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AVERAGE CASE COMPLEXITY
OF LINEAR MULTTVARIATE PROBLEMS

H. W02NIAKOWSKI

Abstract. We study the average case complexity of a linear multivariate prob-

lem (LMP) defined on functions of d variables. We consider two classes of

information. The first Astd consists of function values and the second A*11 of

all continuous linear functionals. Tractability of LMP means that the aver-

age case complexity is 0((l/e)p) with p independent of d. We prove that

tractability of an LMP in Astd is equivalent to tractability in A311, although

the proof is not constructive. We provide a simple condition to check tractabil-

ity in A"" .

We also address the optimal design problem for an LMP by using a relation

to the worst case setting. We find the order of the average case complexity and

optimal sample points for multivariate function approximation. The theoretical

results are illustrated for the folded Wiener sheet measure.

1. Introduction

A linear multivariate problem (LMP) is defined as the approximation of
a continuous linear operator on functions of d variables. Many LMP's are
intractable in the worst case setting. That is, the worst case complexity of com-

puting an e-approximation is infinite or grows exponentially with d (see, e.g.,

[9]). For example, consider multivariate integration and function approxima-
tion of r times continuously differentiable functions of d variables. Then the
worst case complexity is of order (l/e)d/r assuming that an e-approximation

is computed using function values. Thus, if only continuity of the functions is

assumed, r = 0, then the worst case complexity is infinite. For positive r, if

d is large relative to r, then the worst case complexity is huge even for modest

e. In either case, the problem cannot be solved.

In this paper we study if tractability can be broken by replacing the worst

case setting by an average case setting with a Gaussian measure on the space of
functions. The average case complexity is defined as the minimal average cost

of computing an approximation with average error at most e. We consider two
classes of information. The first class Astd consists of function values, and the

second class A3" consists of all continuous linear functionals.

We say an LMP is tractable if the average case complexity is 0{(l/e)p)
with p independent of d. The smallest such p is called the exponent of
the problem. Under mild assumptions, we prove that tractability in A3" is
equivalent to tractability in Astd and that the difference of the exponents is at

most 2. The proof of this result is not constructive. We provide, however, a
simple condition to check tractability in A"11.
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In particular, this means that multivariate integration is tractable in Astd and

its exponent is at most 2. This should be contrasted with the worst case setting
where, even for d = 1, the worst case complexity in Astd can be infinite or

an arbitrary increasing function of 1/e (see [14]). Of course, intractability of

multivariate integration in the worst case setting can also be broken by switching

to the randomized setting and using the classical Monte Carlo algorithm.

The optimal design problem of constructing sample points which achieve (or

nearly achieve) the average case complexity of an LMP in Astd is a challenging

problem. This problem has long been open even for multivariate integration

and function approximation. In what follows, we will use the word "optimal"

modulo a multiplicative constant which may depend on d but is independent

of e. Recently, the optimal design problem has been solved for multivariate
integration for specific Gaussian measures (see [15] for the classical Wiener
sheet measure, [5] for the the folded Wiener sheet measure, and [13] for the

isotropic Wiener measure).

In this paper, we show under a mild assumption that tractability of func-

tion approximation (APP) implies tractability of other LMPs. Therefore, it is

enough to address optimal sample points for APP. Optimal design for APP is

analyzed by exhibiting a relation between average case and worst case errors of

linear algorithms for APP. This relation reduces the study of the average case
to the worst case for a different class of functions. This different class is the

unit ball of a reproducing kernel Hubert space whose kernel is given by the co-

variance kernel of the average case measure. Similar relations have been used

in many papers for approximating continuous linear functionals; a thorough
overview may be found in [11].

We illustrate the theoretical results for the folded Wiener sheet measure. In

this case, an LMP is tractable and has exponent at most 2. For APP the
exponents in Astd and A311 are the same. The exponent in A211 was known

(see [4]), whereas the exponent in Astd was known to be at most 6 (see [3]).

Tractability of APP for the folded Wiener sheet measure is in sharp contrast

to intractability of APP for the isotropic Wiener measure; see [ 13].

