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AVERAGE-CASE STABILITY OF GAUSSIAN ELIMINATION*

LLOYD N. TREFETHENf AND ROBERT S. SCHREIBER

Dedicated to the memory of Jim Wilkinson.

Abstract. Gaussian elimination with partial pivoting is unstable in the worst case: the "growth factor" can
be as large as 2"- l, where n is the matrix dimension, resulting in a loss of n bits of precision. It is proposed
that an average-case analysis can help explain why it is nevertheless stable in practice. The results presented
begin with the observation that for many distributions of matrices, the matrix elements after the first few steps
ofelimination are approximately normally distributed. From here, with the aid ofestimates from extreme value
statistics, reasonably accurate predictions ofthe average magnitudes ofelements, pivots, multipliers, and growth
factors are derived. For various distributions of matrices with dimensions n =< 1024, the average growth factor
(normalized by the standard deviation of the initial matrix elements) is within a few percent of n 2/3 for partial
pivoting and approximately n 1/2 for complete pivoting. The average maximum element of the residual with
both kinds of pivoting appears to be of magnitude O(n), as compared with O(n /2) for QR factorization.

The experiments and analysis presented show that small multipliers alone are not enough to explain the
average-case stability of Gaussian elimination; it is also important that the correction introduced in the remaining
matrix at each elimination step is of rank 1. Because of this low-rank property, the signs of the elements and
multipliers in Gaussian elimination are not independent, but are interrelated in such a way as to retard growth.
By contrast, alternative pivoting strategies involving high-rank corrections are sometimes unstable even though
the multipliers are small.
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Notation.
matrix in R"’,
standard deviation of elements ofA,
modified matrix before step k of elimination,
modified matrix at step k after pivoting but before row operations,

U A t’) final upper-triangular matrix,
^(k)

Ukk akk kth pivot,
n + k (partial pivoting), (n + k)2 (complete pivoting),

(k)standard deviation of elements a 0 (k

_
i, j

_
n),

average absolute value of pivots Ukk,
^(k). ^(k)standard deviation of multipliers aik /akk (k

growth factor, growth factor normalized by
extreme value or "winner" function for normal random variables,
sample size,
expected value.

0. Introduction. At the beginning of the computer era, it was feared that Gaussian
elimination would be an ineffective method for solving systems of linear equations. A
paper by Hotelling in 1943 [19] predicted that in the solution of n n systems of the
form A TAx b, errors might be amplified by as much as 4 n- l, so that a "78-rowed
matrix would need to be carried to no less than 46 places to insure even an approximate
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accuracy in the first decimal place." Another paper by Bargmann, Montgomery, and
von Neumann in 1946 stated that "very little is known about the stability of the
methods so far described, [but] what information there is tends to indicate that these
methods are unstable and that rounding errors accumulate so seriously that the methods
are impractical for large values of n."

By the early 1950s, computational experience had revealed that these fears were
groundless, and Gaussian elimination with partial pivoting rapidly became the universal
algorithm for solving general dense systems of linear equations. Progress was also made
on the theoretical side by Turing 30 ], von Neumann and Goldstine 31 ], and especially
Wilkinson 32 ], 33 ], whose elegant arguments based on condition numbers and back-
ward error analysis shed light on every aspect of the elimination process. The result of
these developments is that a widespread view among numerical analysts nowadays, thirty
years later, is roughly that "Wilkinson proved that Hotelling’s prediction was too pes-
simistic."

This view is not entirely accurate, however, for a fundamental gap in our under-
standing remains. When Gaussian elimination with partial pivoting is performed on an
n n matrix A, the result is a factorization PA LU, where P is a permutation matrix,
L is unit lower triangular, and U is upper triangular. Let denote the solution ofa linear
system Ax b computed in floating-point arithmetic. Wilkinson proved that under rea-
sonable assumptions, the relative error in satisfies

(0.) I1.- xll <=4n2r(A)pe
Ilxll

where e is the michine precision, too (A) is the condition number ofA in the supremum
norm, and o is the growth factor,

(k)
rnaxi,, a0(0.2) o
maxi, laol

with a 0 denoting the i, j element before the kth step of elimination [33]. (Results like
(0.1) appear in various forms, with different definitions of o, norms, and polynomial
factors; we have picked a representative one.) Unfortunately, 0 may be as large as 2"-
(though no larger), as is proved by the simple example shown here for n 5:

(0.3)

-1 -1 2
-1 -1 -1 -1 4
-1 -1 -1 -1 -1 -1 8
-1 -1 -1 -1 -1 -1 -1 -1 16

A L U

It follows that unless (0.1) is highly pessimistic, Gaussian elimination will be useless for
certain matrices. And so it is.

Thus Gaussian elimination is unstable in the worst case; the improvement from
Hotelling to Wilkinson is merely from 4n- to 2n- i. Why, then, is it successful in practice?
Indeed, partial pivoting is so reliable that most of the software in use todaymincluding

Thanks to the integer entries and unit diagonal elements, experiments with this matrix A sometimes
reveal no instability. To be sure of seeing it, choose a right-hand side with negative as well as positive entries,
or perturb the elements ofA slightly in such a way that the pivot sequence is preserved.
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LINPACK 8 ]--does not even bother to monitor pivot growth, although that would be
a fail-safe method of guarding against instability.

We propose that a partial answer would be obtained ifwe could show that Gaussian
elimination is stable on average. Average-case analysis has not been popular in numerical
linear algebra, partly because ofthe obvious fact that the matrices encountered in practical
problems are by no means random. Indeed, some researchers have expressed the opinion
that Gaussian elimination is stable in practice precisely because the matrices that occur
in practice are better behaved than if they were random.2 The purpose of this paper is
to argue the opposite opinion. We believe that Gaussian elimination is stable because
the matrices encountered in practice are random, to a sufficient degree, and that the
essential reason examples such as (0.3) do not cause trouble is that they occupy a negligible
proportion of the space of matrices.

We began this project with the optimistic conjecture that Gaussian elimination is
stable on average for a combination of two reasons:

The magnitudes of the multipliers are on average much less than l;
(2) The signs of the multipliers and elements are effectively random and tend to

cancel.
Both of these hypotheses are readily translated into quantitative predictions, but when
carried out, it was quickly found that the two of them, taken together, are not enough
to explain experimental observations. In actuality, as will be discussed in 6, average
growth factors in Gaussian elimination exhibit a mild t/2/3 dependence on n, at least for
n _-< 1024, whereas (1) and (2) lead to a prediction on the order of en/4 log n (see eq.
(5.4)). This paper can be viewed as an exploration of how (l) and (2) can be made
precise, and modified where necessary, to explain this behavior. To summarize, 2-4
show that hypothesis is valid: simple estimates based on extreme value statistics give
good predictions ofobserved multipliers, which are indeed on average small. The trouble
lies in hypothesis (2), which must be corrected as follows:

(2’) The signs of the multipliers and elements are "better than random" from the
point of view of cancellation.

