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1. INTRODUCTION

A large variety of combinatorial-optimization problems can be modeled as shortest-
paths problems. Given a (directed) graph in which edges are assigned real edge
lengths, these problems ask for distances between pairs of vertices. The distance
of vertex j from vertex i is defined as the infimum of the lengths of all directed
paths from i to j, where the length of a path is the sum of the lengths of its edges.
[We need to take the infimum, since in the presence of a negative cycle, that is, a
(directed) cycle of negative length, a finite minimum does not always exist.] We con-
centrate on two types of shortest-paths problems. In the single-source shortest-paths
problem, we are interested in the distances of all vertices from a given source ver-
tex; in the all-pairs shortest-paths problem, we want to compute the distance between
each pair of vertices.

The worst-case complexity of known algorithms for the single-source shortest-paths
problem on a directed graph with vertex set �n� = �1; : : : ; n� and m edges depends
heavily on whether or not edge lengths are allowed to be negative. In fact, if all edge
lengths are nonnegative, then Dijkstra’s algorithm solves the single-source shortest-
paths problem in near-linear time O�m + n log n� [8, 11]. In the general case, the
Bellman–Ford algorithm [2, 10] solves the single-source shortest-paths problem in
time O�νm�, where ν is the maximum number of edges on a shortest path. This is
O�nm� in the worst case. The solution of one single-source shortest-paths problem
allows us to transform a problem with arbitrary real edge lengths into an equivalent
problem with nonnegative edge lengths [9, 17]. This gives a running time of O�nm+
n2 log n� for the all-pairs shortest-paths problem in the general case. The algorithms
of McGeoch [21] and Karger, Koller, and Phillips [18] solve the all-pairs shortest-
paths problem with nonnegative edge lengths in time O�n�H� + n2 log n�, where H is
the set of edges that are a shortest path between their endpoints. Somewhat better
running times are known if the edge lengths are assumed to be integers from some
fixed range; see [1, 13, 5].

Worst-case analysis, however, sometimes fails to bring out the advantages of al-
gorithms that perform well in practice; average-case analysis has turned out to be
more appropriate for these purposes. In average-case analysis, we study the expected
running time of shortest-paths algorithms, where instances of shortest-paths prob-
lems are generated according to a probability distribution on the set of complete
directed graphs with edge lengths. Two kinds of probability distributions have been
considered in the literature. In the uniform model, the edge lengths are indepen-
dent, identically distributed random variables. The endpoint-independent model is
more general. A random instance generated according to the endpoint-independent
model has the property that if the edges leaving a vertex are sorted according to
their lengths, then the associated endpoints occur in random order. This even in-
cludes the case that the edge lengths themselves are arbitrarily fixed, and only the
assignment of the edge lengths to the edges leaving a vertex is random.

The average running time of shortest-paths algorithms has mainly been stud-
ied for the case of nonnegative edge lengths. In the endpoint-independent model,
the following results on the average-case complexity of the single-source shortest-
paths problem (on instances with n vertices) are known. Noshita [24] analyzed the
average-case complexity of Dijkstra’s algorithm; the time bound, however, does not
improve over the worst-case complexity of the algorithm. Spira [26] dealt first with
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the average-case complexity of the all-pairs shortest-paths problem. He proved an
expected time bound of O�n2�log n�2�, which was later improved by Bloniarz [3]
and Frieze and Grimmett [12]. Moffat and Takaoka [23] described an algorithm
with expected running time O�n2 log n�. Mehlhorn and Priebe [22] showed that the
algorithm of Moffat and Takaoka is reliable, that is, it runs in time O�n2 log n� with
high probability and not just in expectation. In the uniform model, Frieze and Grim-
mett [12] derived precise results on the distribution of edge lengths and distances.
It is a consequence of their results that the expected running time of the algorithms
of McGeoch and Karger et al. is O�n2 log n� in the uniform model.

