follows

lim
n→∞

an = n
β1v1 + β2v2 + · · ·+ βKvK

2γ1 + 3γ2 + · · ·+ (K + 1)γK
+O(1). (27)

By substituting βk = (K−1)K−k

KK(K+1)−k+1 and γk =

1
Kk+1

K∑
i=k

i
(i−1
k−1

)
into (27), we obtain the following formula:

lim
n→∞

an = n
K∑
k=1

vk
(K − 1)K−k

(K + 1)K−k+1
+O(1).

Moreover, in Proposition 2, we prove that the average total
weight under the optimal matching is upper bounded as
follows

EW [f?(W)] ≥ v1
n

2
+ n

K−1∑
k=1

(vk+1 − vk)
1−

∑k
i=1 pi

2−
∑k
i=1 pi

= n
K−1∑
k=0

vk
K

(2K + 1− k)(2K − k)
,

Thus, the average performance guarantee is given by:

PR(G) ≥
∑K
k=1 vk

(K−1)K−k

(K+1)K−k+1∑K
k=1 vk

K
(2K+1−k)(2K−k)

. (28)

Note that the ratio of the coefficients of vk in the numerator
and the denominator increases as k increases, i.e.,

(K−1)K−k

(K+1)K−k+1

K
(2K+1−k)(2K−k)

<

(K−1)K−k−1

(K+1)K−k

K
(2K−k)(2K−k−1)

,∀k ∈ {1, 2,. . .,K− 1}.

Thus, the guarantee given in (28) is minimized when v1

infinitely approaches v2, v2 infinitely approaches v1 and so
on. Moreover, the minimum value is given by

PR(G) ≥
∑K−1
t=0

(K−1)t

(K+1)t+1∑K−1
t=0

K
(K+1+t)(K+t)

= 1− (
K − 1

K + 1
)K ,

which is decreasing in K when K ≥ 2 and the limit is given
by:

lim
K→∞

1−(
K − 1

K + 1
)K= lim

K→∞
1−(1− 2

K + 1
)

K+1
2

2K
K+1 =1−e−2.

Moreover, note that the coefficients of vK in the numerator
and the denominator are the same. Thus, the guarantee
given in (28) is maximized when 0 ≤ v1 < v2 < · · · <
vK−1 � vK and the maximum value is given by

PR(G) ≥
1

K+1
1

K+1

= 1.

The proof is completed.

APPENDIX F
PROOF OF PROPOSITION 6
For any user ui ∈ U with degree d(ui), the probability
that the maximum weight of all the d(ui) neighboring
edges is equal to or less than vk is given by (

∑k
i=1 pk)d(ui)

where
∑k
i=1 pk is the probability that one edge has weight

equal to or less than vk. Thus, the average maximum
weight of all d(ui) edges incident to user ui is given by∑K
k=1 vk((

∑k
i=1 pk)d(ui) − (

∑k−1
i=1 pk)d(ui)). Further, the ex-

pectation of (6) can be given by

EW [f?(G,W)] ≤ 1

2

∑
ui∈U

K∑
k=1

vk((
k∑
i=1

pi)
d(ui) − (

k−1∑
i=1

pi)
d(ui)).

The proof is completed.

APPENDIX G
PROOF OF PROPOSITION 7
We first note that in n×n grid, the number of possible chains
that start from any given node ui and have non-decreasing
weights is no longer two (toward left or right) as in 1×n grid
networks, but still limited to be less than 4K (the weight set
size K is a given constant). This is because we assume in
Algorithm 1, every node will need to use priorities over ties
among neighbors whose edge has the same weight and thus
the number of possible chains that are relevant to a user’s
decisions is significantly reduced. Similarly, let I(ui) be the
indicator variable that the length H(ui) of the longest chain
(sequence of edges) that has non-decreasing weights and
starts from ui is greater than c log n for some constant c. Let
I(G) be the indicator variable that the linear graph G has at
least one such chain with length greater than c log n. Then
we have

E(I(G)) ≤ E(
n∑
i=1

I(ui)) ≤ 4Kn2q, (29)

By using the similar arguments as in linear networks, we
can prove that in n × n grid, the algorithm run in O(log n)
time w.h.p..

