
Vol.15 No.5 J. Comput. Sci. & Technol. Sept. 2000 

Average-Case Analysis of Algorithms Using 

Kolmogorov Complexity* 

JIANG Tao (~ ~) 1 , LI Ming ('$ rm)2 and Paul M.B. Vitanyi3 

1 Department of Computing Science, University of California, Riverside, CA 92521, USA 

2 Department of Computer Science, University of California, Santa Barbara, CA 93106, USA 

3 CWI and University of Amsterdam, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands 

E-mail: jiang@cs.ucr.edu; mli@cs.ucsb.edu; paulv@cwi.nl 

Received November 17, 1999; revised May 15, 2000. 

Abstract Analyzing the average-case complexity of algorithms is a very prac

tical but very difficult problem in computer science. In the past few years, we have 

demonstrated that Kolmogorov complexity is an important tool for analyzing the 

average-case complexity of algorithms. We have developed the incompressibility 

method. In this paper, several simple examples are used to further demonstrate the 

power and simplicity of such method. We prove bounds on the average-case number 

of stacks (queues) required for sorting sequential or parallel Queuesort or Stacksort. 

Keywords Kolmogorov complexity, algorithm, average-case analysis, sorting 

1 Introduction 

We obtain some results on the average number of stacks or queues (sequential or parallel) 

required for sorting under the uniform distribution on input permutations. These problems 
have been studied before by Knuth[l] and Tarjan[2l for the worst case. This is a further 

application of the incompressibility method on sorting algorithms following [3]. 
The goal of the paper is not to obtain these bounds, but to demonstrate a new metho

dology of analyzing the average-case complexity of algorithms via these problems. 

Kolmogorov Complexity and the Incompressibility Method: The technical tool to obtain 

our results is the incompressibility method. This method is especially suited for the average 
case analysis of algorithms and machine models, whereas average-case analysis is usually 

more difficult than worst-case analysis using more traditional methods. A survey of the 

use of the incompressibility method is in [4] Chapter 6, and recent work is [5]. A recent 
application is a general nontrivial lower bound on the average-case complexity of multipass 
Shellsort[3l, a problem that had seen remarkably little progress in the last forty years[1l. 

Informally, the Kolmogorov complexity C(x) of a binary string x is the length of the 
shortest binary program (for a fixed reference universal machine) that prints x as its only 

output and then haltsl6l. A string x is incompressible if C(x) is at least \x\, the approximate 
length of a program that simply includes all of x literally. Similarly, the conditional Kol
mogorov complexity of x with respect toy, denoted by C(x\y), is the length of the shortest 

program that, with extra information y, prints x. And a string x is incompressible relative 

toy if C(x\y) is large in the appropriate sense. For details see [4]. Here we use that, both 
absolutely and relative to any fixed stringy, there are incompressible strings of every length, 

•A preliminary version of this work was presented in part at the 26th International Colloquium on 
Automata, Languages, and Programming (ICALP99), Prague, Czech Republic, July 1999. 

Jointly supported by the NSERC Research Grant OGP0046613 and a CITO grant, the NSERC Re
search Grant OGP0046506, a CITO grant, and the Steacie Fellowship, and the European Union through 
NeuroCOLT II ESPRIT Working Group. 



No.5 Average-Case Analysis of Algorithms Using Kolmogorov Complexity 403 

and that most strings are nearly incompressible, by any standard1 . Another easy one is that 

significantly long subwords of an incompressible string are themselves nearly incompressible 

by any standard, even relative to the rest of the string2 . In the sequel we use the following 

easy facts (sometimes only implicitly). 

Lemma 1. Let c be a positive integer. For every fixed y, every finite set A contains at 

least (1 - 2-c) IAI + 1 elements x wdh C( xlA, y) :'.:'. llog IAIJ - c. 

Lemma 2. If A is a finite set, then for every y, every element x E A has complexity 

C(x!A, y) ::; log IAI + 0(1). 
Lemma 1 is proved by simple counting. Lemma 2 holds since x can be described by first 

describing A in 0(1) bits and then giving the index of x in the enumeration order of A. 

2 Average Case of Bubble Sort: An Example 

Generally speaking, the difficulty of analyzing the average-case complexity comes from 

the fact that one has to analyze the time complexity for all inputs of each length and then 

compute the average. This is a formidable task. 

