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Abstract

In this paper we introduce the notion of smoothed competitive analysis of
online algorithms. Smoothed analysis has been proposed by Spielman and
Teng [23] to explain the behaviour of algorithms that work well in practice
while performing very poorly from a worst case analysis point of view. We
apply this notion to analyze the Multi-Level Feedback (MLF) algorithm to
minimize the total flow time on a sequence of jobs released over time when
the processing time of a job is only known at time of completion.

The initial processing times are integers in the range [1, 2K ]. We use
a partial bit randomization model, where the initial processing times are
smoothened by changing the k least significant bits under a quite general
class of probability distributions. We show that MLF admits a smoothed
competitive ratio of O((2k/σ)3+(2k/σ)22K−k), where σ denotes the standard
deviation of the distribution. In particular, we obtain a competitive ratio of
O(2K−k) if σ = Θ(2k). We also prove an Ω(2K−k) lower bound for any deter-
ministic algorithm that is run on processing times smoothened according to
the partial bit randomization model. For various other smoothening models,
including the additive symmetric smoothening model used by Spielman and
Teng [23], we give a higher lower bound of Ω(2K).

A direct consequence of our result is also the first average case analysis
of MLF. We show a constant expected ratio of the total flow time of MLF to
the optimum under several distributions including the uniform distribution.

Keywords

Smoothed analysis, average case analysis, online algorithms, non-clairvoyant
scheduling, Mutli-Level Feedback algorithm, average flow time.



1 Introduction

Smoothed analysis was proposed by Spielman and Teng [23] as a hybrid between average case
and worst case analysis to explain the success of algorithms that are known to work well in
practice while presenting poor worst case performance. The basic idea is to randomly perturb
the initial input instances and to analyze the performance of the algorithm on the perturbed
instances. The smoothed complexity of an algorithm as defined by Spielman and Teng is the
maximum over all input instances of the expected running time on the perturbed instances.
Intuitively, the smoothed complexity of an algorithm is small if the worst case instances are
isolated in the (instance × running time) space. Spielman and Teng’s striking result was
to show that the smoothed complexity of the simplex method with a certain pivot rule and
by perturbing the coefficients with a normal distribution is polynomial. In a series of later
papers [6, 10, 20, 25, 24], smoothed analysis was successfully applied to characterize the time
complexity of other problems.

Competitive analysis [22] measures the quality of an online algorithm by comparing its
performance to that of an optimal offline algorithm that has full knowledge of the future.
Competitive analysis often provides an over-pessimistic estimation of the performance of an
algorithm, or fails to distinguish between algorithms that perform differently in practice, due to
the presence of pathological bad instances that rarely occur. The analysis of online algorithms
seems to be a natural field for the application of the idea of smoothed analysis. Several attempts
along the line of restricting the power of the adversary have already been taken in the past.
A partial list of these efforts includes the access graph model to restrict the input sequences
in online paging problems to specific patterns [8] and the resource augmentation model for
analyzing online scheduling algorithms [13]. More related to our work is the diffuse adversary
model of Koutsoupias and Papadimitriou [14], a refinement of competitive analysis that assumes
that the actual distribution of the input is a member of a known class of possible distributions
chosen by a worst case adversary.

Smoothed Competitive Analysis. In this paper we introduce the notion of smoothed
competitiveness. The competitive ratio c of an online deterministic algorithm A for a cost
minimization problem is defined as the supremum over all input instances of the ratio between
the algorithm and the optimal cost, i.e., c = supĪ(AĪ/OPT Ī). Following the idea of Spielman
and Teng [23], we smoothen the input instance according to some probability distribution f .
We define the smoothed competitive ratio as

c = sup
Ī

EI∈f N(Ī)

[
AI

OPT I

]
,

where the supremum is taken over all input instances Ī, and the expectation is taken over all
instances I that are obtainable by smoothening the input instance Ī according to f in the
neighborhood N(Ī). Observe that we might alternatively define the smoothed competitive
ratio as the ratio of the expectations in the expression above. We also address this issue in the
paper.

This kind of analysis results in having the algorithm and the smoothening process together
play a game against an adversary, in a way similar to the game played by a randomized online
algorithm against its adversary. This definition of smoothed competitive ratio allows to prove
upper and lower bounds against different adversaries.
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In a way similar to the analysis of randomized online algorithms [7], we define different
types of adversaries. The oblivious adversary constructs the input sequence only on the basis
of the knowledge of the algorithm and of the smoothening function f . We also define a stronger
adversary, the adaptive adversary, that constructs the input instance revealed to the algorithm
after time t also on the basis of the execution of the algorithm up to time t. This means that
the choices of the adversary at some time t only depend on the state of the algorithm at time t.
Both adversaries are charged with the optimal offline cost on the input instance. Considering
the instance space, in the oblivious case N(Ī) is defined at the beginning, once the adversary
has fixed Ī, while in the adaptive case N(Ī) is itself a random variable, since it depends on the
evolution of the algorithm.

Smoothed competitive analysis is substantially different from the diffuse adversary model.
In this latter model the probability distribution of the input instances is selected by a worst
case adversary, while in the model we use in this paper the input instance is chosen by a worst
case adversary and later perturbed according to a specific distribution.

The Multi-Level Feedback Algorithm. One of the most successful online algorithms used
in practice is the Multi-Level Feedback algorithm (MLF) for processor scheduling in a time
sharing multitasking operating system. MLF is a non-clairvoyant scheduling algorithm, i.e.,
scheduling decisions are taken without knowledge of the time a job needs to be executed.
Windows NT [19] and Unix [26] have MLF at the very basis of their scheduling policies. The
obvious goal is to provide a fast response to users. A widely used measure for the responsiveness
of the system is the average flow time of the jobs, i.e., the average time spent by jobs in the
system between release and completion. Job preemption is also widely recognized as a key
factor to improve the responsiveness of the system. The basic idea of MLF is to organize jobs
into a set of queues Q0, Q1, . . .. Each job is processed for 2i time units, before being promoted
to queue Qi+1 if not completed. At any time, MLF processes the job at the front of the lowest
queue.

While MLF turns out to be very effective in practice, it behaves poorly with respect to
worst case analysis. Assuming that processing times are chosen in [1, 2K ], Motwani et al. [17]
showed a lower bound of Ω(2K) for any deterministic non-clairvoyant preemptive scheduling
algorithm. The next step was then to use randomization. A randomized version of the Multi-
Level Feedback algorithm (RMLF) was first proposed by Kalyanasundaram and Pruhs [12] for
a single machine achieving an O(log n log log n) competitive ratio against the online adaptive
adversary, where n is the number of jobs that are released. Becchetti and Leonardi present a
version of RMLF achieving an O(log n log n

m) competitive result on m parallel machines and a
tight O(log n) competitive ratio on a single machine against the oblivious adversary, therefore
matching for a single machine the randomized lower bound of [17].

Contribution of this Paper. In this paper, we apply smoothed competitive analysis to the
Multi-Level Feedback algorithm. For smoothening the initial integral processing times we use
the partial bit randomization model. The idea is to replace the k least significant bits by some
random number in [1, 2k]. A similar model was used by Beier et al. [5] and Banderier et al. [2].
Our analysis holds for a wide class of distributions that we refer to as well-shaped distributions,
including the uniform, the exponential symmetric and the normal distribution. In [5] and [2]
only the uniform distribution was considered. For k varying from 0 to K we “smoothly” move
from worst case to average case analysis.
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(i) We show that MLF admits a smoothed competitive ratio of O((2k/σ)3 + (2k/σ)22K−k),
where σ denotes the standard deviation of the underlying distribution. The competitive
ratio therefore improves exponentially with k and as the distribution becomes less sharply
concentrated around its mean. In particular, if we smoothen according to the uniform
distribution, we obtain an expected competitive ratio of O(2K−k). We remark that our
analysis holds for both the oblivious and the adaptive adversary. However, for the sake
of clarity, we first concentrate on the oblivious adversary and discuss the differences for
the adaptive adversary later.

We have defined the smoothed competitive ratio as the supremum, over the set of possible
input instances, of the expected ratio between the cost of the algorithm and the optimal
cost. An alternative is to define it as the ratio between the expected costs of the algorithm
and of the optimum, see also [21]. We point out that we obtain the same results under
this alternative, weaker, definition.

(ii) As a consequence of our analysis we also obtain an average case analysis of MLF. As
an example, for k = K our result implies an O(1) expected ratio between the flow time
of MLF and the optimum for all distributions with σ = Θ(2k), therefore including the
uniform distribution. Very surprisingly, to the best of our knowledge, this is the first
average case analysis of MLF. Recently, Scharbrodt et al. [21] performed the analysis of
the average competitive ratio of the Shortest Expected Processing Time First heuristic
to minimize the average completion time where the processing times of the jobs follow
a gamma distribution. Our result is stronger in the following aspects: (a) the analysis
of [21] applies when the algorithm knows the distribution of the processing times, while
in our analysis we require no knowledge about the distribution of the processing times,
and (b) our result applies to average flow time, a measure of optimality much stronger
than average completion time. Early work by Michel and Coffman [16] only considered
the problem of synthesizing a feedback queue system under Poisson arrivals and a known
discrete probability distribution on processing times so that pre-specified mean flow time
criteria are met.

(iii) We prove a lower bound of Ω(2K−k) against an adaptive adversary and a slightly weaker
bound of Ω(2K/6−k/2), for every k ≤ K/3, against an oblivious adversary for any deter-
ministic algorithm when run on processing times smoothened according to the partial bit
randomization model.

(iv) Spielman and Teng [23] used an additive symmetric smoothening model, where each input
parameter is smoothened symmetrically around its initial value. A natural question is
whether this model is more suitable than the partial bit randomization model to analyze
MLF. In fact, we prove that MLF admits a poor competitive ratio of Ω(2K) under
various other smoothening models, including the additive symmetric, the additive relative
symmetric and the multiplicative smoothening model.

