
JOURNAL OP PHYsrcs A:. MAnolwmCAL AND GENERAL

J. Phys.A: Math. Gen. 34 (2001) 6741-6754 PII: S0305-4470(01)19314-5

Average-case quantum query complexity*

Andris Ambainis1 and Ronald de Wolt'1

1 Computer Science Department, University of California, Berlreley, CA 94720, USA
2 CWL PO Box 94079, 1090 GB Amsterdam, The Netherlands

E-mail: ambainis@cs.bedeley.edu and rdewolf@cwi.nl

Received 21 November 2000

Published 24 August 2001

Online at stacks.iop.org/JPhysA/34/6741

Abstract

We compare classical and quantum query complexities of total Boolean

functions. It is known that for worst-case complexity, the gap between

quantum and classical can be at most polynomial. We show that for average

case complexity under the uniform distribution. quantum algorithms can be

exponentially faster than classical algorithms. Under non-uniform distributions

the gap can even be super-exponential. We also prove some general bounds for

average-case complexity and show that the average-case quantum complexity

of MAJORITY under the uniform distribution is nearly quadratically better

than the classical complexity.

PACS numbers: 03.67.-a, 02.10.Ab, 02.10.De, 0250.Cw, 03.65.Ta

1. Introduction

The field of quantum computation studies the power of computers based on quantum

mechanical principles. So far, most quantum algorithms-and all physically implemented

ones-have operated in the so-called black-box setting. In the black-box model, the input

of the function f that we want to compute can only be accessed by means of queries to a

'black box'. This returns the ith bit of the input when queried on i. The complexity of

computing f is measured by the required number of queries. In this setting we want quantum

algorithms that use significantly fewer queries than the best classical algorithms. Examples

of quantum black-box algorithms that are provably better than any classical algorithm can be

found in [6, 7, 9, 12, 14, 25]. Even Shor's quantum algorithm for period-finding, which is the

core of his efficient factoring algorithm [24], can be viewed as a black-box algorithm [11].

We restrict our attention to computing total Boolean functions f on N variables.

The query complexity of f depends on the kind of error one allows. For example, we

can distinguish between exact computation, zero-error computation (a.k.a. Las Vegas) and

" A preliminary version of this paper appeared in the Proceedings of the 17th Annual Symposium on Theoretical

Afpects of Computer Science (SJ'ACS '2000) (Lecture Notes in Computer Science vol 1770) (Berlin: Springer).

0305-4470/011356741+14$30.00 © 2001 IOP Publishing Ltd Printed in the UK 6741

6742 A Ambainis and R de Wolf

bounded-error computation (Monte Carlo). In each of these models, worst-case complexity

is usually considered: the complexity is the number of queries required for the 'hardest'

input. Let D(f), R(f) and Q(f) denote the worst-case query complexity of computing

f for classical deterministic algorithms, classical randomized bounded-error algorithms and

quantum bounded-error algorithms, respectively. More precise definitions will be given in the

next section. Since quantum bounded-error algorithms are at least as powerful as classical

bounded-error algorithms, and classical bounded-error algorithms are at least as powerful as

deterministic algorithms, we have Q (f) ::;; R (f) ::;; D (f). The main quantum success here is

Grover's algorithm [14]. It can compute the OR-function with bounded error using 0(../N)
queries (which is optimal [4,5,27]). Thus Q(OR) E 0(../N), whereas D(OR) = N and

R(OR) E 0(N). This is the biggest gap known between quantum and classical worst-case

complexities for total functions. (In contrast, for partial Boolean functions the gap can be

much bigger [11, 12,25].) In fact, it is known that the gap between D(f) and Q(f) is at most

polynomial for every total f: D (f) E 0(Q (/)6)[3]. This is similar to the best known relation

between classical deterministic and randomized algorithms: D(f) E O(R(/)3) [21].

Given some probability distributionµ on the set of inputs {0, l}N one may also consider

average-case complexity instead of worst-case complexity. Average-case complexity concerns

the expected number of queries needed when the input is distributed according toµ. If the bard

inputs receive little µ-probability, then average-case complexity can be significantly smaller

than worst-case complexity. Let Dµ (f), R µ (f) and Qµ (f) denote the average-case analogues

of D (f), R (f) and Q (f), respectively, to be defined more precisely in the next section. Again

Qµ (f) :;:;; Rµ (f) ~ Dµ (f). The objective of this paper is to compare these measures and to

investigate the possible gaps between them. Our main results are:

• Under uniformµ, Qµ(f) and Rµ(f) can be super-exponentially smaller than Dµ(f).

• Underuniform µ, Qµ(f) can be exponentially smaller than Rµ(f). Thus the polynomial

relation that holds between quantum and classical query complexities in the case of worst

case complexity [3] does not carry over to the average-case setting.

• Under non-uniformµ the gap can be even larger: we give distributionsµ where Qµ(OR)

is constant, whereas Rµ (OR) is almost ,JN.
• For every f and µ, Rµ (f) is lower bounded by the expected block sensitivity E µ [bs (f) J

and Qµ(f) is lower bounded by Eµ[../bsV)].

• For the MAJORITY function under uniform µ, we have that Qµ (f) E 0(../N (log N)2)

and Qµ(f) E Q(../N). lncontrast,Rµ(f) E Q(N).

• For the PARITY function, the gap between Qµ and RJ.L can be quadratic, but not more.

