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Average case complexity analysis
of RETE pattern-match algorithm

and average size of join in Databases

Luc ALBERT *

Abstract. The RETE algorithm [Forg 82] is a very efficient method for comparin g a large collection of patterns
with a large collection of objects. It is widely used in rule-based expert systems. We studied ([AF 88] or [Alb 88]) the
average case complexity of the RETE algorithm on collections of patterns and objects with a random tree structure.
Objects and patterns are often made up of a head-symbol and a list of variable or constant arguments (OPSV [Forg
81], Xrete [LCR 88] ...). In this paper, we analyse the theoretical performance of RETE algorithm on th is widely
used type of pattern and object with the theory of generating functions. We extend this work to the studyv of the
petformance of composed queries in relational Databases and we generalize Rosenthal's theorem on the average size
of an equijoin [Rosen 81]. We give some numerical examples based on our results.

Complexité en moyenne de I’algorithme
de multi-pattern matching RETE
sur des ensembles de patterns et d’objets

de profondeur un

Résumé. L’algorithme RETE ([Forg 32]) est un algorithme trés efficace pour effectuer le pattern-matching (ou
semi-unification) d'un grand nombre d'objets avec un grand nombre de motifs (ou patterns). notamment dans les
moteurs d'inférences des systémes experts & Base de Régles. Nous avions étudié ([AF 83] ou [Alb 88]) la compléxité
en moyenne de l'algorithme RETE sur des ensembles de motifs et d’objets de structure arborescente quelconque.
Objets et motifs sont souvent du tvpe : un symbole de téte suivi d'une liste d'arguments constants ou variables
(OPSV [Forg 81], Xrete [LCR 88] ...). Nous analvsons, dans cet article, sa performance théorique pour ce type
répandu de motifs et d'objets i I'aide de la théorie des séries génératrices. Nous étendons ces travauy i I'étude de la
performance des requétes multiples dans les Bases de Données Relationnelles et généralisons le theorem de Rosenthal
sur la taille moyenne d'une équijointure [Rosen 81]. Nous développons aussi numériquement sur des exemples les
résultats simples et précis obtenus.

* Institut National de Recherche en Informatique et Automatique, Domaine de Voluceau, Rocquencourt,
BP 105, 78150 Le Chesnay Cedex France. mail : albert:@inria.inria.fr
Laboratoire Central de Recherches, Thomson-CSF, Domaine de Corbeville. BP 10, 91401 Orsay ('edex
France.



”

I. Introduction

The RETE pattern match algorithm [Forg 79] [Forg 82] has been introduced by C. Forgy in the line of his
work on production systems [Forg 81].

Productlou systems, or more generally rule-based systems, are widely used in Artificial Intelligence for
moclellmg mtelhgent behaviour [LNR 87] and building expert systems. They are quite easy to use and have
many advantages : modularlty, relative independence of each rule and the same expressivity as a Turing
machine. Ho“e\er the inference engine is algorithmically inefficient. The most time consuming process in
a rule-based system is the pattern match phase that consists of maintaining the set of satisfied rules among
changes in the data base. This computation can represent more than 90 % of the overall computation time
in an a,l')plicavtion [DNM 78]. .

RETE algorithm is an efficient method for computing the set of satisfied rules incrementally after each
rule execution. The incremental computation is justified in expert systems applications by the fact that
the execution of a rule affects a relatively small number of objects (or facts or terms) in comparison to the
total number of objects. Therefore most of the previous pattern match work remains valid. RETE algorithm
realizes a total indexing of the data base according to rule conditions. Conditions common to several rules
are shared in such a way that several rules can be found to be satisfied by testing some patterns only once,

Forgy [Forg 79] proved. thanks to simplifying hypotheses, that with RETE algorithm the worst case
time complexity for computing the set of satisfied rules is linear in the number of rules, and polynomial in
the number of objects (with degree being the maximum number of conditions in a rule). In the best case
the complexity is a constant. Between these extremes the sensitivity of pattern match time to the size of
the data base is highly dependent on rule characteristics., We already studied the theoretical average case
complexity of RETE algorithm when it compares objects and patterns having any tree structure. ({AF 383],
[Alb 88]). In real applications, objects and patterns are often made up of a function symbol and a list of
variable or constant arguments. The height of their usual tree structure is therefore one and we analyse in
this article the average performance of the algorithm in the case of these “flat terms’.

There are many motivations in searching for a more accurate model of computation and an averagé
case complexity analysis of RETE algorithm. First, RETE algorithm admits many variants and optimiza-
tions, concerning the representation of local memories [Forg 79], the sharing of conditions (the ARBRE
D’ UNIFICATION : [Gha 87]. [Alb 88]), the computation of joins [Mir 87], the total compilation principle [Fag
86] [fag 83|, the parallelization of the algorithm [Gupt 84] etc ... An average case complexity analysis can
be used to evaluate these optimizations and propose new ones. Second, run-time performance prediction is
a necessity for the development of real-time expert systems [WGF 86], [SF 88]. A mathematical model of
run-time requirements can be used to extrapolate from the run-time performance of a prototype the per-
formances of the expert system in real size. It define the range of its applicability in terms of number of
objects that can be treated at a given time. Third, a mathematical model can be used also to work out
significant benchmarks in order to compare several implementations according to the relevant characteristic
parameters of a knowledge base [GF 83]. Lastly, we shall show that all this analysis applies not only to the
study of the performance of pattern-match in expert systems but also to the estimation of the average sizé
of composed queries in Relational Databases. In this paper we present an average case complexity analysis
of RETE algorithm and of the average size of composed queries in Relational Databases using the generating
function theory ([Fla 85]. [FS 86], [F V 87]) (that introduces mathematical methods of mdependent interest).
One can find a more detailed version of this study in {Alb 89].