APPENDIX H
PROOF OF PROPOSITION 8
Based on Proposition 6, we are able to compute the upper
bound of the average total weight under the optimal match-
ing for any given graph. We now consider a n × n grid
and that the weight set V = {v1 = 1, v2 = 1 + ∆} and
the weight probability distribution P = {p1 = 1

2 , p2 = 1
2}

are given. Note that, in this gird, there are (n − 2)2 nodes
with degree 4, 4n − 8 nodes with degree 3, and 4 nodes
with degree 2 in the grid. Moreover, the average maximum
weight of a node with degree d is 2− (1

2)d. Thus, we finally
obtain the average total weight under the optimal matching
in the grid is upper bounded by 16+15∆

32 n+ o(n).
Regarding the average total weight of greedy matching,

we first note that for each 2 × n sub-grid in step 2, the
recursive formula for the sequence {an} is given by

an =
19 + 15∆

16
+

1

4
an−1 +

5

8
an−2 +

1

8
an−3.

20

Based on this, we derive the general formula an = 19+15∆
30 n

by using asymptotic analysis.
Then, after the matching in Step 2, users in the second

row might be unmatched and are available for the matching
in step 3. To compute the probability pM that any user ui
in the first row is matched to her vertical neighbor ui+n
in the second row in step 2, we first define the proposal
probability yrk (ylk) that ui receives a proposal from her
right (left) neighbor given the weight between them is vk.
Moreover, we have that yrk and ylk satisfy the following
recursive formulas:

yrk =
k

K
(1−

K∑
t=k+1

yrt
K

),

ylk =
k

K
(1−

K∑
t=k

yrt
K

).

When K = 2, we can obtain yr1 = 1
4 , yr2 = 1, yl1 = 4

15
and yl2 = 2

3 . Based on this, we can compute the matching
probability pM = 4

15 for any user in the second row in step
2. After removing these matched users, the remaining graph
in the second row becomes a lot of linear segments in step 3
as shown in Fig. 6. We first compute the average number of
segments with length t by using probability analysis, which
is given by (1 − pM)tp2

Mn. Note that, for a linear segment
with size 1× t, its greedy matching is denoted by at. Then,
the average weight caused by matched remaining edges in
second row is equal to

∑∞
t=1(1− pM)tp2

Mnat.
To compute that, we need the value of at for any t.

We have a1 = 0, a2 = 2+∆
2 , a3 = 4+3∆

4 and at =
4+3∆

4 + 3
4at−2 + 1

4at−3 according to (4). Thus, we can
compute the value of at for a finite number of t, for
example, from t = 1 to t = 100, and further derive a
lower bound for

∑∞
t=2(1 − pM)tp2

Mnat, which is given by∑100
t=2(1 − pM)tp2

Mnat ≈ (0.288 + 0.1967∆)n. Note that
the value of

∑∞
t=101(1 − pM)tp2

Mnat is almost zero since
(1−pM)t decreases exponentially while at increases linearly
in t.

In sum, we can prove that the average total weight under
the greedy matching in the n× n grid is lower bounded by

lim
n→∞

EW [f̂(G,W)] ≥ (
19 + 15∆

30
+ 0.288 + 0.1967∆)

n2

2

≥ 0.9213 + 0.6967∆

2
n2 + o(n2)

where EW [f̂(G,W)] denotes the average total weight under
the greedy matching in the n× n grid.

By combining this with the previously derived upper
bound for the optimal matching, we finally obtain

lim
n→∞

PR(G) ≥ 0.9213 + 0.6967∆

1 + 0.9375∆
.

The proof is completed.

APPENDIX I
PROOF OF PROPOSITION 9
In the random graph G(n, p) with a large user number n
and a constant connection probability p, the probability that

there exist
√
n nodes that have less edges than

√
n among

them is upper bounded by

lim
n→∞

(
n√
n

)√
n−1∑
i=0

(√
n(
√
n−1)

2

i

)
yi(1− p)

√
n(
√

n−1)
2 −i

≤ lim
n→∞

(1− p)
n−
√

n
2

(
n√
n

)2
√
n−1∑
i=0

(
p

1− p
)i = 0.

