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SUMMARY
In the cost-effectiveness analysis, interest could lie foremost in the incremental cost-effectiveness
ratio (ICER) which is the ratio of the incremental cost to the incremental benefit of two competing
interventions. The average cost-effectiveness ratio (ACER) is the ratio of the cost to benefit of an
intervention without reference to a comparator. A vast literature is available for statistical
inference of the ICERs, but limited methods have been developed for the AC-ERs, particularly in
the presence of censoring. Censoring is a common feature in prospective studies and valid
analyses should properly adjust for censoring in cost as well as in effectiveness. In this paper, we
propose statistical methods for constructing a confidence interval for the ACER from censored
data. Different methods - Fieller, Taylor, Bootstrap - are proposed and through simulation studies
and data analysis, we address the performance characteristics of these methods.
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1 Introduction
Economic burden in health care has been a significant concern to virtually all members of
our society. In the presence of competing methods (e.g., interventions and regimens) doing
the same task, evaluating costs, relative to their perceived benefits, is critical. The strong
need to control health care costs makes us search for intervention(s) that produce the
greatest value, based partly on comparative economic evaluations.

Cost-effectiveness analysis (CEA) is a form of economic analysis that compares the relative
expenditures and outcomes of two or more competing strategies. It has been frequently used
in economic, biomedical, social sciences, public health and other fields over the past several
decades. Various statistical methodologies have been developed for CEA and the
incremental cost-effectiveness ratio (ICER), defined as the ratio of the difference in costs to
the difference in effectiveness between two competing strategies, has been most widely
accepted by researchers and policy makers [1], [2], [3] [4]. In addition to the ICER, the
ACER that estimates average cost spent per effect has served as another important measure
in the CEA [5], [6]. [Note: We can formulate the ACER=μM/μT and the

, where μM and μT denote mean cost and mean effectiveness,
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respectively, and the subscript indexes comparison groups. The difference of the ACERs (as
in two-sample problem), , may be contrasted with the ICER.]

Apparently, the ICER and ACER estimate different parameters and the purposes of these
measures are different. Some researchers reviewed and compared the roles of these two
approaches [5], [6], [7], [8], [9]. Particularly, Laska et al. [10], Gardiner et al. [11], [12] and
Wagner [13] studied the mathematical properties of the ACER and elucidated the
relationships between the ACER and the ICER. Using ACERs, one may devise a decision
rule based on a fixed budget, to maximize total effectiveness, similar to the idea of the
Neyman-Pearson lemma [14].

Although, the ICER could be more relevant to health economics and policy decision, the
ACER has several advantages/properties that should be noted: 1) it is a parameter that
characterizes clinical and economical properties of a treatment independent of its
comparators (thus, application to one group or more than 2 groups is straightforward); 2) it
conveys an intuitive meaning and interpretation (say, cost spent per year) that even lay
persons can understand - it is very likely that researchers, policy makers and patients/payers
may want to see the ACERs(e.g., for short vs. long-term costs) even when the ICER is
adopted for decision making; 3) it is less vulnerable to numerical instability, compared to the
ICER -For example, the ICERs can be misleading and/or numerically unstable when two
groups demonstrate similar effectiveness (e.g., resulting in a small denominator in the
ICER); and 4) a subjective threshold (such as λ, which is typically needed for ICERs) is
generally not needed [15], [16].

Currently, there are various methods available for statistical inference of the ICERs. In
contrast, less attention has been paid to the ACERs. Also, to our knowledge, there is no
statistical method published so far for the analysis of the ACERs with censored data.
Censoring occurs commonly in prospective studies that entail patient follow-up (e.g.,
clinical trials). When it occurs, it should be properly accounted in the analyses of
effectiveness, cost, and cost-effectiveness [17], [18], [19]. Also, when the effectiveness
between two treatment groups are differential (e.g., one group survives longer than the
other), it may be misleading to compare two mean costs (or other functions of the costs or
their distributions) because one treatment group may incur larger cost primarily because
patients in that group tend to survive longer (i.e., cost is confounded with survival time). In
that case, one way to adjust survival experience could be to compute the ACERs and to
compare the ACERs rather than costs between/among treatment groups directly. Even when
the effectiveness between two treatment groups are not differential (so that estimation of the
ICER may not be well justified or stable), estimating the ACERs and the associated
confidence intervals (CI) would be still interesting, say, in order to understand how much
money is expected to be spent per year of survival. Although the estimates of the ACER and
ICER are similar mathematically as both being ratio statistics, there are some differences -
the ACER is the difference of the ratios and the ICER is the ratio of the differences.
Therefore, currently available methodological guidance and comparative reviews suited for
the ICERs may not be directly applicable to the ACERs ([20], [21], [22], [23], [24], [25],
among others).