For many distributions of matrices the multipliers and elements are uncorrelated in the
sense that their covariances are zeromthis follows from simple sign considerationsmbut
they are not independent. On the contrary, there are relationships among them that
conspire to retard growth. A tentative explanation of this phenomenon, together with a
quantitative model of it, are proposed in 5.

For a quick demonstration that the numbers produced by Gaussian elimination
with pivoting are highly dependent, factor a random matrix A into PA LU, i.e., U
L-PA, and you will find that L-II is reasonably small--33.2 in one experiment with
n 256. Now, randomize the signs of the elements ofL and compute L- again. It
will be dramatically larger--in the same experiment, 2.7 l08.

Our statistical arguments and numerical experiments indicate that for matrices that
are random in various senses, both growth factors and computed residuals tend to be no

For example, Gaussian elimination is particularly stable for ill-conditioned matrices, and some have
suggested, with discretization of partial differential equations in mind, that its stability in practice comes about
because most matrices arising in practice tend to be exceptionally ill-conditioned. However, this is not true; the
average n n matrix has condition number O(n) or larger ], 12 ], while the condition number for the
standard discretization of Poisson’s equation is O(n) in two space dimensions and only O(n 2/3) in three di-
mensions. (See a similar remark on p. 460 of ].) Even if it were true, this kind ofargument could not explain
the success of Gaussian elimination. If examples such as (0.3) were typical in the space of matrices, it would
not be enough for most matrices arising in practice to be exceptionally well behaved; essentially all of them
would have to be exceptional, which is highly implausible.
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larger than O(n) on average. This is true for matrices with elements drawn from a normal
distribution and for various other classes of matrices too; in fact, the growth factors and
residuals often depend only on the standard deviation of the initial matrix elements.
Although the initial matrix elements may be far from normally distributed, a few steps
ofGaussian elimination typically bring them toward that form. A more systematic sum-
mary of our results can be found in the final section.

An analogous problem of average- versus worst-case behavior--concerning speed
rather than stability--appears in linear programming. The simplex method was invented
in 1947, and it was soon recognized that the numberof steps to convergence is usually
small in practice, even though the worst-case behavior is exponential 20 ]. The problem
of obtaining an average-case convergence result became well publicized beginning in
1963 [6, p. 160], and in recent years has been solved in various senses by Borgwardt,
Smale, and others 3 ], 25 ], 26 ], 24 ].

The problem of stability of Gaussian elimination is an embarrassing theoretical gap
at the heart of numerical analysis. We believe that it is also of practical importance. One
reason is that pivoting conflicts with both sparsity preservation and parallelization, so
that less stringent strategies such as threshold pivoting [10] and pairwise pivoting [27]
are attracting increasing attention (see 8). We can hardly assess these variants fully
while our understanding of classical Gaussian elimination remains incomplete. A more
basic reason is that as computers grow more powerful, n is getting bigger. Traditionally,
polynomial factors like the n 2 term in (0.1) have been ignored as moderate in size and
in any case generally pessimistic, but as n increases from 102 (Wilkinson?) to 103 (LIN-
PACK?) to 10 4 (supercomputers?) to 106 (the year 2000?) and beyond, the need for a
more quantitative understanding of stability will grow. Average-case modeling of error
propagation is already a well-established tool, for example, in the study of fast Fourier
transforms for digital signal processing [22].

We wish to acknowledge several previous experimental studies of the behavior of
Gaussian elimination for random matrices and related matters: by Goodman and Moler
[16] (reported also in the LINPACK manual [8]), by Birkhoff and Gulati [2], and by
MacLeod [21], [34] who presents detailed statistics from Gaussian elimination applied
to random matrices ofdimensions n -< 100 with sample sizes 10,000. Higham and Higham
have investigated general classes of matrices with large growth factors [18]. Many theo-
retical questions concerning eigenvalues and condition numbers of random matrices
have recently been settled by Edelman [11], [12].

1. Preliminaries. Throughout this paper A denotes a real n X n matrix, and A k),
=< k -< n, is the modified matrix, with zeros below the diagonal in the first k

columns, that remains before the kth step of Gaussian elimination. The end result is an
upper-triangular matrix U A "). We denote by k) the intermediate matrix obtained
after pivoting but before elimination at step k; thus the kth elimination step has the form

Step k" Ak)---tk)--A+ ) (1 <=k<=n 1).
(k)) and dj) respectively, and,The i, j entries ofA Ck) and) are denoted by a 0

a(, u is the kth pivot element.
The growth factor 0 of (0.2) is intimately connected with the pivots uk: for complete

pivoting (rows and columns) o max ul/Iu exactly, and for partial pivoting (rows
only) the details are more complicated but large growth is again usually associated with
large pivots. On the other hand, a constraint on the size of the pivots is provided by
Hadamard’s inequality,

1.1 I l"l ]det A] =< I [la II,
k=l k=l
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where Ilak is the 2-norm of the kth column ofA. IfA is fn times an orthogonal matrix
(the factor Vn being introduced to make the standard deviation of the elements equal
to ), then 1.1 becomes

(1.2) fi Ukkl H n.
k=l

Similarly, ifA is a random matrix with independent elements drawn from the standard
normal distribution of mean 0 and standard deviation 1, a known result on expected
determinants 15 gives

(1.3) lul fn.(2rn)/4(V)n.

(Here and throughout the paper, (.) denotes the expected value.) These observations
imply that so long as the pivots are reasonably uniform in magnitude, they must be of
a modest size, comparable to Vn. Large pivots can occur only if the pivots are highly
nonuniform, as in (0.3).

Sections 2-5 of this paper are devoted to investigating, by statistical arguments and
numerical experiments, the dependence on n and k of the following quantities:

(k))2 21.4 trk ( a ij standard deviation of elements (k <= i,j <= n ),

(k)5) rk (l"kk I) (lUkk l) average absolute value of pivots,

g)t) 2 standard deviation of multipliers (k<i<=n).(1.6) Uk ((,.,ik /,kk ) /z

(In the definitions of ak and Uk, and j are any integers in the ranges indicated; for most
distributions of matrices A of practical interest, symmetry implies that the statistics are
independent of these indices.) We shall argue that for many distributions of matrices, ak
and rk grow slowly and steadily with k, never attaining very large values. Section 6
applies these results to investigate average growth factors and 7 reports numerical ex-
periments concerning average residuals.