Concerning the average-case complexity of the shortest-paths problem in the case
of arbitrary real edge lengths, it is already difficult to define a probability distribu-
tion that allows negative edge lengths, but does not trivialize the problem. For an
instance of the shortest-paths problem on a directed graph D, let D<0 and D≥0
be the subgraphs formed by the edges of negative and nonnegative length, respec-
tively. If D<0 contains a cycle and D≥0 consists of a single strongly connected com-
ponent, then all distances are −∞. Topological sorting allows us to decide in linear
time whether D<0 contains a cycle, and depth-first search allows us to decide in
linear time whether D≥0 consists of a single strongly connected component. We
conclude that shortest-paths problems become trivial if the probability distribution
is such that, with high probability, D<0 contains a cycle and D≥0 consists of a single
strongly connected component. This will, for example, be the case if edge lengths
have a (constant) nonzero probability of being negative and instances are generated
according to the uniform model.

To the best of our knowledge, a probability distribution for graphs with ar-
bitrary real edge lengths (to generate instances of shortest-paths problems) was
proposed for the first time by Kolliopoulos and Stein [19]. They studied the
endpoint-independent model and gave an algorithm for the single-source shortest-
paths problem with expected running time O�n2 log n�. In general, it is not clear
how likely a negative cycle is in the endpoint-independent model. (Note, however,
that if each vertex has at least one outgoing edge of negative length, then the
directed graph must contain a negative cycle.)

We study the average-case complexity of shortest-paths problems in the vertex-
potential model. This model was used previously by Cherkassky, Goldberg, and
Radzik [4] in an experimental evaluation of shortest-paths algorithms. In this model,
there is a potential πi for each vertex i ∈ �n� and a random variable ri; j for each edge
�i; j�, i; j ∈ �n�. (We will set ri; i ≡ 0 for i ∈ �n�.) The edge lengths are defined by

ci; j = ri; j − πi + πj for all edges �i; j�:

Of course, only the ci; js are revealed to our algorithms and the ri; js and πis are
hidden parameters of the model. The variables ri; j , i; j ∈ �n�, i 6= j, are assumed
to be independent, identically distributed random variables with values in �0; 1�.
(Some additional assumptions on the common distribution function F of the ri; js
are needed to allow the application of the results of Frieze and Grimmett [12].
This will be made more precise in Section 3.) The assumption ri; j ≥ 0, i; j ∈ �n�,
guarantees that instances generated according to the vertex-potential model contain
no negative cycle; see Propositions 1 and 2. The vertex potentials πi, i ∈ �n�, may
be arbitrarily chosen. (This is a considerable generalization of the model that we



36 COOPER ET AL.

studied in [6], where the πis were assumed to be random variables with values in
�−1; 1�.)

We show that the single-source shortest-paths problem can be solved in O�n2�
expected time and that the all-pairs shortest-paths problem can be solved in
O�n2 log n� expected time. In both cases our algorithms are reliable, that is, finish
their computations within the respective time bounds with high probability. Our al-
gorithms are tailored to random inputs generated according to the vertex-potential
model. They exploit two structural properties that are exhibited by the input graphs
with high probability. First, we can reduce the number of edges in the input graphs
without changing the shortest-path distances. Second, each shortest path consists
of at most O�log n� edges.

More precisely, our algorithm for the single-source shortest-paths problem com-
putes vertex potentials π̂i, i ∈ �n�, with the property that for any i; j ∈ �n�, the
difference π̂i − π̂j is close to πi −πj . The π̂is are then used to define reduced edge
lengths ĉ by ĉi; j x= ci; j + π̂i − π̂j . The reduced edge lengths will not be nonnega-
tive. However, since they are good approximations of the ri; js, they allow the ex-
traction of a small number of relevant edges from the complete graph that, with
high probability, give the same shortest-path distances. We extract O�n2/ log n� rel-
evant edges and run the Bellman–Ford algorithm on this edge set. Due to the
second property, the algorithm computes a solution to one single-source shortest-
paths problem in expected time O�n2�; see Theorem 11. [For the same reason, the
algorithm of Bellman and Ford would solve the single-source shortest-paths prob-
lem in expected time O�n2 log n� if run on complete input graphs.] The all-pairs
shortest-paths problem can be solved in O�n2 log n� expected time if we use the
solution to one single-source shortest-paths problem to define nonnegative edge
lengths and then employ the algorithm of McGeoch or Karger, Koller, and Phillips;
see Theorem 13.