In this article, statistical methods are proposed for the estimation and inference of the ACER
in the presence of censoring (called ‘one-sample problem’). Then the methods are extended
to the comparison of the two ACERs (‘two-sample problem’). The methods are outlined in
Section 2. Section 3 presents simulation studies and Section 4 presents the analysis of the
data collected in a cardiovascular clinical trial. Concluding remarks are provided in Section
5.
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2 Statistical Methods
2.1 Notation and assumptions

Let us consider one group of samples (e.g., one arm in the trial) first and assume death is the
endpoint of interest without loss of generality. For the ith person in the study, let Ti denote
his/her overall survival time and Ci the censoring time, where censoring is assumed to be
random and independent of survival time and total cost. This kind of ‘non-informative
censoring’ is assumed for most of survival data analysis methods. For example, this
assumption is satisfied when censoring is mainly caused by administrative reasons such as
finite duration of a clinical trial. Due to censoring, only one value between Ti and Ci is
observed, whichever occurs first. Thus, the observed data for survival analysis are the
follow-up time, Xi = min(Ti, Ci), along with the corresponding censoring indicator, Δi = I(Ti
≤ Ci), where Δi = 1 means the ith person’s death is observed and Δi = 0 means the person’s
death is not observed so that his/her survival time is censored. Denote the cost history, M(t),
as the cost accumulates from time 0 (the point when the patient entered the study) to time t.
Because of censoring, it is impossible to estimate the lifetime cost without making some
restrictive assumptions [26], [27]. Therefore, we only consider cost as well as survival time
accumulated up to a fixed time point L, where a reasonable amount of complete (i.e.,
uncensored) data are available over the time period [0, L]. Hence, we will consider

 instead of Ti. But for simpler notation, we will suppress the superscript L and
use Ti to denote  in the remaining manuscript. In practice, L should be chosen to make the
largest survival time be uncensored [28]. However, we may choose L to define several
largest survival times as complete observations in order to prevent numerical instability near
the tail of the distribution [29]. [Remark: Depending on the goal and data availability, CEA
may be conducted with different time frames (e.g., lifetime horizon, within trial, or upto 3
years). In these tasks, extrapolation or time restriction is often entailed.].

We are interested in estimating the expected value or mean of the medical cost μ =
E{Mi(Ti)} from a set of observed data [Xi, Δi, {Mi(t), t ≤ Xi}, i = 1, ···, n]. The cost history is
often measured in discrete time intervals (e.g., monthly or yearly) in practice. If the cost
history is not recorded, we only observe the final (total) cost Mi ≡ Mi(Xi) for each individual.
Those who died before being censored have Mi ≡ Mi(Xi) = Mi(Ti).

2.2 Estimating the Mean Cost and its Variance
If all patients are followed up to time L or until their deaths (i.e., no censoring), then we
would have complete survival time and total cost data for every patient so that the standard
statistical method such as the sample mean could be used for estimating the mean cost and
mean survival time. However, in most cases in prospective studies, some costs as well as
survival times are censored, i.e., they are not completely observed for all patients. Bang and
Tsiatis [30] proposed a simple weighted estimator for the mean cost using the idea of
inverse-probability weighting as follows:

where K̂(Ti) is an estimator for K(t) = P (C > t), the survival function of the censoring time C
evaluated at time Ti. It can be estimated by the Kaplan-Meier estimator with the roles of Ti
and Ci reversed (i.e., censoring indicator becomes 1 − Δi instead of Δi) [31]. In this simple
weighted estimator, censoring is handled by weighting each uncensored individual with their
probability of being uncensored so that each uncensored individual represents more than one
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observation in order to account for censored observations. This inverse-probability
weighting idea was originated by Horvitz and Thompson [32] in survey sampling and the
simple weighted estimator has served as a building block upon which more advanced or
sophisticated medical cost estimators have been developed. The simple weighted estimator
was shown to be consistent and asymptotically normal and its variance can be consistently
estimated by

where

The simple weighted estimator only utilizes completely observed data, thus it is not
efficient, especially when the proportion of censoring is high. A general way to improve the
efficiency of an estimator could be by extracting and utilizing information from censored
observations or from the cost history of available observations. For this purpose, a more
efficient but practical estimator was proposed by Zhao and Tian [33] based on semi-
parametric efficiency theories ([34], [30]). [A reason that we call ‘practical’ here is that
there are several efficient estimators developed in this framework but most estimators are
computationally and algorithmically complicated so that the use of these estimators is less
attractive to practitioners and data analysts.] The Zhao and Tian estimator can be written as

where

is the average cost at Cj of individuals who are still under observation at time Cj. The
formulation of the improved estimator clearly shows the contributions from uncensored data
and those from censored data.