Only equality tests are considered first. In Part 2. we briefly present RETE algorithm, and develop an
Example. We define also the cost of this algorithm and precise the fundamental quantities for its computation.
In Part 3, we introduce the generating function theory that is used to analyse the average case complexity of
algorithms (3.2) and the asymptotic analysis necessary to simplify the expressions we previously obtained
(3.3). Thus we obtain a result under a first model in which the Database is represented as an ordered list
of terms (3.4). In Part 4, we determine the complexity under a second model that considers the Database
as a multiset of terms. In Part 5. we extend the previous results by considering several separate ranges
of variation for constants (5.1). Then we generalize our results for taking into account different frequency
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coefficients for symbols (5.2) (by the way we shall consider inequality tests). In Part 6, we consider the
negation between arguments and between patterns.

Lastly in Part 7, we apply all these results to the study of composed join in Relational Database. We
illustrate the results we obtain throughout the article with some examples The example of figure 1 is
numerically developed in the appendix.

II. RETE algorithm

2.1. Presentation

The production systems we shall consider are composed of a fixed set, denoted by RB (for Rule Base), of
if-then rules called productions, and a changing set of facts, called the Working Memory and denoted by
WA, Facts are formed on a finite alphabet F' of function symbols given with their arity. Arguments are
taken in a finite set C' of symbols of arity 0, the constants. For instance, given symbols h of arity 3, f of
arity 2 and constants al and «2 one can form the following terms : (f al al), (f @2 al), (h al a2 «l),
(h al a2 a2) etc ... The set of flat terms is denoted by FT(F). The Working Memory is formalized as an
ordered or unordered set of such terms.

The if-part of a rule (its lefi-hand side) is a conjonction of patterns, represented as a tuple (P, ..., P,).
A pattern is a term some of whose arguments can be variable. Variables are denoted by .X,Y,..., they are
taken from an enumerable set of variables V. Patterns are partial descriptions of facts. A pattern P maiches
a fact t if one can find a substitution of pattern’s variables, o : V' — (', such that o P = t. For example the
substitution of X' by al and of ¥ by a2 in pattern (A X' Y X) matches the term {h «l a2 al).

We say that the left-hand side of a rule (Py,..., P,) is instancialed (or that the rule is salisfied) when
there exists a tuple of facts (#,...,t,) with t; € WM, called the instance, and a substitution ¢ such that
oP; = t;. We remark that since a pattern in a rule can match several facts in the Working Memory, a rule
can be instanciated in multiple ways. The then-part of a rule (its right-hand side) is a sequence of actions
that can add (resp. remove) a fact in (resp. from) the Working Memory.

Example : Let i be a function symbol of arity 3. f and ¢ of arity 2 and constants a0, al, a2, a3, a4, a.
We can consider the three following rules, in which we omitted the right-hand side :

(Rl: (¢ XY) ~(f a0X) (h al NXY) — ...)
(R2: (h a0Xal) (¢ NY) (f a0al) — ...)
(R3: (f Xal) (f Ya2)(h a2 XY) — ...)

&

(The negation “~" is studied in Part 6.)
The cycle of inference consists in three steps:

- maich the patterns with the facts in the Working Memory in order to determine the set of satisfied
rules (called the conflict set) : this is the pattern match phase;

- select one rule ‘s instance in the conflict set;

- ezecule the actions of the rule.

In RETE algorithm the pattern match step is not separated from the execution step. In fact, it occurs at
each modification in the Working Memory, that is at initialisation time when facts are entered, and then at
each assertion or retraction during execution steps. Since the RETE multi-pattern match algorithm is solely
concerned with the left-hand sides of rules, from now on we shall identify rules with their left-hand sides
(we shall consider right-hand sides in 5.2 when we distinguish apparition frequencies of symbols). Rules are
compiled in a discrimination network. At run-tinie when a fact is asserted or retracied, it is processed in
the network from the root. If the fact matches a pattern it is memorized in (or removed from) the network.
If other memorized facts can jointly satisfy a rule, the instance is added to (or suppressed from) the conflict

et. In this way both rules and facts are represented in the network.

Two types of tests are distinguished in rule left-hand sides: 2

- one-pattern tests are tests concerning solely the fact to be characterized. They test the equality

of the function symbol and of constants between the fact and the pattern. When a variable has several
occurrences in the pattern. they test the equality of the corresponding coustants of the fact.
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- multi-patlern tests are the tests of several patterns belonging to the same left-hand side of a rule.
When the same variable appears in several patterns. they check the equality of the corresponding constants
of facts. They perform a join in the sense of Databases (i.e. t.he'y produce as output the cartesian product
of input data discriminated with tests). ' ‘

[n RETE pattern-match algorithm, one-pattern tests are executed first, then multi-pattern tests are
executed at’each join with memorized facts to verify consistent binding of variables across multiple patterns
in a rule’s left-hand side. Consequently the network is formed of two parts.

Figure | represents the RETE network corresponding to the three previous rules.

The first part is a tree composed of one-pattern tests. called the discrimination tree. In this tree each
node is labelled with a single one-pattern test. The discrimination tree has as many leaves as the number
of different patterns in the left-hand sides of the rules; that is 8 leaves in our example. (two patterns being
equal up to variable renaming). We define the i-pattern of a node i as the pattern corresponding to the tests
cumulated on the path from the root to node ¢ (i.e. the pattern needed to reach node i). The root-pattern is
a variable, i.e. a non-selective pattern (it matches any fact). The i-pattern of the leaves of the discrimination
tree are all the patterns which appear in the rule left-hand sides. Several successors to a node correspond to
several branches to follow. At run-time one fact typically reaches several leaves which correspond to different
matching patterns. Thus in our example, the pattern (h a0 .X Y') corresponds to node 8 and term (f a0 al)
reaches nodes 4, 5 and 10.

