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Abstract. We prove a general lower bound on the average-case com

plexity of Shellsort: the average number of data-movements (and com

paris~ns) made by a p-pass Shellsort for any incremental sequence is 

fl(pn HIP) for every p. The proof method is an incompressibility ar

gument based on Kolmogorov complexity. Using similar techniques, the 

average-case complexity of several other sorting algorithms is analyzed. 

1 Introduction 

The question of a nontrivial general lower bound (or upper bound) on the average 

complexity of Shellsort (due to D.L. Shell [15]) has been open for about four 

decades [7, 14]. We present such a lower bound for p-pass Shellsort for every JJ. 

Shellsort sorts a list of n elements in p passes using a sequence of increments 

hi, ... , hP' In the kth pass the main list is divided in hk separate sublists of 

length In/ hk l , where the ith sub list consists of the elements at positions i, where 

j mod hk = i - 1, of the main list ( i = 1, ... , hk). Every su blist is sorted using a 

straightforward insertion sort. The efficiency of the method is governed by thf' 

number of passes p and the selected increment sequence h1, ... , hp with hp = 1 

to ensure sortedness of the final list. The original log n-pass 1 increment sequence 

Ln/2J, Ln/4J, ... , 1 of Shell [15] uses worst case 8(n2 ) time, but Papemov and 

Stasevitch (10] showed that another related sequence uses O(n312 ) and Pratt 

(12] extended this to a class of all nearly geometric increment sequences and 

proved this bound was tight. The currently best asymptotic method was found 

by Pratt [12]. It uses all log2 n increments of the form 2i3i < ln/2J to obtain 

time 0( n log2 n) in the worst case. Moreover, since every pass takes at le8:8t n 

steps, the average complexity using Pratt's increment sequence is B(n log2 n). 

Incerpi and Sedgewick [2] constructed a family of increment sequences for which 

1 "log" denotes the binary logarithm and "In" denotes the natural logarithm. 
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Shellsort runs in O(nl+ef~) time using (8/€2 ) logn passes, for every f. > O. 

B. Chazelle (attribution in [13]) obtained the same result by generalizing Pratt's 

method: instead of using 2 and 3 to construct the increment sequence use a and 

(a+ 1) for fixed a which yields a worst-case running time of n log2 n(a2 / ln2 a) 

which is O(nl+e/~) for ln2 a = O(logn). Plaxton, Poonen and Suel (11] 

proved an rl(n1+e!Yfi) lower bound for p passes of Shellsort using any increment 

sequence, for some f.> O; taking p = rl(logn) shows that the Incerpi-Sedgewick 

/ Chazelle bounds are optimal for small p and taking p slightly larger shows a 

8(nlog2 n/(loglogn) 2 ) lower bound on the worst case complexity of Shellsort. 

Since every pass takes at least n steps this shows an n( n log2 n /(log log n )2 ) lower 

bound on the worst-case of every Shellsort increment sequence. For the average

case running time Knuth [7] showed 8(n513 ) for the best choice of increments in 

p = 2 passes; Yao [17] analyzed the average case for p = 3 but did not obtain a 

simple analytic form; Yao's analysis was improved by Janson and Knuth [3] who 

showed O(n23115 ) average-case running time for a particular choice of increments 

in p = 3 passes. Apart from this no nontrivial results are known for the average 

case; see [7, 13, 14]. 

Results: We show a general rl(pnl+l/P) lower bound on the average-case run

ning time of p-pass Shellsort under uniform distribution of input permutations 

for every p. 2 This is the first advance on the problem of determining general non

trivial bounds on the average-case running time of Shellsort [12, 7, 17, 2, 11, 13, 

14]. Using the same simple method, we also obtain results on the average num

ber of stacks or queues (sequential or parallel) required for sorting under the 

uniform distribution on input permutations. These problems have been studied 

before by Knuth [7] and Tarjan [16] for the worst case. 

Kolmogorov complexity and the Incompressibility Method: The tech

nical tool to obtain our results is the incompressibility method. This method is 

especially suited for the average case analysis of algorithms and machine models, 

whereas average-case analysis is usually more difficult than worst-case analysis 

using more traditional methods. A survey of the use of the incompressibility 

method is [8] Chapter 6, and recent work is [1]. The most spectacular successes 

of the method occur in the computational complexity analysis of algorithms. 