2 Problem Definition and Smoothening Models

The adversary releases a set J = {1, . . . , n} of n jobs over time. Each job j has a release time
rj and an initial processing time p̄j . We assume that the initial processing times are integers in
[1, 2K ]. We allow preemption of jobs, i.e., a job that is running can be interrupted and resumed
later on the machine. The algorithm decides which uncompleted job should be executed at
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each time. The machine can process at most one job at a time and a job cannot be processed
before its release time. For a generic schedule S, let CS

j denote the completion time of job j.
Then, the flow time of job j is given by FS

j = CS
j − rj , i.e., the total time that j is in the

system. The total flow time of a schedule S is given by FS =
∑

j∈J FS
j . A non-clairvoyant

scheduling algorithm knows about the existence of a job only at the release time of the job and
the processing time of a job is only known when the job is completed. The objective is to find
a schedule that minimizes the total flow time.

The input instance may be smoothened according to different smoothening models. We discuss
four different smoothening models below. We only smoothen the processing times of the jobs.
One could additionally smoothen the release dates. However, for our analysis to hold it is
sufficient to smoothen the processing times only. Furthermore, from a practical point of view,
each job is released at a certain time, while processing times are estimates. Therefore, it is
more natural to smoothen the processing times and to leave the release dates intact.

Additive Symmetric Smoothening Model. In the additive symmetric smoothening
model the processing time of each job is smoothened symmetrically around its initial
processing time. The smoothed processing time pj of a job j is drawn independently
at random according to some probability function f from a range [−L,L], for some L.
Here, L is the same for all processing times. A similar model is used by Spielman and
Teng [23].

pj = max(1, p̄j + εj), where εj
f← [−L,L].

The maximum is taken in order to assure that the smoothed processing times are at least
1.

Additive Relative Symmetric Smoothening Model. The additive relative symmetric
smoothening model is similar to the previous one. Here, however, the range of the
smoothed processing time of j depends on its initial processing time p̄j . More precisely,
for c < 1, the smoothed processing time pj of j is defined as

pj = max(1, p̄j + εj), where εj
f← [−(p̄j)c, (p̄j)c].

Multiplicative Smoothening Model. In the multiplicative smoothening model the pro-
cessing time of each job is smoothened symmetrically around its initial processing time.
The smoothed processing times are chosen independently according to f from the the
range [(1− ε)p̄j , (1 + ε)p̄j ] for some ε > 0. This model is also discussed but not analyzed
by Spielman and Teng [23].

pj = max(1, p̄j + εj), where εj
f← [−εp̄j , εp̄j ].

Partial Bit Randomization Model. The initial processing times are smoothened by chang-
ing the k least significant bits at random according to some probability function f . More
precisely, the smoothed processing time pj of a job j is defined as

pj = 2k

⌊
p̄j − 1

2k

⌋
+ εj , where εj

f← [1, 2k].
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Note that εj is at least 1 and therefore 1 is subtracted from p̄j before applying the
modification. For k = 0, this assures that the smoothed processing times are equal to
the initial processing times. For k = K, the processing times are randomly chosen from
[1, 2K ] according to the underlying distribution. A similar model is used by Beier et al. [5]
and Banderier et al. [2].

As will be seen later, MLF is not competitive at all under any of the first three models: MLF
may admit a smoothed competitive ratio of Ω(2K). Therefore, these models are not suitable
to explain the success of MLF in practice. The model we use is the partial bit randomization
model.

Our analysis holds for any well-shaped distribution f over [1, 2k]. A probability density
function f is well-shaped if it satisfies the following conditions:

(i) f is symmetric around its mean,

(ii) the mean µ of f is centered in [1, 2k], and

(iii) f is non-decreasing in the range [1, µ].

In the sequel, we denote by σ the standard deviation of f . We emphasize that the distribution
may be discrete as well as continuous.

We discuss some features of the smoothed processing times. Let φj be defined as φj = 2kb p̄j−1

2k c.
Then, pj = φj + εj . Consider a job j with initial processing time in [1, 2k]. Then, the initial
processing time of j is completely replaced by some random processing time in [1, 2k] chosen
according to the probability distribution f .

Fact 1. Let p̄j ∈ [1, 2k]. Then, φj = 0 and thus pj ∈ [1, 2k]. Moreover, P[pj ≤ x] = P[εj ≤ x]
for each x ∈ [1, 2k].

Next, consider a job j with initial processing time p̄j ∈ (2i−1, 2i], for some i > k. Then, the
smoothed processing time pj is randomly chosen from a subrange of (2i−1, 2i] according to the
probability distribution f .

Fact 2. Let p̄j ∈ (2i−1, 2i] for some i, k < i ≤ K. Then, 2i−1 ≤ φj ≤ 2i − 2k and thus
pj ∈ (2i−1, 2i].

3 The Multi-Level Feedback Algorithm

In this section we describe the Multi-Level Feedback (MLF) algorithm. We say that a job is
alive or active at time t in a schedule S, if it has been released but not completed at this time,
i.e., rj ≤ t < CS

j . Denote by xSj (t) the amount of time that has been spent on processing job j

in schedule S up to time t. We define ySj (t) = pj − xSj (t) as the remaining processing time of
job j in schedule S at time t. In the sequel, we denote by A the schedule produced by MLF.

The set of active jobs is partitioned into a set of priority queues Q0, Q1, . . .. Within each
queue, the priority is determined by the release dates of the jobs: the job with smallest release
time has highest priority. For any two queues Qh and Qi, we say that Qh is lower than Qi if
h < i. At any time t, MLF behaves as follows.

1. Job j released at time t enters queue Q0.
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2. Schedule on the machine the alive job that has highest priority in the lowest non-empty
queue.

3. For a job j in a queue Qi at time t, if xAj (t) = pj , assign CA
j = t and remove the job from

the queue.

4. For a job j in a queue Qi at time t, if xAj (t) = 2i < pj , job j is moved from Qi to Qi+1.

4 Smoothed Analysis

4.1 Preliminaries

We classify jobs into classes according to their processing times: a job j is of class i ≥ 0, if
pj ∈ (2i−1, 2i]. Observe that a job of class i will end in queue Qi. Since all processing times are
in [1, 2K ], the maximum class of a job is K. Moreover, during the execution of the algorithm
at most K + 1 queues are created. We denote by δS(t) the number of jobs that are active at
time t in S. We use SS(t) to refer to the set of active jobs at time t. We use A and OPT to
denote the schedule produced by MLF and by an optimal algorithm, respectively. We state
the following facts.

Fact 3 ([15]). FS =
∑

j∈J FS
j =

∫
t δS(t)dt.

Fact 4. FS ≥
∑

j∈J pj.

Fact 5. At any time t and for any i, at most one job, alive at time t, has been executed in
queue Qi but has not been promoted to Qi+1.

A lucky job is a job that still has a reasonably large remaining processing time when it
enters its final queue. More precisely, a job j of class i is called lucky if pj − 2i−1 ≥ γk2i−1;
otherwise, it is called unlucky. Here, γk depends on k and the standard deviation σ of the
distribution and is defined as γk = min( 1√

2
( σ
2k−1 ), 2k−K). We use βk to refer to the fraction

1/γk. We use δl(t) to denote the number of lucky jobs that are active at time t in MLF. At
time t, the job with highest priority among all jobs in queue Qi (if any) is said to be the head
of Qi. A head job of queue Qi is ending if it will be completed in Qi. We denote by h(t) the
total number of head jobs that are ending.

We define the following random variables. For each job j, X l
j has value 1 if job j is lucky,

while X l
j = 0 if j is unlucky. We use Clj ∈ [0, k] to denote the class of a job j. Note that

the class of a job with p̄j ∈ (2i−1, 2i], for some i > k, is not a random variable. Moreover, for
each job j and for each time t, two binary variables are defined: Xj(t) and X l

j(t). The value
of Xj(t) is 1 if job j is alive at time t, and 0 otherwise. X l

j(t) is defined in terms of X l
j and

Xj(t), namely, X l
j(t) = X l

j ·Xj(t).
Let Z be a generic random variable. For an input instance I, ZI denotes the value of Z

for this particular instance I. Note that ZI is uniquely determined by the execution of the
algorithm.

We prove our main result in Subsection 4.2. The proof uses a high probability argument which,
for the sake of clarity, is given in Subsection 4.3. Due to lack of space most of the proofs are
only sketched. The complete proofs are given in the appendix.
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4.2 Smoothed Competitiveness of MLF

In this section we prove that MLF is O((2k/σ)3 + (2k/σ)22K−k)-competitive.
Lemma 1 provides a deterministic bound on the number of lucky jobs in the schedule of

MLF for a specific instance I. The proof is similar to the one given in [3].

Lemma 1. For any input instance I, at any time t, δl
I(t) ≤ hI(t) + 6βkδ

OPT
I (t).

In the sequel, we exploit the fact that two events A and B are correlated: A and B are
positively correlated if P[A ∩ B] ≥ P[A]P[B] , while A and B are negatively correlated if
P[A ∩ B] ≤ P[A]P[B] . In the book by Alon and Spencer [1, Chapter 6] a technique to show
that two events are correlated, is described.

The following lemma gives a bound on the expected number of ending head jobs at time t.

Lemma 2. At any time t, E[h(t)] ≤ K − k + 2.

Proof. Let h′(t) denote the number of ending head jobs in the first k queues. Then, clearly
E[h(t)] ≤ K−k+1+E[h′(t)], since the last K−k+1 queues can contribute at most K−k+1
to the expected value of h(t).