A variance estimator for the improved estimator is given by

Bang and Zhao Page 4

J Biopharm Stat. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



This improved estimator was shown to be more efficient than the simple weighted estimator
whenever Mi(u) is highly correlated with the overall cost Mi, which is often the case in
practice [33]. See [35], [36] for analytic relationships among simple weighted, improved
and/or other estimators.

2.3 Estimating the Covariance of the Mean Cost and the Mean Survival Time
In order to construct a CI for the ACER (as a ratio statistic, μ̂M/μ̂T) using parametric methods
outlined in the next subsection, we need to derive covariance between the mean cost
estimator (μ̂M) and the mean survival time estimator (μ̂T). Here, the mean survival time can
be estimated by the area under the Kaplan-Meier curve of the survival function over [0, L],

or equivalently by , an alternative formula via inverse-probability weighting
[28], [37]. [Remark: ACER will denote parameter and estimator interchangeably as long as
the context is clear for simpler presentation.]

Using the logics of Zhao and Tian [33] based on the martingale central limit theorem, the
covariance of the simple weighted estimator of the mean cost and the mean survival time
can be derived as

where

and

The covariance of the improved estimator and the mean survival time can be derived as:
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2.4 Estimating the ACER and its Confidence Interval: One-Sample Problem
In this subsection, we continue to consider one-sample problem. This implies, in two (or
multi) arm trial, we will compute the ACER for each arm separately.

We consider four different approaches for constructing CIs: Taylor’s, Fieller’s, percentiles-
based Bootstrap, and normality-based Bootstrap methods. These methods along with others
have been compared for the ICERs (as such, the same formulae provided below appeared
elsewhere including [22], [38] among others) and a general consensus is that Fieller’s
method and Bootstrap percentile method are recommended for obtaining CIs for the ICER in
common scenarios). [Remark: Yet, great caution may need to be exercised when we choose
a CI method for the ICER because qualitatively different scenarios are possible such as a/b,
a/0, 0/0, where a and b are positive constants and ‘identically 0’ is highly unlikely in
practice - See [39] and [40] on these issues. In contrast, the same caution is not generally
needed for the ACER.] In this manuscript, we want to evaluate the performance of these
methods for the ACER counterpart. Each method is summarized below. We assume that we
have large samples so that asymptotic theory is satisfied. However, we will evaluate the
methods with finite samples (N = 100 and 200) using simulation in the next section.

Taylor’s method—The variance of the ACER can be approximated via the standard
Taylor’s series expansion assuming a normal distribution based on the central limit theorem.
The variance can be estimated by:

Then the (1 − α)% CI for the ACER parameter can be constructed as

where zα/2 is the critical value with right tail area α/2 from the standard normal distribution.

Fieller’s method—In order to circumvent the derivation of the exact variance of a ratio,
Fieller [42] proposed a method that transforms the ratio into a linear function of the two
random variables and then derives the variance of the linear function. Since the numerator x
= μ̂M and the denominator y = μ̂T in the ACER are bivariate-normal asymptotically, the
assumption needed for Fieller’s theorem may well be satisfied. Hence the 100(1 − α)% CI
for the ACER can be given as

where , and Sxx, Syy and
Sxy are the sample variances of x, the sample variance of y, and the sample covariance of x
and y, respectively.
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In addition, Bootstrap methods are natural choices for nonparametric estimation of the
variance or CI. By generating B bootstrap replicates of effectiveness-cost pairs by ‘sampling

with replacement’, we can obtain B ACER values, denoted by ( ), which
could form an approximate distribution of , where we want to preserve within-person
correlation. Among various bootstrap methods, we intended to implement two most
convenient ones [41].

Bootstrap percentile method—From ( ), a (1 − α)% CI for the
ACER can be derived by using the (α/2)th and (1 − α/2)th percentiles, which are denoted by

( ). For example, If B = 1, 000 and the ACER values are sorted, then
the 25th and 975th values can form a 95% CI.