T

[el=& [e}f [€]=h
Discrimination [,‘4 2= al}: o2 ] ([1] |= ah= 2
Tree 4 5 6 7 8 9
[2] = al . (3] =|al
10 11
|
® & % L] % i|<
NOT ' AND
L1 # 2] 1[1) =r(2) 14
12 13 \
Join Graph T~ ™~
AND AND AND
L[11# ef2] 16 11{1] =r:2]
(2] =r[3] 12:[1] =r:[3]
15 1|7
Rl R2 R3

Figure 1 1 : Rete Graph

f We denote by [j] the j** leftmost son of the root ([€]) of the i-pattern : r (resp. 1) denotes the pattern of the
right (resp. left) input of a join node (1j precise the j"’ pattern of the left input list ).
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The second part is a graph formed with binary joins between the leaves of the initial part. In these
nodes, i-patterns are tuples of patterns (Py,..., P), in which the sharing of variables between patterns is
determined by the multi-pattern tests. OQutputs are in a one-to-one correspondence with the rules. i-pattern
of output nodes are the left-hand sides of the rules up to variable renaming. They are reached at run-time
with the instances of the rules. .

At run-time when a tuple reaches-a join node, it is memorized in a local memory or memory node, and
the memory of the opposite input of the join node is searched in order to find a compatible tuple according
to the multi-pattern tests. Thus at node 17 of figure 1, are memorized in left input, pairs of the type
(f X al)(f Y a2), and in right input (h a2 U V) and we select as output triplets with the following
multi-pattern tests X' = U and ¥ = V. In many implementations the right input of a join node is restricted
to be a leaf of the initial tree (not the output of a join node) as in figure 1, so that the structure of the join
network is a set of combs. This eliminates a possibility of optimization consisting of grouping together the
most selective patterns together (we shall study the general case to perform calculations).

Hashing techniques can be used to reduce the complexity of the search in local memories, by exploiting
all equality tests in a join in order to hash the input memories. In the same way, if inequality predicates are
to be considered, the local memories can be organized i in search trees.

Negation of patterns has not been considered yet. A negated pattern e\presses the non- eustence of
a fact matching the pattern. Negated patterns are treated in RETE algorithm by adding a second type of
Join nodes (see node 12). In these nodes the local memory on the left input stores the number of elements
in the right memory (the negated elements) which are compatible with each “left-tuple” according to the
multi-pattern tests. When a counter gets to zero (resp. one) the left tuple is propagated in the network in
assert (resp. retract) mode. In our example, as long as there is no fact of the type (f «0 X) in the Working
Memory, the fact reaching the left input of the node 12 reaches the node 15. The existential quantifier can
be treated in a symmetrical way. In fact it is possible to generalize RETE algorithm in order to accept in
the left-hand sides of rules any first order logic formula with an arbitrary degree of imbrication of quannﬁers

([Fag 38]). :

2.2. Cost of the algorithm

The RETE algorithm spends most of its time performing the pattern match step. We are going to deterniine
the average cost of the algorithm by considering an arbitrary Working Memory and a given RETE network.
We shall do an average calculation over all the possible input-Working Memory. More precisely we shall
determine the average time needed by thie algorithm to compute the conflict set from an arbitrary input-
Working Memory. For the facts, the time devoted to move through the discrimination tree is negligible when
compared to the time devoted to joins. We shall therefore determine the average time devoted to perform
the multi-pattern tests at the join nodes. Thus our complexity measure will be the time of performing one
multi-pattern test. At a join node, the global average time is proportional to the average number of tuples
of facts to be tested at this node. When there is no hashing at the join nodes, this quantity is the product
of the average number of tuples stored at the memory nodes in left and right input of the join node (the
product of the average size of the memory nodes). When local memories are hashed according to equality
tests performed at the join node, the average number of tuples of facts to be tested coincide with the average
number of tuples that output this node with success; that is the average size of the output local memory. .
.

The average size of memory nodes thus appears to be a fundamental quantity to calculate. We shall
thus be able to determine the average cost of the algorithm and the precise average size of each local memory.

We can model the input-\Working Memory as an ordered list of facts. This is a good representat-io‘u
of the succession of the inputs of the RETE network at each cycle of the inference engine. This yields the
results for the list-model. Since the final state of the local memories is independent of the order of adding
of facts of the input-Working Memory, we can also model the Working Memory with a multiset of facts (we
always enable repetitions of facts in order to take into account the possibility for the same fact to be added
and suppressed several times during the cycle of the inference engine). This vields the results for the multiset
model.



I1I. List model

3.1. Combinatorial study

Let co be the number of constants. Let ¢; denotes the number of function symbols of arity j in F. The
arity of the function -symbols lies between m (the minimal arity) (m > 0) and M (the maximal one). We
define. the size [t| of a term ¢ as the number of the argumﬁl‘nts of the function symbol minus m (the arity of
its function symbol minus m). We associate with FT(F) the characteristic generating function:

\I m
A(z) = Z M= Z ;2
tEFT(F) i=0
with @, the number of terms of size n in FT(F). It is easy to see that a; = c,.,.mc0 . Since the number

of function symbols and the number of constants are finite, the number of terms in FT(F) is finite too and
A(z) is a polynomial with degree M — m. Remark that ag # 0. We can introduce the average size of terms
in FT(F). that is

1 A1)
AT A
Remark : In the case where m = M, we have } = 0" It is easy to study directly this specific case

and the result we obtain is only a partlcular case of the formula described later. From now on, we have
0< L< M —m.

Example : In our pre\:ious example, we have ¢g = 6, ¢; = 0, é. 2and e3 = 1. Thus m = 2, Af = 3 and
A(z) =72+ 216z and + = 3/4.

