
Average-Case Complexity of Shellsort

(Preliminary Version)

Tao Jiang1 , Ming Li2 , and Paul Vitanyi3

1 J?ept of Computing and Software, McMaster University,

Hamilton, Ontario LSS 4Kl, Canada, jiang©cas.mcmaster .. ca

Supported in part by NSERC and CITO grants
2 Dept of Computer Science, University of Waterloo

Waterloo, Ontario N2L 3Gl, Canada, mli©math. uwaterl~o. ea

Supported in part by NSERC and CITO grants and Steacie Fellowship
3 CWI, Kruislaan 413, 1098 SJ Amsterdam,

The Netherlands, paulv©cwi. nl

Supported in part via NeuroCOLT II ESPRIT Working Group

Abstract. We prove a general lower bound on the average-case com­

plexity of Shellsort: the average number of data-movements (and com­

paris~ns) made by a p-pass Shellsort for any incremental sequence is

fl(pn HIP) for every p. The proof method is an incompressibility ar­

gument based on Kolmogorov complexity. Using similar techniques, the

average-case complexity of several other sorting algorithms is analyzed.

1 Introduction

The question of a nontrivial general lower bound (or upper bound) on the average

complexity of Shellsort (due to D.L. Shell [15]) has been open for about four

decades [7, 14]. We present such a lower bound for p-pass Shellsort for every JJ.

Shellsort sorts a list of n elements in p passes using a sequence of increments

hi, ... , hP' In the kth pass the main list is divided in hk separate sublists of

length In/ hk l , where the ith sub list consists of the elements at positions i, where

j mod hk = i - 1, of the main list (i = 1, ... , hk). Every su blist is sorted using a

straightforward insertion sort. The efficiency of the method is governed by thf'

number of passes p and the selected increment sequence h1, ... , hp with hp = 1

to ensure sortedness of the final list. The original log n-pass 1 increment sequence

Ln/2J, Ln/4J, ... , 1 of Shell [15] uses worst case 8(n2) time, but Papemov and

Stasevitch (10] showed that another related sequence uses O(n312) and Pratt

(12] extended this to a class of all nearly geometric increment sequences and

proved this bound was tight. The currently best asymptotic method was found

by Pratt [12]. It uses all log2 n increments of the form 2i3i < ln/2J to obtain

time 0(n log2 n) in the worst case. Moreover, since every pass takes at le8:8t n

steps, the average complexity using Pratt's increment sequence is B(n log2 n).

Incerpi and Sedgewick [2] constructed a family of increment sequences for which

1 "log" denotes the binary logarithm and "In" denotes the natural logarithm.

454

Shellsort runs in O(nl+ef~) time using (8/€2) logn passes, for every f. > O.

B. Chazelle (attribution in [13]) obtained the same result by generalizing Pratt's

method: instead of using 2 and 3 to construct the increment sequence use a and

(a+ 1) for fixed a which yields a worst-case running time of n log2 n(a2 / ln2 a)

which is O(nl+e/~) for ln2 a = O(logn). Plaxton, Poonen and Suel (11]

proved an rl(n1+e!Yfi) lower bound for p passes of Shellsort using any increment

sequence, for some f.> O; taking p = rl(logn) shows that the Incerpi-Sedgewick

/ Chazelle bounds are optimal for small p and taking p slightly larger shows a

8(nlog2 n/(loglogn) 2) lower bound on the worst case complexity of Shellsort.

Since every pass takes at least n steps this shows an n(n log2 n /(log log n)2) lower

bound on the worst-case of every Shellsort increment sequence. For the average­

case running time Knuth [7] showed 8(n513) for the best choice of increments in

p = 2 passes; Yao [17] analyzed the average case for p = 3 but did not obtain a

simple analytic form; Yao's analysis was improved by Janson and Knuth [3] who

showed O(n23115) average-case running time for a particular choice of increments

in p = 3 passes. Apart from this no nontrivial results are known for the average

case; see [7, 13, 14].