Informally, the Kolmogorov complexity C(x) of a binary string x is the length 

of the shortest binary program (for a fixed reference universal machine) that 

prints x as its only output and then halts [6]. A string x is incompressible if 

C(x) is at least lxl, the approximate length of a program that simply includes 

all of x literally. Similarly, the conditional Kolmogorov complexity of x with 

respect toy, denoted by C(xjy), is the length of the shortest program that, with 

extra information y, prints x. A string x is incompressible relative toy if C(xly) 

is large in the appropriate sense. For details see [8]. Here we use that, both 

absolutely and relative to any fixed stringy, there are incompressible strings of 

2 The trivial lower bound is D(pn) comparisons since every element needs to be com-

pared at least once in every pass. 
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every length, and t~at most strings are nearly incompressible, bv rmii standard. 
3 Another easy one is th t · "fi 1 1 · · · · , a s1gm cant y ong subwords of an mcompressible 

are thems~lves nearly incompressible by any standard, even relatiw' to the rest 

?f t~e. stnng. In the sequel we use the following easy facts (snmetinws 
im phc1 tly). 

Lemma 1. Let c be a positive integer. For every fixed y, ever·y finite set A 

contains at least (1 - 2-c)IAI + 1 elements x with C(:rjA, y) ;:::: llog !AiJ - c. 

Lemma 2. If A is a set, then for every y every element x E A ha8 

C(xjA, y) ~log IAI + 0(1). 

The first lemma is proved by simple counting. The second lemma holds sincP :r 

can be described by first describing A in 0(1) bits and then giving the index of 

x in the enumeration order of A. 

2 Shellsort 

A Shellsort computation consists of a sequence comparison and inversion (swap

ping) operations. In this analysis of the average-case lower bound we count just 

the total number of data movements (here inversions) executed. The same bound 

holds for number of comparisons automatically. The average is taken on:'r the 

uniform distribution of all lists of n items. 

The proof is based on the following intuitive idea: There are n! different 

permutations. Given the sorting process (the insertion paths in the right order) 

one can recover the correct permutation from the sorted list. Hence one requires 

n! pairwise different sorting processes. This gives a lower bound on the minimum 

of the maximal length of a process. We formulate the proof in the rrisp format 

of incompressibility. 

Theorem 1. The average number of inversions in p-pass Shellsort on lists of n 

keys is at [east[) (pnl+l/P) for every increment sequence. 

Proof. Let the list to be sorted consist of a permutation 7r of the elements 

1, ... , n. Consider a (h1 , ... , hp) Shellsort algorithm A where h1.: is the incre

ment in the kth pass and hp = 1. For any 1 :S: i :S: n and 1 :::; k :::; p, let m,,k be 

the number of elements in the hk-chain containing element i that are to the left 

of i at the beginning of pass k and are larger than i. Observe that I:;~ 1 rn,,k 

is the number of inversions in the initial permutation of pass k, and that the 

3 By a simple counting argument one can show that whereas sorne str'.ngs_ can lw 

enormously compressed, like strings of the form 11 ... 1, the maJonty of strmgs can 

hardly be compressed at all. For every n there are 2n binar~ strings of length n, but 

only Ln-l 2' = 2n - 1 possible shorter descriptions. Therefore, there 1s at. least 01w 

binary s't~~ng x of length n such that C(x) 2 n. Similarly, for every length n and any 

binary stringy, there is a binary string x of length n such that C(xly) ~ n. 
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insertion sort in pass k requires precisely I:;~ 1 (m;,k + 1) comparisons. Let M 

denote the total number of inversions: 

p n 

M:=LLmi,k· (1) 

k=l i=l 

Claim. Given all the mi,k 's in an appropriate fixed order, we can reconstruct 

the original permutation 1r. 

Proof. The m;,p 's trivially specify the initial permutation of pass p. In general, 

given the m;,k 's and the final permutation of pass k, we can easily reconstruct 

the initial permutation of pass k. D 

Let M as in (1) be a fixed number. Let permutation 7r be an incompressible 

permutation having Kolmogorov complexity 

C(7rln, A, P) 2: logn! - logn. (2) 

where P is the encoding program in the following discussion. The description in 

Claim 2 is effective and therefore its minimum length must exceed the complexity 

of 7!': 

C(m1,1, ... , mn,pln, A, P) 2: C(7rln, A, P). (3) 

Any M as defined by (1) such that every division of M in rn;,k 's contradicts (3) 

would be a lower bound on the number of inversions performed. There are 

np-1 

D(M) := '°"' ( M .) = (M + np - 1) 
6 np- i np-1 
1=1 

(4) 

possible divisions of M into np nonnegative integral summands m;,k 's. Every 

division can be indicated by its index j in an enumeration of these divisions. 