Tractability of APP in the average case setting is significant, since it is known

that the randomized setting does not help (see [12]). Thus, unlike multivariate

integration, intractability of APP in the worst case setting cannot be broken by
the randomized setting.

APP has been studied in Astd for d — 1 in [2, 6]. For d > 1, it was shown
in [4] that the number of grid points needed to guarantee an average error e
depends exponentially on d. Of course, 0(e~2~s) sample points are enough

to compute an e-approximation, Ô > 0. Hence, grid points are a poor choice
of sample points.

In [4], the average case complexity of APP in A311 was found, and it was
conjectured that the average case complexity in Astd is of the same order. We

prove that this is indeed the case.

Optimal design for APP is solved by using a relation to the worst case set-

ting in the reproducing kernel Hilbert space H. For the folded Wiener sheet

measure, H is a Sobolev space of smooth nonperiodic functions which satisfy
certain boundary conditions.

APP   in the worst case setting has been studied in this Sobolev space
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additionally assuming periodicity of functions in [7, 8] (see also [10] for

d = 2). It was proven that hyperbolic cross points are optimal sample points.

Hyperbolic cross points are defined as a subset of grid points whose indices sat-
isfy a "hyperbolic" inequality. Approximation of periodic functions by trigono-
metric polynomials that use Fourier coefficients with these hyperbolic cross in-
dices was first studied in [1].

For the nonperiodic case, optimal sample points for APP in the average case

setting are derived from hyperbolic cross points, and the average case complexity
is given by

compte; APP) = e(e-1/^+1/2)(logl/e)(r_1)(r"to+1)/(r"i,'+1/2)) ,

with rm,n = mini <,<¿ r,, where flr' < - • r^ is continuous and where k* denotes

the number of r, equal to rmin. An optimal algorithm is given by a linear

combination of function values at sample points derived from hyperbolic cross

points.
Proofs of the results reported here can be found in [16].

2. Linear multivariate problems

A linear multivariate problem LMP = {LMP¿} is a sequence of LMP¿ =
(F, n, G, S, A). Each of F, ß, G, S, A may depend on d. We now define
them in turn.

Let F be a separable Banach space of functions f : D -* R, F c L2(D).

Here, D cRd , and its Lebesgue volume 1(D) is in (0, +00). We assume that

all £,(/) = f{x) are in F*.
The space F is equipped with a zero mean Gaussian measure ß. Let R^ be

the covariance kernel of ß, i.e., Rß(t, x) = JP f(t) f(x) ß (df) for t, x e D.
Let S : F -> G be a continuous linear operator, where G is a separable

Hubert space. Then v = ßS~l is a zero mean Gaussian measure on the Hubert
space G. Its covariance operator C„ = C* > 0 and has a finite trace.

Finally, A is either A3^ = F* or Astd which consists of L(f) = f(x), V/ €
F, for x G D.

Our aim is to approximate elements S(f) by U(f). The latter is defined
as follows. Information about / is gathered by computing a number of L(f),

where L e A,

N(f) = [L,(/), L2(/), ... , Ln(f)],     V/eF.

The choice of L, and n = n(f) may depend adaptively on the already com-
puted information (see [9, Chapter 3]). Knowing y = N(f), we compute

£/(/) = <j)(y) for some </> : N(F) —» G. The average error of U is defined as

eavs(U) = Qi \\S(f) - U(f)\\2 M (<*/))     •

To define the average cost of U, assume that each evaluation of L(f), L e A

and / G F, costs c = c(d) > 0. Assume that we can perform arithmetic
operations and comparisons on real numbers as well as addition of two elements
from G and multiplying an element from G by a scalar; all of them with cost
taken as unity. Usually c » 1.
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For U(f) = (/>(N(f)), let cost(7V, /) denote the information cost of com-

puting y = N(f). Clearly, we have cost(7V, f) > cn(f). Let n\{f) denote
the number of operations needed to compute 4>{y) given y = N(f). (It may

happen that «i(/) = +00 .) The average cost of U is then given as

costavg(«7) m j ( cost(/V, f) + m(/) ) ß (df).

The average case complexity of LMP¿ is the minimal cost of computing e-

approximations,

compavg(e; LMP¿) = inf{costavg(f7) :  U such that <?avg(£/) < e}.