Using the incompressibility method, we choose just one input - a representative input. 

Via Kolmogorov complexity, we can show that the time complexity of this input is in fact 

the average-case complexity of all inputs of the algorithm on this length. Finding such a 

"representative input" is impossible, but we know it exists and this is sufficient. 

The rnothodology is best described via examples. We present the following average-case 

analysis of Bubble Sort. 

Example 1. A description and average-case analysis of Bubble Sort can be found in [l]. 

It is well-known that Bubble Sort uses 9(n2 ) comparisons/exchanges on the average. We 

present a very simple proof of this fact. The number of exchanges is obviously at most n2 , 

so we only have to consider the lower bound. In Bubble Sort we make at most n - 1 passes 

from left to right over the permutation to be sorted and move the largest element we have 

currently found right by exchanges. For a permutation 7r of the elements 1, ... , n, we can 

describe the total number of exchanges by M := .z=~: 1 1 mi where m; is the initial distance 

of element n - i to its final position. Note that in every pass more than one element may 

"bubble" right but that means simply and in the future passes of the sorting process an 

equal number of exchanges will be saved for the element to reach its final position. That is, 

every element executes a number of exchanges going right that equals precisely the initial 

distance between its start position and its final position. A simple analysis as in [3] shows 

that log(M/n) :'.:'. logn + 0(1) for a random permutation. As before this holds for an 

overwhelming fraction of all permutations, and hence gives us an O(n2 ) lower bound on the 

expected number of comparisons/exchanges. 

3 Sorting with Queues and Stacks 

Knuth[l] and Tarjan[z] have studied the problem of sorting using a network of queues or 

stacks. In particular, the main variant of the problem is: assuming the stacks or queues are 

arranged sequentially as shown in Fig. l or in parallel as shown in Fig.2, then how many 

1 By a simple counting argument one can show that whereas some strings can be enormously compressed, 

like strings of the form 11 ... 1, the majority of strings can hardly be compressed at all. For every n there 

are 2"' binary strings of length n, but only .Z:::~; 0 1 2i = 2n - 1 possible shorter descriptions. Therefore, there 

is at least one binary string x of length n such that C(x) 2 n. Similarly, for every length n and any binary 

stringy, there is a binary string x of length n such that C(xly) 2 n. 
2Strings that are incompressible are patternless, since a pattern could be used to reduce the description 

length. Intuitively, we think of such patternless sequences as being random, and we use "random sequence" 

synonymously with "incompressible sequence". It is possible to give a rigorous formalization of the intuitive 

notion of a random sequence as a sequence that passes all effective tests for randomness, see for example [4]. 



404 JIANG Tao, LI Ming et al. Vol.15 

stacks or queues are needed to sort n elements with comparisons only. The input sequence 

is scanned from left to right and the elements follow the arrows to go to the next stack or 

queue or output. We will concentrate on the average-case analyses of the above two main 

variants, although our technique in general apply to arbitrary acyclic networks of stacks and 

queues as studied in [2]. 

sorted output 

a sequence of stacks or queues 

Fig.1. Six stacks/queues arranged in sequential order. 

0 

0 

input permutation 

Q ___ ,,. input permutation 

0 

0 

0 
stacks/queues 

Fig.2. Six stacks/queues arranged in parallel order. 

3.1 Sorting with Sequential Stacks 

The sequential stack sorting problem is in [1] exercise 5.2.4-20. We have k stacks numbered 

So, .. . , Sk-1 · The input is a permutation 7r of the elements 1, ... , n. Initially we push the 

elements of 7r on S0 at most one at a time in the order in which they appear in n. At 

every step we can pop a stack (the popped elements will move left in Fig.1) or push an 

incoming element on a stack. The question is how many stacks are needed for sorting 7r. It 

is known that k = log n stacks suffice, and ~log n stacks are necessary in the worst-case[1,21. 

Here we prove that the same lower bound also holds on the average with a very simple 

incompressibility argument. 

Theorem 1. On the average, at least ~ log n stacks are needed for sequential stack sort. 

Proof. Fix a random permutation 7r such that 

C('rrln, P) 2: logn! - logn = nlog n - O(logn), 

where P is an encoding program to be specified in the following. 