We consider that the RETE network takes as input an arbitrary Working Memory with & facts and
of total size n (i.e. n is the sum of the sizes of terms composing the Working Memory). The generating
function of a list of & terms determined by A(z) is given by A(z)*. Thus the n'* coefficient in A(2)*.
(:"]A(2)F, represents the number of lists of k terms with total size n.

For a node 7 of the discrimination tree, we introduce the generating function of the terms that match
at 7: Bi(z) = an b; nz". with b; ,, the number of terms of size n that match the i-pattern. We mtrodu(({
some notations for a node i of the discrimination tree :

- w; denotes the arity of the function symbol of the i-pattern;
- r; is the number of different variable argument of the i-pattern.

Example : for node 8 of the network of figure 1. we have wg = 3 and x3 = 2. For the pattern
(Head X X Y a), we have w; =4 and z; = 2.

[t is now easy to prove that : ’ ' A

THEOREM 1 : The generating function of the terms that match at a node i of the discrimination tree is :

Bi(z) = cgTrze ™

Example : We have at node 11 of figure 1 : Byy(z) = 6z. And we see that By, (z) = A(z).

Let us consider now a node i of the join network. That node outputs I-tuples of facts that partially
instanciate the left-hand side of a rule. B;(z) = Z“>0 b; n=" is the associated generating function. b; , ]
the number of [-tuples of total size n that match the i-pattern. We know the [ leaves j; of the discrimination
tree which match each of the components of the output-l-tuples of the node i. L; stands for this set of the !
associated patterns. Let us denote :

- W= Zj.el.“'h .
- 4= (Z,-,e,;,rj.) + yi % <0
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with y; a correcting term due to the multi-pattern tests between variables of the ! different patterns. If we
consider the global set of all the variables of the different l-palterns, x; still represents the number of distinct
variables in this set. Thus we determine easily y; in function of the similar variables tested at node i and we
have: y; < 0 because the join increase a priori the number of identical variables.

From this, we prove in the same way as previously:

THEOREM 2 : The generating function of the l-tuples of terms which match at node i in the join network

1S
B,‘(:) = Cori Zw'—lm

From this, we deduce

THEOREM 3 : The average number of terms that match at a node i of the discrimination tree is :

” _ kco-’-[:n—w.+m]'\(:)k-l
bk = TTEAGE

PROOF : The basic idea is to split the generating function A(z) in: A(z) = B;(:) + R;(z) with R;(z) the
“rest function” i.e. the generating function of all the terms which don’t match with the i-pattern. Then we
shall mark the matching at i elements with the variable u and note:

Ailz,u) = uBi(2) + Ri(2) = A(s) + (u = 1)Bi(z)
Thus fi ppi = [u":”](A;(:, tt)"’) represents the number of lists of size n with k terms among which there is
exactly p terms matching at node i.
Therefore b; ,, 1 is the quotient of Z::a Pfinpi (: Z,‘::n pf,-,,,_p.k) by the total number of lists of & terms

and of total size n, that is
D ZP pfi,n.p.k

bink = F]A—(:-)T—

We have (A;(z.u)¥) = Lo finp ket :® thus :

2 ' . r—1 .n
E (Ai(:. ll.)‘) = Zf"-"d“l'-l’“‘ 1.

p.an

whence . :

(.) C n

75 (A w))| = z (Z Pfi.n.p.k) :

u=1 n P
Therefore o )
i—x-L_' = [:"]'{ﬁ (Ai(z. u)¥) |u=l
- [z"]A()*

And since

g-u(zl,-(:, u)*) =kA(z, u)""lg—u(A,-(:.u))

u=1 u=1
= kA(:) 1 Bi(2)
the theorem is established.

We shall now determine the average number of I-tuples of terms that match at a node i of the join
network. Our demonstration will express the two antagonist sides of a join. We actually know the ! nodes
Ji of the discrimination tree “associated” to i, and thanks to theorem 3, we know the b;, nx- The erpansion
side of a join can be expressed by the quantity I = I'[}'___l bj, n.k, which represents (under the hypothesis
of independent distribution laws at the j;) the average number of [-tuples which would reach the node / if
there were no multi-pattern tests. On the other hand a reasoning close to that of theorem 3 expresses the
“selection” side of a join :

[
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THEOREM 4 : The average number of l-tuples of terms that match at a join node i from a list of total size
nof L I- tuples of terms of which each component matches at an associated node Jiis:

i) (I i Bt )) o
(=1(IT, o0 B3, (5))

Yikn =

(see [Alb 89]). From this it follows :

THEOREM 5 : For a node i of the Jjoin network, the average number of I-tuples of terms that match the
i-pattern is : : Y

!
bink = co¥ H bjini ] (3 <0)

Ji=1

Those exact results could be studied using the Lagrange inversion theorem but they lead to expressions
that are hard to use (multinomial coefficients ...). In order to express them simply we shall derive an
asymptotic expansion with respect to & and n.

3.2. Asymptotic evaluation

To derive simple expressions, we use singularity analysis methods. We estimate the value of integrals with
complex analysis methods (saddle-point method). We consider a Working Memory of size n with k terms as
a given data of the algorithm. Thus we consider that & and n are both increasing.

According to the previous Section, we have to evaluate coefficients such as: a,; = = [:"]A¥(z), from
which we shall deduce the expression of b, n.k- By Cauchy’s theorem this quantity can he expressed as the

following integral
1 PR
ank = -2-'—7;/; (A=) )':'m

where the contour T lies inside the domain of analycity of A and simply encircles the origin. In order to
get an equivalent of this integral when & and n tend both to infinity, we shall use the saddle point method
(See [dB 58] and [Henr 74]). In order to simplify this asymptotic analysis, we use the fact that, in real
applications, the size of the terms is approximatively constant (say 4. 5, 6 ...). Thus, we can consider that
k = An. The quite long calculations needed to obtain the following formula are detailed in [Alb 89] (similar
ones are made in [Alb 88] and [AF 88]). We have :

AWM 1 aar)\ T §( 1
an,k"ﬁ(é‘(l_:\')'*'m) l+O(n))

and this quantity has to be multiplied by § when A(:) = N(:") (HCF condition). From this we deduce (the
constant é disappears by cancelling the the b; ,, ; fraction) ; : .