Bootstrap normal method—The B ACER bootstrap resamples can also be used to
estimate the variance of , denoted by . Then the (1 − α)% CI is constructed
as

2.5 Estimating the Difference of the ACERs and its Confidence Interval: Two-Sample
Problem

After the effectiveness of two (or more) treatments are compared, we are often interested in
comparing the associated costs as well. In some cases, it may be more legitimate to compare
the ACERs rather than (or in addition to) the costs between two arms since the survival time
tends to be positively associated with the cost (i.e., the total costs tend to be higher for
longer survivors). Therefore, if controlling survival experience in the cost comparison is the
goal, testing the equality of the ACERs between treatments (i.e., H0: ACER1 = ACER2 where
the subscript denotes the treatment indicator) would be more relevant than testing the
equality of the mean costs. For this task, the two methods we suggested above for the one-
sample problem (Taylor’s method and Bootstrap normal) can be straightforwardly extended
to the two-sample problem as they estimate variance/standard error, whereas Bootstrap
percentile method and Fieller’s method are not because they estimate CIs for the ratio
statistic directly.

For the Bootstrap percentile method, we can sample ACER from each group (group 1 and

group 2) separately and compute the difference in the ACERs (let us call ). Then we can

generate B bootstrap samples of ( ) and form a CI.

Fieller’s method cannot be used directly for obtaining a CI for the difference of the ACERs.
However, in the illustrative example, we consider an ad-hoc way of obtaining a CI for the
difference of ACERs, using standard error estimates obtained from the length of CI derived
from the Fieller’s method.

3 Simulation Study
We conducted a simulation study to examine the performance of the presented methods for
constructing CIs with finite samples. We adopted simulation settings that were similar to the
ones used in previous papers [17], [30], [33]. Data for individual subjects were
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independently and identically distributed. The total cost for each subject consisted of 3 cost
components: the diagnostic cost that incurs at the beginning of the study; the annual cost that
incur annually during the follow-up; and the terminal death cost that incurred shortly before
or at death. As such, diagnostic and annual costs are relevant for all patients, while death
cost is only entailed for those who died. We implemented the following two scenarios for
cost data. For the first scenario, we generated:

and for the second scenario, we assumed:

where N and U denote the normal and uniform distributions and exp denotes exponentiation.
The first scenario intends to exemplify moderate skewness and variability, while the second
scenario intends to exemplify higher skewness and variability.

For each scenario, we considered two types of distribution for generating survival times: a
uniform distribution on U[0, 10] years and an exponential distribution with a mean of 6
years. Our interest is to estimate the mean cost accumulated up to death or 10 years
whichever comes first. In the scenario 1, the true mean cost was $10,990 for the uniform
survival time and $10,786 for the exponential survival time, where the skewness parameter
was estimated to be 1.7 and 1.3, respectively. The corresponding true ACERs were $2,198/
yr and $2,215/yr, respectively. In the scenario 2, the corresponding skewness parameters
were 3.3 and 2.7 and the corresponding true ACERs were $3,400/yr and $3,426/yr - here,
the true ACERs were numerically estimated using 1, 000, 000 uncensored data.

We considered two levels of censorship: C was generated from U[0, 20] and U[0, 12.5]
years, independent of all other variables. The former was referred to as light censoring,
resulting in about 25% censored data, and the latter was referred to as heavy censoring,
resulting in about 40% censored data. Note that by definition, if the follow-up time (the
minimum of the survival time and the censoring time) exceeds 10 years, it is equivalent to
the uncensored, complete event. One thousand simulation runs were carried out and 1, 000
bootstrap samples were generated for the bootstrap methods. The same set of simulations
was repeated for the sample size of 100 and 200.

We calculated a naive estimator (using observed costs without accounting for censoring in
cost), the simple weighted estimator, and the improved estimator. Tables 1 and 2 present the
(absolute) bias, the coverage probability of the 95% CIs, and the median length of the 95%
CIs in each scenario. The simple weighted estimator and the improved estimator had small
biases, whereas the naive estimator severely underestimates the true cost as expected.
Enhanced efficiency in the improved estimator was demonstrated in the shorter length of the
CIs as the theory predicts. All four methods of constructing CIs performed quite well and
comparably without any consistent, noticeable inferiority of any method across different
data distributions and sizes in the scenario 1. However, when the skewness and variability
were increased for individual cost data (in the scenario 2), the different estimators tended to
perform somewhat differently while coverage probabilities were deteriorated. Fieller’s and
Bootstrap-percentile methods seem to perform best overall. It may be noteworthy that
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normality-based parametric methods could perform poorly under heavy censoring with
small sample size (e.g., the coverage probability can be as low as 87%). Under heavy
censoring, the improved estimator may be recommended because it utilizes some
observations that are not used in the simple weighted estimator. The efficiency gain was
more pronounced in the scenario 2, in which the observed cost at a given time is more
strongly correlated with the total cost (as contributions from annual costs is increased),
compared to the scenario 1. It is quite interesting to observe that Taylor’s method does not
perform terribly - this method is not generally recommended in the ICER context ([20], [22],
[43] among others). The absence of the ‘small denominator problem’ (which is frequent in
the ICER estimation) in the ACER estimation may have partly contributed to comparable
performances of these methods. Also, asymptotic normality may be better achieved in the
ACER setting (a ratio of means) than in the ICER (a ratio of differences in means) or cost
setting. Taylor’s method yielded slightly shorter CIs than Fieller’s method, probably due to
imposing the symmetry of the CIs. The coverage probability was improved as the sample
size increased and/or the censoring proportion decreased within each scenario.