The vertex-potential model and the endpoint-independent model are incompa-
rable as the endpoint-independent model cannot exclude negative cycles and the
vertex-potential model excludes negative cycles. Moreover, in the vertex-potential
model, there is a strong correlation between the endpoint of an edge and the length
of the edge. Assume that the distribution function F is such that all ri; js are very
close to zero. This implies that for all vertices i, it is probable that the shortest edge
leaving i will go to the vertex with minimum potential.

The paper is organized as follows. In Section 2, we recall basic facts about shortest
paths and reduced edge lengths. We provide auxiliary results needed for the analysis
of our algorithms in Section 3. The algorithms and their analysis are presented in
Section 4.

2. SHORTEST PATHS AND REDUCED EDGE LENGTHS

Let Dn be the complete loopless directed graph on the set �n� = �1; : : : ; n� of
vertices. Assume that edge lengths are given by a function c from the set of edges
to the reals; the length of the directed edge �i; j� will be denoted by ci; j for i;
j ∈ �n�. (For convenience, let ci; i ≡ 0 for i ∈ �n�.) We will write �Dn; c� for Dn with
edge lengths c.
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For a directed path P in Dn, let c�P� be the length of P with respect to c, that
is, c�P� is defined as

∑
�i; j�∈P ci; j . For any pair i; j of vertices, let δi; j�c� be the

infimum of the lengths of all paths from i to j. The quantity δi; j�c� will be referred
to as the distance of j from i (with respect to c).

We consider the following two shortest-paths problems. For a given source vertex
s ∈ �n�, the single-source shortest-paths problem asks for the distances of all vertices
i ∈ �n� from s. If s is fixed and no confusion is possible, we will denote these
distances by δi�c� for i ∈ �n�. In the all-pairs shortest-paths problem, we want to
compute the distance between each pair of vertices. The maximum of all these
distances is called the diameter of Dn with respect to c and will be denoted by 1�c�.

As mentioned in the Introduction, we want to generate instances of shortest-
paths problems without negative cycles. The following proposition characterizes
edge lengths c for which �Dn; c� does not contain any negative cycle.

Proposition 1. The absence of negative cycles in �Dn; c� is equivalent to the existence
of vertex potentials πi ∈ �, i ∈ �n�, so that the reduced edge lengths r (of c with
respect to the πis) are nonnegative, that is,

ri; j x= ci; j + πi − πj ≥ 0 for all edges �i; j�:

Proposition 1 relies on the following optimality conditions for a solution to the
single-source shortest-paths problem (with source s).

For every vertex i ∈ �n�, let di�c� denote the length (with respect to c) of
some directed path from s to i, with ds�c� = 0. The quantities di�c� are
equal to the distances δi�c� if and only if they satisfy

di�c� + ci; j ≥ dj�c� for all edges �i; j�: (2.1)

It is well known that shortest-paths problems are invariant under reduction of
edge lengths with respect to vertex potentials. We summarize this knowledge in the
following proposition.

Proposition 2. Suppose that we associate a vertex potential π̂i ∈ � with each vertex
i ∈ �n� and that we define reduced edge lengths ĉ (of c with respect to the π̂is) by
ĉi; j x= ci; j + π̂i − π̂j for any edge �i; j�. Then, for any directed path P from vertex k
to vertex l,

ĉ�P� = ∑
�i; j�∈P

(
ci; j + π̂i − π̂j

) = c�P� + π̂k − π̂l: (2.2)

Therefore, distances with respect to c and ĉ relate to each other through δk; l�ĉ� =
δk; l�c� + π̂k − π̂l for all k; l ∈ �n�. It also follows from (2.2) that, for any directed
cycle C,

∑
�i; j�∈C ĉi; j =

∑
�i; j�∈C ci; j; in particular, �Dn; ĉ� contains a negative cycle if

and only if there is a negative cycle in �Dn; c�.
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3. PROPERTIES OF THE VERTEX-POTENTIAL MODEL

In the vertex-potential model that we consider in this paper, edge lengths ci; j are
generated according to

ci; j = ri; j − πi + πj for all edges �i; j�;

with random variables ri; j ≥ 0 and (not necessarily random) vertex potentials πi, i;
j ∈ �n�. (We will set ri; i ≡ 0 for i ∈ �n�.) Our precise assumptions for these variables
are as follows:

(A1) The variables ri; j , i; j ∈ �n�, i 6= j, are independent, identically distributed
random variables with values in �0; 1� and mean ρ. We will denote their
common distribution function by F ; it is assumed to be independent of
n. We further assume that F�0� = 0 and that F ′�0� exists and is strictly
positive. (This implies ρ > 0.)