Our experiments are based on eight classes of matrices:

normal standard normal distribution of mean 0, variance 1,
[- 1, uniform distribution on [- 1, ],
0, uniform distribution on 0, ],
{- 1, } discrete distribution with p(-1 p( 1/2,
0, } discrete distribution with p(0) p( 1/2,

symm. symmetric matrices with elements from the standard normal dist.,
Toep. Toeplitz matrices with elements from the standard normal dist.,
orth. orthogonal matrices distributed by Haar measure.

In the first five cases, the elements ofan individual matrix are independent samples from
the distributions indicated, while the final three cases have dependent elements. The
random orthogonal matrices are calculated by a sequence of Householder reflections as
proposed by Stewart [28 ]; Haar measure is a name for the isotropic distribution of
orthogonal matrices in which each column or row is uniformly distributed on the unit
(n )-sphere.

In each of our experiments, matrices A of one or more dimensions n are selected
at random from one of these classes, with the sample size N diminishing with n to keep
the computing time within reasonable bounds. A typical set of dimensions and sample
sizes are listed below, although for some of our experiments the samples were larger.
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dimensionn 2 4 8 16 32 64 128 256 512 1024

sample sizeN 4096 2048 1024 512 256 128 64 32 20 10

Our calculations have been carried out in single precision Fortran 77 on SUN workstations,
IBM-compatible personal computers, a CRAY-2, and an Ardent Titan; no machine
dependences were observed. Most of our experiments, but not all, have made use of the
shuffled random number generators RAN and GASDEV in 23 ]. Plotting, data analysis,
and hundreds of supporting tests of every kind were carried out with the superb matrix
"workbench" program MATLAB, without whose powerful assistance a project of this
kind would have been difficult indeed.

2. Elements. Our arguments begin with a fundamental observation: for many classes
(k)of matrices, the elements a ij at the kth step ofGaussian elimination tend to be normally

distributed with mean 0. This statement is not exactly valid for k > 1, even ifthe elements
ofthe initial matrix A A( are themselves normally distributed, nor is it asymptotically
valid in any limit such as k, n -- , so far as we know, since the conditions of the
central limit theorem are not satisfied by Gaussian elimination. Nevertheless, the hy-
pothesis of normally distributed elements is often an excellent approximation, after the
first few steps of elimination, even when the elements ofA are not normally distributed.

Figure 2.1 provides evidence for this claim. For each half of the figure--partial and
complete pivotingm 1280 matrices of dimension 64 with normally distributed elements

(k)have been factored, and the elements aij. (k =< i, j =< n) in columns k 1, 9, 17,
57 accumulated in bins. The data are plotted as asterisks after being rescaled to have

17

25

33

49

57

(a) partial pivoting (b) complete pivoting

FIG. 2.1 Distributions ofelements,.-o rescaled to have variance 1, for n 64: observed (,) and normal
distribution(



AVERAGE-CASE STABILITY OF GAUSSIAN ELIMINATION 341

standard deviation 1, and the solid curves show the normal distribution for comparison.
The agreement ofthe two is excellent. (The noise toward the end results from the smaller
numbers ofelements in the samples.) It is not perfect, however; evidently partial pivoting
leads to a distribution that is slightly more peaked in the center than the normal distri-
bution. Similar plots are obtained for other values of n and k.

Although the shape of the element distribution is roughly independent of k, its
standard deviation rk grows considerably. This is visible in the increasing density of
asterisks in Fig. 2.1 as k -- n, especially for partial pivoting. (The bins holding the raw
data before rescaling were equally spaced.) This dependence of ak on k is essentially the
growth that is the subject of this paper. We shall model it in 5.

When matrices from nonnormal distributions are investigated, the results are often
surprisingly similar to those of Fig. 2.1. As a modest example, Fig. 2.2 details the initial
steps of Gaussian elimination for matrices with elements from the uniform [-1, dis-
tribution. At k 1, the asterisks reveal the initial square wave, but by k 8, the distri-
butions have become very close to normal, and for higher k (not shown) they are barely
distinguishable from those of Fig. 2.1. The same phenomenon occurs with most of the
classes of matrices listed in the last section. The exception is orthogonal matrices, for
which the element distribution is approximately normal for much ofthe elimination but
changes to a pronounced bimodal form toward.the end.

From now on, then, we shall assume that at every step of elimination, the elements
(k)

aij are normally distributed with mean 0; only the standard deviation ak depends on k.
For most of the argument, we shall further assume that the elements are independent,
until we are forced to abandon that assumption at (5.5).

k=l

2

3

4

5

6

7

8

(a) partial pivoting (b) complete pivoting

FIG. 2.2. Similar to Fig. 2.1, but for matrices with elements uniformly distributed in [-1, ]. Only the
initial steps <- k <= 8 are shown.
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---.k ---*k
0

0 5 i0 15 20 0 20 40 60 80

(a) n= 16 (b) n=64

FIG. 3.1. Average ratios rk/ rk ofpivots to elements: observed (,) and predicted().

Except where otherwise indicated, the experiments reported in the remainder ofthis
paper are based on matrices A with elements from the standard normal distribution.

3. Pivots. Even without knowing ak, the standard deviation of the elements at the
kth step of elimination, we can predict 7rk/rk, the size of the average pivot relative to

(k)
trk. The pivot element Ukk -gg is the largest in absolute value among m contes-
tants, where

n + k (partial pivoting),
(3.1) m

n + k) 2 complete pivoting ).

If the elements are normally distributed with standard deviation r, the distribution of
the pivots is a standard result from the field ofthe statistics ofextreme values, going back
to Tippett and Fisher in the 1920’s 13 ], 17 ]. Let W(m) (the "winner function") be
defined as the mode of the distribution of the largest absolute value among m numbers
taken from a normal distribution of mean 0, variance 1.3 From equations 4.2.3 11, 15
of Gumbel 17 ], W(m) is asymptotic to

(3.2) o:= /2 log (mVlr)
as m - o, and a more accurate estimate is4

(3.3) W(rn) 1-1+o +O 0grn
(We define W( V/r, the expected absolute value of a single normal variate.) Thus
our model of Gaussian elimination makes the prediction

(3.4) r kW(m).

We have chosen to work with the mode (the most frequent value) rather than the mean, although the
two are asymptotic as m oo. The reason is that the extreme value distribution is far from symmetric: for
practical values ofm the mode is several percent smaller than the median, which is several percent smaller than
the mean. We shall be dividing by W(m) to compute multipliers in the next section, and the mode is a
convenient statistic that is relatively insensitive to this inversion.

Gumbel has m/2 instead ofm in (3.2), since he is concerned with the largest element in signed magnitude.
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In the calculations and plots to follow we shall assume that each pivot element is exactly
equal to +agW(m), although in actuality it is, of course, a random variable.