Results: We show a general rl(pnl+l/P) lower bound on the average-case run­

ning time of p-pass Shellsort under uniform distribution of input permutations

for every p. 2 This is the first advance on the problem of determining general non­

trivial bounds on the average-case running time of Shellsort [12, 7, 17, 2, 11, 13,

14]. Using the same simple method, we also obtain results on the average num­

ber of stacks or queues (sequential or parallel) required for sorting under the

uniform distribution on input permutations. These problems have been studied

before by Knuth [7] and Tarjan [16] for the worst case.

Kolmogorov complexity and the Incompressibility Method: The tech­

nical tool to obtain our results is the incompressibility method. This method is

especially suited for the average case analysis of algorithms and machine models,

whereas average-case analysis is usually more difficult than worst-case analysis

using more traditional methods. A survey of the use of the incompressibility

method is [8] Chapter 6, and recent work is [1]. The most spectacular successes

of the method occur in the computational complexity analysis of algorithms.

Informally, the Kolmogorov complexity C(x) of a binary string x is the length

of the shortest binary program (for a fixed reference universal machine) that

prints x as its only output and then halts [6]. A string x is incompressible if

C(x) is at least lxl, the approximate length of a program that simply includes

all of x literally. Similarly, the conditional Kolmogorov complexity of x with

respect toy, denoted by C(xjy), is the length of the shortest program that, with

extra information y, prints x. A string x is incompressible relative toy if C(xly)

is large in the appropriate sense. For details see [8]. Here we use that, both

absolutely and relative to any fixed stringy, there are incompressible strings of

2 The trivial lower bound is D(pn) comparisons since every element needs to be com-

pared at least once in every pass.

455

every length, and t~at most strings are nearly incompressible, bv rmii standard.
3 Another easy one is th t · "fi 1 1 · · · · , a s1gm cant y ong subwords of an mcompressible

are thems~lves nearly incompressible by any standard, even relatiw' to the rest

?f t~e. stnng. In the sequel we use the following easy facts (snmetinws
im phc1 tly).

Lemma 1. Let c be a positive integer. For every fixed y, ever·y finite set A

contains at least (1 - 2-c)IAI + 1 elements x with C(:rjA, y) ;:::: llog !AiJ - c.

Lemma 2. If A is a set, then for every y every element x E A ha8

C(xjA, y) ~log IAI + 0(1).

The first lemma is proved by simple counting. The second lemma holds sincP :r

can be described by first describing A in 0(1) bits and then giving the index of

x in the enumeration order of A.

2 Shellsort

A Shellsort computation consists of a sequence comparison and inversion (swap­

ping) operations. In this analysis of the average-case lower bound we count just

the total number of data movements (here inversions) executed. The same bound

holds for number of comparisons automatically. The average is taken on:'r the

uniform distribution of all lists of n items.

The proof is based on the following intuitive idea: There are n! different

permutations. Given the sorting process (the insertion paths in the right order)

one can recover the correct permutation from the sorted list. Hence one requires

n! pairwise different sorting processes. This gives a lower bound on the minimum

of the maximal length of a process. We formulate the proof in the rrisp format

of incompressibility.

Theorem 1. The average number of inversions in p-pass Shellsort on lists of n

keys is at [east[) (pnl+l/P) for every increment sequence.

Proof. Let the list to be sorted consist of a permutation 7r of the elements

1, ... , n. Consider a (h1 , ... , hp) Shellsort algorithm A where h1.: is the incre­

ment in the kth pass and hp = 1. For any 1 :S: i :S: n and 1 :::; k :::; p, let m,,k be

the number of elements in the hk-chain containing element i that are to the left

of i at the beginning of pass k and are larger than i. Observe that I:;~ 1 rn,,k

is the number of inversions in the initial permutation of pass k, and that the

3 By a simple counting argument one can show that whereas sorne str'.ngs_ can lw

enormously compressed, like strings of the form 11 ... 1, the maJonty of strmgs can

hardly be compressed at all. For every n there are 2n binar~ strings of length n, but

only Ln-l 2' = 2n - 1 possible shorter descriptions. Therefore, there 1s at. least 01w

binary s't~~ng x of length n such that C(x) 2 n. Similarly, for every length n and any

binary stringy, there is a binary string x of length n such that C(xly) ~ n.