(A2) The vertex potentials πi, i ∈ �n�, are arbitrary real numbers.

The independence assumptions in (A1) are the most important (and restrictive)
ones. Assumption (A2) considerably generalizes the assumption on the πis in [6],
where they were assumed to be independent, identically distributed random vari-
ables with values in �−1; 1�. We will not need to know the value of ρ; if needed, we
could get a good estimate for it from the data; see the remark after Lemma 8. This
lemma will be the only place where we use that the random variables are bounded,
and the assumption of boundedness is there more for convenience than necessity. It
could be replaced by bounds on the tails of the distributions. By definition of F ′�0�
and since F�0� = 0,

F�ε� = Pr�ri; j ≤ ε� = F ′�0� · ε+ o�ε� as ε ↓ 0; (3.1)

that is, the assumption F ′�0� > 0 implies that the distribution of the ri; js can be
approximated by uniform distributions in a neighborhood of 0. This allows reducing
the proof of Lemma 4 to the case of the uniform distribution on �0; 1�. The proof
of the following tail estimate also makes use of this fact.

Lemma 3. Let G be a fixed distribution function with the properties that G�0� = 0
and that G′�0� exists. Then there are constants R = RG and εG such that for any
collection X1; : : : ;Xm of independent random variables, all distributed according to
G, and for any ε < εG,

Pr
(
X1 + · · · +Xm ≤ ε

) ≤ (eRε
m

)m
: (3.2)

Proof. By our assumptions on G, G�ε� = G′�0� · ε+ o�ε�, as ε ↓ 0, and there exist
constants R = RG > G′�0� and εG ≤ 1/R such that, for all ε < εG, G�ε� ≤ R · ε.
Let X be a random variable that is distributed according to G and let Y be a
random variable that is uniformly distributed on �0; 1/R�. For all ε < εG, we have
by construction,

Pr�X ≤ ε� = G�ε� ≤ R · ε = Pr�Y ≤ ε�;
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which implies that

Pr
(
min�X;εG� ≤ ξ

) ≤ Pr
(
min�Y; εG� ≤ ξ

)
for all ξ ≥ 0:

This means that the random variable min�Y; εG� is stochastically dominated by the
random variable min�X;εG�. Let Y1; : : : ; Ym be independent copies of Y . Since
stochastic dominance is preserved under taking sums of independent random vari-
ables (see, for example, [25, Example 9.2(A)]), for any ε < εG, we get the bound

Pr�X1 + · · · +Xm ≤ ε� = Pr
(
min�X1; εG� + · · · +min�Xm; εG� ≤ ε

)
≤ Pr

(
min�Y1; εG� + · · · +min�Ym; εG� ≤ ε

)
= Pr�Y1 + · · · + Ym ≤ ε�: (3.3)

It is easily seen that Pr�Y1 + · · · + Ym ≤ ε� = �Rε�m/m! for any ε ≤ 1/R, since
the probability in question equals the volume of a suitably scaled standard simplex
in �m. We thus get from (3.3) that

Pr�X1 + · · · +Xm ≤ ε� ≤
�Rε�m
m!

≤
(
eRε

m

)m
for any ε < εG, which proves (3.2).

For a problem of size n, we will say that an event occurs with high probability
if it occurs with probability at least 1 − O�n−γ� for an arbitrary but fixed constant
γ ≥ 1. To ensure a probability of failure O�n−γ�, in most of our statements we have
to choose sufficiently large constants, depending on the actual value of γ. This is
sometimes made explicit by a subscript γ.