Figure 3.1 provides experimental confirmation of this prediction for matrices with
normally distributed elements. For n 16 and 64 and both partial and complete pivoting,
the figure compares experimentally obtained ratios -g/rg with the prediction W(m), as
a function of k. The agreement is not perfect, but it is quite good. Similar agreement is
obtained with most of the other matrix distributions listed in 1.

4. Multipliers. The previous two sections lead readily to a prediction of the distri-
bution of multipliers at step k and of their standard deviation ug. First the pivot element
gg is chosen and the rows and possibly columns permuted accordingly; we have as-

^(k) (k) (k)sumed akk is equal to +.trkl4(m). The multipliers are then the numbers dig /,kg, and
(k)what we know about -ig is that it comes from the normal distribution of mean 0,

standard deviation ag, except with the tails beyond +rgW(m) deleted and the total
probability renormalized to compensate. That distribution has probability density function

/f--)e-tx/k)2/2

(k)p.d.f. (dig),-- rgerf(W(m)/f)
for Ixl

0 for xl >W(m),
where erf is the error function. (By (3.3) and standard estimates we have 1-

) aW(m) now giveserf(W(m)/) W(m)/2masm .) The division by,
the following approximate density distribution for the multipliers:

)
(1/) W(m)e-xwm))z/2

( )
for Ixl 1,

,ig erf(W( m)/)(4.1) o.d.f.
" 0 forlxl>l,

This is a rather remarkable formula, for it asses that the multiplier distribution is in-
dependent of evething except the length of the column on and below the diagonal,
n + k (which determines m by (3.1)). From (4.1), by integration by pas, we can
fuher derive an approximation for the variance of the multipliers at step k:

f / TrW(m )e-W(m)2/2 )erf(W(m)/V)

(4.3)
2 log (mV/Tr)

For experimental confirmation of these predictions, Fig. 4.1 is patterned after Fig.
2.1, but shows both n 16 and n 128. This time the solid reference curves are not
simply rescaled Gaussians, but the predicted multiplier distributions (4.1). The agreement
with predictions is excellent for partial pivoting and reasonably good for complete pivoting.
Note that the multipliers are smaller for large n and for complete pivoting.

5. Dependence on k. Sections 2-4 have proposed models ofthe behavior ofelements,
pivots, and multipliers at each step k, but did not consider how the scale of these quan-
tities- rg and 7rgmchanges with k. We turn now to this question.

The first half of step k is the interchange of rows and possibly columns A Cg) -- .3g),
2(k)which moves some large element a }f) to the pivot position ugh. In the case of complete

pivoting, this repeated removal of the largest element from the submatrix k 5 i, j n
has a pronounced retarding effect on element growth, especially toward the end of the
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k=l

(a) partial pivoting, n 16

k=l

17

33

49

65

81

97

113

(b) complete pivoting, n 16

(c) partial pivoting, n 128 (d) complete pivoting, n 128

FIG. 4.1. Distributions ofmultipliers ai /a, observed (,) and predicted(). The cutoffpoints are +_1.
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pvots
0000000 O0

0
0 5 i0 15 20 0

(a) partial pivoting, n 16

pivots

elements k

5 i0 15 20

(b) complete pivoting, n 16

8

0 0
0 80 0 8020 40 60

(c) partial pivoting, n 64

20 40 60

(d) complete pivoting, n 64

FIG. 5.1. Average elements G and pivots rk: observed (,, O) and predicted (--).

elimination. At step k the elements ak) with k _-< i, j _-< n have variance a; thus the
expected sum of their squares is ma with m (n + k) 2. When the pivot +trkW(m)
is removed from this collection, the remaining m elements have expected sum of
squares (m W(m)E)tr. If k denotes the standard deviation of the elements d,.k) for
k < i, j _-< n, we conclude

i2( )
trk (partial pivoting),

(5.1) = m_W(m)2
m

(complete pivoting).

The downturn resulting from this mechanism is clearly apparent in Figs. 5.1 (b), 5.1 (d).5
The second half of step k is the elimination calculation ,4 (k) - A (k+ ),

(k)
(k+ 1) (k) ik (k)(5.2) aij :=dij (k)Ukj (k<i,j<=n)

Ukk

,(k) (k)By assumption -ij and U kj have variance , and (4.2) gives a prediction of the vail-

The growth-retarding mechanism just described is analogous to the cooling that occurs in evaporation
of a liquid, in which the most energetic molecules escape from the surface, leaving those that remain behind a
little less energetic on average. Further analogies can also be found between Gaussian elimination and statistical
mechanics.
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ance of ik /kk denoted by #. If all of these quantities were truly independent, (5.2)
would imply that tr/ was related to by

(5.3)

thus completing our model ofGaussian elimination. But this foula is utterly inaccurate:
it leads to a prediction for paial pivoting of nearly exponential groh,

(5.4) en/(4

which fails to match experiments except for n 1. Equation (5.4) is derived by iterating
(5.1) and (5.3),

ff k=l

and then taking the logarithm and using (4.3) to obtain

n n -1 n
log --=e=1log(l+,)=l==21gm 41ogn"

We have now reached the point where hypothesis (2) mentioned in the Introduction has
failed us; it is time to replace it by some quantitative version of (2’).

We have found that the following simple assumption is sufisingly accurate, at
least until the last few steps of elimination: the variances accumulate additively rather
than multiplicatively according to the formula

22(5.5 +.
We do not have a rigorous justification of why (5.5) is an appropriate replacement for
(5.3), but here is a heuristic one. Equation (5.5) amounts to the statement that the
operations performed in Gaussian elimination do not compound, from the point ofview
ofgroh factors; it is as if the kth elimination step were applied to the original matrix
A A( rather than to A(. Why should this be? Our best answer is to describe the
following mechanism, which suggests that the groh introduced at one elimination step
tends not to contribute to fuher groh at later steps. At step k, the coecfion subtracted
from( by (5.2) is a rank-1 matx. Taking the extreme, suppose this coection hap-
pened to be much larger than the elements it was being added to. Then the new matx
A(+1 would be close to a matrix of rank one in its lower-fight subsquare k + N i,
j N n. Consequently, the large numbers just introduced would vanish at step k + 1.

This argument is ceainly not complete, nor precise enough to distinguish (5.5)
from various other possible modifications of(5.3). But we believe the feedback mechanism
it describes is essential to the stability of Gaussian elimination: large groh makes the
remaining matrix close to a matrix oflow rank, which in turn inhibits large groh. Note
that in keeping with the distinction in the Introduction between (2) and (2’), the low-
rank ropey would be destroyed if the signs of the correction matrix were randomized.
Experiments with a qobotomized Gaussian elimination" algorithm of this kind confirm
that (5.3) and (5.4) then become accurate. See 8 for the occurrence of this instability
phenomenon in a computation of practical interest based on parallel pivoting."