To stress the dependence on certain parameters in compavg(e ; LMP¿), we will

sometimes list only those. Obviously, compavg(e; d, Aal1) < compavg(e; d, Astd).

We show that the average case complexity functions in Aal1 and Astd are usually

closely related.

3. Tractability of linear multivariate problems

An LMP = {LMP¿} is called tractable if there exists p > 0 such that for all
d

(3.1) compavg(e ; LMP¿) - O (c e"').

The constant in the big O notation may depend on d. The infimum of the

numbers p satisfying (3.1) is called the exponent p* = p*(LMP). To stress the
role of the class A, we say that an LMP is tractable in A iff (3.1) holds for
A.

In what follows, by multivariate function approximation we mean APP =

LMP with the embedding S(f) = Idif) = f G G = Li{D), where the norm in
L2(D) is denoted by || • \\d .

We assume that for all d there exist K¡ - K¡(d), i = 1, 2, such that

(A.l) l|S(/)ll<*ill/L,   v/ef,

(A.2) ll^(-,-)llw0, <K2.
Theorem 3.1. Suppose (A.l) and (A.2) hold.

(i) Tractability of LMP in Astd ¿s equivalent to tractability of LMP in Aa"
since

compavg(e; d, A311) = 0{ce~p{d)) implies compavg(e; d, Astd) = 0(ce-pW-2).

(ii) Let A.j(d) be the ordered eigenvalues of the covariance operator of ßS_1.

LMP is tractable in A*0 iff there exists a positive number a such that for all
d,

+00

(3.2) J2 W) = °("_2a)>        as n^+00.
i=n+\

The exponent of LMP is p* = l/sup{a : a o/(3.2)}, and p* = +00 if there
is no such a.

(iii) Tractability of APP in A with exponent p* implies tractability of an

LMP in A with exponent at most p* provided LMP differs from APP only by
the choice of S.

We stress that the proof of Theorem 3.1 is not constructive. The exponents

in A^ and Astd may differ by at most 2. The constant 2 is sharp. Indeed,
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for the integration problem with the isotropic Wiener measure, the exponent in
Astd is 2 (see [13]), and, obviously, the exponent in Aal1 is zero.

4. Relation to worst case

Due to (iii) of Theorem 3.1, it is enough to analyze multivariate function
approximation APP = {APP¿} with APP¿ = {F, ß, L2(D), Id, Astd} . The

average case errors of APP are related to worst case errors of the same Id re-

stricted to a specific subset of F. This specific subset of F is the unit ball BHß

of a reproducing kernel Hilbert space Hß . The space HM is the completion of

finite-dimensional spaces of the form

span(i?M(-,Xi), Rß(-,x2), ... , Rß(-, xk)) .

The completion is with respect to || • ||^ = (•, -)lJ2, where {R(-, x), R(-, t))^ =

R(x, t).
Consider a linear U which uses sample points x¡. That is, we have U(f) =

Y?j=\ f(xj) Sj. where g¡ e Loo(-D). It is easy to show that

e^(U) = e^(U;APPd) = (| \\h*(-, x)\\2ßdx

where h*(-, x) = Rß(., x) - £*_. gj(x) Rß(-, x) eHß.

Consider now the same U for multivariate function approximation in the

Loo(D) norm
APP7r - {BHM , Loo(Z)), Id , Astd}

in the worst case setting. We now assume that Hß is a subset of L^D) and

that the embedding Id maps Hß into L^D). The worst error of U is equal

to

e™(U; APPr) = sup {||/- U(f)\\Leo{D) :  \\f\\ß < 1}.

It is easy to show that ewor{U ; APP*or) = esssupx€Z) \\h*(-, x)\\ß , which yields

(4.1) eavg(C/ ; APP¿) < yßiD^e^iU; APP7r),

where 1(D) is the Lebesgue volume of D.