456

insertion sort in pass k requires precisely I:;~ 1 (m;,k + 1) comparisons. Let M

denote the total number of inversions:

p n

M:=LLmi,k· (1)

k=l i=l

Claim. Given all the mi,k 's in an appropriate fixed order, we can reconstruct

the original permutation 1r.

Proof. The m;,p 's trivially specify the initial permutation of pass p. In general,

given the m;,k 's and the final permutation of pass k, we can easily reconstruct

the initial permutation of pass k. D

Let M as in (1) be a fixed number. Let permutation 7r be an incompressible

permutation having Kolmogorov complexity

C(7rln, A, P) 2: logn! - logn. (2)

where P is the encoding program in the following discussion. The description in

Claim 2 is effective and therefore its minimum length must exceed the complexity

of 7!':

C(m1,1, ... , mn,pln, A, P) 2: C(7rln, A, P). (3)

Any M as defined by (1) such that every division of M in rn;,k 's contradicts (3)

would be a lower bound on the number of inversions performed. There are

np-1

D(M) := '°"' (M .) = (M + np - 1)
6 np- i np-1
1=1

(4)

possible divisions of M into np nonnegative integral summands m;,k 's. Every

division can be indicated by its index j in an enumeration of these divisions.

Therefore, a self-delimiting description of M followed by a description of j ef­

fectively describes the m;,k 's. The length of this description must by definition

exceed its Kolmogorov complexity. That is,

log D(M) +log M + 2 loglog M 2: C(m1,1, ... , rnn,pln, A, P) + 0(1).

We know that M::::; pn2 since every m;,k ::::; n. We can assume4 p < n. Together

with (2) and (3), we have

logD(M) 2: logn! - 4logn + 0(1).

By (4) logD(M) is bounded above by 5

1 (M + np - 1) (l) l M + np - 1 Ml M + np - 1
og 1 = np - og 1 + og M

np- np-

4 Otherwise we require at least n 2 comparisons.
5 Use the following formula ([8], p. 10),

(a) a a 1 a
log b =blogb+(a-b)loga-b+ 2 logb(a-b) +0(1).

(5)

457

+ 1 1 M + np-1
2 og (np - l)M + O(l).

~y (5) we have M-+ oo for n-+ oo. Therefore, the second term in thf' right-hand
m~e~~ -

log (1 + np;; 1) Ar -+ log e"P-1

for n-+ oo. Since 0 < p < n and n:::; M:::; pn2,

1 .M + np- 1
-::--:----,--log -+ O
2(np - 1) (np - 1)./\1

for n -+ oo. Therefore, the total right-hand side goes to

(np - 1) (1og (~ + 1) +loge)
np- l

for n -+ oo. Together with (5) this yields

M = ft(pnl+ 11P).

Therefore, the running time of the algorithm is as stated in the theorem for

every permutation 7r satisfying (2). By lemma 1 at least a (1 - l/n)-fraction of

all permutations 7r require that high complexity. Therefore, the following is a

lower bound on the expected number of inversions of the sorting procedure:

(1 - ~)D(pn1+ 1/P) + ~D(O) = ft(pnl+ 11P)
n n

This gives us the theorem. D

Compare our lower bound on the average-case with the Plaxton-Poonen-Sud

D(n l+•/ v'P) worst case lower bound [11]. Some special cases of the lower bound

on the average-case complexity are:

1. When p = 1, this gives asymptotically tight bound for the average number

of inversions for Insertion Sort.

2. When p = 2, Shellsort requires O(n312) inversions (the tight bound is known

to be G(n513) [7]);

3. When p = 3, Shellsort requires D(n413) inversions (the best known upper

bound is O(n23 / 15) in [3]);

4. When p =log n/ log log n, Shellsort requires ft(n log2 n/ log log n) inversions;

5. When p = logn, Shellsort requires D(nlogn) inversions. When we consider

comparisons, this is of course the lower bound of average number of compar­

isons for every sorting algorithm.

6. In general, when p = p(n) > logn, Shellsort requires il(n · p(n)) inversions

(it requires that many comparisons anyway since every pass trivially makes

n comparisons).