Equation (5.5) completes our model of average element and pivot groh as a
function of k, which consists in its entirety of equations 3.1 ), 3.2 ), 3.3 ), 3.4 ), (4.2),
(5.1), and (5.5).
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Figure 5.1 compares predicted element and pivot sizes with experimental observa-
tions. For all our inexact assumptions, the agreement is remarkably good except at the
very end ofthe elimination. We emphasize that all ofthe solid curves in Fig. 5.1 represent
predictions from general principles, dependent on no adjustable parameters.

Figure 5.2 returns once again to nonnormal distributions of elements. The first two
plots repeat Figs. 5.1 (c), 5.1 (d) for matrices with elements from the { 0, } distribution.
Ofthe nonorthogonal distributions we have considered, this is as far from having normally
distributed elements as any, but even so, the figure reveals that our element and pivot
predictions are roughly valid after k 8. Similar but generally better agreement is observed
in most ofthe other cases. Figures 5.2 (c), 5.2 (d), however, repeat the same experiments
for random orthogonal matrices, and the results are very different. In keeping with 1.2)
and (1.3), we see that the geometric mean of the pivots has increased by a factor of
approximately e. Hypothesis (5.5) has failed in this case, although the growth is still
far less rapid than (5.3) would predict.

6. Growth factors. At last we are prepared to turn to the problem ofaverage growth
factors. We will begin with experiments, and then see how these can be related to the
statistical model of the last four sections.

Figure 6.1 summarizes various theoretical and experimental results concerning the
average growth factor (p) of(0.2), all plotted on a log-log scale. The highest curve shows
the worst-case bound p _-< 2- for partial pivoting, which we know by (0.3) is sharp.

0
0 20 40 60 80 0

(a) partial pivoting, {0, matrices

20 40 60 80

---,k

(b) complete pivoting, {0, matrices

30 o

25 O*

0

20

lO

5

0
0 20 40 60

(c) partial pivoting, orthogonal matrices

80

30

25

20

15

i0

5

0 20 40 60

(d) complete pivoting, orthogonal matrices

FIG. 5.2. Repetition ofFigs. 5.1 (c), 5.1 (d)for random 0, and orthogonal matrices, n 64.
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FIG. 6.1. Average growth factors (o). The solid curves represent various theoretical worst-case bounds.

The next curve shows the best available worst-case bound for complete pivoting, p =<
Vn(2 31/2...n/t, 1))1/2 Cn/2+ /4og,, due to Wilkinson [32], which is known to
be not sharp.6 The straight line shows the bound p =< n that was conjectured by Wilkinson
for real matrices with complete pivoting 33, p. 213 ], which has never been proved
except for n -< 5 [4], [7], [18]. Below these curves, we have plotted two sets of experi-
mental values of() based on matrices with random elements from the standard normal
distribution.7 It is’evident that the average growth factors for both partial and complete
pivoting grow sublinearly with n and lie well below all of the worst-case bounds.

The pattern in these data can be made more apparent if we modify the definition
of. Rather than dividing by the maximum element ofA, let us divide by the standard
deviation OA of the initial element distribution,

(k)
max/,j,k aij(6.1) p=

(aa is not the same as a, unless the elements ofA have mean 0: the former is a true
standard deviation, while the latter is defined in (1.4) relative to 0.) For matrices with
elements from a uniform distribution, this modification will increase () by a constant
factor, whereas for matrices with normally distributed elements, the factor is approximately
W(n) O(/log n ). Figure 6.2 repeats the experimental data of Fig. 6.1, but showing
() instead of (). The data points lie strangely close to two straight lines:

(6.2) partial pivoting" () /,/2/3, complete pivoting" () ?//2.

The proof of Wilkinson’s bound is a reasonably straightforward recursive application of 1.1 ).
In Fig. 6.1, the last two data points in each sequence (n 512 and n 1024) are fabricated by extrapolation;

in our computer experiments we neglected to measure these numbers beyond n 256. All the data in Fig. 6.2
are genuine, however, and since the two figures are nearly equivalent, the extrapolations are unlikely to be far
wrong, so we have included the extra points in Fig. 6.1 to make the comparison clearer.

Goodman and Moler 8 ], 16 report that in the LU factodzation of 10,000 random matrices ofdimensions
10

_
n =< 50 drawn from four different distributions, the largest growth factor encountered was p 23. MacLeod

[21], who increased n to 100, observed a maximum growth factor p 35. We regret to say that in our own
experiments, we were so focused on average-case behavior that we neglected to measure the largest growth
factor.
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FIG. 6.2. Average normalized growth factors ( . The solid lines are purely empirical.

In this observation there is not even a constant factor to worry aboutmthe fractional
power of n is multiplied by 1! Despite these surprisingly close agreements, howeverm
especially for partial pivoting and n2/3mwe do not claim that the approximations (6.2)
are asymptotically valid as n --* oo.

The data from Figs. 6.1 and 6.2 are recorded in Table 6.1. The sampling errors in
this and subsequent tables probably range from about percent for small n to more like
5 percent for large n.

Average growth factors change remarkably little when we turn to other distributions
of matrices. Tables 6.2 and 6.3 list observed growth factors () for Gaussian elimination
with partial and complete pivoting for the eight distributions of matrices listed in 1.
For larger n, except in the case of random orthogonal matrices, the numbers are nearly
independent ofthe matrix distributionmso much so that a plot would be uninformative.
Thus (6.2) appears to continue to hold with the constant factor 1, independently of the
matrix distribution--a remarkable degree of a regularity that would have been obscured
had we not normalized by aA in (6.1).

TABLE 6.1
Average growth factors (p) and

2
4
8
16
32
64
128
256
512
1024

Partial
pivoting

1.04
1.15
1.42
1.93
2.89
4.31
6.14
8.74

Complete
pivoting

1.01
1.04
1.10
1.20
1.45
1.91
2.62
3.56

Partial
pivoting

1.52
2.39
3.63
5.92
9.77

15.9
26.3
40.0
63.7
97.3

Complete
pivoting

1.48
2.15
2.82
3.64
4.97
7.17
10.8
16.1
24.3
36.1
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n

2
4
8
16
32
64
128

TABLE 6.2
Average growth factors( for matricesfrom various distributions, partial pivoting.

Normal

1.52
2.39
3.63
5.92
9.77
15.9
26.3

[-1, 1]

1.48
2.23
3.5O
5.85
9.67
15.5
24.6

[0, 11 {-1, 1} {0, 1} Symm. Toep. Orth.