Therefore, a self-delimiting description of M followed by a description of j ef

fectively describes the m;,k 's. The length of this description must by definition 

exceed its Kolmogorov complexity. That is, 

log D(M) +log M + 2 loglog M 2: C(m1,1, ... , rnn,pln, A, P) + 0(1). 

We know that M::::; pn2 since every m;,k ::::; n. We can assume4 p < n. Together 

with (2) and (3), we have 

logD(M) 2: logn! - 4logn + 0(1). 

By (4) logD(M) is bounded above by 5 

1 ( M + np - 1) ( l) l M + np - 1 Ml M + np - 1 
og 1 = np - og 1 + og M 

np- np-

4 Otherwise we require at least n 2 comparisons. 
5 Use the following formula ([8], p. 10), 

(a) a a 1 a 
log b =blogb+(a-b)loga-b+ 2 logb(a-b) +0(1). 

(5) 
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+ 1 1 M + np-1 
2 og (np - l)M + O(l). 

~y (5) we have M-+ oo for n-+ oo. Therefore, the second term in thf' right-hand 
m~e~~ -

log ( 1 + np;; 1) Ar -+ log e"P-1 

for n-+ oo. Since 0 < p < n and n:::; M:::; pn2, 

1 .M + np- 1 
-::--:----,--log -+ O 
2(np - 1) (np - 1)./\1 

for n -+ oo. Therefore, the total right-hand side goes to 

(np - 1) (1og (~ + 1) +loge) 
np- l 

for n -+ oo. Together with (5) this yields 

M = ft(pnl+ 11P). 

Therefore, the running time of the algorithm is as stated in the theorem for 

every permutation 7r satisfying (2). By lemma 1 at least a (1 - l/n)-fraction of 

all permutations 7r require that high complexity. Therefore, the following is a 

lower bound on the expected number of inversions of the sorting procedure: 

(1 - ~ )D(pn1+ 1/P) + ~D(O) = ft(pnl+ 11P) 
n n 

This gives us the theorem. D 

Compare our lower bound on the average-case with the Plaxton-Poonen-Sud 

D( n l+•/ v'P) worst case lower bound [11]. Some special cases of the lower bound 

on the average-case complexity are: 

1. When p = 1, this gives asymptotically tight bound for the average number 

of inversions for Insertion Sort. 

2. When p = 2, Shellsort requires O(n312 ) inversions (the tight bound is known 

to be G(n513 ) [7]); 

3. When p = 3, Shellsort requires D(n413 ) inversions (the best known upper 

bound is O(n23 / 15 ) in [3]); 

4. When p =log n/ log log n, Shellsort requires ft(n log2 n/ log log n) inversions; 

5. When p = logn, Shellsort requires D(nlogn) inversions. When we consider 

comparisons, this is of course the lower bound of average number of compar

isons for every sorting algorithm. 

6. In general, when p = p(n) > logn, Shellsort requires il(n · p(n)) inversions 

(it requires that many comparisons anyway since every pass trivially makes 

n comparisons). 

In [14] it is mentioned that the existence of an increment sequence yielding an 

average O(n logn) Shellsort has been open for 30 years. The above lower bound 

on the average shows that the number p of passes of such an increment sequence 

(if it exists) is precisely p = 8(1ogn); all the other possibilities are ruled out. 
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3 Sorting with Queues and Stacks 

Knuth [7] and Tarjan [16] have studied the problem of sorting using a network of 

queues or stacks. In particular, the main variants of the problem are: assuming 

the stacks or queues are arranged sequentially or in parallel, how many stacks 

or queues are needed to sort n numbers. Here, the input sequence is scanned 

from left to right. We will concentrate on the average-case analyses of the above 

two main variants, although our technique in general apply to arbitrary acyclic 

networks of stacks and queues as studied in [16]. 

3.1 Sorting with Sequential Stacks 

The sequential stack sorting problem is in [7] exercise 5.2.4-20. We have k stacks 

numbered So, ... , Sk-l arranged sequentially from right to left. The input is a 

permutation 7r of the elements 1, ... , n. Initially we feed the elements of 7f to So 

at most one at a time in the order in which they appear in Jr. At every step we 

can pop a stack (the popped elements will move to the left) or push an incoming 

element on a stack The question is how many stack are needed for sorting 7f. 