We next consider the expected value of h′(t). Let H(t) denote the ordered sequence
(q0, . . . , qk−1) of jobs that are at time t at the head of the first k queues Q0, . . . , Qk−1, re-
spectively. We use qi = × to denote that Qi is empty at time t. We define a binary variable
Hi(t) as follows: Hi(t) = 1 if qi 6= × and qi is in its final queue; Hi(t) = 0 otherwise.
Let H ∈ (J ∪ ×)k denote any possible configuration for H(t). Observe that by definition
P[Hi(t) = 1 |H(t) = H] = 0 if qi = ×. Let qi 6= ×, then

P[Hi(t) = 1 |H(t) = H] = P[pqi ≤ 2i |H(t) = H] .

Since the two events (pqi ≤ 2i) and (H(t) = H) are negatively correlated, we have that
P[pqi ≤ 2i |H(t) = H] ≤ P[pqi ≤ 2i] .

Now, if a job qi is of class larger than k we have P[pqi ≤ 2i] = 0. Otherwise, since the
underlying probability distribution is well-shaped, we have (i) P[pqk−1

≤ 2k−1] < 1/2, and
(ii) P[pqi ≤ 2i] ≤ 1

2P[pqi+1 ≤ 2i+1] , for all 0 ≤ i < k − 1. As a consequence, we obtain
P[pqi ≤ 2i] < 1

2k−i for all 0 ≤ i ≤ k − 1. Thus,

E[h′(t) |H(t) = H] =
k−1∑
i=0

P[Hi(t) = 1 |H(t) = H] <
1
2k

k−1∑
i=0

2i =
2k − 1

2k
< 1.

And therefore,

E[h′(t)] =
∑

H∈(J∪×)k

E[h′(t) |H(t) = H]P[H(t) = H] <
∑

H∈(J∪×)k

P[H(t) = H] = 1.

We also need the following bound on the probability that the sum of the random parts of
the processing times exceeds a certain threshold value.

Lemma 3. P
[∑

j∈J εj ≥ n(2k+1)
8

]
≥ 1− e−

n
16 .

Proof (sketch). The lemma follows from applying a Chernoff bound on
∑

j(εj ≥ 2k−1 + 1
2).
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We are now ready to prove Theorem 1. For the sake of conciseness, we introduce the
following notation. Let α = (σ/2k)2. For an instance I, we define DI = {t : δAI (t) ≤ 2

αδl
I(t)}

and D̄I = {t : δAI (t) > 2
αδl

I(t)}. Moreover, we define the event

E =
(∑

j pj ≥
∑

j φj + n(2k+1)
8

)
and use Ē to refer to the complement of E .

Theorem 1. For any instance Ī and any well-shaped probability distribution function f ,

EI∈f N(Ī)

[
FA

FOPT

]
= O

((
2k

σ

)3

+
(

2k

σ

)2

2K−k

)
.

Proof. In the following we omit that the expectation is taken over a distribution f in N(Ī).

E
[

FA

FOPT

]
= E

[
FA

FOPT

∣∣∣∣ E]P[E ] + E
[

FA

FOPT

∣∣∣∣ Ē]P[Ē ]

≤ E
[

FA

FOPT

∣∣∣∣ E]P[E ] + ne−
n
16 ,

where the inequality follows from Lemma 3. Let c = 16
e , then ne−

n
16 ≤ c. We partition

the flow time FA =
∫
t δA(t)dt into the contribution of time instants t ∈ D and t ∈ D̄, i.e.,

FA =
∫
t∈D δA(t)dt +

∫
t∈D̄ δA(t)dt, and bound these contributions separately.

E

[∫
t∈D δA(t)dt

FOPT

∣∣∣∣ E
]
P[E ] ≤ E

[∫
t∈D

2
αδl(t)dt

FOPT

∣∣∣∣ E
]
P[E ]

≤ E

[∫
t∈D

2
αh(t)dt +

∫
t∈D

2
α · 6βkδ

OPT (t)dt

FOPT

∣∣∣∣ E
]
P[E ]

≤ E

[∫
t∈D

2
αh(t)dt

FOPT

∣∣∣∣ E
]
P[E ] + 2

α · 6βk,

where we use the deterministic bound of Lemma 1 on δl(t) and the fact that FOPT ≥∫
t∈D δOPT (t)dt. We continue by exploiting the fact that given E , FOPT ≥

∑
j pj ≥

∑
j φj +

n(2k+1)
8 .

E

[∫
t∈D δA(t)dt

FOPT

∣∣∣∣ E
]
P[E ] ≤

E
[∫

t∈D
2
αh(t)dt | E

]
P[E ]∑

j φj + n(2k+1)
8

+ 2
α · 6βk

≤
2
α(K − k + 2)E[

∑
j pj ]∑

j φj + n(2k+1)
8

+ 2
α · 6βk,

where we use Lemma 2 together with the fact that, for any input instance, h(t) contributes
only in those time instants where at least one job is in the system, so at most

∑
j pj . Since

E[
∑

j pj ] =
∑

j φj + n(2k+1)
2 , we obtain,

E

[∫
t∈D δA(t)dt

FOPT

∣∣∣∣ E
]
P[E ] ≤ 2

α · 4(K − k + 2) + 2
α · 6βk.

8



For t ∈ D̄, by the fact that given E , FOPT ≥
∑

j φj + n(2k+1)
8 , and by exploiting Lemma 4,

which is given below, we obtain

E

[∫
t∈D̄ δA(t)dt

FOPT

∣∣∣∣ E
]
P[E ] ≤

E[
∫
t∈D̄ δA(t)dt | E ]P[E ]∑

j φj + n(2k+1)
8

≤
8
α E
[∑

j pj

]
∑

j φj + n(2k+1)
8

≤ 32
α .

Putting everything together, we obtain

E
[

FA

FOPT

]
≤ 2

α · 4(K − k + 2) + 2
α · 6βk + 32

α + c = O

((
2k

σ

)3
+
(

2k

σ

)2
2K−k

)
,

where the last equality follows from the definition of α and βk.

To finalize the proof we are left to show that the following lemma holds.

Lemma 4. E
[∫

t∈D̄ δA(t)dt | E
]
P[E ] ≤ 8

α E
[∑

j pj

]
.

4.3 Proof of Lemma 4

We only provide an overview of the proof of Lemma 4 here. The complete proof requires a
number of additional techniques and lemmas that are provided in the appendix.

The following two lemmas bound the probability that a job is lucky. In the first one, we
prove that a job j with p̄j ∈ (2i−1, 2i], for some i > k, is lucky with probability at least 1

2 .

Lemma 5. For each job j with p̄j ∈ (2i−1, 2i], for some i, k < i ≤ K, P[X l
j = 1] ≥ 1

2 .

Proof (sketch). Follows directly from the definition of well-shaped distributions.

We now show that the probability of a job j being lucky given that it is of class i, i ≤ k, is
at least α = (σ/2k)2.

Lemma 6. For each job j with p̄j ∈ [1, 2k] and each class i, 0 ≤ i ≤ k, P[X l
j = 1 |Clj = i] ≥ α.

Proof (sketch). The only difficult part is for Clj = k. For γk ≤ 1√
2

(
σ

2k−1

)
, we can show an

“Inverse Chebyshev” inequality, from which the lemma follows.

It is easy to see that Lemma 6 can be tightened so that we achieve probability at least 1
2 on

the uniform distribution.

In the rest of this section we only consider properties of the schedule A produced by MLF. We
therefore omit the superscript A in the notation below.

Let S ⊆ J . In the following, we will condition on the event that (i) the set of active
jobs at time t is equal to S, i.e., (S(t) = S), and (ii) the processing times of all jobs not
in S are fixed to values that are described by a vector xS̄ , which we denote by (pS̄ = xS̄).
For the sake of conciseness, we define the event F(t, S,xS̄) = ((S(t) = S) ∩ (pS̄ = xS̄)).
Observe that P[X l

j(t) = 1 | F(t, S,xS̄)] = 0 if j /∈ S, since j is not alive at time t. Moreover,
P[X l

j(t) = 1 | F(t, S,xS̄)] = P[X l
j = 1 | F(t, S,xS̄)] if j ∈ S. Thus,

E[δl(t) | F(t, S,xS̄)] =
∑
j∈J

P[X l
j(t) = 1 | F(t, S,xS̄)] =

∑
j∈S

P[X l
j = 1 | F(t, S,xS̄)] .

9



Conditioned on F(t, S,xS̄), we first show that the expected number of jobs that are lucky
and alive at time t is at least a good fraction of the number of jobs that are alive at that time.

Lemma 7. For every j ∈ S, P[X l
j = 1 | F(t, S,xS̄)] ≥ α. Therefore, E[δl(t) | F(t, S,xS̄)] ≥

α|S|.

Proof. Let p̄j ∈ (2i−1, 2i], for some i, k < i ≤ K. The events (X l
j = 1) and (F(t, S,xS̄)) are

positively correlated and thus,

P[X l
j = 1 | F(t, S,xS̄)] ≥ P[X l

j = 1] .

Next, let p̄j ∈ [1, 2k]. The events (X l
j = 1 |Clj = i) and (F(t, S,xS̄) |Clj = i) are positively

correlated for all i, 0 ≤ i ≤ k, i.e.,

P[X l
j = 1 ∩ F(t, S,xS̄) |Clj = i] ≥ P[X l

j = 1 |Clj = i]P[F(t, S,xS̄) |Clj = i] .

Thus,

P[X l
j = 1 ∩ F(t, S,xS̄)] =

k∑
i=0

P[X l
j = 1 ∩ F(t, S,xS̄) |Clj = i]P[Clj = i]

≥
k∑

i=0

P[X l
j = 1 |Clj = i]P[F(t, S,xS̄) |Clj = i]P[Clj = i]

≥ min
i=0,...,k

P[X l
j = 1 |Clj = i]P[F(t, S,xS̄)] .

And therefore,
P[X l

j = 1 | F(t, S,xS̄)] ≥ min
i=0,...,k

P[X l
j = 1 |Clj = i] .

The lemma follows from Lemmas 5 and 6.