5. Application for folded Wiener sheet measures

We assume that ß is the folded Wiener sheet measure (see [4]). That is,

D — [0, l]d and F is the space of r, times continuously differentiable functions

with respect to jc, which vanish with their derivatives at points with at least

one component equal to zero. The norm of F is the sup norm on (rx, ... , rd)
derivatives. The covariance kernel Rß of ß is

Observe that Rß(t, t) < 1 and (A.2) holds with K2 < 1.
The space Hß consists now of functions / of the form (see [5])

r  d  (x-t-Y'
/(*)= / IT    J ,T + <t>(h,h,...,td)dtxdt2---dtd,    Vxei), 4>eL2(D).

Jdj=1       rj-

)
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The inner product of Hß is (f,g)ß = ¡D f{n'-'r"](t)g{r.r"](t)dt.

Average case errors for APP¿ can be bounded (see (4.1)) by analyzing the

worst case of
APP7r = {BHß, Loo(Z)), Id , Astd}.

Let Wo be a subspace of HM of periodic functions for which fl'l> -•'<'' (t) — 0
for all i¡ < r¡ and all t from the boundary of D. Multivariate function ap-

proximation for the unit ball of W0 in the worst case setting has been analyzed

by Temlyakov in [7, 8]. He constructed sample points Xj and functions a¡

such that for Tn(f, x) = J2%i f(xj)aj(x) we have

(5.1) ||/- T„(f, -)\\Loo(D) = 0(n-^+l'2HiognYk'-1^^),

where rmin = min{r; : 1 < j < d] and k* = card({y : r¡ = rmin}).

The sample points Xj are called hyperbolic cross points and the functions a¡

are obtained by linear combinations of the de la Vallée-Poussin kernel.

To extend Temlyakov's result to nonperiodic functions, define for / from
BHß

g(x) = f(h(x)),    VxeD,

where h(x) — (h(xi), h(x2), ..., h(xd)) and h(u) = 4m (1 -u), Vue [0,1].
Observe that g is periodic and enjoys the same smoothness as /; that is,

g € Wq . There exists a constant K = K(d, r) such that \\g\\ß < K. Define

u;(f,t) = Tn(g,h-l(t)),

where h~l(t) = (i(l - s/T^Tx), ... , \(\ - yf\^Td)), teD. We have

(5.2) [/„*(/, t) = J2f(h(Xj))aj(Jl-l(t)) = Y,f(x])h*(t),
j=\ /=i

where x* = h(xj), with a hyperbolic cross point x¡, and h*(t) = aj(h~l(t)).

It is possible to check that for all / from BHß we have

(5.3)       ||/ - c/;(/, oiUcod» = o(«-^»+1/2> (log«)^*-1»^-^)).

From (5.3) and (4.1) we conclude that

(5.4) compavg(e; APPrf) = 0(Ce-1/(r«""+1/2)(logl/e)(r-1)(r""°+1)''(r"""+1/2)).

Clearly, compavg(e ; APP¿) is bounded from below by the corresponding aver-

age case complexity in the class A311. The latter was determined in [4]. These

two average case complexity functions differ by at most a constant. Thus, the

O in (5.4) can be replaced by 0. Furthermore, the linear approximation U*

given by (5.2) is optimal, i.e., U* computes an e-approximation with the av-

erage cost (c + 2)n which is minimal, modulo a constant, if

(5.5) n  —  ¿Vg-l/taiin+l/í) n0g J lE\(k'-l)(rmin+l)/(rmin+l/2)\

Theorem 5.1. For APP the average case complexity functions compavg(e; d, Astd)

and compavg(e ; d, A311) differ at most by a constant and

compavg(e ; d, Astd) = e(ce-1/(r™"+I/2) (logl/e)(t*-1)(,'"»"+1)/(r">i"+1/2)).
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The linear U* given by (5.2) which uses n sample points derived from the

hyperbolic cross points with n given by (5.5) is optimal in the classes Astd and
Aal1.

From Theorem 5.1 we have that APP is tractable in Astd since l/(/"min +

1/2) < 2. The exponent of APP is the same in Aal1 and Astd. Since r, may

depend on d, we have

p*(Astd) = (1/2 + min{rj(d): /= 1, 2,..., d and d = 1, 2, ...})"'  < 2.

Obviously, any LMP which satisfies (A.l) and which is equipped with the

folded Wiener sheet measure is tractable and has exponent at most p*(Astd) < 2 .
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