3.1. The Nonnegative Case (¯≡≡0)

If the ri; js are distributed as in (A1) and the πis are identically 0, then this gives
rise to instances �Dn; r� with nonnegative edge lengths, and the analysis of shortest-
paths algorithms by Frieze and Grimmett in [12] can be applied. We briefly review
how they argue to obtain bounds on the distances in �Dn; r�. For every vertex i, they
construct a spanning tree Ti rooted at i. With high probability, the length of the
path in Ti from the root to any other vertex is O��log n�/n� [12, (4.6) and (4.14)].
This implies that the diameter 1�r� is O��log n�/n� with high probability.

Furthermore, if �i; j� is the pth shortest edge in the adjacency list of i; where
p > Bγ log n (for a sufficiently large constant Bγ), then ri; j > 1�r� with high proba-
bility [12, Lemma 4.3]. This means that, with high probability, edge �i; j� is irrelevant,
that is, is not contained in any shortest path in �Dn; r�. We can therefore restrict
ourselves to examining the sparse graph with only the O�log n� shortest edges from
each adjacency list. We will show in Lemma 10 how to adjust this idea of “spar-
sifying” the graph if edge lengths are distributed according to the vertex-potential
model.

Lemma 4 [12]. Suppose that edge lengths in �Dn; r� are distributed as specified in
(A1). Then, with high probability, 1�r� = O��log n�/n�, and the set A x= ��i; j�y ri;j ≤
1�r�� of relevant edges is of cardinality O�n log n�.
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(For the special case of uniformly distributed r, similar results were proved by
Hassin and Zemel [14].) By a fairly involved argument, Frieze and Grimmett also
proved that each of the trees Ti, i ∈ �n�, is of depth O�log n�, that is, that these short
(in length, though not necessarily shortest-length) paths in Ti consist of O�log n�
edges with high probability [12, Theorem 5.2]. One might imagine that a consider-
able fraction of shortest paths has more (but shorter) edges, but we now prove that,
with high probability, shortest paths also consist of only logarithmically many edges.

Lemma 5. With high probability, shortest paths in �Dn; r� consist of O�log n� edges.

Proof. Recall from Lemma 4 that, for γ ≥ 1 arbitrary but fixed, there is a constant
C = Cγ such that, with probability at least 1−O�n−γ�, the diameter 1�r� in �Dn; r�
is at most C�log n�/n. We fix such a constant C, though we will not necessarily
assume in the following that 1�r� ≤ C�log n�/n. Let us call a path P in �Dn; r�
short if r�P� = ∑

�i; j�∈P ri; j ≤ C�log n�/n =x εs. The length (with respect to r) of
a given (directed) path consisting of a fixed number of k edges is the sum of k
independent, identically distributed random variables, and according to (A1), their
common distribution function satisfies the assumptions of Lemma 3. For sufficiently
large n, Lemma 3 thus implies that a given path with k edges is short with probability
at most �eRεs/k�k = �eRC log n�/�nk�k for some constant R that depends only on
the distribution function of the edge lengths. This upper bound is at most �en�−k if
k ≥ k0 x= K log n, for some K ≥ e2RC. Hence, short paths with more than k0 edges
exist in �Dn; r� only with probability at most

∑
k≥k0
�k+ 1�!( n

k+1

) · �en�−k ≤ n2 · n−K .
If we also ensure that K ≥ γ+ 2, this probability is O�n−γ�. It follows that in �Dn; r�,
with high probability, 1�r� ≤ C�log n�/n and all short paths consist of O�log n�
edges. If this is the case, shortest paths in �Dn; r� (with respect to r) are also short
(with respect to the definition above), which proves the lemma.

Since shortest paths are invariant under reduction of edge lengths with respect
to vertex potentials (see Section 2), the following is an immediate consequence of
Lemma 5.

Corollary 6. Let edge lengths r be distributed as specified in (A1) and let edge lengths
c be obtained by reducing the edge lengths r with respect to some vertex potentials.
Shortest paths in �Dn; c� consist then of O�log n� edges with high probability.