We use the previous lemma to prove that, with high probability, at any time t the number
of lucky jobs is also a good fraction of the overall number of jobs in the system.

Lemma 8. For any S ⊆ J , at any time t, P[δl(t) < 1
2αδ(t) | F(t, S,xS̄)] ≤ e−

α|S|
8 .

Proof (sketch). Given F(t, S,xS̄), we will first show that the variables (X l
j | F(t, S,xS̄)), j ∈ S,

are independent. The proof follows by applying a Chernoff bound to
∑

j∈S(X l
j | F(t, S,xS̄)),

and by using Lemma 7 to bound the expected value of the sum.

Corollary 1. For any s = 1, . . . , n, at any time t, P[δl(t) < 1
2αδ(t) | δ(t) = s] ≤ e−

αs
8 .

We are now ready to prove Lemma 4.

Proof.

E
[∫

t∈D̄
δA(t)dt

∣∣∣∣ E]P[E ] ≤ E
[∫

t∈D̄
δA(t)dt

]
=
∫

t≥0
E
[
δA(t) | t ∈ D̄

]
P[t ∈ D̄] dt

=
∫

t≥0

n∑
s=1

sP[δA(t) = s | t ∈ D̄]P[t ∈ D̄] dt

10



=
∫

t≥0

n∑
s=1

sP[t ∈ D̄ | δA(t) = s]P[δA(t) = s] dt

≤
∫

t≥0

n∑
s=1

s e−
αs
8 P[δA(t) = s] dt ≤ 8

α

∫
t≥0

n∑
s=1

P[δA(t) = s] dt

=
8
α

∫
t≥0

P[δA(t) ≥ 1] dt =
8
α

E[
∑

j pj ],

where the fifth inequality is due to Corollary 1 and the sixth inequality follows since e−x < 1
x ,

for x > 0.

4.4 Adaptive Adversary

Recall that an adaptive adversary may change its input instance on basis of the outcome of
the random process. Lemmas 2 and 7 are those in which an adaptive adversary might change
the analysis with respect to an oblivious one. In Appendix C we discuss why these lemmas
also hold for an adaptive adversary. Thus, the upper bound on the smoothed competitive ratio
given in Theorem 1 also holds against an adaptive adversary.

5 Lower Bounds

The first bound is an Ω(2K/6−k/2) one on the smoothed competitive ratio for any deterministic
algorithm against an oblivious adversary.

Theorem 2. Any deterministic algorithm A has smoothed competitive ratio Ω(2K/6−k/2) for
every k ≤ K/3 against an oblivious adversary in the partial bit randomization model.

As mentioned in the introduction, the adaptive adversary is stronger than the oblivious
one, as it may construct the input instance revealed to the algorithm after time t also on the
basis of the execution of the algorithm up to time t. The next theorem gives an Ω(2K−k) lower
bound on the smoothed competitive ratio of any deterministic algorithm under the partial bit
randomization model, thus showing that MLF achieves up to a constant factor the best possible
ratio in this model. The lower bound is based on ideas similar to those used by Motwani et
al. in [17] for an Ω(2K) non-clairvoyant deterministic lower bound.

Theorem 3. Any deterministic algorithm A has smoothed competitive ratio Ω(2K−k) against
an adaptive adversary in the partial bit randomization smoothening model.

For other smoothening models, we only provide lower bounds on the performance of MLF.
The models, as defined in Section 2, can all be captured using the symmetric smoothening model
according to ϕ. Consider a function ϕ : R+ → R+, which is continuous and non-decreasing.
The symmetric smoothening model according to ϕ smoothens the original processing times as
follows: pj = max(1, p̄j + εj), where εj is chosen randomly from [−ϕ(p̄j)/2, ϕ(p̄j)/2] according
to the uniform probability distribution f .

Theorem 4. Let ϕ : R+ → R+ be function such that ϕ(y) < 2K−2 for all y, and let a ≥ 1
such that there exist x ∈ R+ satisfying x + ϕ(x)/2 = 2K−1 + a. Then, there exists an Ω(2K/a)
lower bound on the smoothed competitive ratio of MLF against an oblivious adversary in the
symmetric smoothening model according to ϕ.

11



The additive symmetric smoothening model is equivalent to the above defined model with
ϕ(y) = c, for c ≤ 2K−2. If εj is drawn using a uniform distribution, we can set a = 1 and
x = 2K−1 + 1 − c/2. This way, we obtain an Ω(2K) lower bound for this model against an
oblivious adversary.

For the additive relative symmetric smoothening model, we define ϕ(x) = xc, for c ≤
K−2

log(3·2K−3+1)
. Choosing x such that x + 1

2xc = 2K−1 + 1 and a = 1 and drawing εj from the

uniform distribution, we have an Ω(2K) lower bound for this model.
For the multiplicative model, we define ϕ(x) = εx, for ε ∈ [0, 2K−2

3·2K−3+1
]. Drawing εj from

the uniform distribution, we have for a = 1, x = (2K + 2)/(2 + ε). Thus, there is an Ω(2K)
lower bound for this smoothening model.

Obviously, Theorem 4 also holds for the adaptive adversary. Finally, we remark that we
can generalize the theorem to the case that f is a well-shaped function.

6 Concluding Remarks

In this paper, we analyzed the performance of the Multi-Level Feedback algorithm using the
novel approach of smoothed analysis. Smoothed competitive analysis provides a unifying frame-
work for worst case and average case analysis of online algorithms. We considered several
smoothening models, including the additive symmetric one, which adapts to our case the
model introduced by Spielman and Teng [23]. The partial bit randomization model yields the
best upper bound.

In particular, we proved that the smoothed competitive ratio of MLF using this model is
O((2k/σ)3+(2k/σ)22K−k), where σ is the standard deviation of the probability density function
for the random perturbation. The analysis holds for any well-shaped probability distribution.
For distributions with σ = Θ(2k), e.g., for the uniform distribution, we obtain a smoothed
competitive ratio of O(2K−k). By choosing k = K, the result implies a constant upper bound
on the average competitive ratio of MLF. We also proved that any deterministic algorithm must
have a smoothed competitive ratio of Ω(2K−k). Hence, MLF is optimal up to a constant factor
in this model. For the other proposed smoothening models we have obtained lower bounds of
Ω(2K). Thus, these models do not seem to capture the good performance of MLF in practice.

As mentioned in the introduction, one could alternatively consider a weaker definition of
smoothed competitiveness as the ratio between the expected costs of the algorithm and of
the optimum, see also [21], rather than the expected competitive ratio. We remark that from
Lemmas 1, 2, 5 and 6 we obtain the same bound under this alternative definition, without the
need for any high probability argument.

Interesting open problems are the analysis of MLF when the release times of the jobs are
smoothened, and to improve the lower bound against the oblivious adversary in the partial bit
randomization model. It can also be of some interest to extend our analysis to the multiple
machine case. Following the work of Becchetti and Leonardi [3], we can extend Lemma 1
having an extra factor of K, which will also be in the smoothed competitive ratio. Finally, this
framework of analysis could be extended to other online problems.
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A Bounds on Large Deviations

For the sake of completeness, we state several well-known results that we will use in the paper.
The first is known as Kolmogorov’s inequality, see, e.g., [11].

Theorem 5. Let X1, . . . , Xn be a sequence of independent random variables such that E[Xj ] =
0 for all j. Define S0 = 0 and Si =

∑
j≤i Xj. Then,

P
[

max
0≤k≤n

|Sk| ≥ λ

]
≤ E[S2

n]
λ2

for any λ > 0.

We will also use the following versions of Chernoff bounds.

Theorem 6. Let X be the sum of a finite number of mutually independent binary random
variables such that µ = E[X] is positive. Then,

P[X ≤ (1− δ)µ] < e−µδ2/2 for any δ ∈ R+ with δ < 1.

Theorem 7. Let X be the sum of a finite number of mutually independent binary random
variables such that µ = E[X] is positive. Then,

P[X ≥ (1 + δ)µ] <

(
eδ

(1 + δ)1+δ

)µ

for any δ ∈ R+.

Theorem 8. Let X be the sum of a finite number of mutually independent binary random
variables such that µ = E[X] is positive. Then,

P[|X − µ| > δµ] < 2e−µδ2/3 for any δ ∈ R+.

B Proof of Lemma 1

We introduce some additional notation. The volume V S(t) is the sum of the remaining pro-
cessing times of the jobs that are active at time t. LS(t) denotes the total work done prior to
time t, that is the overall time the machine has been processing jobs until time t. For a generic
function f (δ, V or L), we define ∆f(t) = fA(t)− fOPT (t). For f (δ, V , ∆V , L or ∆L), the
notation f=k(t) will denote the value of function f at time t when restricted to jobs of class
exactly k. We use f≥h,≤k(t) to denote the value of f at time t when restricted to jobs of classes
between h and k.

Lemma 1. For any input instance I, at any time t: δl
I(t) ≤ hI(t) + 6βkδ

OPT
I (t).

Proof. In the following we omit I when clear from the context. Denote by k1 and k2 respectively
the lowest and highest class such that at least one job of that class is in the system at time t.
For δl(t), we write the following relations:

δl(t) ≤ h(t) + βk

k2∑
i=k1

V A
=i(t)
2i−1

. (1)

The bound follows, since every job that is lucky at time t is either an ending head job or
not. An ending head job might have been processed and we can therefore not say anything
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about its remaining processing time. However, the number of ending head jobs is h(t). For all
other lucky jobs we can bound the remaining processing time from below: a job of class i has
remaining processing time at least 2i−1/βk. We continue with:

k2∑
i=k1

V A
=i(t)
2i−1

=
k2∑

i=k1

V OPT
=i (t) + ∆V=i(t)

2i−1

≤ 2δOPT≥k1,≤k2
(t) +

k2∑
i=k1

∆V=i(t)
2i−1

= 2δOPT≥k1,≤k2
(t) + 2

k2∑
i=k1

∆V≤i(t)−∆V≤i−1(t)
2i

= 2δOPT≥k1,≤k2
(t) + 2

∆V≤k2(t)
2k2

+ 2
k2−1∑
i=k1

∆V≤i(t)
2i+1

≤ 2δOPT≥k1,≤k2
(t) + δOPT≤k1−1(t) + 4

k2∑
i=k1

∆V≤i(t)
2i+1

≤ 2δOPT≤k2
(t) + 4

k2∑
i=k1

∆V≤i(t)
2i+1

, (2)

where the second inequality follows since a job of class i has size at most 2i, while the fourth
inequality follows since ∆V≤k1−1(t) = 0, by definition.