2.77 1.50 1.87 1.40 1.41 1.59
3.33 2.02 2.13 2.26 2.12 2.78
4.06 3.61 4.18 3.60 3.37 5.20
6.17 6.63 6.86 6.06 5.83 10.3
9.85 9.86 9.91 10.0 10.3 20.7
16.3 15.7 16.6 16.5 18.3 42.5
25.2 24.9 25.9 25.6 30.1 81.4

The observation that orthogonal matrices fare worse in Gaussian elimination is not
new, but goes back at least to Wilkinson (cf. Fig. 5.2). For example, the extreme case of
element growth under complete pivoting in any example yet devised is achieved by
Hadamard matricesmmultiples of orthogonal matrices with elements 1--for which
p >= Unn n (proof by Cramer’s rule [4]). See [7] and [18] for more on this subject.

It remains to relate these observations to our statistical model ofthe past four sections.
To begin the discussion, let us for the first time take a look at the effect ofGaussian

elimination on individual matrices rather than just averages. Figures 6.3 (a), 6.3 (b) show
pivots Ukkl from the factorization of a single matrix with n 64 compared with the
prediction rk of Fig. 5.1. Figs. 6.3 (c), 6.3 (d) superimpose the pivots Ukkl from 25 such
matrices. These four plots show vividly that our average-case predictions have definite
relevance even to an individual matrix, for although Ukkl oscillates considerably, its
overall trend follows the predicted average. They also show that the extent ofthe oscillation
is much greater for partial than complete pivoting.

The growth factor k will, in general, be larger than maxk rk, since k is a maximum
while maxk rk is a maximum ofan average. Figure 6.3 suggests that for complete pivoting
the excess is typically modest, whereas for partial pivoting it may be quite substantial.
These considerations explain how it is possible that the average size ofrk can be insensitive
to the type of pivoting (in keeping with 1.3 )) while the growth factor still varies signif-
icantly.

We can estimate (k) as follows. Figures 5.1 and 6.3 suggest that very roughly, the
last n/2 steps ofGaussian elimination are equally likely to contribute the largest element

tk) (The crudeness of this estimate is not so important, since W(m) depends verya 0
weakly on m.) These final n/2 steps generate a total of n3/24 new elements _tk)

aij
Therefore we estimate

(6.3) () W(n3/24) maxk ak,

2
4
8
16
32
64
128

TABLE 6.3
Average growth factors (?a) for matricesfrom various distributions, complete pivoting.

Normal

1.48
2.15
2.82
3.64
4.97
7.17
10.8

[--1, 1] [0, 1] {-1, 1} {0,1} Symm. Toep.

1.42 2.77 1.50 1.87 1.38 1.39
1.98 3.27 2.02 2.14 2.06 1.97
2.75 3.50 3.40 3.76 2.83 2.74
3.70 4.13 4.10 4.15 3.73 3.84
5.11 5.34 5.48 5.55 5.10 5.72
7.40 7.49 7.73 7.88 7.34 8.94
11.0 11.2 11.3 11.4 11.0 13.9

Orth.

1.59
2.63
4.30
7.26

13.0
23.3
43.3
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FIG. 6.3. Pivots Ukk for matricesfrom the standard normal distribution, n 64. The solid lines represent
the same predictions as in Figs. 5.1 c 5.1 d ).

where ak is the predicted value derived in 5.5 ). Figure 6.4 compares this prediction with
the lines n /2 and n 2/3 of Fig. 6.2. The agreement is not bad! The predictions for partial
pivoting are somewhat too low, however, which reflects the fact that our predicted values
of ak were too low toward the end of elimination (Fig. 5.1 ).
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64

32

16

n2/3

nl/2

2 4 8 16 32 64 128 256 512 1024

FIG. 6.4. Predicted average growth factors ( >. The solid lines arefor comparison with Fig. 6.2.
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What about asymptotics as n --? We must be cautious here, for as is well known,
extreme value statistics for normal distributions are approached painfully slowly. But as
n , W(n3/24) O(/log n), by (3.2)and (3.3), and maxk ak o(/n//lOgn),
by (4.2) and (5.5). Thus the natural conjecture appears to be

(6.4) () O(Vn) as n--?

for both partial pivoting and complete pivoting, despite (6.2). This guess is tidy but
hardly astonishing, in the light of (1.3).

7. Residuals. Our next set ofexperiments concerns the actual errors introduced by
Gaussian elimination, and also by QR factorization, as measured by residuals computed
in double precision. Let an n X n matrix A be factored in one of the following ways:

A PLU (Gaussian elimination with partial pivoting),
A PI LUP2 (Gaussian elimination with complete pivoting),
A QR (QR factorization),
A QRP (QR factorization with column pivoting),

where L is unit lower triangular, U and R are upper triangular, Q is orthogonal, and P,
P,, and P2 are permutation matrices. The QR factorizations are carried out by House-
holder reflections, and as is customary, the vector associated with these reflections is
stored rather than an explicit matrix Q. Let L, U, R, and so on denote the matrices
obtained in floating-point arithmetic, and define the residual for Gaussian elimination
with partial pivoting by E A PLU, and similarly for the other factorizations.

After a factorization has been carried out, we measure the size ofE by its maximum
element normalized by rA and also by machine epsilon:

(7.1) E max
maxi,j eijl.

At the end of a series ofN factorizations, we compute the average (E max > as usual.
Figure 7.1 begins with the most important case ofthe standard normal distribution,

showing computed quantities (E max > as a function of n for Gaussian elimination with

256

128

64

32

16

FIG. 7.1. Average maximum residual element (Emax. The solid lines are empirical.
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partial and complete pivoting and for QR factorization without pivoting. The data from
the figure, together with corresponding numbers forQR factorization with column pivot-
ing, are listed in Table 7.1. They suggest, somewhat surprisingly in the light of the last
section, that the maximum residual elements in partial and complete pivoting differ only
by a constant factor: both satisfy (E max) Cn. They also suggest that QR factorization
is asymptotically more stable than either form of Gaussian elimination, with (E max)
Cn /2. Thus it would appear that in practice, there may be little difference between partial
and complete pivoting in Gaussian elimination, but not because both are entirely stable;
apparently both suffer mildly from the unstable effects of pivot growth. The same con-
clusion is obtained if one measures the residual matrix E in ways other than by its
maximum element.

TABLE 7.1
Average maximum residual element (Emax.

2
4
8
16
32
64
128
256

Gaussian elim.

Partial
pivoting

0.43
1.47
3.64
8.13
17.2
36.0
73.0

134.

Complete
pivoting

0.33
1.13
2.68
5.71

11.4
22.6
44.6
86.2

QR factorization

No
pivoting

4.75
8.87

12.8
18.0
24.2
35.8
56.4
84.3

Column
pivoting

5.10
8.42

12.5
16.7
24.9
35.6
54.6

2
4
8
16
32
64
128

TABLE 7.2
(Emax)mvarious matr distributions, partial pivoting.