The bounds on the quantities with which we are concerned in Lemmas 4 and 5
are essentially tight, as is indicated by the following results. Davis and Prieditis [7]
showed that, for exponentially distributed r, the expected length of a shortest path is
of order �log n�/n+O�1/n�. This is also true for r uniformly distributed; see [7, 21].
In fact, this result holds if the distribution of r is chosen from a fairly general class
of distributions, including both exponential and uniform distributions, as was proved
(for undirected graphs) by Janson [16] recently. Janson also studied the number of
edges on shortest paths, proving (among other results) that for νs the maximum
number of edges on shortest paths from a given vertex s, νs/ log n converges in
probability to e. A similar result is conjectured in [16] for the maximum number of
edges on any shortest path.
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3.2. The General Case: Approximating the Vertex-Potential Differences

We will use the following form of the well-known Chernoff–Hoeffding bound on the
tail of the distribution of a sum of independent random variables; see [15, 20] for a
proof.

Lemma 7. Let X1; : : : ;Xm be independent, identically distributed random variables
with values in �0; 1�; let ξ x= E�X1�. Then, for any ε, 0 < ε < 1,

Pr
(∣∣∣∣ 1
m
�X1 + · · · +Xm� − ξ

∣∣∣∣ > εξ) ≤ 2 · e−ε2mξ/3: (3.4)

We now show how to compute vertex potentials π̂i, i ∈ �n�, so that, for any
k; l ∈ �n�, with high probability, the difference π̂k − π̂l is a good approximation of
the actual vertex-potential difference πk − πl.

Lemma 8. For any i ∈ �n�, define

π̂i x= −
1
n
·
n∑
j=1

ci; j:

Then, for any k; l ∈ �n�, the term ��π̂k − π̂l� − �πk − πl�� is O�√�log n�/n� with high
probability.

Proof. For any k; j ∈ �n�, we have −ck; j = πk − rk; j − πj by definition; thus,

−
n∑
j=1

ck; j = n · πk −
n∑
j=1

rk; j −
n∑
j=1

πj;

from which we conclude that

π̂k − πk = −
1
n
·
n∑
j=1

rk; j −
1
n
·
n∑
j=1

πj:

Note that the rightmost term, n−1 ·∑n
j=1 πj , is independent of k. Hence, for any k;

l ∈ �n�, ��π̂k − πk� − �π̂l − πl�� ≤ �n− 1�−2 · �∑n
j=1 rk; j −

∑n
j=1 rl; j��. This implies

∣∣�π̂k − πk� − �π̂l − πl�∣∣ ≤ 2 ·max
i

∣∣∣∣ 1
n− 1

·
n∑
j=1

ri; j − ρ
∣∣∣∣; (3.5)

where ρ = �n − 1�−1 · E�∑n
j=1 ri; j�. By assumption (A1),

∑n
j=1 ri; j is the sum of

n − 1 independent, identically distributed random variables with values in �0; 1�,
and hence, the Chernoff–Hoeffding bound (3.4) implies that, with high probability,∣∣∣∣ 1

n− 1
·
n∑
j=1

ri; j − ρ
∣∣∣∣ = O(√�ρ · log n�/n

)
= O

(√
�log n�/n

)
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for any i ∈ �n�. From this we conclude that 2 ·maxi ��n − 1�−1 ·∑n
j=1 ri; j − ρ� and,

by (3.5), ��π̂k − πk� − �π̂l − πl�� for any k; l ∈ �n�, are all O�√�log n�/n� with high
probability.

Remark 9. In [6], we defined approximate vertex potentials π̂i = ρ̂ − �n − 1�−1 ·∑
j ci; j for i ∈ �n�, where ρ̂ = 1

n�n−1� ·
∑
i; j ci; j = 1

n�n−1� ·
∑
i; j ri; j . (The “observed

mean” ρ̂ is a good approximation of ρ.) Using the stronger assumptions of [6] on
the πis, one can prove that �π̂i −πi� = O�

√�log n�/n� with high probability. It turns
out, however, that the approximation of single vertex potentials is not needed in the
analysis of our algorithms; see Section 4.1.

4. THE ALGORITHMS

4.1. Solving the Single-Source Shortest-Paths Problem

We are now ready to explain in detail how we solve an instance �Dn; c� of the single-
source shortest-paths problem if edge lengths in �Dn; c� are generated according to
the vertex-potential model of Section 3.