4 Example
To illustrate the methods discussed in this paper, we analyzed the data collected from the
Multicenter Automatic Defibrillator Implantation Trial (MADIT). MADIT was a
randomized controlled trial that examined the effectiveness of an implantable cardiac
defibrillator (ICD) in prevention of sudden death for patients who were at high risk for
ventricular arrhythmia [44]. A total of 181 patients were enrolled from 36 centers with 89
patients assigned to the ICD arm, and 92 patients assigned to the control arm with the
conventional treatment. The first enrolled patient was followed for 61 months and the last
for less than 1 month, with an average follow-up of 27 months. After completion of the
study, it has been shown that the use of ICD as prophylactic therapy yielded improved
survival, compared to the conventional treatment (p = 0.009, [44]). Because of the high
initial cost associated with the ICDs, cost analyses were warranted and cost data were
collected for patients recruited from centers in the US. All the relevant medical costs
incurred during the study were recorded, as described in Mushlin et al. [45].

The CEA for this trial was performed using the standard ICER and published previously
[45]. In this paper, we analyzed the cost and survival data using the ACER. As in the
original CEA, we also restricted the duration of the cost estimation to 4 years (denoted by L
previously). The data were heavily censored; for example, 70% of subjects were censored in
the ICD arm and 48% of subjects were censored in the conventional arm. As customarily
done in the CEA, both costs and survival times were discounted at 3% annual rate in our
analysis [2].

The simple weighted and improved estimators were implemented for the estimation of the
mean costs, ACERs and their differences. Data analyses are reported in Table 3. The mean
survival time is 2.65 years for the conventional arm and 3.45 years for the ICD arm, which
yielded the difference of 0.80 year with 95% CI of (0.43 – 1.17). The mean cost for the ICD
was estimated as $110,109 using the simple weighted estimator and $99,548 using the
improved estimator. The corresponding mean costs for the conventional arm were $70,044
and $72,754, respectively. The difference of the mean costs was $40,065 (95% CI: 17,383–
62,747) and $26,794 (6,901–46,687) by the simple weighted estimator and the improved
estimator, respectively, which implies ICD significantly costs more than the conventional
treatment. However, when we divided the mean cost by the mean survival time to compute
the ACER, we obtained $5,475/yr by the simple weighted estimator and $1,395/yr by the
improved estimator for the difference of the ACERs and all of the 95% CIs based on the
four different methods included the null value 0, meaning that the difference of the ACERs
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is not likely statistically significant; see Table 3 for the CIs derived from different methods.
Therefore, we may conclude that the conventional and ICD treatments cost comparably
when we adjust survival experiences in the MADIT. We think that the simple weighted
estimator and the improved estimator were quite different because the censoring rate was
high.

5 Discussion
In this article, we present methods for estimation and statistical inference for the ACER-
based analyses when censoring is present. We evaluated and compared different methods
using simulation and data analysis. The improved estimator offers an efficiency gain, while
the simple weighted estimator is simpler to implement. In practice, the improved estimator
may be preferred when censoring is heavy (so that only a small number of complete cost
data contribute to the simple weighted estimator). Based on our results, we believe that
Bootstrap percentile and Fieller’s methods could be recommended - the same advice as in
the ICER literature. Yet, estimation and inference of the ACERs with censored data seem to
be feasible and numerically stable, thus we may promote researchers in the field of CEA to
utilize these methods without major difficulties or barriers whenever useful or justifiable.
More importantly, any estimators that do not account for censoring adequately in the cost
and effectiveness analyses could be erroneous. Also any cost comparison between/among
groups may need to adjust for the difference in effectiveness. One way to do this task is to
use the ACER.

Note that we did not consider the case with covariates in this paper. Covariates may be
incorporated via regression, stratification or other means ([46], [47], [48], [49] among
others). The proposed method may also be applied to cost to time ratio or other measures
[50].