Assume that k stacks are sufficient to sort 7!". We now encode such a sorting process. For 

every stack, exactly n elements pass through it. Hence we need perform precisely n pushes 

and n pops on every stack. Encode a push as 0 and a pop as 1. It is easy to prove that 

different permutations must have different push/pop sequences on at least one stack. Thus 

with 2kn bits, we can completely specify the input permutation n. Then, as before, 

2kn 2: logn! - logn = nlogn - O(logn). 

Hence, approximately k 2: ~ log n for the random permutation 7r. 

Since most (a (1 - 1/n)th fraction) permutations are incompressible, we calculate the 
average-case lower bound as: 

1 n-1 1 1 
- log n · -- + 1 · - ~ - log n. 
2 n n 2 

D 



No.5 Average-Case Analysis of Algorithms Using Kolmogorov Complexity 405 

3.2 Sorting with Parallel Stacks 

Clearly, the input sequence 2, 3, 4, ... , n, 1 requires n - l parallel stacks to sort. Hence the 
worst-case complexity of sorting with parallel stacks, as shown in Fig.2, is n - 1. However, 
most sequences do not need this many stacks to sort in parallel arrangement. The next 
two theorems show that, on the average, 8( fo) stacks are both necessary and sufficient. 
Observe that the result is actually implied by the connection between sorting with parallel 
stacks and longest increasing subsequences given in [2] and the bounds on the length of 
longest increasing subsequences of random permutations given in [7-9). However, the proofs 
in [7-9] use deep results from probability theory (such as Kingman's ergodic theorem) and 
are quite sophisticated. Here we give simple proofs using incompressibility arguments. 

Theorem 2. On the average, the number of parallel stacks needed to sort n elements is 

O(fo). 
Proof. Consider an incompressible permutation 7r satisfying 

C(7rln) 2: logn! - logn. (1) 

We use the following trivial algorithm (which is described in [2)) to sort 7r with stacks 
in the parallel arrangement as shown in Fig.2. Assume that the stacks are named S0 , 8 1 , ... 

and the input sequence is denoted as x 1 , ... , Xn. 

Algorithm 1. Parallel-Stack-Sort 

1. For i = 1 to n do 

Scan the stacks from left to right, and push x; on the first stack Si whose top element is 
larger than X·i· If such a stack doesn't exist, put x; on the first empty stack. 

2. Pop the stacks in the ascending order of their top elements. 

We claim that algorithm Parallel-Stack-Sort uses 0( fo) stacks on the permutation ?r. 

First, we observe that if the algorithm uses m stacks on rr then we can identify an increasing 
subsequence of 1f of length m as in [2]. This can be done by a trivial backtracing starting 
from the top element of the last stack. Then we argue that 1f cannot have an increasing 
subsequence of length longer than efo, where e is a natural constant, since it is compressible 
by at most log n bits. 

Suppose that er is a longest increasing subsequence of 7r and m = icrl is the length of <7. 

Then we can encode 7r by specifying: 
1) a description of this encoding scheme in 0(1) bits; 

2) the number m in log m bits; 

3) the combination u in log (:) bits; 

4) the locations of the elements of O' in 7r in at most log (:) bits; and 

5) the remaining 7r with the elements of er deleted in log(n - m)! bits. 

This takes a total of 

nl 

log(n - m)! + 2 log '( ~ )' + logm + 0(1) + 2 log log m 
m.n m. 

bits, where the last item log log m is needed for self-delimiting encoding of m. Using Stirling 
approximation and the fact that fo ::; m = o(n), the above expression is upper bounded 
by: 

(n/e)n 
logn! +log ( / )2 (( )/ ) + O(logn) me m n-m e n-m 

n n 
:::::: log n! + m log - 2 + ( n - m) log -- + m loge + 0 (log n) 

m n-m 



406 JIANG Tao, LI Ming et al. 

n 
:=::::logn! + mlog-2 + 2mloge + O(logn) 

m 

Vol.15 

This description length must exceed the complexity of the permutation which is lower

bounded in 1). This requires that (approximately) m::::; efo = 0( fo). 
This yields an average complexity of Parallel-Stack-Sort of: 

n-1 1 
0( yn) · - + n · - = 0( yn). 