THEOREM 6 : The average number of I-tuples. of facts that match at a join node i is :

bing =c L (1+0( ))—c"' A n‘(1+o(l)>—n-n' 1+o(l
ik = €0 N R TTY] n)) = n

with | = 1 when i is a node of the discriminat-ian tree,

~

We can define now a matchnw-rate a; at anode i of the RETE network which-expresses the prohablllt)
for a term or a I-tuple of terms to match at a node ¢ in the RETE network.

T



THEOREM 7 : For a node i in the RETE network, the matching-rate is

bink  co™

B o Ay

a; =

v

Remark : Of course @; < 1 and we can verify that at the first level of the discrimination tree (nodes 1, 2
and 3 of figure 1 of our example), if we made the summation over all the function symbols of FT(F), we

find .
— c; ¢!

(a term of FT(F') has always its function symbol in F),

3.3. Average cost of the algorithm with t;:he list model

We can now evaluate the average cost of the RETE algorithm, given an arbitrary Working Memory and
a fixed RETE network. We shall estimate the average time needed by the RETE algorithm to produce the
conflict set from a given input-Working Memory. We determine the average number of multi-patterns tests
realized at join nodes (this is as we previously said the main part of the total time cost). Let us recall that
our complexity measure is the time of realization of one multi-pattern test. Since we know the average size
of local memories in the RETE network, it is easy to determine the average number of those tests performed
at the join nodes. Let us denote by I; the number of components of the output-tuples at a join node i and
B; the number of multi-patterns tests performed at i considering only one l;-input-tuple (in our example,
D7 =2,514=0, 313 =1...). The average number of tests performed at i is the average number of {;-tuples
tested at i multiplied by 3;. To obtain the average number of §;-tuples that reaches i we just have to consider
that at  no test is performed (i.e. y; = 0) and evaluate the so modified m Let us denote bye Iin" this
quantity (notice that this quantity is precisely equal to 8;) 5 1 X bia ., 1 where il and i2 design the two nodes
inputs of ).

Then, we can propose

sty K Y Gt =K ) g(I;yMa)e" (1)

i join-node i join—node

with A" an implementation constant.

Of course asymptotically with respect to n, we get the main part of this expression keeping only the
nodes with the larger /;. But the interest of an average case complexity analysis is the precise determination
of all the proportionality constants. which can be, as we shall see in appendix, very small for large ;, and
therefore very important.

Remark : By hashing local memories according to equality tests at the join nodes, the average number
of semi-unifications performed at a join node i is only the number of output-tuples i.e. b;n k. Thus in the
above formula we just have to replace IT{ by II;.

From this result, that can be made fully precise on any case, we can a posteriori assume Forgy’s hy-
potheses (See [Forg 79]). Thus if we assume that the number of condition-patterns per left-hand side is
constant equal to ¢ in the Rule Base, the previous result becomes :

|RB| |RB| i

costiwan = KA WM | D 4510 | = KaclwM|” [ 3 4511150
j=t j=1

with j1 and j2 denoting the two inputs of the last Join node j of the Rj rule.

And we find the same type of relation proposed by Forgy: a linear cost as a function of the number of rules

and a polynomial cost as a function of the size of the Working Memory [W M|* (we have determined the time

needed by the RETE algorithm with an input of |V Af| modification terms, Forgy found a cost of [V Af|*~!

hecause he considered only one modification term as input).

8
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IV. Multiset model

4.1. Cqmbinatorial formulae

As we previously explained at the end of Section (2.2), we shall now model the Working Memory as a
multiset of facts. We shall use the “usual” definition of the size of a term : the number of its arguments plus
1 i.e. the number of nodes in its usual tree representation. Thus we have a new characteristic generating
function :

M+l
: -1
P()= 3 M= p"= 3 (e
tEFT(F) .  n20 l=m+1

We can introduce the usual average size of a term
1 P'(1)

X P

Note that A(1) = P(l) is the number of terms in FT(F).

We consider as input of the RETE network, any Working Memory of total size n (without even consul—
ering the number of its terms). The generating function of multisets of terms of FT(F) is :

Miz)= ] (T;—:“T)zlﬁ’(l_lﬁy

- tETP(F) i=m

1 1
and A—-—X+1n+1

Thus [z"]M(z) is the number of multisets of terms of total size n.

Example : In our example, we have

\ 72 1 216
M(:)= (1_:3) (1_:4)

We keep on using the same notations Bi(z). wi, r; and y; for a node ¢ in the RETE network. We thus obtain :

THEOREM 8 : The generating function of terms or I-tuples of terms that match at a node i is :
Bi(z) = o™t s+ !
with [ = 1 in the case of a node of the discrimination tree.