Therefore, for any
√
n nodes in G(n, p), there are more than√

n edges among them with probability 1.
Let Ei denote the number of edges in the random graph

after the greedy matching algorithm adding i edges. The
probability that the heaviest edge among Ei edges has
weight vK is 1 − (

∑K−1
k=1 pk)Ei . Thus, the probability that

the first heaviest edge to add in the greedy algorithm has
weight vK is given by 1 − (

∑K−1
k=1 pk)E0 . After adding the

first edge in the greedy algorithm, the probability that the
heaviest edge to add among the remaining edges has weight
vK is given by (1 − (

∑K−1
k=1 pk)E0)(1 − (

∑K−1
k=1 pk)E1) ≥

1 − (
∑K−1
k=1 pk)E0 − (

∑K−1
k=1 pk)E1 . Similarly, we have that

when n → ∞, the probability that the (n −
√
n)/2-th edge

to add have weight vK satisfies

lim
n→∞

1−
(n−
√
n)/2−1∑
i=0

(
K−1∑
k=1

pk)Ei

≥ lim
n→∞

1− n−
√
n

2
(
K−1∑
k=1

pk)E(n−
√

n)/2−1

≥ lim
n→∞

1− n−
√
n

2
(
K−1∑
k=1

pk)
√
n = 1, (30)

where the second inequality is because the number of edges
E(n−

√
n)/2−1 among the remaining

√
n+2 unmatched users

is large than
√
nwith probability 1 when n→∞ as we have

proved earlier,
Therefore, we have that all the first (n −

√
n)/2 edges

added to the greedy matching have the largest weight vK
with probability 1. Moreover, an obvious upper bound of
the total weight under the optimal matching is given by
nvK/2 since any two users can be matched with an edge
with weight vK at most. Therefore, the average performance
guarantee of the greedy algorithm is given by:

lim
n→∞

vK((n−
√
n)/2)

vKn/2
= 1.

The proof is completed.

APPENDIX J
PROOF OF PROPOSITION 10

Similarly, for any user ui in the linear network, let H(ui)
denote the length of the longest chain (sequence of edges)
that has non-decreasing weights and starts from ui. Let
I(ui) be the indicator variable that H(ui) is greater than
c log n for some constant c. Let I(G) be the indicator variable

21

that the linear graph G has at least one such chain with
length greater than c log n. Then we have

E(I(G)) ≤ E(
n∑
i=1

I(ui)) = nE(I(u1))

≤ n(
d(n− 1)

n
)lognq < ndc lognq,

where q denotes the probability that c log n consecutive
edges has non-decreasing weights. The second inequality
is because the expected size of ui’s c log n-th generation is
given by (d(n−1)

n)logn.
By using the similar arguments as in the proof of Propo-

sition 1, we have q < nK(max{p1,p2,...,pK}
2)c logn. Then we

obtain:

E(I(G)) ≤ (
1

2
)−KnK+1dc logn(

max{p1, p2, . . . , pK}
2

)c logn.

= (
1

2
)−KnK+1−c(− log

max{p1,p2,...,pK}
2 −log d)

Note that when d < 2
max{p1,p2,...,pK} , there always exists

a constant c > K+1
log 2−log max{p1,p2,...,pK}−log d that makes

E(I(G)) converge to 0 when n → ∞. Therefore, we can
conclude that the algorithm will terminate within c log n
iterations w.h.p. according to the first moment method.

APPENDIX K
PROOF OF PROPOSITION 11
In G(n, d/n) with d < 1, to prove (9), we first show the
connected component of any user ui has no loops w.h.p.,
and thus we can analyze the conditional expectation of
EG∼G(n,d/n)[xi(G)|C(ui) = 0] assuming the number of
loops C(ui) in ui’s component is zero, instead of directly
analyzing EG∼G(n,d/n)[xi(G)] (step 1 below). Then, it re-
mains to show EG∼G(n,d/n)[xi(G)|C(ui) = 0] can be well
approximated by ET∼T (d),W [xroot(T,W)] in the approxi-
mated random tree T (d), as both of them are considered
in graphs without loops (step 2 below).

Step 1: In G(n, d/n), there are totally a random number
of loops each of which includes at least three users, and
for any t ≥ 3 users, they have totally (t−1)!