Our algorithm proceeds in three phases: a preprocessing phase, a computation
phase, and a postprocessing phase, in which the correctness of the solution from the
second phase is checked. Let the source vertex for the single-source shortest-paths
problem under consideration be denoted by s.

Preprocessing. The algorithm computes, for every vertex i ∈ �n�, a vertex potential
π̂i as in Lemma 8 and transforms the edge lengths ci; j to

ĉi; j x= ci; j + π̂i − π̂j = ri; j + �π̂i − πi� − �π̂j − πj� for all edges �i; j�: (4.1)

The shortest-paths problems �Dn; c� and �Dn; ĉ� are equivalent. However, �Dn; ĉ�
is more efficiently solvable, since edge lengths ĉ allow a substantial sparsification of
the underlying graph. The following lemma gives a bound on the length of edges
that are irrelevant with respect to ĉ.

Lemma 10. If ĉi; j > 1�r� +maxk; l ��π̂k − πk� − �π̂l − πl��, then edge �i; j� is not
contained in any shortest path.

Proof. If �i; j� is contained in a shortest path, then ĉi; j = δi; j�ĉ� ≤ 1�ĉ�. It follows
from (4.1) and Proposition 2 that for any k; l ∈ �n�, δk;l�ĉ� = δk;l�r� + �π̂k − πk� −
�π̂l − πl�. This implies 1�ĉ� ≤ 1�r� +maxk; l ��π̂k − πk� − �π̂l − πl��.

For γ ≥ 1 arbitrary but fixed, we know from Lemma 4 and from Lemma 8 that
there exist constants Cγ and Mγ such that

1�r� ≤ Cγ�log n�/n and max
k; l

∣∣�π̂k − πk� − �π̂l − πl�∣∣ ≤Mγ

√
�log n�/n

(4.2)
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with probability at least 1− O�n−γ�. For the time being, we will assume that (4.2)
holds. For an arbitrary (but fixed) constant Lγ > Mγ (and sufficiently large n), all
relevant edges (that is, edges that will possibly be contained in a shortest path) are
then contained in

Â x=
{
�i; j�y ĉi; j ≤ Lγ

√
�log n�/n

}
:

(A more careful proof of Lemma 8 reveals that we could set Lγ = 5
√
γ. This value

is not optimal, but nevertheless indicates that, for given γ, some explicit constant
Lγ is easily derivable.) The vertex potentials π̂i, i ∈ �n�, the reduced edge lengths
ĉ, and the set Â can be computed in O�n2� time. Let D̂ denote the graph ��n�; Â�.

Computation. We now solve a single-source shortest-paths problem with source
s on the sparsified graph �D̂; ĉ� by running the Bellman–Ford algorithm [2, 10].
This algorithm maintains tentative distances di for every vertex i ∈ �n�. The dis are
initially set to ∞ (except for ds = 0), and di always represents the length of some
path in �D̂; ĉ� from s to i. The Bellman–Ford algorithm proceeds in passes over the
edge set Â, maintaining the following invariant. After the kth pass, the Bellman–
Ford algorithm has correctly computed the distances of all vertices to which there is
a shortest path from s consisting of at most k edges. The algorithm actually checks
the optimality conditions (2.1) for all edges (in Â) in each pass, and it will therefore
terminate [with all distances in �D̂; ĉ� computed correctly] after the νth pass, where
ν is the maximum number of edges on a shortest path in �D̂; ĉ�. The running time
of the Bellman–Ford algorithm is therefore O�ν · �Â��, which is O�n3� in the worst
case but o�n2� with high probability, as we now argue.

By (4.1) and (4.2),

Â ⊆
{
�i; j�y ri; j ≤ �Lγ +Mγ�

√
�log n�/n

}
;

and it follows from the assumption (3.1) on the distribution of edge lengths that
edge �i; j� is an element of the set on the right-hand side with probability p̂ =
2�√�log n�/n� for sufficiently large n, independently of all the other edges. The
random variable �Â�, the cardinality of Â, is therefore stochastically dominated by
a random variable that is binomially distributed with parameters n�n− 1� and p̂. We
apply the tail estimates of Lemma 7 to deduce that �Â� = O�n�n− 1�√�log n�/n� =
O�n3/2

√
log n� with high probability. By (4.1) and Corollary 6, ν = O�log n� with

high probability. Hence, with high probability, it takes O�n3/2�log n�3/2� = o�n2�
time to run the Bellman–Ford algorithm on the sparsified graph �D̂; ĉ�.