Under uniformµ, PARITY has Qµ(f) E Q(N).

2. Definitions

Let f : {0, l}N -+ {0, l} be a Boolean function. This function is symmetric if f (X) only

depends on IXI, the Hamming weight (the number of ones) of X. We will in particular consider

the following symmetric functions: OR(X) = 1 iff IXI ~ 1; MAJ(X) = 1 iff IXI > N /2;

PARITY(X) = 1 iff IXI is odd. If X E {0, l}N is an input and Sa set of (indices of) variables,

we use xs to denote the input obtained by flipping the values of the S-variables in X. The

block sensitivity bsx (f) of f on an input X is the maximal number b for which there are b

disjoint sets of variables S1, •.. , Sb such that f(X) =f. f(Xs') for all 1 ~ i ~b. The block

sensitivity bs(f) off is maxx bsx(f).

We are interested in the question of how many bits of the input have to be queried in

order to compute f, either for the worst- or average-case input. We assume familiarity with

Average-case quantum query complexity 6743

classical computation and briefly sketch the definition of quantum query algorithms. For a

general introduction to quantum computing, see the book of Nielsen and Chuang [20]. For

more details about (quantum) query complexity we refer to [10].

An m-qubit state is a 2"'-dimensional unit vector of complex numbers, written

L.re{O,Il"' a .. lx}. The complex number a .. is called the amplitude of the basis state Ix). A

T -query quantum algorithm corresponds to a unitary transformation

A= U1·0U1·-10· ·· U10U0.

Here the U j are unitary transformations on m qubits. These U j are independent of the

input. Each 0 corresponds to a query to the input X e {O, l}N, formaliz.ed as the unitary

transformation

li,b,z}-+ li,bE9Xj,Z}.

Here i E {l, ... , N}, b E {0, l}, E9 is addition modulo 2 and z E {0, l}m-logN-t is the

workspace, which remains unaffected by the query. Intuitively, 0 just gives us the bit X;

when queried on i. We will sometimes use the word 'oracle' to refer to X as well as to the

corresponding 0. The initial state of the algorithm is the all-zero state 10"'}. The final state

is AIO"'), which depends on the input X via the T queries that are made. A measurement

of a dedicated output bit of the final state will yield the output. It can be shown that this

linear-algebraic quantum model is at least as strong as classical randomized computation: any

classical T-query randomized algorithm can be simulated by a T-query quantum algorithm

having the same enor probabilities.

As described above, the quantum algorithm will make exactly T queries on every input

X. Since we are interested in an average-case number of queries and the required number of

queries will depend on the input X, we need to allow the algorithm to give an output after

fewer than T queries. We will do that by measuring, after each Ui, a dedicatedjlag-qubit of

the intermediate state at that point (this measurement may alter the state). This bit indicates

whether the algorithm is already prepared to stop and output a value. 1f this bit is l, then we

measure the output bit, output its value A (X) e {O, 1} and stop; if the fiag-bit is 0 we let the

algorithm continue with the next query 0 and Uj+I • Note that the number of queries that the

algorithm makes on input X is now a random variable, since it depends on the probabilistic

outcome of measuring the fiag-qubit after each step. We use TA (X) to denote the expected

number of queries that A makes on input X. The Boolean output A (X) of the algorithm is a

random variable as well.

We mainly focus on three kinds of algorithm for computing f: classical deterministic,

classical randomized bounded-error and quantum bounded-error algorithms. Let 1J(j) denote

the set of classical deterministic algorithms that compute f. Let 'R(f) = {classical A I
VX e {O, l}N : Pr{A(X) = /(X)] ~ 2/3} be the set of classical randomized algorithms that
compute f with bounded error probability. The error probability one-third is not essential;

it can be reduced to any small e by running the algorithm O(log(l/e)) times and outputting

the majority answer of those runs. Similarly we let Q{f) = {quantum A I VX e {O, l}N :

Pr[A(X) = /(X)];;;?: 2/3} be the set of bounded-error quantum algorithms for/. We define

the following worst-case complexities:

D(f) = min max TA (X)
AeV(f) Xe(O,l)N

R(f) = min max 1A(X)
AE'R(f)Xe{O,I}N

Q(f) = min max 1A(X).
AeQ(f) Xe{O,i}N

D(f) is also known as the deci.fion tree compkxity of f and R(f) as the bounded

error decision tree complexity of f. Since quantum computation generalizes randomized

6744 A Ambaini'> and R de Wolf

computation and randomized computation generalizes deterministic computation, we have
Q(f) ~ R(f) ~ D(f) ~ N for all f. The three worst-case complexities are polynomially
related: D(f) E O(R(f)3) [21] and D(f) E O(Q(f)6) [3] for all total f.

Letµ : {0, l}N -i- [0, 1] be a probability distribution. We define the average-case

complexity of an algorithm A with respect to a distribution µ as

1f = L µ(X)TA(X).

Xe{O,!}N

The average-case deterministic, randomized and quantum complexities off with respect to µ

are

DIL(J) = min Tµ
AeV(f) A

RIL(J) = min Tµ
AEll(f) A

QIL(J) = min Tµ.
AeQ(J) A

Note that the algorithms still have to satisfy the appropriate output requirements (such as
outputting f (X) with probability;;::: 2/3 in the case of RIL or QIL) on all inputs X, even on X

that have µ(X) = 0. Oearly QIL(f) ~ RIL(f) ~ DIL(f) ~ N for allµ and f. Our goal is
to examine how large the gaps between these measures can be, in particular for the uniform
distribution unif(X) = 2-N.