Normal

0.43
1.47
3.64
8.13

17.2
36.0
73.0

[-1, 1l [o, 1l {-1, 1}

0.47 0.75 0.00
1.52 1.92 0.00
3.67 4.24 0.12
8.03 8.80 5.62

17.3 17.5 16.9
33.6 35.1 34.5
71.6 72.1 69.1

{o,}

0.00
0.00
0.27
6.32
17.6
35.5
71.5

0.46
1.45
3.71
8.33
17.2
36.3
72.2

Toep.

0.46
1.45
3.63
8.35

17.9
37.6
74.1

Orth.

0.58
2.01
5.08

12.2
28.2
68.7
149.

TABLE 7.3
(Emax)--various matrbc distributions, complete pivoting.

2
4
8
16
32
64
128

Normal

0.33
1.13
2.68
5.71

11.4
22.6
44.6

[-1, 11 [0, 1] {-1, 1}

0.42 0.68 0.00
1.32 1.75 0.00
2.98 3.61 0.28
6.03 6.82 4.86
11.5 12.4 11.5
22.1 24.2 23.9
46.5 43.3 44.8

{0,1}

0.00
0.00
0.64
5.34

11.9
24.4
46.8

0.40
1.19
2.79
5.85

11.4
22.9
43.5

Toep.

0.41
1.27
3.00
6.25
12.7
26.2
50.9

Orth.

0.58
1.78
4.39
9.25
19.9
42.0
88.2
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As with the growth factors ofthe last section, our observations concerning residuals
are closely duplicated for random matrices from many other distributions. Tables 7.2
and 7.3 reveal that once again, only orthogonal matrices among the classes we have
examined behave much differently.

8. Alternative pivoting strategies. The previous sections have examined "classical"
Gaussian elimination with partial or complete pivoting, and concluded that these algo-
rithms are highly stable on average. In this final section we shall look more superficially
at three variants of Gaussian elimination based on alternative pivoting strategies:
"threshold," "pairwise," and "parallel" pivoting. All ofthese variants are less stable than
partial or complete pivoting, and the last turns out to be markedly unstable for large n
even though the multipliers are all less than in magnitude. Table 8.1 summarizes our
conclusions, which are based on experiments with n =< 1024. The most interesting ob-
servation is that as discussed in earlier sections, the stability of Gaussian elimination
depends not only on the size of the multipliers, but also on whether the corrections
introduced at each step are of low rank.

TABLE 8.1
Summary ofexperimental results for various pivoting strategies.

Size of Rank of
Pivoting strategy multipliers corrections Average-case stability

partial or complete =< highly stable
threshold -<r- reasonably stable for larger
pairwise -< low reasonably stable
parallel <- n/2 unstable

We begin with threshold pivoting, a well-known idea that is discussed by various
authors (for a discussion and references see [10]). The idea is to require only that

(k) (k)(8.1) lukk ’i’[dik l, i> k,

where z [0, is a parameter. For z this is partial pivoting, and for z 0 it is no
pivoting at all; of course in practice z is taken to be positive. The motivation behind
threshold pivoting is that it allows for more than one row to be a candidate for the pivot
row, and some other criterion, such as sparsity, can be used to make the choice.
With this strategy, the multipliers are at most z-l and the growth factor satisfies o =<
(1 + z-1)n-l. AS with partial or complete pivoting, each step involves an elimination
operation of rank 1.

Several authors have espoused ways to choose 7, with recommended choices being
as low as 0.01 [29] or as high as 0.25 [5]. Duff[9], [10] reports an experiment with
four sparse matrices and arrives at the interesting conclusion that z 0.1 affords both
good reduction of fill-in and loss of only one to two digits of accuracy in the solution,
whereas smaller - (0.01 or less) can be disastrous to accuracy and may actually increase
the fill-in. To explain this counterintuitive observation, he notes that when r is small the
variance of elements becomes large, so that the number of elements that satisfy (8.1)
becomes small.

We performed a brief series of experiments using dense matrices of dimensions
n =< 128, with independent elements from the standard normal distribution and with
z { 0.5, 0.25, 0.1, 10 -2, 10 -4, 10-8 }. The sample sizes were approximately as listed in

1, and at each step the pivot row was simply taken to be the first candidate satisfying
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FIG. 8.1. Average growth factors ()for threshold pivoting with various thresholds r. The solid lines are

for comparison with earlierfigures.

(8.1). In Fig. 8.1, the observed average growth factor (k) is plotted against n for each
of the values of r, with the curves/,/2/3 and 2"- shown for comparison. The numbers
are listed in Table 8.2. These experiments support the conclusion that for larger values
of r, threshold pivoting is reasonably safe; the growth factors are nowhere near the worst-
case bound 2 ,-l. Of course, in applications involving sparse matrices the behavior may
be different.

What about the limit r 0--no pivoting? The data for r 10 -s in Fig. 8.1 are not
much different from what would have been observed in the same experiment with r

0, but there is an important mathematical difference nonetheless: although any single
experiment will yield a finite result with probability l, the expected growth factor is
infinite in the absence of pivoting. (This is obvious; we need only consider the very first
division a (2I)/ I)all .) For a meaningful theory of the statistical behavior ofGaussian elim-
ination without pivoting, we would have to employ a different measure of average-case
growth such as exp ( log >), as in the study ofexpected condition numbers ], 26 ].

Another well-known variant ofGaussian elimination ispairwise or neighborpivoting,
in which only adjacent rows are interchanged or eliminated. Here is the algorithm. The
scope of each control structure is indicated by indentation, and row (i) denotes the

TABLE 8.2
Average growth factors (7)for threshold pivoting.

2
4
8

16
32
64
128

r 0.5

1.58
2.74
5.07
9.86
18.7
34.8
62.2

0.25

1.75
3.86
9.05

21.6
46.6
90.6
164.

r 10-
2.06
6.07
17.7
50.9

124.
270.
523.

r 10-2

3.24
15.1
56.1

172.
464.
1370.
2670.

r 10-4

5.54
39.9

136.
535.
1660.
7340.
15600.

r 10-s

5.16
60.7

249.
1030.
3210.
16100.
30900.
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FIG. 8.2. Average growth factors ( ) for pairwise pivoting. The solid lines arefor comparison with earlier
figures.

elements { ai,k, ai,k+ l, ai,, }"
fork’= lton-

fori’=ntok+ lstep-1
if a,l > [ai- l,k[ then

exchange row (i) and row
row (i) row (i) (ai,k/ai-,k),row (i

This algorithm is of interest for parallel computing because it avoids the search for a
maximum required by partial and complete pivoting--a substantial bottleneck for parallel
computations--yet keeps all multipliers less than in magnitude. Sorensen has obtained
a worst-case bound 4n- on the growth factor [27].