With a reasoning close to that of theorem 3, we obtain

THEOREM 9 : The average number of terms that match at a node i of the discrimination tree is :

co” [:n—w.— l]{:\'[(:)/(l — gwitl )}
[zP]M(2)

bi.n =

For a join node #, the order of instanciation of the [ local memories J; is fundamental because it expresses
the instanciation of different patterns. The reasoning of theorem 5 is valid and the average number of l-tuples
of terms that match the i-pattern is still :

i
-_— Co.’l. H b.“n

Ji=l

4.2. Asymptotic analysis

In ordpr to simplify the expressions we have Just obtained, we shall analyse specific fractions of the type
my = ["]T]; (L/(L - z7)P7). The modulus of all the singularities of this kind of rational fraction is always
1. We shall COllSldPl‘ the value of the multiplicity of 1 as singularity. We obtain ([Alb 89]) :

1 nZJP‘_l



with & the highest common factor of the arity + L of the function symbols of FT(F). And as before, é
disappears in the expression of b n

4.3. Results with the multiset model

Thanks to previous formulae, we obtain for the multiset model :

THEOREM 10 : For an arbitrary input-Working Memory of total size n, at a node i
. of the discrimination tree, the average number of matching terms is

1 _1 1)) g, L
in = Co P(l)w.+ln(l+0(n>) -an(l'l'()(n))

- of the join network, the average number of matching I-tuples of terms is

bin = o™ 1 ! ( +O( ))=¢,~n‘(1+0(-1-))
P(1) H]._l(w1,+l) ‘ n

with j; the | associated nodes of the discrimination tree.

I

ad

We still can consider that & ~ A n, and define :

THEOREM 11 : The matching rate at a node i of the discrimination tree is

el L L
TP wi+ LA
and for a join node i
1 i 1

G co” = —
pP(1) H§.=1 (wj, +1) Al

We can see that the multiset model yields to the same type of expression for the cost of the algorithm;
we just have to substitute ®; for I1; in Eq. (1).

Let us compare the results of the two models (let us recall that A(1) = P(1)). In the multiset model
there appears the ratio of the average size —' to the size of the terms at the j;. If we denote by ¢ = tlw

average size of terms, then
1
— — 6
i = q; I |
h Wwj 1
Jest N +

and wj, + 1 is the size of the terms at the node j;.

V. Multiple ranges of variation and probability

5.1. Multiple ranges of variation for the constants

Up to now, we have considered that there was only one set of ¢y constants in FT(F). It meant that any
constant could instanciate any argument of any function symbol. without any semantic consideration. We
shall now distinguish p separate ranges of variation for the constants Dy, ..., D, of cardinality dy. ... ,dp.
We consider that an equality test can only happen between two variables of the same set. We have to precise
the range of variation of each argument of each function symbol. Let i be a node of the discrimination tree.
The arity of the function symbol of the i-pattern is w; and let us denote by f; , the number of arguments of
fi that vary in D, (we have Zle fi » = w; and of course the value of some of the f; . can be zero).

This precision will lead to a slight modification of the previous results; indeed we have

P
P(:) = Z (H dr!ur) :u'.+| = :"l+lA(:)
r=1

Ji€F

10
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Remark : Of course if p = | i.e. there is only one set of ¢y constants, we find again [z"]P(z) = c,—100" "

4 .
We always have - = L hut instead of r; we have to define a p-tuple Lity....Lip with z; . the
\ . Pl i , r

number of distinct arguments of the i-pattern belonging to D, (ahd the previous r; is equal to Zf=l i)

Hence _ .

THEOREM 12 : ‘The generating function of the terms that match at a node i of the discrimination tree is,
for the list model : _ ,

P
Bi(:) = (H dr""--r) omm A
r=1

(for the multiset model, one just has to change the power of z).

Example : Let us consider the pattern :
(f aba XY X' XZNXN)
with X\, \" € D,, Y € D> and Z € D3 and a. b some constants. Thus we have r;, = 2, r;» = 1 and
rig =1 whence B;(z) = (dy dads)z~™.
For a node i of the join network, we denote r;, = Z;;l zj, r + yir with y;, (< 0) the corrective
term due to joins in D, at i. With those notations we see that nothing is modified in the calculations of the
previous Parts and in the final resulls one just has to substitute (np=, d. "7 for cp®.

This notion of multiple ranges of variation for the constants will enable us to consider a test of inequality :
if at a node i, we have to test X' > a with a a constant of the set D and .X' a variable. D is therefore assumed
to he ordered and we are then able to determine theset D, = {¥ € D|Y > «a } of cardinality d,. This
inequality test will therefore match d, times as many terms as the equality test X' = b with b any constant
in D and its cost has to be multiplied by the same constant d, too. ‘

5.2. Probability

The models studied up to now consider a uniform distribution over all the terms of the same size n in
FT(F). In order to get an even more likely modelling. we shall consider a model taking into acconnt the
fact that certain symbols are more frequent than others (see [Alb 88). [AF 83] and [FSS]). Thus we present
here a weighted model. Let w be a weight function that assigns to each function symbol f € F (resp. to each
constant ¢) a non negative real number w[f] (resp. w[e]). Then this weight is extended multiplicatively to
terms. If £ is a term, its weight is defined as

wlt] = H w{symbol)
symbol € ¢t
In order to use a probabilistic weighted model for symbols we choose :
Z w(f]=|F| and }: wle) =d, Vr
JEF ) . - € D, ) |

(with |F| the cardinality of F). We have chosen to use a weight function rather than a probabilistic model
(in which all the above summations would have been equal to 1) to maintain the compatibility with the
multiple ranges of variation and to keep similar results. We have indeed :

THEOREM 13 : The generating function associated to our set of weighted terms is :
p
W)= Z w(t):H = Z w(f;)(H d/"') sl {
t € TP(Fuw) - f, € F r=1 : .
(for the usual size for examnple). _
For a node ¢ of the discrimination tree; we define the weight of the i-pattern 1V; as the product of the

weight of its already instanciated symbols (variables having by convention a weight equal to 1). For a node i

i1



of the join network, we define the weight of the i-pattern as W; = I-[",-|=l W;,. With these conventions, once v
more, all the previous resulls are only modified by ‘the maultiplicative constant W, the weight of the i-paitern.