Finally, we generally recommend that researchers consider to report the analyses of the
effectiveness, cost, ICER and ACER all together, with proper consideration of censoring, in
their CEA. Computer programs written in SAS are available upon request from the first
author.

Acknowledgments
We are grateful to Dr. Alvin I. Mushlin for making the cost data of MADIT available to us. We also thank
Associate Editor and two referees for their constructive comments. This research was supported by R01 HL096575.

References
1. Weinstein MC, Stasson WB. Foundations of cost-effectiveness analysis for health and medical

practice. New England Journal of Medicine. 1977; 296:716–721. [PubMed: 402576]
2. Gold, MR.; Siegel, JE.; Russell, LB.; Weinstein, MC., editors. Cost-Effectiveness in Health and

Medicine. New York: Oxford University Press; 1996.
3. Siegel JE, Weinstein MC, Russell LB, Gold MR. Recommendations for reporting cost-effectiveness

analyses. Panel on cost-fffectiveness in health and medicine. Journal of the American Medical
Association. 1996; 276:1339–1341. [PubMed: 8861994]

4. Willan, AR.; Briggs, AH. Statistical Analysis of Cost-effectiveness Data. Chichester, England: John
Wiley & Sons; 2006.

5. Laska EM, Meisner M, Siegel C. Statistical inference for cost-effectiveness ratios. Health
Economics. 1997; 6:229–242. [PubMed: 9226141]

6. Briggs A, Fenn P. Trying to do better than average: a commentary on ‘statistical inference for cost-
effectiveness ratios’. Health Economics. 1997; 6:491–495. [PubMed: 9353649]

Bang and Zhao Page 10

J Biopharm Stat. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



7. Hershey JC, Asch DA, Jepson C, Baron J, Ubel PA. Incremental and average cost-effectiveness
ratios: Will physicians make a distinction? Risk Analysis. 2003; 23:81–89. [PubMed: 12635724]

8. Hoch JS. An illustration of a current debate in cost-effectiveness analysis: average cost-
effectiveness ratios vs. incremental cost effectiveness ratios. Abstract Book Association for Health
Services Research Meeting. 1999; 16:348–349.

9. Hoch JS, Dewa CS. A clinician’s guide to correct cost-effectiveness analysis: think incremental not
average. Can J Psychiatry. 2008; 53:267–274. [PubMed: 18478830]

10. Laska EM, Meisner M, Siegel C. The usefulness of average cost-effectiveness ratios. Health
Economics. 1997; 6:497–504. [PubMed: 9353650]

11. Gardiner J, Hogan A, Holmes-Rovner M, Rovner D, Griffith L, Kupersmith J. Confidence
intervals for cost-effectiveness ratios. Medical Decision Making. 1995; 15:254–263. [PubMed:
7564939]

12. Gardiner, JC.; Bradley, CJ.; Huebner, M. The cost-effectiveness ratio in the analysis of health care
programs. In: Rao, CR.; Sen, PK., editors. Handbook of Statistics, Bioenvironmental and Public
Health Statistics 18. New York: North-Holland: 2000. p. 841-869.

13. Wagner DH. Nonlinear functional versions of the Neyman-Pearson lemma. SIAM Review. 1969;
11:5265.

14. Neyman J, Pearson E. On the problem of the most efficient tests of statistical hypotheses.
Philosophical Transactions of the Royal Society of London Series A. 1933; 231:289337.

15. Birch S, Gafni A. Information created to evade reality (ICER): things we should not look to for
answers. Pharmacoeconomics. 2006; 24:1121–1131. [PubMed: 17067196]

16. Gafni A, Birch S. Incremental cost-effectiveness ratios (ICERs): The silence of the lambda. Social
Science and Medicine. 2006; 62:2091–2100. [PubMed: 16325975]

17. Lin DY, Feuer EJ, Etzioni R, Wax Y. Estimating medical costs from incomplete follow-up data.
Biometrics. 1997; 53:419–434. [PubMed: 9192444]

18. Blackhouse G, Briggs AH, O’Brien BJ. A note on the estimation of confidence intervals for cost-
effectiveness when costs and effects are censored. Medical Decision Making. 2002; 22:173–177.
[PubMed: 11958499]

19. Raikou M, McGuire A. Estimating medical care costs under conditions of censoring. Journal of
Health Economics. 2004; 23:443–470. [PubMed: 15120465]

20. Polsky D, Glick HA, Willke R, Schulman K. Confidence intervals for cost-effectiveness ratios: a
comparison of four methods. Health Economics. 1997; 6:243–252. [PubMed: 9226142]

21. Briggs AH, Mooney CZ, Wonderling DE. Constructing confidence intervals for cost-effectiveness
ratios: an evaluation of parametric and non-parametric techniques using Monte Carlo simulation.
Statistics in Medicine. 1999; 18:3245–3262. [PubMed: 10602149]

22. Fan MY, Zhou XH. A simulation study to compare methods for constructing confidence intervals
for the incremental cost-effectiveness ratio. Health Serv Outcomes Res Method. 2007; 7:57–77.