The above treatment of average-case complexity is the standard one used in average
case analysis of algorithms [26]. One counter-intuitive consequence of these definitions,
however, is that the average-case performance of polynomially related algorithms can be
superpolynomially apart (we will see this happen in section 5). This seemingly paradoxical
effect makes these definitions unsuitable for dealing with polynomial-time reducibilities and
average-case complexity classes, which is what led Levin to his alternative definition of
'polynomial time on average' [16]3 • Nevertheless, we feel our definitions are the appropriate

ones for our query complexity setting: they are just the average numbers of queries that one
needs when the input is drawn according to distribution µ.

3. Super-exponential gap between Dunif (f) and qun11 (f)

Before comparing the power of classical and quantum computing, we first compare the power
of deterministic and bounded-error algorithms. It is not hard to show that vunif (f) can be

much larger then Rumf (/) and Qunif (f):

Theorem 3.1. Define f on N variables such that f (X) = 1 if! IX I ~ N / l 0. Then Qunif (/)

and Rwrif (/)are 0(1) and Dunif (f) E Q(N).

Proof. Suppose we randomly sample k bits of the input. Let a = IXI / N denote the fraction
of ones in the input and a the fraction of ones in the sample. The Chernoff bound (see e.g. [1])
implies that there is a constant c > 0 such that

Pr[a(2/101a ~ 3/10) ~ 2-ck.

Now consider the following randomized algorithm for f:

(1) Let i = 100.

(2) Sample k; = i / c bits. If the fraction ii; ofones is ;;::: 2/10. then output 1 and stop.

(3) If i < log N, then increase i by 1 and repeat step 2.

3 We thank Umesh Vazirani for drawing our attention to this.

Average-case quantllill query complexity 6745

(4) If i ;<: log N, then count IXI exactly using N queries and output the correct answer.

It is easy to see that this is a bounded-error algorithm for f. Let us bound its average-case

complexity under the uniform distribution.

If a ;<: 3/10, the expected number of queries for step 2 is

~N .

L Pr[ii1 ,:;;,; 2/10, ... , a;-1 i::; 2/10 I a;<: 3/10] · !..
i=IOO c

logN •

i::; L Pr[a,_1 i::; 2/10 I a ;<: 3/10]. !..
i=IOO C

logN •

i::; L z-<i-1). !.. E 0(1).

i=lOO c

The probability that step4 is needed (given a~ 3/lO)is at most 2-clogN/c = l/N. This adds

fv N = 1 to the expected number of queries.

Under the uniform distribution, the probability of the event a < 3/10 is at most 2-c' N

for some constant c'. This case contributes at most 2-c N (N + (log N)2) E o(1) to the

expected number of queries. Tims in total the algorithm uses 0(1) queries on average, hence

Runif (/) E 0(1). Since Qunif (f) i::; Runif (/),we also have Qunif (/) E 0(1).

Since a deterministic classical algorithm for f must be correct on every input X, it is easy

to see that it must make at least N /10 queries on every input, hence D 001f (f) ;<: N /10. 0

Accordingly, we can have huge gaps between Dtmif (f) and Qunif (/). However, this

example tells us nothing about the gaps between quantum and classical bounded-error

algorithms. In the next section we exhibit an f where Qunif (f) is exponentially smaller

than the classical bounded-error complexity Runif {f).

4. Exponential gap between Raolf (/) and Q11mr (/)

4.1. The fanction

We use the following modification of Simon's problem [25}4 :

Input: X = Cx1, ... , x2•), where each .x; E {O, W.
Output: f(X) = 1 iff there is a non-zero k E {O, W such that for all i E {O, W we have

Xiek = :x;.

Here we treat i E {0, ir both as an n-bit string and as a number between 1 and 2n,

and E9 denotes bitwise XOR. Note that this function is total (unlike Simon's). Formally, f
is not a Boolean function because the variables are {0, 1r-valued. However, we can replace

every variable x; by n Boolean variables and then f becomes a Boolean function of N = n2n

variables. The number of queries needed to compute the Boolean function is at least the

number of queries needed to compute the function with {0, l}n-valued variables (because

we can simulate a query to the Boolean oracle by means of a query to the {0, W-valued

input-variables, just ignoring then - I bits that we are not interested in) and at most n times

the number of queries to the {0, W-valued oracle (because one {O, l}n-valued query can be

simulated using n Boolean queries). As the numbers of queries are so closely related, it does

not make a big difference whether we use the {0, l}n-valued oracle or the Boolean oracle. For

simplicity we count queries to the {O, l}n-valued oracle.

4 1be preprint [15] independently proves a related but incomparable resuh about another Simon modification.

6746 A Ambainis and R de Wolf

We are interested in the average-case complexity of this function. The main result is the

following exponential gap. to be proven in the next sections:

Theorem 4.1. For f as above, Qunif (/) ~ 22n + I and Runif (/) e Q (2nf2).

4.2. Quantum upper bound

The quantum algorithm is similar to Simon's. Start with the 2-register superposition

Lie{o.11• li}IO} (for convenience we ignore normalizing factors). Apply the oracle once to

obtain

:E li}lxi>·
ie{O,!)•

Measuring the second register gives some j and collapses the first register to

L Ii}.