One can determine statically the weights of the symbol by considering the initial Working Memory, or
dynamically by considering the right handside of the rules and the adding or suppression of certain patterns.

V1. The negation

We have explained at the end of (2.1) the functioning of a NOT join node (note that the length of output
tuples is the length of the left input tuples). We can easily extend the previous calculations to a model
taking into account the negation. More precisely, we can also consider non-equality tests between variables
and the negation of condition-patterns in the left-hand side of the rules. ' '

In the former case one considers negation inside patterns. Let us consider the following example :
(Head X -.X). The average number of terms matching with this pattern is equal to the average number of
terms matching with (Head X Y') minus the average number of terms matching with (Head X X). That
can be easily extended to the negation of several variables in a pattern.

Let us consider now the negation of a condition-pattern or of a tuple of condition-patterns.

iI‘pattem (QI' ‘e ,Qm) iz-pattem (PI' e .Pn)
local memory (4. qy) ' local memory (p.. .. P

e

i-pattern (,.QI' e Q. ﬂ(Pl, ces Pn))
local memory (q;, .. . Iy

A

Figure 2 : NOT Join

Let us consider a NOT-join node i (see figure 2). We know the matching-rate of the node is : rafe;,
and the matching-rate of the node i; : rate;,. The matching rate of the pattern “(Pr,....P)is | = rate;,
and thus the matching rate of the node i corresponding to the i-pattern (Qy,...,Qnm.=(Py,..., P,)) is
rate; = rate; (1~ rate;,) (if the variables of all the P; are distinct from the variables of all the Q;, otherwise
we modify in this formula rate;, with the previous reasoning as for node 12 in our example, see appendix).
The matching rates of the join nodes that are under this node i (i.e. that can be reached from i) are modified
in the same way: we determine their usual matching rate forgetting the existence of the tuple of patterns
—(Py,..., P,) and we multiply this result to obtain the real matching rate by the coefficient (1 — rate;,)
(that imiplies that the computation of the matching rates is easier top-down in the network).

VII. Composed queries in Relational Databaées

In this Part, we shall show that our previous calculations can be easily extended to estimate the average
size of a composed query (with possible selections) in a Relational Database.

7.1. Model for the equijoin

From now on, according to Database’s vocabulary, we will represent the relation R[X,Y] instead of the
previous pattern (R X Y). To determine a query in a Relational Database means to find the number of

tuples (previously ternis) that instanciate a relation. Selection operations correspond to the tests of the -
discrimination tree. The size of a relation is from now on the average number of tuples that instanciate this
relation (we have to forget the previous notion of size of a term).

12 i



The type of join we have studied is called equijoin in Relational Database; we shall keep on using the
word join in what follows. We represent the join between a relation A and a relation B on the attribute {(or
argument) .X' by A[X,Y]pa B[X, Z]. We are going to determine the average number of tuples (I-tuples) that
instanciate a composed query (after possible selections) (see [Alb 89], [Rosen 81], [GP 84] and [GP 88]). For
example we want to find the average size of

Rlao, X, Y] > Slay, X, Z) sa T[Y, Z,U, b, 2] ba ...

which can be seen as the instanciation of the left-hand side of a rewriting rule. ,

7.2. Combinatorial study with a Data.ba.sg of k tuples

The tuples are always formed as in FT(F) and we denote their set by T(F). We still denote by Dy, ..., Dp
the ranges of variation for the constants and by f;y,..., fip the p-tuple that describes the variation of the
arguments of a relation symbol f;. Since we are not interested in the size of a tuple, we can propose for all
of them a size I. Thus the generating function associated with T(F) is :

P .
Q(z) = Z (Hdrf"'): iy
r=1

JE€F

We have to adapt the modelling for the Relational Database. There are indeed no repetitions in Databases
and we shall represent a Relational Database with a sef of tuples. The generating function that counts the
sets of tuples of T(F) is :

E(z)= H (1+z)=(1+: )Zler(nr-ld'” = (1+2)%W
t €T(F)

For a relation ¢, ;. still denotes the number of distinct variables of i belonging to D,; we have
THEOREM 14 : The generating function of the tuples that instanciate relation 7 is :
P
Bi(z) = { [Td:" )= -
r=1 !
We can now prove (see [Alb 89)]) :

THEOREM 15 : Conwdermg any Relational Database with k tuples, the average number of tuples that

instanciate a relation i is :
—_ . k
b‘ = d Loor |
ik (,_];Il r ) Q(l) B

, . L. . C I
When we consider a composed join i, we define the same corrective factor y; , due to the join in D,.
The reasoning of theorem 5 is still valid and we have : -

THEOREM 16 : The average number of I-tuples that instanciate a composed relation i (from | initial

relations) is :
tn—' (Hlt'r) )l l A ) .,;

and the matching rate of this composed join is :

'_ (HP_ d £, ,-

0; = —-—-—-—-——

- Q)

Let us note that the results we have obtained are e‘(act {and they correspond to the estimation found
with the multiset model).

Often we have some more precise information on a Relational Database, and this will enable us to
precise the previous study. ‘

13



7.3. Databases with known sizes of relation

In real applications, one often has an idea of the initial sizes of relation in the initial Relational Database
(empirically or with a distribution law). Therefore, we shall not perform average calculations over an
arbitrary Database of & tuples any longer but over an arbitrary Database that follows these characteristics.
Let us denote k; the supposed size of relation i; we can propose a more precise generating function for T(F) :

IFl ¢ p
Q(ul... cay u|p|) = Z <H drji-r) u;

j=1 \r=1
with «j marking the maximal size of relation j. Thus, the generating function of sets formed with tuples of

T(F)is:
|F|

; P Ij.r
E(uy,...,up) = [ (14 Y| L
=1
[wr9r ... u|p|"|F']E(ul, ..., )p|) is the number of Relational Databases with exactly g; tuples that instanciate
relation j. We obtain :

THEOREM 17 : The generating function of the tuples that instanciate relation i is :
P
Bi(up,....uyp) = H d."r | u;
r=1

and we find ([alb 89]) :

THEOREM 18 : The average number of tuples that instanciate a relation i is :

P
biky....kyey = (H dr:"'—ll")ki (ir = fir £0)

r=1

for an arbitrary input Relational Database with q; tuples that instanciate relation j.