We are left to study the sum in (2). For any t1 ≤ t2 ≤ t, for a generic function f , denote
by f [t1,t2](t) the value of function f at time t when restricted to jobs released between t1 and
t2, e.g., L

[t1,t2]
≤i (t) is the work done by time t on jobs of class at most i released between time

t1 and t2. Denote by ti < t the maximum between 0 and the last time prior to time t in which
a job was processed in queue Qi+1 or higher in this specific execution of MLF. Observe that,
for i = k1, . . . , k2, [ti+1, t) ⊇ [ti, t).

At time ti, either the algorithm was processing a job in queue Qi+1 or higher, or ti = 0.
Thus, at time ti no jobs were in queues Q0, . . . , Qi. Therefore,

∆V≤i(t) ≤ ∆V
(ti,t]
≤i (t) ≤ L

A(ti,t]
>i (t)− L

OPT (ti,t]
>i (t) = ∆L

(ti,t]
>i (t).

In the following we adopt the convention tk1−1 = t. From the above, we have

k2∑
i=k1

∆L
(ti,t]
>i (t)
2i+1

=
k2∑

i=k1

L
A(ti,t]
>i (t)− L

OPT (ti,t]
>i (t)

2i+1

=
k2∑

i=k1

i−1∑
j=k1−1

L
A(tj+1,tj ]
>i (t)− L

OPT (tj+1,tj ]
>i (t)

2i+1

=
k2−1∑

j=k1−1

k2∑
i=j+1

L
A(tj+1,tj ]
>i (t)− L

OPT (tj+1,tj ]
>i (t)

2i+1
,

where the second equality follows by partitioning the work done on the jobs released in the
interval (ti, t] into the work done on the jobs released in the intervals (tj+1, tj ], j = k1 −
1, . . . , i− 1.
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Let ī(j) ∈ {j + 1, . . . , k2} be the index that maximizes L
A(tj+1,tj ]
>i − L

OPT (tj+1,tj ]
>i . Then,

k2∑
i=k1

∆L
(ti,t]
>i (t)
2i+1

≤
k2−1∑

j=k1−1

k2∑
i=j+1

L
A(tj+1,tj ]

>ī(j)
(t)− L

OPT (tj+1,tj ]

>ī(j)
(t)

2i+1

≤
k2−1∑

j=k1−1

L
A(tj+1,tj ]

>ī(j)
(t)− L

OPT (tj+1,tj ]

>ī(j)
(t)

2j+1

≤
k2−1∑

j=k1−1

δ
OPT (tj+1,tj ]

>ī(j)
(t) ≤ δ

OPT (tk2
,t]

≥k1
(t)

≤ δOPT≥k1
(t). (3)

To prove the third inequality observe that every job of class larger than ī(j) > j released in the
time interval (tj+1, tj ] is processed by MLF in the interval (tj+1, t] for at most 2j+1 time units.
Order the jobs of this specific set by increasing xAj (t). Now, observe that each of these jobs
has initial processing time at least 2ī(j) ≥ 2j+1 at their release and we give to the optimum the
further advantage that it finishes every such job when processed for an amount xAj (t) ≤ 2j+1.

To maximize the number of finished jobs the optimum places the work L
OPT (tj+1,tj ]

>ī(j)
on the

jobs with smaller xAj (t). The optimum is then left at time t with a number of jobs

δ
OPT (tj+1,tj ]

>ī(j)
(t) ≥

L
A(tj+1,tj ]

>ī(j)
(t)− L

OPT (tj+1,tj ]

>ī(j)
(t)

2j+1
.

Altogether, from (1), (2) and (3) we obtain:

δl(t) ≤ h(t) + 2βkδ
OPT
≤k2

(t) + 4βkδ
OPT
≥k1

(t)

≤ h(t) + 6βkδ
OPT (t).

C Lattice Argument

In the sequel, we exploit the fact that two events A and B are correlated: A and B are
positively correlated if P[A ∩ B] ≥ P[A]P[B] , while A and B are negatively correlated if
P[A ∩ B] ≤ P[A]P[B] . We briefly review a technique described in the book by Alon and
Spencer [1, Chapter 6] to show that two events are correlated. Then, we discuss the use of this
technique in our analysis.

Let Ω denote a finite probability space with probability function P. Let A and B denote two
events in Ω. A and B are positively or negatively correlated if the following three conditions
hold.

(i) Ω forms a distributive lattice. A lattice (Ω,≤,∨,∧) is a partially ordered set (Ω,≤) in
which every two elements x and y have a unique minimal upper bound, denoted by x∨y,
and a unique maximal lower bound, denoted by x∧y. A lattice (Ω,≤,∨,∧) is distributive
if for all x, y, z ∈ Ω: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).
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(ii) The probability function P is log-supermodular, i.e., for all x, y ∈ Ω,

P[x] ·P[y] ≤ P[x ∨ y] ·P[x ∧ y] .

(iii) An event E ⊆ Ω is monotone increasing if x ∈ E and x ≤ y implies that y ∈ E, while
E ⊆ Ω is monotone decreasing if x ∈ E and x ≥ y implies that y ∈ E. A and B are
positively correlated if both A and B are monotone increasing. A and B are negatively
correlated if A is monotone decreasing and B is monotone increasing or vice versa.

Example 1 (Lemma 7). Let A′ = (X l
j = 1 |Clj = i) and B′ = (F(t, S,xS̄) |Clj = i). We

condition the probability space further in order to make sure that only the processing time
of j is random. That is, we fix the processing times of all jobs different from j to xj̄ , which
we denote by pj̄ = xj̄ . Define A = (A′ |pj̄ = xj̄) = (X l

j = 1 |Clj = i ∩ pj̄ = xj̄) and
B = (B′ |pj̄ = xj̄) = (F(t, S,xS̄) |Clj = i ∩ pj̄ = xj̄). Let Ω denote the (conditioned)
probability space and let P denote the underlying (conditioned) probability distribution.

(i) It is easy to see that Ω together with the partial order ≤, the standard max and min
operations constitutes a distributive lattice.

(ii) P is log-supermodular. The inequality holds even with equality and does not depend on
the underlying probability distribution.

(iii) Let pj = x and assume x ∈ A, i.e., j is lucky with respect to pj = x. If we increase pj to
y ≥ x, then j will remain lucky and thus y ∈ A. So, A is monotone increasing. Similarly,
if F(t, S,xS̄) holds for pj = x, then F(t, S,xS̄) holds also for pj = y ≥ x, since the two
schedules obtained are the same up to time t. That is, B is monotone increasing. We
conclude that A and B are positively correlated.

Note that A′ and (pj̄ = xj̄) are mutually independent and thus P[A′] = P[A] . We exploit
this fact as follows in order to prove that the events A′ and B′ are positively correlated as well.

P[A′ ∩ B′] =
∑
xj̄

P[A′ ∩ B′ |pj̄ = xj̄ ]P[pj̄ = xj̄ ] ≥
∑
xj̄

P[A]P[B]P[pj̄ = xj̄ ]

= P[A′]
∑
xj̄

P[B]P[pj̄ = xj̄ ] = P[A′]P[B′] .

Example 2 (Lemma 2). If we define A′ = (pqi ≤ 2i) and B′ = (H(t) = H) and then proceed
along the lines of Example 1 it is easy to see that A is monotone decreasing and B is monotone
increasing. That is, A and B are negatively correlated. Negative correlation of A′ and B′ then
follows from the observation that A′ is independent of (pj̄ = xj̄).

The above reasoning clearly holds for the oblivious adversary. Observe, however, that it also
holds in the adaptive case: The event A′ only depends on the random outcome εj of job j,
which the adaptive adversary cannot control. In principle, the event B′ might be influenced by
a change in the processing time of j. However, since pj is increased in both cases, this change is
revealed to the adversary only after the completion of j itself. So, up to time t, the behaviour
of the adaptive adversary will be the same.
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D Proof of Lemma 3

Lemma 3. P
[∑

j∈J εj ≥ n(2k+1)
8

]
≥ 1− e−

n
16 .

Proof. For each job j ∈ J , we define a binary random variable Zj = (εj ≥ 2k+1
2 ). Let

Z =
∑

j∈J Zj . We have P[Zj = 1] = 1
2 and therefore E[Z] = n

2 . Since each εj is chosen
independently uniformly at random, the Zj ’s are independent. Applying a Chernoff bound we
obtain P[Z < n

4 ] ≤ e−
n
16 . Thus, with probability at least 1 − e−

n
16 there are at least n

4 jobs
with εj ≥ 2k+1

2 .

E Proof of Lemma 5

Lemma 5. For each job j with p̄j ∈ (2i−1, 2i], for some i, k < i ≤ K, P[X l
j = 1] ≥ 1

2 .

Proof. Due to Fact 2 the processing time pj of a job j is chosen randomly from a subrange of
(2i−1, 2i]. Hence,

P[X l
j = 1] = P[pj ≥ (1 + γk)2i−1] ≥ P[εj ≥ γk2i−1] ,

since the worst case occurs if φj = 2i−1. By definition γk ≤ 2k−K and thus γk2i−1 ≤ µ for each
i. Since the underlying probability distribution is symmetric around its mean, j is lucky with
probability at least 1

2 .