2 kinds of
permutations to form a loop. Thus, the average total number
of loops is

E(Loop)=
n∑
t=3

(
n

t

)
(t−1)!

2
(
d

n
)t<

1

6

n∑
t=3

(d)t<
(d)3

6(1−d)
, (31)

which implies that regardless of the graph size n, there
are at most a constant number of loops. Moreover, since
[31] proves that G(n, d/n) almost surely has no connected
components of size larger than c log n for some constant
c, the average size of the largest connected component in
G(n, d/n) is only o(n). By combining this with (31), the
average total number of users in the components with loops
should be less than o(n)E(Loop) = o(n). Therefore, the
probability that user ui is one of these users who are in
components with loops is

lim
n→∞

Prob(C(ui) ≥ 1) =
o(n)

n
= 0, (32)

where C(ui) denotes the number of loops in the connected
component of user ui. Based on (32), we now have:

lim
n→∞

EG∼G(n, dn)[xi(G)]= lim
n→∞

EG∼G(n, dn)[xi(G)|C(ui)=0].

(33)

Step 2: In this step, our problem becomes to prove
that the conditional expectation EG∼G(n,d/n)[xi(G)|C(ui) =
0] can be well approximated by ET∼T (d),W [xroot(T,W)].
Given the connected component of user ui is a tree (i.e.,
with C(ui) = 0 loop), we start by first showing that the
users in the component connect with each other in a similar
way as in the random tree T (d).

We do a breadth-first search (BFS) starting from ui to
explore all its connected users by searching all its direct
neighbors prior to moving on to the two-hop neighbors.
Note that the number of neighbors we explore from user ui
follows the binomial distribution B(n − 1, d/n). In fact, for
any user in the BFS tree of ui, the number of new neighbors
we directly explore from this user follows the binomial
distribution B(n−m, d/n) where m is the number of users
that have already been explored currently and cannot be
explored again (otherwise a loop would occur). Meanwhile,
in T (d), each node gives birth to children according to the
same Poisson distribution Poi(d) no matter how large the
tree currently is.

Next, we prove that the difference between the branch-
ing under B(n−m, d/n) and Poi(d) is trivial. Actually, for
any t,m ≤ c log n, the ratio of the probability of getting
t from distribution B(n − m, d/n) and the probability of
getting t from distribution Poi(d) is bounded by

1− 1√
n
≤
(n−m

t

)
(dn)t(1− d

n)n−m−t

e−ddt/(t)!
≤ 1 +

1√
n
, (34)

when n is sufficiently large.
We define Θ as the set of all possible graph structures

that the random tree T (d) can have, and p1(θ) as the cor-
responding probability for any structure θ ∈ Θ. As the set
Θ includes all possible structures that the BFS tree of ui can
have, we also define p2(θ) similarly for the BFS tree. Then,
based on (34), for any θ ∈ Θ with user size s(θ) < c log n,
we have

(1− 1√
n

)s(θ) ≤ p2(θ)

p1(θ)
≤ (1 +

1√
n

)s(θ), (35)

which is because both the probabilities p1(θ) and p2(θ) are
given by the product of all s(θ) users’ individual probability
to give birth to a given number of children as in structure θ.

We now note that the difference between
ET∼T (d)[xroot(T)] and EG∼G(n,d/n)[xi(G)|C(ui) = 0]
is determined by the difference between p1(θ) and p2(θ)

ET∼T (d)[xroot(T)] =
∑
θ∈Θ

p1(θ)xroot(θ), (36)

EG∼G(n,d/n)[xi(G)|C(ui) = 0] =
∑
θ∈Θ

p2(θ)xroot(θ). (37)

(37) uses xroot(θ) instead of xi(θ) because the matching
weight xi(θ) of node ui should be equal to the matching
weight xroot(θ) of the root node when the BFS tree of ui has
the same structure θ as the rooted tree.