n n 
D 

Theorem 3. On the average, the number of parallel stacks required to sort a permutation 

is n( fo). 
Proof. Let A be a sorting algorithm using parallel stacks. Fix a random permutation 7r 

with C( 7rln, P) ~ log n! - log n, where P is the program to do the encoding discussed in the 

following. Suppose that A uses T parallel stacks to sort 7r. This sorting process involves a 

sequence of moves, and we can encode this sequence of moves by a sequence of the following 

terms: 

• push to stack i, 

• pop stack j, 
where the element to be pushed is the next unprocessed element from the input sequence 

and the popped element is written as the next output element. Each of these terms requires 

log T bits. In total, we use precisely 2n terms since every element has to be pushed once 

and popped once. Such a sequence is unique for every permutation. 

Thus we have a description of an input sequence in 2n log T bits, which must exceed 

C(7rln,P) ~ nlogn - O(logn). It follows that T ~ ..jn = O(fo). 
This yields the average-case complexity of A: 

n -1 1 
n(vn). - + 1- - = n(vn). 

n n 
D 

3.3 Sorting with Parallel Queues 

It is easy to see that sorting cannot be done with a sequence of queues. So we consider 

the complexity of sorting with parallel queues. It turns out that all the result in the previous 

subsection also hold for queues. 
As noticed in [2], the worst-case complexity of sorting with parallel queues is n since the 

input sequence n, n - 1, ... , 1 requires n queues to sort. We show in the next two theorems 

that, on the average, 0( fo) queues are both necessary and sufficient. Again, the result 

is implied by the connection between sorting with parallel queues and longest decreasing 

subsequences given in [2] and the bounds in [7-9] (with sophisticated proofs). Our proofs 

are almost trivial given the proofs in the previous subsection. 

Theorem 4. On the average, the number of parallel queues needed to sort n elements 

is upper bounded by 0( fo). 
Proof. The proof is very similar to the proof of Theorem 2. We use a slightly modified 

greedy algorithm as described in [2]: 

Algorithm 2. Parallel-Queue-Sort 

1. For i = 1 to n do 
Scan the queues from left to right, and append Xi to the first queue whose rear element is 

smaller than Xi. If such a queue doesn't exist, put Xi on the first empty queue. 

2. Delete the front elements of the queues in the ascending order. 

Again, we claim that algorithm Parallel-Queue-Sort uses 0( fo) queues on any permu

tation 7r that cannot be compressed by more than log n bits. We first observe that if the 

algorithm uses m queues on 1f' then a decreasing subsequence of 7r of length m can be identi

fied, and we then argue that 7r cannot have a decreasing subsequence of length longer than 

e..jn, in a way analogous to the argument in the proof of Theorem 2. D 



No.5 Average-Case Analysis of Algorithms Using Kolmogorov Complexity 407 

Theorem 5. On the average, the number of parallel queues required to sort a permutation 

is !1( y'n). 
Proof. The proof is the same as the one for Theorem 3 except that we should replace 

"push" with "enqueue" and "pop" with "dequeue". D 

4 Open Questions 

The incompressibility method is a good tool to analyzing the average-case complexity of 

sorting algorithms. Simplicity has been our goal. Examples of such average-case analyses 

of some other algorithms are given in [5]. This methodology and applications can be easily 

taught to undergraduate students. 
The average-case performance of Shellsort[3l has been one of the most fundamental and 

interesting open problems in the area of algorithm analysis. The simple average-case analysis 

of Bubble Sort, stack-sort and queue-sort are further examples to demonstrate the generality 

and simplicity of our technique in analyzing sorting algorithms in general. We believe the 

method can be widely applied for analyzing the average case complexity of many other 

problems. Some specific open questions are: 

1) Tighten the average-case lower bound for Shellsort. The bound in [3] is not tight for 

p = 2 passes. 
2) For sorting with sequential stacks, can we close the gap between log n upper bound 

1 
and the 21og n lower bound? 

References 

[l] Knuth D E. The Art of Computer Programming. Vol.3: Sorting and Searching, Addison-Wesley, 1973 

(lst Edition), 1998 (2nd Edition). 
[2] Tarjan RE. Sorting using networks of queues and stacks. Journal of the ACM, 1972, 19: 341-346. 
[3] Jiang T, Li M, Vitanyi P. A lower bound on the average-case complexity of Shellsort. J. Assoc. Comp. 