F Proof of Lemma 6

Lemma 6. For each job j with p̄j ∈ [1, 2k] and each class i, 0 ≤ i ≤ k,

P[X l
j = 1 |Clj = i] ≥

( σ

2k

)2
.

Proof. Due to Fact 1 the processing time pj of a job j is chosen completely at random from
[1, 2k]. Thus, P[X l

j = 1 |Clj = i] = P[εj ≥ (1 + γk)2i−1 |Clj = i] .
First, note that for each i < k, P[X l

j = 1 |Clj = i] ≥ 1
2 , since γk ≤ 1

2 and the probability
density function f is non-decreasing in [1, µ].

Next, let i = k. Then, P[εj ≥ (1 + γk)2k−1 |Clj = k] ≥ P[εj ≥ (1 + γk)2k−1] , since
P[Clj = k] ≤ 1. Moreover, note that

P[εj ≥ (1 + γk)2k−1] > P[εj − µ ≥ γk2k−1] = 1
2P[|εj − µ| ≥ γk2k−1] ,

where the first inequality holds since we assume that µ > 2k−1 and the last inequality is due
to the symmetry of the distribution. The lemma now follows from Corollary 2.

The following lemma might be considered as the inverse of Chebyshev’s inequality.

Lemma 9. Let ε be drawn from a symmetric distribution over [1, 2k] with mean µ = 2k−1+1/2.
Then, for any λ, 0 ≤ λ ≤ 2k − µ,

P[|ε− µ| ≥ λ] ≥ σ2 − λ2

(2k − µ)2 − λ2
≥
( σ

2k−1

)2
−
(

λ

2k−1

)2

.
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Proof.

σ2 = 2
∫ 2k

µ
(ε− µ)2f(ε)dε = 2

∫ µ+λ

µ
(ε− µ)2f(ε)dε + 2

∫ 2k

µ+λ
(ε− µ)2f(ε)dε

≤ λ2(1−P[|ε− µ| ≥ λ] ) + (2k − µ)2P[|ε− µ| ≥ λ]

Corollary 2. For γk ≤ 1√
2

(
σ

2k−1

)
, we have P[|εj − µ| ≥ γk2k−1] ≥ 1

2

(
σ

2k−1

)2
.

G Proof of Lemma 7

Lemma 7. For every j ∈ S, P[X l
j = 1 | F(t, S,xS̄)] ≥ α. Therefore, E[δl(t) | F(t, S,xS̄)] ≥

α|S|.

Proof. Let p̄j ∈ (2i−1, 2i], for some i, k < i ≤ K. The events (X l
j = 1) and (F(t, S,xS̄)) are

positively correlated and thus,

P[X l
j = 1 | F(t, S,xS̄)] ≥ P[X l

j = 1] .

Next, let p̄j ∈ [1, 2k]. The events (X l
j = 1 |Clj = i) and (F(t, S,xS̄) |Clj = i) are positively

correlated for all i, 0 ≤ i ≤ k, i.e.,

P[X l
j = 1 ∩ F(t, S,xS̄) |Clj = i] ≥ P[X l

j = 1 |Clj = i]P[F(t, S,xS̄) |Clj = i] .

Thus,

P[X l
j = 1 ∩ F(t, S,xS̄)] =

k∑
i=0

P[X l
j = 1 ∩ F(t, S,xS̄) |Clj = i]P[Clj = i]

≥
k∑

i=0

P[X l
j = 1 |Clj = i]P[F(t, S,xS̄) |Clj = i]P[Clj = i]

≥ min
i=0,...,k

P[X l
j = 1 |Clj = i]P[F(t, S,xS̄)] .

And therefore,
P[X l

j = 1 | F(t, S,xS̄)] ≥ min
i=0,...,k

P[X l
j = 1 |Clj = i] .

The lemma follows from Lemma 5 and Lemma 6.

H Proof of Lemma 8

We first prove that the variables Yj = (X l
j | F(t, S,xS̄)), j ∈ S, are independent.

Lemma 10. Assume S(t) = S and pS̄ = xS̄. Then, the schedule of MLF up to time t is
uniquely determined.
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Proof. Assume otherwise. Then, given pS̄ = xS̄ , there exist two possible, deterministic sched-
ules S1 and S2, such that SS1(t) = SS2(t) = S. Denote by I1 and I2 the corresponding
instances. Since the processing times of jobs not in S are fixed, it has to be the case that I1

and I2 differ in the processing times of some subset of the jobs in S. Let t′ ≤ t be the first time,
where S1 and S2 differ. Since the job processed by MLF at time t′ only depends on S(t′), it
must be the case that SI1(t

′) 6= SI2(t
′). This implies that one job j was completed right before

t′ in one schedule (we assume in S1 without loss of generality) but not in the other. Since j
must belong to S and t′ ≤ t, this contradicts the hypothesis that SS1(t) = S.

Corollary 3. Assume S(t) = S and pS̄ = xS̄. Then, for each j ∈ S, xAj (t) is a uniquely
determined constant.

In the sequel, given that S(t) = S and pS̄ = xS̄ , we set πj = xAj (t) for all j ∈ S.

Fact 6. Assume jobs in S are not completed before time t if MLF processes instance I. Then,
for every instance I ′ that is obtained from I by increasing the processing times of some subset
of the jobs in S, we have xAjI′(t) = xAjI(t) for every job j.

Lemma 11. Assume pS̄ = xS̄ is such that the event (S(t) = S) is non-empty. Then,

(S(t) = S) ⇔ (pj > πj for all j ∈ S).

Proof. Assume pS̄ = xS̄ and consider any execution such that (S(t) = S). By Lemma 10 and
Corollary 3, we know that the amount of processing time received by each job j up to time t
is uniquely determined. In particular, this holds for jobs in S, for which we have xAj (t) = πj ,
for all j ∈ S.
⇒: Let j be in S. Then, by Corollary 3, the time spent by A on j up to time t is πj . Since j
is active at time t, pj > xAj (t) = πj .
⇐: Let I ′ denote the instance such that pS̄ = xS̄ and pjI′ > πj for all j ∈ S. Let I denote the
instance such that pS̄ = xS̄ and pjI = πj for all j ∈ S. Consider the two deterministic schedules
corresponding to I and I ′. By construction and since MLF is oblivious to the processing times
of the jobs, we know that in the schedule corresponding to instance I (i) no job in S is completed
before t and (ii) jobs that are not in S have either been completed by time t, or they are yet
to be released. Then, by Fact 6, xAjI(t) = xAjI′(t) for all j. This implies that SI′(t) = S, since
pjI′ > πj = xAjI(t), for all j ∈ S, while jobs not in S are either yet to be released, or they have
been completed by time t, since by Fact 6 they have received the same amount of processing
time in the two schedules.

Lemma 12. The variables Yj = (X l
j | F(t, S,xS̄)), j ∈ S, are mutually independent.

Proof. Let R ⊆ S and let aj ∈ {0, 1} for each j ∈ R.

P

⋂
j∈R

X l
j = aj

∣∣∣∣ (S(t) = S) ∩ (pS̄ = xS̄)

 = P

⋂
j∈R

X l
j = aj

∣∣∣∣ ⋂
j∈S

(pj > πj) ∩ (pS̄ = xS̄)


= P

⋂
j∈R

pj ∈ Ij

∣∣∣∣ ⋂
j∈S

(pj > πj) ∩ (pS̄ = xS̄)

 ,

21



where the first equality follows from Lemma 11, and Ij denotes the union of intervals such that
(X l

j = aj) holds.

P

⋂
j∈R

X l
j = aj

∣∣∣∣ (S(t) = S) ∩ (pS̄ = xS̄)

 =
P
[⋂

j∈R(pj ∈ Ij) ∩
⋂

j∈S(pj > πj) ∩ (pS̄ = xS̄)
]

P
[⋂

j∈S(pj > πj) ∩ (pS̄ = xS̄)
]

=
P
[⋂

j∈R(pj ∈ I ′j) ∩
⋂

j∈S\R(pj > πj) ∩ (pS̄ = xS̄)
]

P
[⋂

j∈S(pj > πj) ∩ (pS̄ = xS̄)
] ,

where I ′j is defined as the intersection of Ij and (πj , 2K ]. Using the fact that the processing
times are perturbed independently, we obtain

P

⋂
j∈R

X l
j = aj

∣∣∣∣ (S(t) = S) ∩ (pS̄ = xS̄)

 =

∏
j∈R P[pj ∈ I ′j ]P

[⋂
j∈S\R(pj > πj) ∩ (pS̄ = xS̄)

]
∏

j∈R P[pj > πj ]P
[⋂

j∈S\R(pj > πj) ∩ (pS̄ = xS̄)
]

=
∏
j∈R

P[pj ∈ I ′j ]
P[pj > πj ]

=
∏
j∈R

P[X l
j = aj | pj > πj ]

The above equality holds for any subset R ⊆ S. In particular, for a single job j ∈ R,

P[X l
j = aj | (S(t) = S) ∩ (pS̄ = xS̄)] = P[X l

j = aj | pj > πj ] .

Lemma 8. For any S ⊆ J , at any time t, P[δl(t) < 1
2αδ(t) | F(t, S,xS̄)] ≤ e−

α|S|
8 .

Proof. By Lemma 12, the random variables Yj = (X l
j | F(t, S,xS̄)), j ∈ S, are independent.

Moreover, by Lemma 7 we have E[δl(t) | F(t, S,xS̄)] ≥ α|S|. Applying the standard Chernoff
bound to (δl(t) | F(t, S,xS̄)) = (

∑
j∈J Yj), we obtain

P[δl(t) < 1
2αδ(t) | F(t, S,xS̄)] = P[δl(t) < 1

2α|S| | F(t, S,xS̄)]

≤ P[δl(t) < 1
2E[δl(t) | F(t, S,xS̄)] | F(t, S,xS̄)] ≤ e−

α|S|
8 .