A Hadamard transform H maps bits lb} --+- ~ (10) + (-1)6 11)). Applying this to each qubit

of the first register gives

:E :E <-1)<i.i'>1n. (1)
i:x,=j i'e{O,l}•

Here (a, b) denotes inner product mod 2; if {a, b) = 0 we say a and bare orthogonal.

If f (X) = 1. then there is a non-zero k such that Xi = Xi$.t for all i. In particular., x; = j
iff Xi$.I: = j. Then the final state (1) can be rewritten as

:E :E <-l)<i.i'>1i'> = :E (E ~<<-l)<i.i') + c-1>(i$.l:.i'>))w>
i'e{0,1}• i::<t=i i'e{O,t}• i:x1=j

("')

= :E (E c-1> ••• o + <-1><.l:.i'>>)1i'>·
i'e{O,t}• i:Xt=i z

Notice that Ii') hasnon-:zeroamplitudeonly if (k, i') = 0. Hence if /(X) = 1. then measuring

the final state gives some i' orthogonal to the unknown k.
To decide whether /(X) = 1. we repeat the above process m = 22n times. Let

i1, •.. , im E {0, l}n be the results of them measurements. If f (X) = 1, there must be a

non-zero k that is orthogonal to all i,. Compute the subspace S s;; {0, W that is generated

by ii. ... , im (i.e. Sis the set of binary vectors obtained by taking linear combinations of

it. ... , im over G F (2)). If S = {O, W, then the only k that is orthogonal to all iris k = O", so

then we know that f (X) = 0. If S ::/: {0, l}n, we just query all 2" values xo ... o, ... , Xt...I and

then compute f (X). Of course, this latter step is very expensive, but it is needed only rarely:

Lemma4.2. Assume that X = (xo ... o, ... ,x1 ... 1) is chosen uniformly at randomfrom {0, l}N.

Then, with probability at least I - 2-n, f (X) = 0 and the measured i1, ... , im generate

{0, l}".

Proof. It can be shown by a small modification of [l, theorem.5.1, p 91] that with probability

at least 1 - z-c2• (c > 0), there are at least 2" /8 values j such that Xi = j for exactly one

i E {0, W (and hence f {X) = 0). We assume that this is the case in the following.

If i1, ..• , im generate a proper subspace of {O, 1}", then thereisanon-zerok E {O, l}n that

is orthogonal to this subspace. We estimate the probability that this happens. Consider some

fixed non-zero vector k E {0, W. The probability that i1 and k are orthogonal is at most~.
as follows. With probability at least 1 /8, the measurement of the second register gives j such

Average-case quantum query complexity 6747

that f (i) = j for a unique i. In this case. the measurement of the final supeiposition (1) gives

a uniformly random i'. The probability that a uniformly random i' has (k. i') =fo 0 is one-half.

Therefore, the probability that (k, i1) = 0 is at most 1 - i · 4 = H.
The vectors i1, ... , i,,. are chosen independently. Therefore, the probability that k is

orthogonal to each of them is at most (~)"' = (~)22n < 2-2n. There are zn - 1 possible

non-zero k, so the probability that there is a k which is orthogonal to each of i1, ... , i,,. is
i:;;; (2n - 1)2-2n < 2-n. D

Note that this algorithm is actually a uro-error algorithm: it always outputs the correct
answer. Its expected number of queries on a uniformly random input is at most m = 22n for

generating i 1, ••• , i,,. and at most ~ 2" = 1 for querying all the x; if the first step does not give

ii, . .. , i,,. that generate {O, l}n. This completes the proof of the first part of theorem 4.1. In
contrast, in the appendix we show that the worst-case zero-error quantum complexity of f is

'2 (N), which is near maximal.

4.3. Classical luwer bound

Let D1 be the uniform distribotion over all inputs X e {0, l}N and D2 be the uniform

distribotion over all X for which there is a unique k =fo 0 such that X; = x;e.t (and hence

f (X) = 1). We say an algorithm A distinguishes between D1 and D2 if the average probability

that A outputs 0 is~ 2/3 under D1 and the average probability that A outputs 1 is~ 2/3 under

Dz.

Lemma 4.3. If there is a bounded-error algorithm A that computes f with m = 1'? queries

on average, then there is an algorithm that distinguishes between D1 and D2 and uses O(m)

queries on all inputs.

Proof. Without loss of generality we assume A has error probability i:;;; 1/10. To distinguish

D1 and D2, we run A until it stops or makes IOm queries. 1f it stops, we output the result of

A. If it makes IOm queries and has not stopped yet, we output 1.

Under D1, the probability that A outputs 1 is at most l/10+ o(l) (1/10 is the maximum

probability of error on an input with /(X) = 0 and o(l) is the probability of getting an

input with f (X) = 1), so the probability that A outputs 0 is at least 9/10 - o(l). The

average probability {under D 1) that A does not stop before IOm queries is at most one

tenth, for otherwise the average number of queries would be more than fo(lOm) = m.

Therefore the probability under D1 that A outputs 0 after at most lOm queries is at least

(9/10-o(l))- 1/ 10 = 4/5-o(l). lo contrast, the D2-probability that A outputs 0 is~ 1/10
because /(X) = 1 for any input X from D2. This shows that we can distinguish D1 from

D2. D

Lemma 4.4. A classical randomized algorithm A that makes m e o(2"'2) queries cannot

distinguish between D1 and D2.