Mach., to appear. Also in ICALP'99, July 11-15, 1999, Prague. 
[4] Li M, Vitanyi P M B. An Introduction to Kolmogorov Complexity and Its Applications. Springer-Verlag, 

New York, 2nd Edition, 1997. 
(5] Buhrman H, Jiang T, Li M, Vitanyi P. New applications of the incompressibility method. In ICALP'99, 

July 11-15, 1999, Prague. Also in Theoretical Computer Science, 1999, 235. 

(6] Kolmogorov A N. Three approaches to the quantitative definition of information. Problems Inform. 

Transmission, 1965, 1(1): 1-7. 
[7] Kerov S V, Versik A M. Asymptotics of the Plancherel measure on symmetric group and the limiting 

form of the Young tableaux. Soviet Math. Dokl., 1977, 18: 527-531. 

[8] Kingman J F C. The ergodic theory of subadditive stochastic processes. Ann. Probab., 1973, 1: 883-909. 
(9] Logan BF, Shepp L A. ·A variational problem for random Young tableaux. Advances in Math., 1977, 

26: 206-222. 

[10] Shell D L. A high-speed sorting procedure. Commun. ACM, 1959, 2(7): 30-32. 

JIANG Tao received the B.S. degree in computer science and technology from the University 

of Science and Technology of China in 1984 and the Ph.D. degree in computer science from the 

University of Minnesota in 1988. From Jan. 1989 to Sept. 1999, he was a faculty member at 

Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada. During 

1995-1996, he took a research leave at University of Washington, USA, and at Gunma University, 

Japan. He joined University of California-Riverside as a professor of computer science in Sept. 

1999, while taking a leave from McMaster University. 

His research interests include computational molecular biology, design and analysis of algo

rithms, computational complexity, and information retrieval. He has published actively in many 

theoretical computer science journals and served on program committees for many international 

conferences. He is presently serving on the editorial board of International Journal of Foundations 
of Computer Science (IJFCS). 



408 JIANG Tao, LI Ming et al. Vol.15 

LI Ming is a professor of computer science at the University of Waterloo, and a guest professor 

at Peking University and University of Science and Technology of China. He received his Ph.D. 

degree from Cornell University in 1985. He is a recipient of Canada's prestigious E.W.R. Steacie 

Fellowship Award in 1996, and the 1997 Award of Merit from the Federation of Chinese Canadian 

Professionals. He is a coauthor of the book "An Introduction to Kolmogorov Complexity and Its 

Applications" (Springer-Verlag, 1993, 2nd Edition, 1997), and "A Course on Java Programming 

Language" (in Chinese, Science Press, 1997). He currently serves on the editorial boards of Journal 

of Computer and System Sciences, Journal of Computer Science and Technology, Information and 

Computation, and Journal of Combinatorial Optimization, International Journal of Foundation of 

Computer Science. His main research interests is bioinformatics. His recent book together with 

Paul Vitanyi "Description Complexity" (Chinese, Science Press, 1999) won first prize for China's 

National Science and Technology Book Award. 

Paul M.B. Vitanyi obtained his Ph.D. degree from the Free University of Amsterdam (the 

Netherlands) in 1978. He holds positions at the CWI (Center for Mathematics and Computer Sci

ence) National Research Institute in Amsterdam where he heads the Algorithms and Complexity 

Research Group, and at the University of Amsterdam where he heads a similar group and is a 

professor of computer science. He has worked in the areas of cellular automata, computational 

complexity, distributed and parallel computing, machine learning and prediction, physics of com

putation, quantum computing, and description complexity. He serves on the editorial boards of 

Distributed Computing, Information Processing Letters, Theory of Computing Systems, Parallel 

Processing Letters, and has co-authored about 150 research papers and books, among others with 

Li Ming "An Introduction to Kolmogorov Complexity and Its Applications", Springer-Verlag, New 

York, 1993 (2nd Edition 1997), parts of which have been translated into Russian, Japanese and 

Chinese. (Web page: http:/ /www.cwi.nl/$\sim$paulv /) 