It is known that k = log n stacks suffice, and ~ log n stacks are necessary in the 

worst-case [7, 16]. Here we prove that the same lower bound also holds on the 

average with a very simple incompressibility argument. 

Theorem 2. On the average, at least ~log n stacks are needed for sequential 

stack sort. 

Proof. Fix an incompressible permutation 7r such that 

C(7rln,P):::; logn! - log= nlogn- O(logn), 

where P is an encoding program to be specified in the following. 

Assume that k stacks is sufficient to sort Jr. We now encode such a sorting 

process. For every stack, exactly n elements pass through it. Hence we need 

perform precisely n pushes and n pops on every stack Encode a push as 0 and 

a pop as 1. It is easy to prove that different permutations must have different 

push/pop sequences on at least one stack Thus with 2kn bits, we can completely 

specify the input permutation 7f. 6 Then, as before, 

2kn 2: logn! - logn = nlogn - O(logn). 

Hence, approximately k 2: ~log n for incompressible permutations 7r. 

Since most (a (1- l/n)th fraction) permutations are incompressible, we can 

calculate the average-case lower bound as: 

1 n-1 1 1 
- logn · -- + 1 · - ::::;; - logn. 
2 n n 2 

D 

6 In fact since each stack corresponds to precisely n pushes and n pops where the 

pushes and pops form a "balanced" string, the Kolmogorov complexity of such a 

sequence is at most g(n) := 2n - ~log n + 0(1) bits. So 2kg(n) bits would suffice to 

specifiy the input permutation. B;t this does not yield a nontrivial improvement. 
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3.2 Sorting with Parallel Stacks 

Clearly, the input sequence 2, 3, 4, ... , n, 1 requires n - 1 parallel stacks to surt. 

Hence the worst-case complexity of sorting with paralld stacks is 11 - 1. However, 

most sequences do not need these many stacks to sort in the pa.rallel arrange

ment. The next two theorems show that on the average, G>( fo) stacks are both 

necessary and sufficient. Observe that the result is actually implied by the con

nection between sorting with parallel stacks and longest increasing substeqnences 

given in [16] and the bounds on the length of longest increasing ~mbscquences 

of random permutations given in, [5, 9, 4]. However, the proofs in [5, 9, 4] use 

deep results from probability theory (such as Kingman's ergodic theorem) and 

are quite sophisticated. Here we give simple proofs using incompressibility argu

ments. 

Theorem 3. On the average, the number of parallel stacks needed to sort n 

elements is 0( vn). 

Pmof. Consider an incompressible permutation 7r satisfying 

C(7rln) ~ logn! - logn. (G) 

We use the following trivial algorithm (which is described in [16]) to sort rr with 

stacks in the parallel arrangement . Assume that the stacks are named So, Si, ... 

and the input sequence is denoted as x1 , ... , Xn. 

Algorithm Parallel-Stack-Sort 

1. For i = l to n do 

Scan the stacks from left to right, and push Xi on the the first stack sj 

whose top element is larger than x;. If such a stack doesn't exist, put J:; 

on the first empty stack. 

2. Pop the stacks in the ascending order of their top elements. 

We claim that algorithm Parallel-Stack-Sort uses 0( fo) stacks on the per

mutation n. First, we observe that if the algorithm uses m stacks on 7r then we 

can identify an increasing subsequence of n of length m as in [16]. This can be 

done by a trivial backtracing starting from the top element of the last stack. 

Then we argue that 7r cannot have an increasing subsequence of length longer 

than e.jii,, where e is the natural constant, since it is compressible by at most 

log n bits. 

Suppose that CJ is a longest increasing subsequence of 7r and m = io-1 is the 

length of a-. Then we can encode 7r by specifying: 

l. a. description of this encoding scheme in 0(1) bits; 

2. the number m in logm bits; 

!: :~: ~~::~ii~~:i~;t~ei:l~~e~~~ :;t;; in 7r in at mo~t log(;:,) bits; a:1d 

s. the remaining 7r with the elements of CJ deleted m log(n - m). bits. 
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This takes a total of 

n' 
log(n-m)!+2log '( ~ )' +logm+O(l)+2loglogm 

m. n m. 

bits. Using Stirling approximation and the fact that fo :S m = o(n), we the 

above expression is upper bounded by: 

I 01/e)n 
logn. +log ( I r (( )/ ) - + O(logn) me -m n - m en m 

n n 
~ logn! + mlog-2 + (n - m) log--+ m loge+ O(logn) 

m n-m 
n 

~ logn! + mlog-2 + 2mloge + O(Iogn) 
m 

This description length must exceed the complexity of the permutation which 

is lower-bounded in (6). This requires that (approximately) m :S efo = O(yri,). 