I Proofs of Lower Bounds

In this part of the appendix, we prove the lower bounds on the smoothed competitive ratio.
We advise the reader to first read the proof for the adaptive adversary since this bound is more
intuitive. We present the lower bounds in the order in which they appeared in the paper.

Theorem 2. Any deterministic algorithm A has smoothed competitive ratio Ω(2K/6−k/2) for
every k ≤ K/3 against an oblivious adversary in the partial bit randomization model.
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Proof. For notational convenience, we assume that K is even. The input sequence for the lower
bound is divided into two phases.

Phase 1: At time t = 0, the adversary releases N = 2K/2 +
⌊
(2K−k − 2)/3

⌋
jobs and runs

A on these jobs up to the first time t̂ when one of the following two events occurs: (i) 2K/2

jobs, denoted by j∗1 , j∗2 , . . . , j∗
2K/2 , have been processed for at least 2K/2 time units, or (ii) one

job, say j∗, has been processed for 2K − 2k+1 time units. In the sequel, we call jobs released in
the first phase phase-1 jobs.

Let xAj (t̂) denote the amount of time spent by algorithm A on job j up to time t̂. We fix
the initial processing time of each job j to p̄j = xAj (t̂)+ 2k+1. Note that after smoothening the
p̄j ’s we have xAj (t̂) + 2k < pj < xAj (t̂) + 3 · 2k for each j. That is, each job has a remaining
processing time between 2k and 3 · 2k at time t̂ in the schedule produced by A. Moreover, A
has not completed any job at this time, i.e., δA(t̂) = N .

Instead of considering an optimal scheduling algorithm, we consider a scheduling algorithm
S that schedules the jobs as described below. Clearly, the total flow time of OPT is upper
bounded by the total flow time of S.

Let t̂ be determined by case (i), then S does not process jobs j∗1 , j∗2 , . . . , j∗
2K/2 before all

other jobs are completed. Therefore, at least 2K time units can be allocated on the other jobs.
Since each of these N−2K/2 jobs has remaining processing time at most 3 ·2k, S has completed
at least min(N − 2K/2,

⌊
2K/(3 · 2k)

⌋
) ≥ N − 2K/2 jobs, i.e., all these jobs. In case (ii), by not

processing job j∗, S completes at least min(N − 1,
⌊
(2K − 2k+1)/(3 · 2k)

⌋
) ≥ N − 2K/2 of the

other jobs. Thus, we obtain δS(t̂) ≤ 2K/2.
Phase 2: Starting from time t̂, the adversary releases a sequence of L = 25K/3−k jobs,

denoted by N + 1, N + 2, . . . , N + L, for a period of t̃ = µL, where µ = 2k−1 + 1
2 . The release

time of job j = N + i is rj = t̂+(i−1)µ, for i = 1, . . . , L. Each such job j has initial processing
time p̄j = 1 and its smoothed processing time satisfies pj ≤ 2k. In the sequel, we call jobs
released in the second phase phase-2 jobs.

To analyze the number of jobs in the system of A and S during the second phase, we define
the random variables Xj = pN+j − µ, for j = 1, . . . , L. Note that the Xj ’s are independently
distributed random variables with zero mean. Define S0 = 0 and Si =

∑
1≤j≤i Xj , for i =

1, . . . , L. Applying Kolmogorov’s inequality, we obtain

P
[

max
0≤i≤L

|Si| ≥ µ
√

L

]
≤

E
[
S2

L

]
µ2L

≤ 1
3

(4)

The last inequality follows since E[S2
L] = Var[SL] and the variance of the random variable SL

for the uniform distribution is L(22k−1)/12. The bound holds for any well-shaped distribution,
since among these distributions the variance is maximized by the uniform distribution.

Consider a schedule Q only processing phase-2 jobs. The amount of idle time up to time
t̂ + iµ is given by Ii = max(Ii−1, iµ−

∑
1≤j≤i pN+j), where I0 = 0. Hence, the total idle time

up to time t̂ + iµ for this algorithm is

Ii = max
0≤j≤i

−Sj .

By (4) we know that with probability at least 2
3 the total idle time at any time t̂ + iµ stays

below µ
√

L.
We first derive a lower bound on the number of jobs that are in the system of A during the

second phase.
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Lemma 13. With probability at least 2
3 , at any time t ∈ [t̂, t̂ + t̃]: δA(t) ≥ N − 1

2

√
L− 1.

Proof. A can do no better than the SRPT rule during the second phase. Each phase-1 job
has remaining processing time larger than 2k. Therefore, A follows Q using the idle time
to schedule phase-1 jobs, unless a phase-1 job has received so much processing time that its
remaining processing time is less than the processing time of the newly released job. This leads
to at most an additional 2k time spent on phase-1 jobs. Hence, with probability at least 2

3 , at
most 1

2

√
L + 1 phase-1 jobs are finished by A during the second phase.

S also follows Q during the second phase using the idle time to schedule phase-1 jobs. We
next give an upper bound on the number of jobs in the system of S during the second phase.

Lemma 14. With probability at least 2
3 , at any time t ∈ [t̂, t̂ + t̃]: δS(t) ≤ 2K/2 + 2

√
L + 2.

Proof. Consider the amount of additional volume brought into the system. Just before time
t = t̂ + iµ this is ∑

1≤j≤i

pj − (iµ− Ii)

i.e., the total processing time of phase-2 jobs released before time t minus the amount of time
processed on phase-2 jobs. Hence, the maximum amount of additional volume before the release
of a phase-2 job is given by

∆V = max
0≤i≤L

(Si + Ii) = max
0≤i≤L

(Si + max
0≤j≤i

−Sj) = max
0≤j≤i≤L

(Si − Sj).

The probability that this value exceeds some threshold value is bounded by

P[∆V > 2λ] ≤ P
[

max
0≤i,j≤L

(Si − Sj) > 2λ

]
≤ P

[
max

0≤i≤L
|Si| > λ

]
Setting λ to µ

√
L, by (4) this probability is at most 1

3 .
To conclude the proof we need the following fact, which can easily be proven by induction

on the number of phase-2 jobs released.

Fact 7. Just before the release of a phase-2 job, S has no more than one phase-2 job with
remaining processing time less than µ.

Assume ∆V attains its maximum just before time t′ = t̂ + iµ. Due to Fact 7 no more than
one phase-2 job has remaining processing time less than µ. At time t′ a new phase-2 job is
released. Therefore, with probability at least 2

3 , the number of phase-2 jobs that are in the
system is bounded by

2µ
√

L

µ
+ 2 = 2

√
L + 2.

By the above two lemmas, with constant probability the total flow time of the two schedules
is bounded by

FA ≥ (N −
√

L/2− 1)t̃,
FS ≤ Nt̂ + (2K/2 + 2

√
L + 2)t̃ + (2K/2 + 2

√
L + 2)(3N2k + 2µ

√
L),
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where the contribution of the period after time t̂ + t̃, for S is bounded by the number of jobs
at time t̂ + t̃ times the remaining processing time at the start of this phase.

To bound the ratio between FA and FS , we note that from the upper bounds on N and t̂
it follows that Nt̂ ≤ 2(2K/2 + 2

√
L + 2)µL. Moreover, we know from the definition of N and

µ that 3N2k + 2µ
√

L ≤ 8µL. Hence, by restricting k ≤ K/3, we have that

E
[

FA

FOPT

]
= Ω

(
N −

√
L/2− 1

2K/2 + 2
√

L + 2

)

= Ω

(
2K−k + 2K/2 − 25K/6−k/2

25K/6−k/2

)
= Ω

(
2K/6−k/2

)
.

Theorem 3. Any deterministic algorithm A has smoothed competitive ratio Ω(2K−k) against
an adaptive adversary in the partial bit randomization smoothening model.

Proof. The input sequence for the lower bound is divided into two phases.
Phase 1: At time t = 0, the adversary releases N =

⌊
(2K−k − 2)/3

⌋
+ 1 jobs. We run A

on these jobs up to the first time t̂ when a job, say j∗, has been processed for 2K − 2k+1 time
units. Let xAj (t̂) denote the amount of time spent by algorithm A on job j up to time t̂. We
fix the initial processing time of each job j to p̄j = xAj (t̂) + 2k+1. Note that after smoothening
the p̄j ’s we have xAj (t̂) + 2k < pj < xAj (t̂) + 3 · 2k for each j. That is, each job has a remaining
processing time between 2k and 3 · 2k. Therefore, A will not complete any job at time t̂, i.e.,
δA(t̂) = N .

Consider the optimal algorithm OPT . If OPT does not process j∗ until time t̂, 2K − 2k+1

time units can be allocated on the other jobs. Thus, at least

2K − 2k+1

3 · 2k
≥
⌊

2K−k − 2
3

⌋
= N − 1

of these jobs are completed by OPT until time t̂, i.e., δOPT (t̂) = 1.
Phase 2: The adaptive adversary releases a sequence N + 1, N + 2, . . . of jobs. The release

time of job j = N + i is rj = t̂ for i = 1 and rj = rj−1 + pj−1 for i > 1. Each such job j has
initial processing time p̄j = 1 and therefore its smoothed processing time satisfies pj ≤ 2k.
OPT will then complete every job released in the second phase before the next one is

released. The optimal strategy for A is also to process the jobs released in the second phase to
completion as soon as they are released since every job left uncompleted from the first phase
has remaining processing time larger than 2k.