Our experiments involved matrices of dimensions n 2, 4, ..., 1024 with inde-
pendent elements from the standard normal distribution. The sample sizes were 10,000
for n =< 8, 1000 for 16 =< n =< 128, and 250 for n >= 512. Figure 8.2 plots the observed

TABLE 8.3
Average growth factors ( ) for complete, partial, pairwise, and parallel pivoting.

2
4
8
16
32
64
128
256
512
1024

Complete
pivoting

1.48
2.15
2.82
3.64
4.97
7.17

10.8
16.1
24.3
36.1

Partial
pivoting

1.52
2.39
3.63
5.92
9.77
15.9
26.3
4O.O
63.7
97.3

Pairwise
pivoting

1.52
2.41
3.83
6.68

12.1
21.3
41.8
85.2

179.
432.

Parallel
pivoting

1.55
2.41
3.94
7.67

18.7
64.1

483.
1.53 104
7.72 106
4.2 1012



AVERAGE-CASE STABILITY OF GAUSSIAN ELIMINATION 357

240

230

220

2o

2 4 8 16 32 64 128 256 512 1024

FIG. 8.3. Average growth factors ( ) for parallel pivoting.

average growth factors (b) as a function of n, and the numbers are listed in Table 8.3.
Evidently pairwise pivoting is quite stable on average, though not as stable as partial or
complete pivoting. We explain this by observing that first, the magnitudes ofthe multipliers
are somewhat bigger but still much less than on average; second, the corrections intro-
duced at each step are still on average of low rank, although not of rank 1.

Finally, what we call parallel pivoting is a (nonstandard) variant of Gaussian elim-
ination in which as many as n 2 elements are eliminated in parallel. For example, if
n 2m, we first eliminate aj / m, for j 1, 2, m by subtracting a multiple of row
j from row j + m. These two rows are exchanged first if necessary in order to keep the
multiplier no greater in magnitude than 1. Here is the algorithm:

fork: ton-
nelts := n k
while nehs> 0

n2:=(nelts+ )/2
nelts := nelts n2
for/:= ton2

rowl :=k+i-
row2 := k+ + nelts

/ * number below diagonal * /

/ * number to eliminate * /
/* number remaining * /

/ * pivot row * /

if arow2,k > arow,kl then exchange row (row and row (row2)
row (row2):= row (row2) (arow2,k/arow,g)*row (rowl

We tested this algorithm on matrices of orders n 2, 4, 8, ..., 1024 from the
standard normal distribution. Except for n 1024, where only two matrices were factored,
the sample sizes were at least 100 matrices. Figure 8.3 plots the observed growth factors
(k) as a function of n, together with the curves n 2/3, en/(41gn) (equation (5.4)), and
2"- for comparison. The data were listed already in Table 8.3 above. Clearly, this
parallel pivoting strategy is unstable. We explain this by observing that first, the multipliers



358 L. N. TREFETHEN AND R. S. SCHREIBER

are bigger than in standard Gaussian elimination (although still no greater than );
second and more important, the corrections introduced at each step are of high rank, so
that there are no favorable dependences among signs to retard growth. The rough agree-
ment of the data with the curve en/(4 log n) suggests that perhaps this particular pivoting
strategy, unlike partial or complete pivoting, approximately satisfies hypotheses ( and
(2) of the Introduction.

9. Conclusions. Is Gaussian elimination with partial pivoting stable on average?
Everything we know on the subject indicates that the answer is emphatically yes, and
that one needs no hypotheses beyond statistical properties to account for the success of
this algorithm during nearly half a century of digital computation.

This paper has presented a model of the average-case behavior of Gaussian elimi-
nation supported by extensive experiments. Although no theorems have been proved,
we believe that there is reasonably good evidence for the following conclusions. These
statements are approximate, not exact, and they apply to the average case for many, but
not all, distributions of matrices. Except where otherwise indicated, they apply to Gaussian
elimination with either partial or complete pivoting.

For QR factorization with or without column pivoting, the average maximum
element of the residual matrix is O(n/), whereas for Gaussian elimination it is O(n).
This comparison reveals that Gaussian elimination is mildly unstable, but the instability
would only be detectable for very large matrix problems solved in low precision. For
most practical purposes Gaussian elimination is highly stable on average. ( 6, 7)

(2) The statistical behavior of Gaussian elimination depends on the standard de-
viation ofthe initial matrix elements, but is otherwise insensitive to the matrix distribution.
In particular, the statements below apply equally to random matrices with elements from
normal, uniform, or discrete distributions, as well as to random symmetric and Toeplitz
matrices (but not to random orthogonal matrices).( 2-6)

3 For n -< 1024, the average growth factor (normalized by the standard deviation
of the initial elements) is within a few percent of n 2/3 for partial pivoting and is approx-
imately n /2 for complete pivoting. ( 6)

(4) After the first few steps ofGaussian elimination, the remaining matrix elements
are approximately normally distributed, regardless of whether they started out that way.
({}2)

(5) The average magnitudes ofpivots relative to elements at each step ofelimination
can be predicted by extreme value statistics. The distribution of multipliers at each step
can then be predicted based on the pivot magnitudes. ( 3, 4)

(6) The signs of the elements and multipliers are not independent, and their de-
pendence is essential to the stability ofGaussian elimination. It results from the fact that
each step of elimination introduces a rank-1 correction to the remaining matrix, which
provides a feedback mechanism that inhibits potential element growth and instability.
( 5, 8)

(7) This dependence of elements and multipliers can be modeled by hypothesizing
that the corrections added at each step of elimination accumulate additively rather than
multiplicatively. The resulting predictions of growth factors agree reasonably well with
observations. ( 5, 6)

(8) By contrast, nonclassical variants of Gaussian elimination involving higher-
rank elimination steps are sometimes markedly unstable, even though the multipliers
are small. ( 8)
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Note added in proof. This paper has focused mainly on averages, not distributions.
Ultimately, however, it is the tail of the growth factor distribution that is of greatest
concern. Experiments leave little doubt that the tail decays exponentially, and to illustrate,
the following figure is a histogram ofcomputed growth factors p in an experiment involving
partial pivoting applied to N 20,000 matrices of dimension n 32 with normally
distributed elements. Note the logarithmic scale. We leave it to others to determine how
close such figures are to standard distributions such as the extreme value distribution.
A. J. MacLeod has previously carried out experiments in this line 2 ], 34 ], and further
statistical analysis of pivoting data is being carried out by D. Hoaglin in the Dept. of
Statistics, Harvard University.
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FIG. Partial pivoting growth factor distribution based on 20,000 matrices ofdimension n 32.
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