Proof. For a random input from D1, the probability that all answers to m queries are different

is

(1) ((m - 1)) mL-I i m(m - 1)
1 · 1 - - · · · 1 - ~ 1 - - = 1- = 1 - o(l).

~ ~ r . ~ ~~
1=1

For a random input from D2, the probability that there is an i such that A queries both :x; and

XiE&.t (k is the hidden vector) is i:;;; (~)/(2n - 1) e o(l), since:

(1) for evecy pair of distinct i, i, the probability that i = i e k is 1 / (2n - 1) and

6748 A Ambainis and R de Wolf

(2) since A queries only m of the x;. it queries only (~) distinct pairs i, j.

If no pair X;, x;e,t is queried, the probability that all answers are different is

1 · (1 --1-) · · · (1- (m - I)) = 1- o(l).
2n-I 2n-I

It is easy to see that all sequences of m different answers are equally likely. Therefore. for

both distributions D1 and D2. we get a uniformly random sequence of m different values

with probability 1 - o(l) and something else with probability o(l). Tims A cannot 'see' the

difference between D1 and D2 with sufficient probability to distinguish between them. 0

The second part of theorem 4.1 now follows: a classical algorithm that computes f with

an average number of m queries can be used to distinguish between D1 and D2 with O(m}

queries (lemma 4.3), but then O(m) E 0 (2nl2) (lemma 4.4).

5. Super-exponential gap for non-uniform µ

The last section gave an exponential gap between Q"' and R"' under uniformµ. Here we show

that the gap can be even larger for non-uniform µ. Consider the average-case complexity of

the OR-function. It is easy to see that Dunif (OR). Rrmif (OR) and Qunif (OR) are all 0(1), since

the average input will have many ones under the uniform distribution. Now we give some

examples of non-uniform distributionsµ where Q"' (OR) is super-exponentially smaller than

R"'(OR):

Theorem 5.1. If a E (0, 1/2) and µ(X) = c/(1 ~ 1)(1XI + l)«(N + 1)1-a (c ~ 1 - a is a

normalizing constant), then R"'(OR) E 0(Na) and Q"'(OR) E 0(1).

Proof. Any classical algorithm for OR requires 9(N/(IXI + 1)) queries on an input X.
The upper bound follows from random sampling, the lower bound from a block-sensitivity

argument [21]. Hence (omitting the intermediate 0s)

N
R"'(OR) = ~µ(X) IXI + 1

N cNa

= ~ (t + l)a+I E 9(Na)

where the last step can be shown by approximating the sum overt with an integral. Similarly,

for a quantum algorithm 0(,,/N /(IXI + 1)) queries are necessary and sufficient on an input

x [5, 14], so

Q"'(OR) = "L,µ(X)J N
x IXI+ I

N cNa-1/2

= ~ (I+ 1)«+1/2 E 0(1).

0

Jnparticular,fora = l/2-ewehavetheverylargegapof0(1)quantumversus0(N112-s)

classical. Note that we obtain this super-exponential gap by weighing the complexity of two

algorithms (classical and quantum OR-algorithms) which are only quadratically apart on each

input X. This is the phenomenon we referred to at the end of section 2.

Average-case quantum query complexity 6749

6. General bounds for average-case complexity

In this section we prove some general bounds. Fust we make precise the intuitively obvious

fact that if an algorithm A is faster on every input than another algorithm B, then it is also

faster on average under any distribution:

Theorem 6.1. lf </>: R ~ Risa concave function and TA(X) ~ <f>(Ta(X))forall X, then

Tf ~ </> {r;) for everyµ.

Proof. By Jensen's inequality, if</> is concave then Eµ[</>(T)] ~ </>(Eµ[T]), hence

Tf = L µ(X)TA(X)
Xe{O,lJN

~ L µ(X)</>(Ts(X))
Xe{O,l}N

:r:;;q,(L µ(X)Ts(X))=<1>(1t).
Xe{O,!}N

0

In other words: taking the average cannot make the complexity-gap between two

algorithms smaller. For instance, if TA (X) :::;; ,./Ti(X) (say, A is Grover's algorithm and

B is a classical algorithm for OR), then 1f ~ ..[ii. On the other hand, taking the average

can make the gap much larger. as we saw in theorem 5.1: the quantum algorithm for OR runs

only quadratically faster than any classical algorithm on each input, but the average-case gap

between quantum and classical can be much bigger than quadratic.

We now prove a general lower bound on Rµ and Qµ. The classical case of the following

lemma was shown in [21), the quantum case in [3]:

Lemma 6.2. Let A be a bounded-error al.gorithm for some function f. 1f A is classical then

1A,(X) E 0.(bsx(f)), and if A is quantum then TA(X) E 0(../fiii[J'5).

A lower bound in terms of the µ-expected block sensitivity follows:

Theorem6.3. Fora/./ f, µ: Rµ(f) E O(Eµ[bsx(f)]) and Qµ(f) E O(Eµ[.JOSxV'}]).