22

By substituting (35) into (36) and (37), we have

lim
n→∞

|ET∼T (d)[xroot(T)]− EG∼G(n,d/n)[xi(G)|C(ui) = 0]|

= lim
n→∞

|
∑
θ∈Θ

xroot(θ)(p1(θ)− p2(θ))|

≤ lim
n→∞

vK
2

∑
{θ∈Θ:s(θ)≥c logn}

p1(θ) + p2(θ)

+
vK
2

∑
{θ∈Θ:s(θ)<c logn}

p1(θ)((1 +
1√
n

)s(θ) − 1)

(a)
= lim
n→∞

vK
2

1√
n

∑
{θ∈Θ:s(θ)<c logn}

p1(θ)s(θ)

(b)
≤ lim

n→∞

vK
2

1√
n

1

1− d
= 0, (38)

where we split the analysis in two cases depending on
whether the graph structure θ has size larger than c log n
or not. As we mentioned earlier, [31] proves that G(n, d/n)
almost surely has no connected components of size larger
than c log n for the constant c, thus we have the proba-
bility

∑
{θ∈Θ:s(θ)≥c logn} p2(θ) = 0 to derive equality (a).

Inequality (b) is due to that the average size of the random
tree T (d) is given by

∑
θ∈Θ p1(θ)s(θ) =

∑∞
t=0 d

t = 1
1−d

where dt is the average size of the t-th generation as
each node gives birth to d children on average. More-
over, according to the first moment method, we also have∑
{θ∈Θ:s(θ)≥c logn} p1(θ) = 0 for (a).
Based on (33) and (38), we finally prove (9).

APPENDIX L
PROOF OF PROPOSITION 12
To compute the proposal probability yk, we further define yck
to denote the probability that the root node receives a pro-
posal from a child who connects to it with an edge of weight
vk given this child gives birth to c grandchild nodes (hap-
pens with probability

(n−1
c

)
(d/n)c(1− d/n)n−1−c → dc

c! e
−d

as n→∞). If the edge between the root node and the child
has the maximum weight (i.e., k = K), the child will send a
proposal to the root node only when all i grandchildren
that have the maximum weight among the c grandchild
nodes (happens with probability

(c
i

)
(pK)i(1−pK)c−i) either

want great-grandchildren (happens with probability 1−yK)
or have lower priority to be added. Thus, the recursive
equation for the proposal probability ycK is given as follows:

ycK=
c∑
i=0

(
c

i

)
(pK)i(1−pK)c−i(

i∑
j=0

(
i

j

)
yi−jK (1−yK)j

1

i−j+1
).

Moreover, by considering all possible number of grandchil-
dren that the child can give birth to, we can derive the
aggregate recursive equation for the matching possibility
yK :

yK =
∞∑
c=0

dc

c!
e−dycK

=
∞∑
c=0

dc

c!
e−d

c∑
i=0

(
c

i

)
(pK)i(1−pK)c−i(

i∑
j=0

(i
j

)
yi−jK (1−yK)j

i− j + 1
)

= e−pKd
∞∑
i=0

(pKd)i(1− (1− yK)i+1)

(i+ 1)!yK
, (39)

after a summation by parts. Note that the term 1
yK

(1− (1−
yK)i+1) on the right-hand-side of the equation is decreasing
in yK when yK ∈ (0, 1). Moreover, when yK = 0, the RHS
of the equation is equal to 1. When yK = 1, the RHS of the
equation is equal to 1

pKd
(1− e−pKd) < 1 for any d > 0 and

0 < pK < 1. Therefore, there exists a unique solution y?K
satisfying the above equation in the interval (0, 1).

Then, after the proposal probability yK of the maximum
weight has been decided, the proposal probability yK−1

now have the highest priority to compute as wK−1 becomes
the maximum weight among the remaining weights. Simi-
larly, for the proposal probability yK−1, we can derive the
following recursive equation

yk = e−(pK+yKpK)d
∞∑
i=0

(pkd)i(1− (1− yk)i+1)

(i+ 1)!yk
. (40)

Using the similar argument for yK , we prove that there
exists a unique solution y?K−1 satisfying the above equation
in the interval (0, 1) after substituting the solution y?K to (39)
into (40).

Eventually, for any k = 1, 2, . . .K, we can derive the
following recursive equation

yk = e−(pK+
∑K

j=k+1 yjpj)d
∞∑
i=0

(pkd)i(1− (1− yk)i+1)

(i+ 1)!yk
.

and prove that there exists a unique solution to the equation.