The second phase goes on for a time interval larger than 23K−2k which is an upper bound
on the contribution to the total flow time of any algorithm in the first phase of the input
sequence. Therefore, in terms of total flow time, the second phase dominates the first phase
for both A and OPT . Since in the second phase A has Ω(N) jobs and OPT has O(1) jobs in
the system, we obtain a competitive ratio of Ω(N) = Ω(2K−k).
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Consider a function ϕ : R+ → R+, which is continuous and non-decreasing. The symmetric
smoothening model according to ϕ smoothens the initial processing times as follows.

pj = max(1, p̄j + εj),

where εj is chosen randomly from [−ϕ(p̄j)/2, ϕ(p̄j)/2] according to some probability distribu-
tion f .

Theorem 4. Let ϕ : R+ → R+ be function such that ϕ(y) < 2K−2 for all y, and let a ≥ 1
such that there exist x ∈ R+ satisfying x + ϕ(x)/2 = 2K−1 + a. Then, there exists an Ω(2K/a)
lower bound on the smoothed competitive ratio of MLF against an oblivious adversary in the
symmetric smoothening model according to ϕ.

Proof. The input sequence of the adversary consists of two phases. Let S be the algorithm that
during the first phase schedules the jobs to completion in the order in which they are released
and during the second phase schedules the jobs that are released in this phase to completion in
the order in which they are released. After completing all phase-2 jobs, S finishes the remaining
phase-1 jobs. We upper bound OPT by S. To prove the theorem, we show that with constant
probability FA/FS = Ω(2K/a). Then E[FA/FOPT ] = Ω(2K/a). Without loss of generality,
we assume that K ≥ 3, and we define L = ϕ(x).

Phase 1: At time t = 0, M = 8max(L3/2K , 1) jobs are released with initial processing
time p̄1 = x and then every p̄1 time units one job with same initial processing time is released.
The total number of jobs released in the first phase is N = max(L4, 22K/L2). Note that by
definition of x, the smoothed processing time of each phase-1 job is at least 2K−2.

Let T1(i) be the total processing time of jobs released in phase 1 at or before time ip̄1,
for i = 0, 1, . . . , N −M . Define S0 = 0 and Si = Si−1 + εi =

∑i
j=1 εj , for i = 1, . . . , N . As

E[εj ] = 0 and all εj are drawn independently, we have that E[Si] = 0 and E[S2
i ] = iL2/12, for

all i = 0, 1, . . . , N . Applying Kolmogorov’s inequality, we obtain

P
[

max
0≤k≤N

|Sk| > L
√

N

]
≤ 1

12
.

Hence, we have with probability at least 11/12, that for all i = 0, 1, . . . , N −M ,

(i + M)p̄1 − L
√

N ≤ T1(i) ≤ (i + M)p̄1 + L
√

N. (5)

In the sequel, we assume that (5) holds.
Let t̂ = (N −M + 1)p̄1, and consider a t ∈ [0, t̂). Then, the remaining processing time for

S as well as MLF at time t is

T1(bt/p̄1c)− t ≥ (bt/p̄1c+ M)p̄1 − L
√

N − t

≥ t− 1 + Mp̄1 − L
√

N − t

≥ M2K−2 − L
√

N − 1
≥ 2 max(L3, 2K)−max(L3, 2K)− 1 > 0.

Hence, MLF and S do not have any idle time during the first phase. Moreover, the remaining
processing time for both algorithms is at most Mp̄1 + L

√
N .

Consider t ∈ [0, t̂). Then, there is at most one job that has been processed on by S but is
not yet completed. Hence,

δS(t) ≤ (Mp̄1 + L
√

N)/2K−2 + 1 = O(M).
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Consider the schedule produced by MLF up to time t̂. The probability that a job released
in phase 1 is of class K is at least a/L. The expected number of phase-1 class K jobs is at
least aN/L. Applying a Chernoff bound, we know that with probability at least 1− eaN/8L ≥
(e − 1)/e, there are at least aN/2L class K phase-1 jobs. In the sequel we assume that this
property holds. Note that the probability that both (5) and the bound on the number of class
K jobs hold is at least (e− 1)/e− 1/12.

If MLF does not finish any class K job up to time t̂, then

δA(t̂) ≥ aN

2L
.

Otherwise, consider the last time t ∈ [0, t̂) that MLF was processing a job in queue QK . By
definition of MLF, we know that at this time, all lower queues were empty. Moreover, we know
that the remaining processing time of each job in this queue is at most a and we also know
that the total remaining processing time is at least L

√
N − 1. Hence, at this time the number

of alive jobs in the schedule of MLF is at least (L
√

N − 1)/a and also

δA(t̂) ≥ (L
√

N − 1)/a.

Phase 2: At time t̂, M jobs with p̄2 = 2K−2 are released and then every p̄2 time units one
job with the same p̄2 is released. The total number of jobs released in this phase is 2N . Note
that no job released in the second phase enters queue QK .

Let T2(i) be the total processing time of the phase-2 jobs release at or before time t̂ + ip̄2.
Applying Kolmogorov’s inequality yields that with probability at least 11/12, we have that

(i + M)p̄2 − L
√

2N ≤ T2(i) ≤ (i + M)p̄2 + L
√

2N. (6)

In the sequel, we assume that also (6) holds. The probability that the bound on the number
of class K jobs and (5) and (6) hold is at least (e− 1)/e− 1/6 > 0.46.

Using the same arguments as before, we now show that MLF continuously processes phase-
2 jobs until time t̄ = t̂ + (2N −M + 1)p̄2. Namely, consider a t ∈ [t̂, t̄,). Then, the remaining
processing time for S as well as MLF at time t is

T2(
⌊
(t− t̂)/p̄2

⌋
)− (t− t̂) ≥ (

⌊
(t− t̂)/p̄2

⌋
+ M)p̄2 − L

√
2N − (t− t̂)

≥ Mp̄2 − L
√

2N − 1
≥ M2K−2 − L

√
2N − 1

≥ 2 max(L3, 2K)−
√

2 max(L3, 2K)− 1 > 0.

Thus,

δA(t) ≥ aN

2L
t ∈ [t̂, t̄),

and

FA = Ω
(

aN

2L
(2N −M + 1)p̄2

)
,

if MLF does not finish any phase-1 job of class K up to t̂. Otherwise, we have that,

δA(t) ≥ (L
√

N − 1)/a, t ∈ [t̂, t̄),

and
FA = Ω(L

√
N(2N −M + 1)p̄2).
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Moreover, using the same argumentation as for phase 1, we know that during [t̂, t̄), S has
at most (2 +

√
2)M + 1 second phase jobs in its system. Hence,

δS(t) = O(M), t ∈ [t̂, t̄).

After time t̄, the time needed by S to finish all jobs is at most

L
√

N + L
√

2N =
1 +
√

2
8

M2K

≤ 1
2
(1 +

√
2)Mp̄2

≤ 1
2
(1 +

√
2)(2N −M + 1)p̄2.

Hence,
FS = O(M(2N −M + 1)p̄2).

If N = L4, then M = 8L3/2K and

FA/FS = Ω(L
√

N/M) = Ω(2K/a),

or
FA/FS = Ω((aN/2L)/M) = Ω(a2K).

If N = 22K/L2 then L3 ≤ 2K and M = 8. Moreover,

FA/FS = Ω(L
√

N/M) = Ω(2K/a),

or
FA/FS = Ω((aN/2L)/M) = Ω(a2K).

Since the probability that (5), (6), and the bound on the number of class K jobs hold is
constant and a ≥ 1, we have

E
[

FA

FOPT

]
= Ω(2K/a).

28



���
�

�� k

I N F O R M A T I K

Below you find a list of the most recent technical reports of the Max-Planck-Institut für Informatik. They
are available by anonymous ftp from ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most
of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any
questions concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which
are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut für Informatik
Library
attn. Anja Becker
Stuhlsatzenhausweg 85
66123 Saarbrücken
GERMANY
e-mail: library@mpi-sb.mpg.de

MPI-I-2003-NWG2-002 F. Eisenbrand Fast integer programming in fixed dimension

MPI-I-2003-NWG2-001 L.S. Chandran, C.R. Subramanian Girth and Treewidth

MPI-I-2003-4-009 N. Zakaria FaceSketch: An Interface for Sketching and Coloring
Cartoon Faces

MPI-I-2003-4-008 C. Roessl, I. Ivrissimtzis, H. Seidel Tree-based triangle mesh connectivity encoding

MPI-I-2003-4-007 I. Ivrissimtzis, W. Jeong, H. Seidel Neural Meshes: Statistical Learning Methods in Surface
Reconstruction

MPI-I-2003-4-006 C. Roessl, F. Zeilfelder,
G. Nürnberger, H. Seidel

Visualization of Volume Data with Quadratic Super
Splines

MPI-I-2003-4-005 T. Hangelbroek, G. Nürnberger,
C. Roessl, H.S. Seidel, F. Zeilfelder

The Dimension of C1 Splines of Arbitrary Degree on a
Tetrahedral Partition

MPI-I-2003-4-004 P. Bekaert, P. Slusallek, R. Cools,
V. Havran, H. Seidel

A custom designed density estimation method for light
transport

MPI-I-2003-4-003 R. Zayer, C. Roessl, H. Seidel Convex Boundary Angle Based Flattening

MPI-I-2003-4-002 C. Theobalt, M. Li, M. Magnor,
H. Seidel

A Flexible and Versatile Studio for Synchronized
Multi-view Video Recording

MPI-I-2003-4-001 M. Tarini, H.P.A. Lensch, M. Goesele,
H. Seidel

3D Acquisition of Mirroring Objects

MPI-I-2003-2-003 Y. Kazakov, H. Nivelle Subsumption of concepts in DL FL0 for (cyclic)
terminologies with respect to descriptive semantics is
PSPACE-complete

MPI-I-2003-2-002 M. Jaeger A Representation Theorem and Applications to
Measure Selection and Noninformative Priors

MPI-I-2003-2-001 P. Maier Compositional Circular Assume-Guarantee Rules
Cannot Be Sound And Complete
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MPI-I-2003-1-003 R. Beier, B. Vöcking Random Knapsack in Expected Polynomial Time
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