This yields an average complexity of Parallel-Stack-Sort of: 

n-1 1 
O(y'n) · -- + n · - = O(,/ii). 

n n 

0 

Theorem 4. On the average, the number of parallel stacks required to sort a 

permutation is D ( fo). 

Proof. Let A be any sorting algorithm using parallel stacks. Fix an incompress

ible permutation TI with C( n!n, P) 2 log n! - log n, where P is the program to do 

the encoding discussed in the following. Suppose that A uses T parallel stacks 

to sort TI. This sorting process involves a sequence of moves, and we can encode 

this sequence of moves as a sequence of the following items: "push to stack i" 

and "pop stack j", where the element to be pushed is the next unprocessed el

ement from the input sequence and the popped element is written as the next 

output element. Each of these term requires logT bits. In total, we use 2n terms 

precisely since every element has to be pushed once and popped once. Such a 

sequence is unique for every permutation. 

Thus we have a description of an input sequence with length 2n log T bits, 

which must exceed C(7rln,P) 2:: nlogn - O(logn). It follows that T 2 vn = 

D( fo). This yields the average-case complexity of A: 

n - 1 1 
D(y'n) · - + 1 · - = D(fa). 

n n 

D 

3.3 Sorting with Parallel Queues 

It is easy to see that sorting cannot be done with a sequence of queues. So we 

consider the complexity of sorting with parallel queues. It turns out that all the 

result in the previous subsection also hold for queues. 
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As noticed in [16], the worst-case complexity of sorting with parallel queues 

is n since the input sequence n, n - 1, ... , 1 requires n queues to sort. We show 

in the next two theorems that on the average, e ( fo,) queues are both necessary 

and sufficient. Again, the result is implied by the connection between sorting 

with parallel queues and longest decreasing subsequences given in [16] and the 

bounds in [5, 9, 4] (with sophisticated proofs). Our proofs are almost trivial given 

the proofs in the previous subsection. 

Theorem 5. On the average, the number of parallel quev,es needed to sort n 

elements is upper bounded by 0( fo,). 

Proof. The proof is very similar to the proof of Theorem 3. We use a slightly 

modified greedy algorithm as described in [16]: 

Algorithm Parallel-Queue-Sort 

l. For i = 1 to n do 

Scan the queues from left to right, and append xi on the the first queue 

whose rear element is smaller than x;. If such a queue doesn't exist, put 

x; on the first empty queue. 

2. Delete the front elements of the queues in the ascending order. 

Again, we can claim that algorithm Parallel-Queue-Sort uses 0( fo,) queues 

on any permutation 7T that cannot be compressed by more than log n bits. We 

first observe that if the algorithm uses m queues on 7r then a decreasing subse

quence of 7T of length m can be identified, and we then argue that 7r cannot have 

a decreasing subsequence of length longer than efo,, in a way analogous to the 

argument in the proof of Theorem 3. D 

Theorem 6. On the average, the number of parallel queues required to sort a 

permutation is I?( fo,). 

Proof. The proof is the same as the one for Theorem 4 except that we should 

replace "push" with "enqueue" and "pop" with "dequeue". D 

4 Conclusion 

The incompressibility method is a good tool to analyzing the average-case com

plexity of sorting algorithms. Simplicity has been our goal. Examples of such 

average-case analyses of some other algorithms are given in [l]. This methodol

ogy and applications can be easily taught to undergraduate students. 

The average-case performance of Shellsort has been one of the most funda

mental and interesting open problems in the area of algorithm analysis. The 

simple average-case analysis of Insertion Sort (I-pass Shellsort), stack-sort and 

queue-sort are further examples to demonstrate the generality and simplicity of 

our technique in analyzing sorting algorithms in general. Some open questions 

are: 
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l. Tighten the average-case lower bound for Shellsort. Our bound is not tight 

for p = 2 passes. 
2. For sorting with sequential stacks, can we close the gap between log n upper 

bound and the ~log n lower bound? 
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