APPENDIX M
PROOF OF PROPOSITION 13
As shown in Fig 10, the decomposed sub-graph (1a) has
size 1× n and its average total weight an under the greedy
matching is given by an = 4+3∆

9 + o(n) based on (4).
As for the decomposed sub-graph (1b), only the users

with quantity 2 are left and they form a lot of linear
segments. We first compute the average number of segments
with length t by using probability analysis, which is given
by n

2t+2 . Note that, for a linear segment with size 1 × t, its
greedy matching is denoted by at. Then, the average weight
caused by matched remaining edges in second row is equal
to
∑∞
t=1

n
2t+2 at.

To compute that, we need the value of at for any t.
We have a1 = 0, a2 = 2+∆

2 , a3 = 4+3∆
4 and at =

4+3∆
4 + 3

4at−2 + 1
4at−3 according to (4). Thus, we can

compute the value of at for a finite number of t, for ex-
ample, from t = 1 to t = 100 and further derive a lower
bound for

∑∞
t=2

n
2t+2 at, which is given by

∑100
t=2

n
2t+2 at ≈

(0.16 + 0.1∆)n. Note that the value of
∑∞
t=101

n
2t+2 at is

almost zero since n
2t+2 decreases exponentially while at

increases linearly in t.
In sum, we can prove that the average total weight under

the greedy matching in the linear network of n users is
lower bounded by

lim
n→∞

EW [f̂(G,W)] ≥ (
4 + 3∆

9
+ 0.16 + 0.1∆)n

≥ (0.604 + 0.433∆)n+ o(n)

where EW [f̂(G,W)] denotes the average total weight un-
der the greedy matching in the linear networks with two
possible quantity values 1 and 2.

23

By combining this with the derived upper bound for the
optimal matching using (14), we finally obtain

lim
n→∞

PR(G) ≥ 0.604 + 0.433∆

0.75 + 0.5∆
.

The proof is completed.

APPENDIX N
PROOF OF AVERAGE PERFORMANCE RATIO FOR
NON-IID ROUNDS

In a more detailed model, the same user may stay for multi-
ple rounds to fulfill its demand expressed in the first round.
This will create dependence between adjacent rounds. To
obtain the optimal matching when users stay for multiple
rounds, we need to run the matching algorithm that takes
into account the entire time horizon assuming full knowl-
edge of the future. More specifically, using full knowledge
of arrivals and departures over time, we can construct an
enlarged graph where any two nearby users are connected
if there is an overlap between their activity intervals. Since
users can be matched only once during any activity interval,
we can compute the optimal matching using this larger
graph.

Here, we further extend our methodology to compare
the single-round greedy matching returned by running
Algorithm 1 independently in each round with the multi-
round optimal matching using future information in the
linear matching network model where users stay for 2
rounds. In this extended linear network model, we assume
that there are a population of n users and in the first round
each user becomes active in the system with probability 0.5.
Once a user becomes active, it will wait for two rounds to be
matched and becomes inactive after. Once inactive, the user
joins the system again with the same probability 0.5 in the
following rounds. For illustrative purposes, we also assume
the weight set V = {v1 = 1, v2 = 1 + ∆} and uniform
weight distribution p1 = p2 = 1

2 for the sharing benefit
between any pair of users.

Then, to analyze the average performance ratio of the
single-round greedy matching as compared to the multi-
round optimal matching, we first derive the upper bound of
the optimum. Note that, in such a dynamic linear network,
each of n users is active for 2/3 of rounds on average
over the entire time horizon. For any user being active, her
left/right neighbor is inactive (i.e., unavailable for match-
ing) with probability 1− 2/3 = 1/3 in her first participating
round and keeps being inactive with probability 1/2 in
the second round. Thus, during the two rounds, the user
has two available neighbors with probability 25/36, one
available neighbor with probability 10/36, and no available
neighbor with probability 1/36. Then, by using similar
arguments as in Section 5.1, we can prove that the individual
matching weight of this user is upper bounded by

4 + 3∆

8
× 25

36
+

2 + ∆

4
× 10

36
+ 0× 1

36
=

140 + 95∆

288
.