Postprocessing. The second phase will have failed to compute all distances cor-
rectly only if (4.2) does not hold, which happens only with probability O�n−γ�. The
optimality conditions (2.1) (checked for all edges) are an O�n2�-time certificate for
the correctness of the solution. Since the worst-case running time of the Bellman–
Ford algorithm on �Dn; ĉ� is O�n3�, we can easily afford to run the Bellman–Ford
algorithm on �Dn; ĉ� in case of failure, without affecting the bounds on the running
time. Finally, it takes O�n2� time to compute the distances δi�c� = δi�ĉ� − π̂s + π̂i
for all i ∈ �n�.

The discussion above is summarized in the following theorem.
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Theorem 11. Assume that the edge lengths in �Dn; c� are generated according to the
vertex-potential model of Section 3. The single-source shortest-paths problem can then
be solved in time O�n2� with high probability.

Remark 12. Theorem 11 will still hold if the Bellman–Ford algorithm takes time
O�n2� on �D̂; ĉ� (with high probability), since pre- and postprocessing of the algo-
rithm take time O�n2� anyway. This means that because of Corollary 6, we could
afford to restrict the Bellman–Ford algorithm to the edge set ��i; j�y ĉi; j ≤ R/ log n�,
which is a set of cardinality O�n2/ log n� with high probability for a suitable con-
stant R. In fact, even if we omitted the computation of both vertex potentials and re-
duced edge lengths and just ran the Bellman–Ford algorithm on the complete input
graph, we would solve the single-source shortest-paths problem in time O�n2 log n�
with high probability because of Corollary 6.

4.2. Solving the All-Pairs Shortest-Paths Problem

Theorem 13. Assume that the edge lengths in �Dn; c� are generated according to the
vertex-potential model of Section 3. The all-pairs shortest-paths problem can then be
solved in O�n2 log n� with high probability.

Proof. We first compute distances δi�c�, i ∈ �n�, with respect to source vertex 1 by
solving a single-source shortest-paths problem as in the proof of Theorem 11 or as
indicated in Remark 12. With high probability, this takes time O�n2� or O�n2 log n�,
respectively. Let c be the reduced edge lengths of c with respect to the vertex
potentials δi�c�, i ∈ �n�, that is, for all edges �i; j�,

ci; j = ci; j + δi�c� − δj�c�
= ri; j +

(
δi�c� − πi

)− (δj�c� − πj): (4.3)

It follows from the first equality and the optimality conditions (2.1) that ci; j ≥ 0 for
all edges �i; j�. The reduced edge lengths c can be computed in O�n2� time, and
the same time bound will later allow us to transform distances δi; j�c� into distances
δi; j�c� for all i; j ∈ �n�.

To compute the δi; j�c�s, we run one of the algorithms of Karger, Koller, and
Phillips [18] or McGeoch [21] on �Dn; c�, which efficiently solve the all-pairs
shortest-paths problem with nonnegative edge lengths. Both algorithms run in time
O�n2 log n+ n�H��; where H = H�c� is the set of edges that are the shortest path
(with respect to c) between their endpoints. We apply the arguments of Section 2
again. Shortest paths are invariant under reduction of the edge lengths with re-
spect to vertex potentials, and it follows from (4.3) that the edges in H are also
the shortest path between their endpoints with respect to edge lengths r. The set
H is therefore contained in the set A x= ��i; j�y ri; j ≤ 1�r��, and it follows by
Lemma 4 that �H� = O�n log n� with high probability. This yields a running time
of O�n2 log n� with high probability for the algorithms of McGeoch and Karger,
Koller, and Phillips. Since �H� = O�n2� in the worst case, our algorithm has a run-
ning time of O�n3� with probability O�n−γ�, γ ≥ 1, which still gives an expected
running time of O�n2 log n�.
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