Example : Let us consider the relation Afag, Y]. If there is k, tuples that have A as relation symbol in
any input Relational Database; if the range of variation for the first variable (resp. the second) of A has d,
elements (resp. da); we have

— k&

by, = =

, tod
since fi=1, fa=1,2, =0and &2 = 1.
Remark : As we see, the average size of relation i only depends on its initial size. From now on. we shall
not need the initial sizes of other relations.

The average size for a composed join i, can always be obtained with the reasoning of theorem 5. Thus

THEOREM 19 : Let us consider any input Relational Database with q; tuples that instanciate relation j
and a multiple equijoin from [ initial relations j;. The average number of I-tuples that instanciate relation i

IS :
P [Dei by
— Loy ja=1 "
bi k... key = (I l dr )nl LN RN
=1

r=1 jo=1 ilr

and the matching rate of i is :

-(I'[P=l d, ")

, 3
l-[j.=1 (np=l d’j".r)

with r; . the number of distinct variables of relation i in D,.

i =

14
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Example : Let us consider the average size of the standard join i :
R[X,Y] > S[X, Z) "

Let us assume that we know the size of the initial relations R[.X,¥] and S[X,Z], i.e. respectively r and s.
Let us denote by dx, dy and dz the sizes of the ranges of variation of variables .X, Y and Z. We have

six=haiy=Lrz=1fax=1fary=1,frz=0,fsx =1 fsy =0and fsz =1 whence
—— rs rs
birs =dydydg =—————= —
,r.s 4\(1 (zdx(l"dxdz d,\'

and we find again the well-known result of Rosenthal ([Rosen 81]).
Lastly we shall detail the example of Section 7.1 :

Rlag, X. Y] pa S[ay, X. 2] T[Y, Z2,U,6,2)
Let us denote the sizes of the ranges of variation of the variables by dx, dy, dz (Z and Z’ are two different
variables that vary in the same range), dir. d, and dy (the sizes of the range of variation of constants ag;,
«, and b respectively). We know the number of tuples with function symbol R, S or T, ie. r. s and ¢
respectively. We have fpx = L, fry = L. fRz =0, frRuv =0, fra = 1, frRp =0, fsx =1, fsy =0,
fsz=1fsu =0 fsa=1 fs0=0,frx =0, fry=1 frz=2 fruv =1, fra =0, frs = 1. and for
relation i 23 x = L, iy = L, 2i,2 =2, L5y = 1, £iq = 0, £; 5 = 0. Therefore we have with theorem 19 :
rst rst

dadx(lyda(lxdzdydzzdudb = dxdy(lzdag(lb

bise = dxdydz’dy

VIII. Conclusion

We have precised in Section (2.2) the notion of average cost for RETE algorithm. This average time
complexity is given by formula (1) in Section 3.3. Formula (1) gives the average cost to compute the set of
satisfied rules from the set of initial facts and a fixed set of rules with RETE algorithm. This result is given
in function of the average sizes of local memories in the RETE network. These quantities are formulated
according to the different models in theorem : 6 for the list model, 10 for the multiset model, at the end of 5.1
when you consider multiple ranges of variation for constants, at the end of 5.2 when you consider different
probabilities on symbols. All these expressions can be computed from the parameters of any particular Rule
Base and Working Memory.

These theoretical results are experimented on the inference engine Xrete [LCR 88] and we develop for
this system an automatic performance analyser from the results of this paper (Clark developed “similar”
experimentations on LISP language [Clark 79]). Besides, these theoretical results enable us to propose. as
an optimization of the algorithm, a reordoring of the nodes of the network in order to decrease the sizes of
local memories.

We saw in Section 5.1 and in Part 6 that we can take into account a test of inequality and negation:
As it has been mentioned in the case of the hashing of local memories, the formulae we have obtained can,
be adapted to mauny variants of RETE algorithm (see [Alb 88] for the ARBRE D’ UNIFICATION). ;

We can use the same reasoning in Relational Databases. Indeed, in Part 7 theorem 16, we have presented,
the average size of a composed equijoin (with possible selections) considering any Relational Database with
k tuples. We even have precised these results when the initial sizes of relations to he joined are known
(7.3 theorem 19). These results are also used to improve queries in Relational Databases. (system COSMA
[RS 89]).

The work presented in this article, proves once more the power and the easy use of the generating
function theory for the precise analysis of algorithms.
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Appendix

We develop numerically the example of the three rules of Section 2.1, the RETE network of which is
represented in figure 1. In 3.1, we precised the characteristics of this example (generating functi9n, average
size, ...). We present on the drawing of the network the matching rate of each node for the list and the
multiset models with only one range of variation for constants and a uniform distribution. Matching rates
are in italic for the list model and bold-faced for the multiset model.
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(for writing conveniences, we wrote but once the matching rates at nodes 4, 5, 6 and 7, 8, 9. Because
we have rate; = rales = rales and rale; = rafeg = raleg in both models).

We obtained the matching rate at node 12 with :
rate((g X Y),~(f a0 X)) =rale(g X Y)-7ate((y X Y),(f a0 X))

Remark : Note that the average number of terms or of I-tuples of terms that match at a node i is obtained
by multiplying the matching rate by k' with k the number of terms of the input Working Memory and I the
length of the output tuples of terms at 1.
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