Hence, the average total weight under the optimal matching
in each round is upper bounded by 140+95∆

864 n.
Next, we estimate a lower bound of the average total

weight under the greedy matching. Note that in each round

of the extended linear network, there are 1/3 of users who
turn to active from inactive, 1/3 of users who keep being
inactive, and 1/3 of users who keep being active since
the last round on average. We run the greedy matching
algorithm for new participating users independently in
each round and these users form a lot of linear segments.
Similar to the proof of Proposition 13 in Appendix M,
we first compute the average number of segments with
length t by using probability analysis, which is given by

4n
3t+2 . Note that, for a linear segment with size 1 × t, its
greedy matching is denoted by at and we have a1 = 0,
a2 = 2+∆

2 , a3 = 4+3∆
4 and at = 4+3∆

4 + 3
4at−2 + 1

4at−3

according to (4). Then, the average total matching weight
for all the segments is

∑∞
t=1

4n
3t+2 at, which is lower bounded

by
∑100
t=1

4n
3t+2 at ≈ 0.0816 + 0.0476∆. Moreover, note that

the users in the segments of size 1 × 1 have no available
neighbor in the current round and thus can be left to
match with the same kind of users in the next round.
Such matching can make an additional matching weight of
10
243 + 11

486∆. In sum, we can prove that the total weight
under the single-round greedy matching is lower bounded
by 0.0816 + 0.0476∆ + 10

243 + 11
486∆ = 0.1228 + 0.0703∆.

Finally, by comparing the derived lower bound for the
single-round greedy matching with the upper bound for
the multi-round optimal matching, we obtain the lower
bound of the average performance ratio PRt(G) for non-
IID rounds as follows:

lim
n→∞

lim
t→∞

PRt(G) ≥ 0.1228 + 0.0703∆
140+95∆

864

.

This ratio decreases from 75.8% to 63.9% as weight differ-
ence ∆ increases from 0 to +∞.

The obtained ratio decreases with ∆ and achieves its
maximum value when all edges have similar weights (i.e.,
∆ → 0+). This is different from Proposition 4 for single-
round matching in linear networks. We believe this is be-
cause the network is sparser in the considered multi-round
model where users participate with probability 0.5. Then,
both the single-round greedy matching and the multi-round
optimal matching try to match as many pairs as possible,
resulting in similar numbers of matched edges and thus a
trivial performance/weight gap when all edges have similar
weights.

	1 Introduction
	2 Related Work
	3 System Model and Problem Formulation
	3.1 System Model for D2D Resource Sharing
	3.2 Preliminaries of Greedy Algorithm
	3.3 Our Problem Statement for Average-Case Analysis

	4 Average-Case Analysis for D2D Sharing in 1D Linear Networks
	4.1 Average Performance Analysis of Optimal Matching
	4.2 Average Performance Analysis of Algorithm 1
	4.3 Average Performance Ratio of Algorithm 1

	5 Average-Case Analysis for D2D Sharing in 2D Grid Networks
	5.1 Average Performance Analysis of Optimal Matching
	5.2 Average Performance Analysis of Algorithm 1

	6 Average-Case Analysis for D2D Sharing in G(n,p) Networks
	6.1 Average-Case Analysis of Dense Random Graphs
	6.2 Average-Case Analysis of Sparse Random Graphs
	6.3 Numerical Results for Random Graphs

	7 Extension to Multi-unit D2D Resource Sharing
	7.1 Problem Description
	7.2 Average Performance Analysis

	8 Practical Application Aspects
	8.1 Case Study of D2D Caching
	8.2 D2D Sharing Range under Communication Failures
	8.3 Optimal Time Interval

	9 Conclusions
	References
	Biographies
	Shuqin Gao
	Costas A. Courcoubetis
	Lingjie Duan

	Appendix A: Proof of Proposition 1
	Appendix B: Proof of Proposition 2
	Appendix C: Proof of Proposition 3
	Appendix D: Proof of Proposition 4
	Appendix E: Proof of Proposition 5
	Appendix F: Proof of Proposition 6
	Appendix G: Proof of Proposition 7
	Appendix H: Proof of Proposition 8
	Appendix I: Proof of Proposition 9
	Appendix J: Proof of Proposition 10
	Appendix K: Proof of Proposition 11
	Appendix L: Proof of Proposition 12
	Appendix M: Proof of Proposition 13
	Appendix N: Proof of Average Performance Ratio for Non-IID Rounds