23. Briggs AH, Wonderling DE, Mooney CZ. Pulling cost-effectiveness analysis up by its bootstraps:
A non-parametric approach to confidence interval estimation. Health Economics. 1997; 6:327–
340. [PubMed: 9285227]

24. Chaudhary MA, Stearns SC. Estimating confidence intervals for cost-effectiveness ratios: An
example from a randomized trial. Statistics in Medicine. 1996; 15:1447–1458. [PubMed: 8841654]

25. Gardiner JC, Huebner M, Etton J, Bradley CJ. On parameter confidence intervals for the cost-
effectivness ratio. Biometrical Journal. 2001; 43:283–296.

26. Huang Y. Cost analysis with censored data. Medical Care. 2009; 47:S115–S119. [PubMed:
19536024]

27. Zhao, H.; Wang, H. Cost and cost-effectiveness analysis with censored data. In: Faries, DE.; Leon,
AC.; Haro, JM.; Obenchain, RL., editors. Analysis of Observational Health-Care Data Using SAS.
Cary, NC: SAS Press Series; 2010. p. 363-382.

28. Klein, JP.; Moeschberger, ML. Survival Analysis. New York: Springer-Verlag; 1997.
29. Bang H. Medical cost analysis: Application to colorectal cancer data from the SEER Medicare

database. Contemporary Clinical Trials. 2005; 26:586–597. [PubMed: 16084777]
30. Bang H, Tsiatis AA. Estimating medical costs with censored data. Biometrika. 2000; 87:329–343.

Bang and Zhao Page 11

J Biopharm Stat. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



31. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. Journal of the
American Statistical Association. 1958; 53:457–481.

32. Horvitz DG, Thompson DJ. A generalization of sampling without replacement from a finite
universe. Journal of the American Statistical Association. 1952; 47:663–685.

33. Zhao H, Tian L. On estimating medical cost and incremental cost-effectiveness ratios with
censored data. Biometrics. 2001; 57:1002–1008. [PubMed: 11764238]

34. Robins JM, Rotnitzky A, Zhao LP. Estimation of regression coefficients when some regressors are
not always observed. Journal of the American Statistical Association. 1994; 89:846–866.

35. Zhao H, Bang H, Wang H, Pfeifer PE. On the equivalence of some medical cost estimators with
censored data. Statistics in Medicine. 2007; 26:4520–4530. [PubMed: 17380543]

36. O’Hagan A, Stevens JW. On estimators of medical costs with censored data. Journal of Health
Economics. 2004; 23:615–625. [PubMed: 15120473]

37. Satten GA, Datta S. The Kaplan-Meier estimator as an inverse-probability-of-censoring weighted
average. The American Statistician. 2001; 55:207–210.

38. Briggs AH, Gray AM. Handling uncertainty in economic evaluations of healthcare interventions.
BMJ. 1999; 319:635–638. [PubMed: 10473486]

39. Obenchain RL. Resampling and multiplicity in cost-effectiveness inference. Journal of
Biopharmaceutical Statistics. 1999; 9:563–582. [PubMed: 10576404]

40. Wang H, Zhao H. A study on confidence intervals for incremental cost-effectiveness ratios.
Biometrical Journal. 2008; 50:505–514. [PubMed: 18663759]

41. Efron, B.; Tibshirani, RJ. An Introduction to the Bootstrap. New York: Chapman & Hall; 1996.
42. Fieller EC. Some problems in interval estimation. Journal of the Royal Statistical Society, Series B.

1954; 16:175185.
43. Dinh P, Zhou XH. Nonparametric statistical methods for cost-effectiveness analyses. Biometrics.