In [14] it is mentioned that the existence of an increment sequence yielding an

average O(n logn) Shellsort has been open for 30 years. The above lower bound

on the average shows that the number p of passes of such an increment sequence

(if it exists) is precisely p = 8(1ogn); all the other possibilities are ruled out.

458

3 Sorting with Queues and Stacks

Knuth [7] and Tarjan [16] have studied the problem of sorting using a network of

queues or stacks. In particular, the main variants of the problem are: assuming

the stacks or queues are arranged sequentially or in parallel, how many stacks

or queues are needed to sort n numbers. Here, the input sequence is scanned

from left to right. We will concentrate on the average-case analyses of the above

two main variants, although our technique in general apply to arbitrary acyclic

networks of stacks and queues as studied in [16].

3.1 Sorting with Sequential Stacks

The sequential stack sorting problem is in [7] exercise 5.2.4-20. We have k stacks

numbered So, ... , Sk-l arranged sequentially from right to left. The input is a

permutation 7r of the elements 1, ... , n. Initially we feed the elements of 7f to So

at most one at a time in the order in which they appear in Jr. At every step we

can pop a stack (the popped elements will move to the left) or push an incoming

element on a stack The question is how many stack are needed for sorting 7f.

It is known that k = log n stacks suffice, and ~ log n stacks are necessary in the

worst-case [7, 16]. Here we prove that the same lower bound also holds on the

average with a very simple incompressibility argument.

Theorem 2. On the average, at least ~log n stacks are needed for sequential

stack sort.

Proof. Fix an incompressible permutation 7r such that

C(7rln,P):::; logn! - log= nlogn- O(logn),

where P is an encoding program to be specified in the following.

Assume that k stacks is sufficient to sort Jr. We now encode such a sorting

process. For every stack, exactly n elements pass through it. Hence we need

perform precisely n pushes and n pops on every stack Encode a push as 0 and

a pop as 1. It is easy to prove that different permutations must have different

push/pop sequences on at least one stack Thus with 2kn bits, we can completely

specify the input permutation 7f. 6 Then, as before,

2kn 2: logn! - logn = nlogn - O(logn).

Hence, approximately k 2: ~log n for incompressible permutations 7r.

Since most (a (1- l/n)th fraction) permutations are incompressible, we can

calculate the average-case lower bound as:

1 n-1 1 1
- logn · -- + 1 · - ::::;; - logn.
2 n n 2

D

6 In fact since each stack corresponds to precisely n pushes and n pops where the

pushes and pops form a "balanced" string, the Kolmogorov complexity of such a

sequence is at most g(n) := 2n - ~log n + 0(1) bits. So 2kg(n) bits would suffice to

specifiy the input permutation. B;t this does not yield a nontrivial improvement.

459

3.2 Sorting with Parallel Stacks

Clearly, the input sequence 2, 3, 4, ... , n, 1 requires n - 1 parallel stacks to surt.

Hence the worst-case complexity of sorting with paralld stacks is 11 - 1. However,

most sequences do not need these many stacks to sort in the pa.rallel arrange­

ment. The next two theorems show that on the average, G>(fo) stacks are both

necessary and sufficient. Observe that the result is actually implied by the con­

nection between sorting with parallel stacks and longest increasing substeqnences

given in [16] and the bounds on the length of longest increasing ~mbscquences

of random permutations given in, [5, 9, 4]. However, the proofs in [5, 9, 4] use

deep results from probability theory (such as Kingman's ergodic theorem) and

are quite sophisticated. Here we give simple proofs using incompressibility argu­

ments.

Theorem 3. On the average, the number of parallel stacks needed to sort n

elements is 0(vn).

Pmof. Consider an incompressible permutation 7r satisfying

C(7rln) ~ logn! - logn. (G)

We use the following trivial algorithm (which is described in [16]) to sort rr with

stacks in the parallel arrangement . Assume that the stacks are named So, Si, ...

and the input sequence is denoted as x1 , ... , Xn.

Algorithm Parallel-Stack-Sort

1. For i = l to n do

Scan the stacks from left to right, and push Xi on the the first stack sj

whose top element is larger than x;. If such a stack doesn't exist, put J:;

on the first empty stack.