7. Average-case complexity of MAJORITY

Here we examine the average-case complexity of the MAJORITY function. The hard inputs

for MAJORITY occur when t = IXI ~ N /2. Any quantum algorithm needs 0 (N) queries

for such inputs (3). Since the uniform distribution puts most probability on the set of X with

IXI close to N /2, we might expect an 0.(N) average-case complexity as well. However. we

will prove that the complexity is nearly ./N. For this we need the following result about

approximate quantum counting, which is theorem 13 of [6] (this is the forthcoming journal

version of (8] and (17]; see also (18, theorem 1.10]):

Theorem 7.1 (Brassard, B~er, Mosca, Tapp). There exists a quantum algorithm QCount

with the following property. For every N-bit input X (with t = IXI) and number of qu.eries T,

and any integer k ~ 1, QCormt uses T queries and outputs a number i such that

I -I & 2 k ,Jt(N - t) 2k2 N
t - t "<; 1f T +n T2

with probability at least 8/1f2 if k = 1 and probability~ 1 - l/2(k - 1) if k > 1.

6750 A Ambainis and R de Wolf

Using repeated applications of this quantum counting routine we can obtain a quantum

algorithm for MAJORITY that is fast on average:

Theorem 7.2. Qunif (MAJ) E O(JN(log N)2).

Proot For all i E {l, ... ' log N}, define A; = {X I N /zi+l < llXI - N /21 :;;; N /2i}. The

probability under the uniform distribution of getting an input X EA; is µ(A;) E O(JN/2i),

since the number of inputs X with k ones is(~) E 0(2N /JN) for all k. The idea of our
algorithm is to have log N runs of the quantum counting algorithm, with increasing numbers

of queries, such that the majority value of inputs from A; is probably detected around the

ith counting stage. We will use 1; = 100 · 2; log N queries in the ith counting stage. Our

MAJORITY algorithm is the following:

For i = 1 tologN do:

quantum count IX I using 1i queries (call the estimate t;)
if Iii - N /21 > N /2;, then output whether ii > N /2 and stop.

Classically count IX I using N queries and output its majority.

Let us analyse the behaviour of the algorithm on an input X E A;. Fort = IXI, we have

It - N /21 E (N /zi+l, N /2;]. By theorem 7.1, with probability > 1 - 1/lOlog N we

have lii-tl ~ N/2i, so with probability (1- l/lOiogN)'°SN ~ e-l/lO > 0.9 we have

I ii - t I :;;; N /2; for all 1 ~ i ~ N. This ensures that the algorithm outputs the correct value

with high probability.

We now bound the expected number of queries the algorithm needs on input X. Consider

the (i +2)ndcountingstage. With probability 1-1/lOlogN we will have lii+2-tl :;;; N /zi+z.

In this case the algorithm will terminate, because

lii+2 - N /21 ~ It - N /21- lii+2 - tl > N /zi+l - N /2i+Z = N /zi+2.

Thus with high probability the algorithm needs no more than i + 2 counting stages on

input X. Later counting stages take exponentially more queries Oi+2+i = 2iT;+z), but are

needed only with exponentially decreasing probability 0(1/2i logN): the probability that

lii+2+ i - t I > N /2;+2 goes down exponentially with j precisely because the number of queries

goes up exponentially. Similarly, the last step of the algorithm (classical counting) is needed

only with negligible probability.

Now the expected number of queries on input X can be upper bounded by

i+2 logN (l) logN

L:1;+ L 1ii:·O z.t-i-310 N < 100.2i+31ogN+ L 100.zi+3 E0(2ilogN).
j=l k=i+3 g k=i+3

Therefore under the uniform distribution the average expected number of queries can be upper

bounded by 'L!'!1N µ(A;)0(2i logN) E O(JN(log N)2). 0

The nearly matching lower bolDld is:

Theorem 7.3. Qunif (MAJ) E '2 (JN).

Proot Let A be a bounded-error quantum algorithm for MAJORITY. It follows from the

worst-case results of [3] that A uses '2 (N) queries on the hardest inputs, which are the X with

IXI = N /2 ± 1. Since the uniform distribution puts '2(1/JN} probability on the set of such

X, the average-case complexity of A is at least n (1/ JN)O (N) = n (../N). 0

What about the classical average-case complexity of MAJORITY? Alonso et al [2] prove

the bound Dunif (MAJ) = 2N /3 - ~ + O(log N) for deterministic classical computers.

We can also prove a linear lower bound for the bounded-error classical complexity, using the

following lemma:

Average-case quantum query complexity 6751

Lemma 7.4. Let fl E {l, ... , ../N}. Any classical bounded-error algorithm that computes

MAJORITY on inputs X with IXI E {N /2, N /2 +.£\}must make fl.(N) queries on all such

inputs.

Proof. We will prove the lemma for fl = ./N, which is the hardest case. We assume without
loss of generality that the algorithm queries its input X at T (X) random positions, and outputs
1 if the fraction of ones in its sample is at least (N /2+ fl)/N = 1/2+ 1/../N. We do not care
what the algorithm outputs otherwise. Consider an input X with IX I = N /2. The algorithm
uses T = T (X) queries and should output 0 with probability at least two-thirds. Thus the
probability of output 1 on X must be at most one-third, in particular

Pr[at least T (l /2 + 1 / ./N) ones in sample of size T] ~ 1 /3.

Since the 1' queries of the algorithm can be viewed as sampling without replacement from a
set containing N /2 ones and N /2 zeros, this error probability is given by the hypergeometric
distribution

LT (Nf2\ (Nf2)
Pr[at least T (1/2 + 1/ ./N) ones in sample of size T] = i=T0/2+1/(7) i 1 · T-i

We can approximate the hypergeometric distribution using the normal distribution (see e.g.
[19]). Let Zk = (2k - T)/,JT and <l>(z) = f 00 :fi;e-1212dt, then the above probability

approaches

<l>(zr) - <l>(zr(1/2+11v'N>).

Note that <l>(zr) = <l>(./f) ~ 1 and that <l>(zr(l/2+1;p)) = <1>(2,JTTN) ~ 1/2 if
T E o(N). Thus we can only avoid having an error probability close to 1 /2 by using T E 0. (N)
queries on X with IX I = N /2. A similar argument shows that we must also use n (N) queries

if IX I = N /2 + ll. D

It now follows that:

Tbeorem7.5. Runif(MAJ) E O(N).

Proof. The previous lemma shows that any algorithm for MAJORITY needs n (N) queries on
inputs x with IXI E [N /2, N /2 + ./N]. Since the uniform distribution puts n (1) probability
on the set of such X, the theorem follows. 0

Accordingly, on average a quantum computer can compute MAJORITY almost
quadratically faster than a classical computer, whereas for the worst-case input quantum and
classical computers are about equally fast (or slow).

8. Average-case complexity of PARITY

Finally we prove some results for the average-case complexity of PARITY. This is in many
ways the hardest Boolean function. Firstly, bsx(f) = N for all X, hence by theorem 6.3:

Corollary 8.L For everyµ, Rµ(PARITY) E O.(N) and Qµ(PARITY) E O.(./N).

With high probability we can obtain an exact count of IX I, using 0(.J (IX I + 1) N) quantum
queries [6]. Combining this with aµ that puts 0(1/./N) probability on the set of all X with

IXI > 1 and distributes the remaining probability arbitrarily over the X with IXI ~ 1, we
obtain a distribution µ such that Qµ (PARITY) E 0(./N).

6752

We can prove Q"' (PARITY) ~ N /6 for anyµ by the following algorithm: with probability

one-third output i, with proOObility one-third output 0 and with probability one-third nm the

exact quantum algorithm for PARITY, which has worst-case complexity N f2 [3, 13]. This

algorithm has success probability two-·thlrds oo every input and has an expected number of

queries equal to N /6.
More than a linear speed-up oo average i.'I not pos.'lible if JL is uniform:

Theorem 8.2. Qlllllif (PARITY) E O(N).

Proof. Let A be a bounded-error quantum al.gorithm for PARITY. Let 8 be an algorithm

that flips each bit of its input X witb probability one-half, records the number b of actual

bitfiips, runs A oo the changed input Y and ootpms A (Y) + bmod2. It is easy to see that B is

a bounded-error algorithm for PARITY and that it uses Im l!XfHU1ed number of r: queries on

every input. Using standard techniques. we can tum this into an algorithm for PARITY with

worst-case oo:r) queries. Si.nee the worst-case lower bound for PARITY is N /2 [3, BJ. the

theorem follows. 0

We thank Harry Buhm:llm for suggesting this topic, and him. Lance Fortoow, Lane

Hemaspaandra. Hein ROhrig, Alain Tapp and Umesh Vazi.rani for helpful discussions. Also

thanks to Alain for :sending a draft of [6 J. Part of this work was done when AA visited Microsoft

Re.search, supported by a Microsoft Research Fellowship and NSF grant CCR-9800024. RdW

was partially supported by the EU Fifth Framework: project QAIP. lST-1999-11234 and is

also affilfated with the ILLC of the University of Amsterdam

In this appendix we will show a lower bound of n (N) queries for the zero-error worst-case

complexity Qo(/) of the functioo f oo N = n2"' binary variables defined in section 4. (We

count binary queries this time.) Consider a quantum algorithm that makes at most T queries

and that, for every X, outputs either the correct output f (X) or, with probability ~ l /2. outputs

'inconclusive'. We use the following lemma from [3):

Lemma A.I. The probability that a T-query quantum algorithm outputs I can be written as

a multilinear N-variate polynomial P(X) of degree at most 2T.

Consider the polynomial P induced by our T-query algorithm for f. lt has the following

properties:

(l) P has degree d ~ 2T

(2) if f (X) = 0 then P(X) = 0

(3) if /(X) = l then P(X) E [l/2, lJ.

We first show that only very few inputs X E {O, l }N make f (X) = l. The number of such

I inputs for fis the number of ways to choose k E {0, 1 }" - 10"}. multiplied by the number

of \\<'llys to choose 2" /2 independent x; E {0, l }". which is (2" - 1) . (2")2"12 < 2•(2'/Z+H.

Accordingly. the fraction of l inputs among an zN inputs x is < 2"('J!' / 2+1i /2"T = 2-.. c2• 12-n.
1hese X are exactly the X that make P (X) :f. 0. However, the following result is

kn<~'ll [22. 23]:

Avemge-case quantum query complexity 6753

Lemma A.2 (Schwartz). If P is a tWn-constant N-variate multilinear polynomial of degree

d, then

l{X E {O. l}N I P(X) =J: 0}1 z-d
2N ~ .

This implies d ~ n(2n /2- 1) and hence 1' ~ d/2 ~ n(2n /4- 2) ~ N /4. Thus we have

proved that the worst-case zero-error quantum complexity off is near maximal:

Theorem.A.3. Qo(f) E U(N).

[l] Alon N and Spencer J H 1992 The Probabilistic Method (New Yon: Wiley)

[2] Alonso I.., Reingold EM and Schott R 1997 The average-case complexity of detennining the majority SIAM J.