2. Pop the stacks in the ascending order of their top elements.

We claim that algorithm Parallel-Stack-Sort uses 0(fo) stacks on the per­

mutation n. First, we observe that if the algorithm uses m stacks on 7r then we

can identify an increasing subsequence of n of length m as in [16]. This can be

done by a trivial backtracing starting from the top element of the last stack.

Then we argue that 7r cannot have an increasing subsequence of length longer

than e.jii,, where e is the natural constant, since it is compressible by at most

log n bits.

Suppose that CJ is a longest increasing subsequence of 7r and m = io-1 is the

length of a-. Then we can encode 7r by specifying:

l. a. description of this encoding scheme in 0(1) bits;

2. the number m in logm bits;

!: :~: ~~::~ii~~:i~;t~ei:l~~e~~~ :;t;; in 7r in at mo~t log(;:,) bits; a:1d

s. the remaining 7r with the elements of CJ deleted m log(n - m). bits.

460

This takes a total of

n'
log(n-m)!+2log '(~)' +logm+O(l)+2loglogm

m. n m.

bits. Using Stirling approximation and the fact that fo :S m = o(n), we the

above expression is upper bounded by:

I 01/e)n
logn. +log (I r (()/) - + O(logn) me -m n - m en m

n n
~ logn! + mlog-2 + (n - m) log--+ m loge+ O(logn)

m n-m
n

~ logn! + mlog-2 + 2mloge + O(Iogn)
m

This description length must exceed the complexity of the permutation which

is lower-bounded in (6). This requires that (approximately) m :S efo = O(yri,).

This yields an average complexity of Parallel-Stack-Sort of:

n-1 1
O(y'n) · -- + n · - = O(,/ii).

n n

0

Theorem 4. On the average, the number of parallel stacks required to sort a

permutation is D (fo).

Proof. Let A be any sorting algorithm using parallel stacks. Fix an incompress­

ible permutation TI with C(n!n, P) 2 log n! - log n, where P is the program to do

the encoding discussed in the following. Suppose that A uses T parallel stacks

to sort TI. This sorting process involves a sequence of moves, and we can encode

this sequence of moves as a sequence of the following items: "push to stack i"

and "pop stack j", where the element to be pushed is the next unprocessed el­

ement from the input sequence and the popped element is written as the next

output element. Each of these term requires logT bits. In total, we use 2n terms

precisely since every element has to be pushed once and popped once. Such a

sequence is unique for every permutation.

Thus we have a description of an input sequence with length 2n log T bits,

which must exceed C(7rln,P) 2:: nlogn - O(logn). It follows that T 2 vn =

D(fo). This yields the average-case complexity of A:

n - 1 1
D(y'n) · - + 1 · - = D(fa).

n n

D

3.3 Sorting with Parallel Queues

It is easy to see that sorting cannot be done with a sequence of queues. So we

consider the complexity of sorting with parallel queues. It turns out that all the

result in the previous subsection also hold for queues.

461

As noticed in [16], the worst-case complexity of sorting with parallel queues

is n since the input sequence n, n - 1, ... , 1 requires n queues to sort. We show

in the next two theorems that on the average, e (fo,) queues are both necessary

and sufficient. Again, the result is implied by the connection between sorting

with parallel queues and longest decreasing subsequences given in [16] and the

bounds in [5, 9, 4] (with sophisticated proofs). Our proofs are almost trivial given

the proofs in the previous subsection.

Theorem 5. On the average, the number of parallel quev,es needed to sort n

elements is upper bounded by 0(fo,).

Proof. The proof is very similar to the proof of Theorem 3. We use a slightly

modified greedy algorithm as described in [16]:

Algorithm Parallel-Queue-Sort

l. For i = 1 to n do

Scan the queues from left to right, and append xi on the the first queue

whose rear element is smaller than x;. If such a queue doesn't exist, put

x; on the first empty queue.