Comput. 26 1-14

[3] Beals R, Buhrman H. Cleve R, Mosca M and de Wolf R 1998 Quantum lower bounds by polynomials Proc.

39th IEEE FOCS pp 352-61
(Beals R. Bulrman H. Cleve R, Mosca Mand de WolfR 1998 Preprint qllllllt-pb/9802M9)

[4] Bennett CH. Bernstein E. Brassard G and Vazirani U 1997 Strengdts and weaknesses of quantum computing

SIAM J. Comput. 26 1510-23

(Bennett C H. Bernstein E, Brassard G and Vazirani U 1997 Preprint qllllllt-pb/970 I 00 I)
[SJ Boyer M. BrassardG, HiilyerP and Tapp A 1998 Tigbl bounds onquantumsean:hing Fonschr. Phys. 4'i493-SOS

(Boyer M, Brassard G, Hillyer P and Tapp A 1996 Earlier version presemed at Physcomp'96 Preprint quant

pbllJ60S034)
[6] Brassard G, HIJYer P, Mosca M and Tapp A 2000 Quantum amplitnde amplification. and estimation Preprint

qwmt-pblOOOSOSS (this is the fortbromingjoomal version of [8, 17])

(7] Brassard G, Wyer P and Tapp A 1997 Quantum algorithm for the collision problem ACM SIGACT News

(Cryptol. Column) 2814-9
(BtaSsard G, Hillyer P and Tapp A 1997 Preprint quant-ph/9705002)

[8] BrassardCl, HiilyerPand TappA l998Quantumcounting Proc. 25thICALP(Lecture Notes in Computer Science

vol 1443) (Berlin: Springer) pp 820-31

(Brassard G, Hillyer P and Tapp A 1998 Preprint qwmt-pb/980S082)

(9) Buhrman H. Diirr Ch. Heiligman M. Hlllyer P, Magniez F, Santba Mand de Wolf R 2001 Quantum algorithms

foe element distinctness Proc. I6th IEEE Conf on Computational Compkxity pp 131-7

(Bubnnan H. Di1rr Ch. Heiligman M. Hj!Jyer P, Magniez F, Santha M and de Wolf R 2000 Preprint quant

pMJ007016)
[10] Buhrman Hand de WolfR 2001 Complexity measures and decision tree complexity: a survey The01: Comput.

Sci. at press
[ll] Cleve R 2000 The query complexity of order-finding Proc. 15th IEEE Conf. on Computational Complexity

pp54-9
(Cleve R 199') Preprint quant-pb/9911124)

[12] Deutsch D and Jozsa R 1992 Rapid solution of problems by quantum computation Proc. R. Soc. A 439 553-8

[13) FadiiE, Goldstone J, Gutmann S andSipser M 1998 A limit on the speed of quamumcomputation in determining

parity Phys. Rev. Len. 81 5442-4

(Fadii E, Goldstone J, Gutmann S and Sipser M 1998 Preprint quant-pb/9802MS)
[14) Grover L K 1996 A fast quantum mechanical algorithm for databa.'IC search Proc. 28th ACM SJ'OC pp 212-9

(Grover L K 1996 Preprint quant-ph'960S043)
[JS] Hemaspaandra E, Hemaspaandra L A and z.imand M 1999 Almost1=Yerywbere superiority for quantum

polynomial time Preprint quant-ph/9910033

[16) Levin LA 1986 Average case complete problems SIAM 1 Comput. 15 285-6 (earlier version in STOC'84)

[17) Mosca M 1998 Quantum searching, COUDling and amplitnde amplification by eigenvector analysis MFCS'98

Worbkop on Randomitp} Algorithms

[18) Nayak A and Wu F 199') The quantum query complexity of approximating the median and related statistics

Proc. 31 st ACM SJ'OC pp 384-93
(Nayak A and Wu F 1998 Preprint quaut-phl9804066)

[19] Nicholson W L 1956 On the normal approximation to the hypergeometric distribution Ann. Math. Stat. 1:1

471-83

6754 A Ambainis and R de Wolf

[20] Nielsen MA and Chuang I L 2000 Quanium Ccmpuuuion and QUOJ11um Information (Cambridge: Cambridge

University Press)

[21] Nisan N 1991 CREW PRAM~ and decision trees SIAM J. Ccmput. 20 999-1007 (earlier version in STOC'89)

[22] Nisan N and Szegedy M 1994 On the degree of Boolean functions as real polynomials Comput. Complexity 4

301-13 (earlier version in S10C'92)

[23] Schwar1Z J T 1980 Fast probabilistic algorithms for verification of polynomial identities J. ACM 27701-17

[24] Shoe PW 1997 Polynomial-time algorithm.'> for prime factorization and discrete logarithms on a quantum

computer SIAM J. Comput. 26 1484-509 (earlier version presented at FOCS'94)
(Shoc PW 1995 Preprini quant-ph/9508027)

[25] Simon D 1997 On the power of quantum computation SIAM J. Comput. 26 1474-83 (earlier version in FOCS'94)
[26] Vrtter J Sand Flajolet Ph 1990 Average-ca.<;e analysis of algorithm.-. and data structures Handbook ofTheoretical

Computer Science. A: Algorithms and Complexity ed J van Leeuwen (Cambridge: MIT Press) pp 431-524
[27] Zalka Ch 1999 Grover's quantum searching algorithm is optimal Phys. Rev. A 60 2746-51

(:ZalkaCh 1997 Preprintquant-pb/9711070)