2. Delete the front elements of the queues in the ascending order.

Again, we can claim that algorithm Parallel-Queue-Sort uses 0(fo,) queues

on any permutation 7T that cannot be compressed by more than log n bits. We

first observe that if the algorithm uses m queues on 7r then a decreasing subse­

quence of 7T of length m can be identified, and we then argue that 7r cannot have

a decreasing subsequence of length longer than efo,, in a way analogous to the

argument in the proof of Theorem 3. D

Theorem 6. On the average, the number of parallel queues required to sort a

permutation is I?(fo,).

Proof. The proof is the same as the one for Theorem 4 except that we should

replace "push" with "enqueue" and "pop" with "dequeue". D

4 Conclusion

The incompressibility method is a good tool to analyzing the average-case com­

plexity of sorting algorithms. Simplicity has been our goal. Examples of such

average-case analyses of some other algorithms are given in [l]. This methodol­

ogy and applications can be easily taught to undergraduate students.

The average-case performance of Shellsort has been one of the most funda­

mental and interesting open problems in the area of algorithm analysis. The

simple average-case analysis of Insertion Sort (I-pass Shellsort), stack-sort and

queue-sort are further examples to demonstrate the generality and simplicity of

our technique in analyzing sorting algorithms in general. Some open questions

are:

462

l. Tighten the average-case lower bound for Shellsort. Our bound is not tight

for p = 2 passes.
2. For sorting with sequential stacks, can we close the gap between log n upper

bound and the ~log n lower bound?

5 Acknowledgements

We thank Don Knuth, Ian Munro, and Vaughan Pratt for discussions and ref­

erences on Shellsort.

References

1. H. Buhrman, T. Jiang, M. Li, and P. Vitanyi, New applications of the incompress­

ibility method, in the Proceedings of ICALP'9g.

2. J. Incerpi and R. Sedgewick, Improved upper bounds on Shellsort, Journal of Com­

puter and System Sciences, 31(1985), 210-224.

3. S. Janson and D.E. Knuth, Shellsort with three increments, Random Struct. Alg.,

10(1997), 125-142.

4. S.V. Kerov and A.M. Versik, Asymptotics of the Plancherel measure on symmetric

group and the limiting form of the Young tableaux, Soviet Math. Dokl. 18 (1977),

527-531.

5. J.F.C. Kingman, The ergodic theory of subadditive stochastic processes, Ann.

Probab. 1 (1973), 883-909.

6. A.N. Kolmogorov, Three approaches to the quantitative definition of information.

Problems Inform. Transmission, 1:1(1965), 1-7.

7. D.E. Knuth, The Art of Computer Programming, Vol.3: Sorting and Searching,

Addison-Wesley, 1973 (lst Edition), 1998 (2nd Edition).

8. M. Li and P.M.B. Vitanyi, An Introduction to Kolmogorov Complexity and its Ap­

plications, Springer-Verlag, New York, 2nd Edition, 1997.

9. B.F. Logan and L.A. Shepp, A variational problem for random Young tableaux,

Advances in Math. 26 (1977), 206-222.

10. A. Papernov and G. Stasevich, A method for information sorting in computer

memories, Problems Inform. Transmission, 1:3(1965), 63-75.

11. C.G. Plaxton, B. Poonen and T. Sue!, Improved lower bounds for Shellsort, Proc.

3Srd IEEE Symp. Foundat. Comput. Sci., pp. 226-235, 1992.

12. V.R. Pratt, Shellsort and Sorting Networks, Ph.D. Thesis, Stanford Univ., 1972.

13. R. Sedgewick, Analysis of Shellsort and related algorithms, presented at the Fourth

Annual European Symposium on Algorithms, Barcelona, September, 1996.

14. R. Sedgewick, Open problems in the analysis of sorting and searching algorithms,

Presented at Workshop on Prob. Analysis of Algorithms, Princeton, 1997.

15. D.L. Shell, A high-speed sorting procedure, Commun. ACM, 2:7(1959), 30-32.

16. R.E. Tarjan, Sorting using networks of queues and stacks, Journal of the ACM,

19(1972), 341-346.

17. A.C.C. Yao, An analysis of (h, k, 1)-Shellsort, J. of Algorithms, 1(1980), 14-50.