2006; 62:576–588. [PubMed: 16918923]
44. Moss AJ, Hall WJ, Cannom DS, Daubert JP, Higgins SL, Klein H, Levine JH, Saksena S, Waldo

AL, Wilber D, Brown MW, Heo M. Improved survival with an implanted defibrillator in patients
with coronary disease at high risk for ventricular arrhythmia. New England Journal of Medicine.
1996; 335:1933–1940. [PubMed: 8960472]

45. Mushlin AI, Hall WJ, Zwanziger J, Gajary E, Andrews M, Marron R, Zou KH, Moss AJ. The cost-
effectiveness of automatic implantable cardiac defibrillators: Results from MADIT. Circulation.
1998; 97:2129–2135. [PubMed: 9626173]

46. Lin DY. Linear regression analysis of censored medical costs. Biostatistics. 2000; 1:35–47.
[PubMed: 12933524]

47. Willan AR, Briggs AH, Hoch JS. Regression methods for covariate adjustment and subgroup
analysis for non-censored cost-effectiveness data. Health Economics. 2004; 13:461475.

48. Gardiner J, Homes-Rovner M, Goddeeris J, Rovner D, Kupersmith J. Covariate-adjusted cost-
effectiveness ratios. Journal of Statistical Plannning and Inference. 1999; 75:291–304.

49. Gardiner, JC.; Liu, L.; Luo, Z. Estimating of medical costs from a transition model. In:
Balakrishnan, N.; Silvapulle, M.; Pena, E., editors. Beyond Parametrics in Interdisciplinary
Research: Festschrift in Honor of Professor PK Sen. Vol. 1. Institute of Mathematical Statistics;
2008. p. 350-363.

50. Hartmann M, Orlin J. Finding minimum cost to time ratio cycles with small integral transit times.
Networks. 1993; 23:567–574.

Bang and Zhao Page 12

J Biopharm Stat. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Bang and Zhao Page 13

Ta
bl

e 
1

B
ia

s a
nd

 c
ov

er
ag

e 
pr

ob
ab

ili
ty

 (m
ed

ia
n 

le
ng

th
) o

f 9
5%

 tw
o-

si
de

d 
co

nf
id

en
ce

 in
te

rv
al

s f
or

 th
e 

A
C

ER
 - 

si
m

ul
at

io
n 

st
ud

y 
fo

r s
ce

na
rio

 1

C
en

so
ri

ng
L

ig
ht

 c
en

so
ri

ng
H

ea
vy

 c
en

so
ri

ng

Sa
m

pl
e 

si
ze

Su
rv

iv
al

 ti
m

e
U

ni
fo

rm
E

xp
on

en
tia

l
U

ni
fo

rm
E

xp
on

en
tia

l

10
0

A
C

ER
-n

ai
ve

−
35
6

−
38
3

−
57
2

−
63
2

A
C

ER
 (s

im
pl

e-
w

ei
gh

te
d)

6
7

15
4

 
Fi

el
le

r-
no

rm
al

92
.3

%
 (3

16
)

94
.6

%
 (3

59
)

90
.8

%
 (3

66
)

92
.0

%
 (4

41
)

 
Ta

yl
or

-n
or

m
al

91
.7

%
 (3

13
)

93
.6

%
 (3

53
)

89
.6

%
 (3

61
)

90
.7

%
 (4

33
)

 
B

oo
ts

tra
p-

pe
rc

en
til

e
91

.8
%

 (3
14

)
93

.9
%

 (3
54

)
92

.3
%

 (3
89

)
92

.7
%

 (4
97

)

 
B

oo
ts

tra
p-

no
rm

al
92

.2
%

 (3
18

)
93

.8
%

 (3
57

)
93

.3
%

 (3
93

)
94

.0
%

 (5
03

)

A
C

ER
 (i

m
pr

ov
ed

)
6

7
13

4

 
Fi

el
le

r-
no

rm
al

92
.8

%
 (3

05
)

94
.2

%
 (3

43
)

92
.4

%
 (3

39
)

94
.4

%
 (4

09
)

 
Ta

yl
or

-n
or

m
al

91
.7

%
 (3

02
)

93
.6

%
 (3

37
)

89
.6

%
 (3

34
)

90
.4

%
 (4

02
)

 
B

oo
ts

tra
p-

pe
rc

en
til

e
92

.5
%

 (3
00

)
93

.5
%

 (3
37

)
92

.2
%

 (3
53

)
94

.4
%

 (4
48

)

 
B

oo
ts

tra
p-

no
rm

al
92

.0
%

 (3
05

)
93

.4
%

 (3
40

)
93

.0
%

 (3
57

)
94

.3
%

 (4
57

)

20
0

A
C

ER
-n

ai
ve

−
36
1

−
38
3

−
58
9

−
63
8

A
C

ER
 (s

im
pl

e-
w

ei
gh

te
d)

2
6

7
11

 
Fi

el
le

r-
no

rm
al

92
.7

%
 (2

36
)

94
.2

%
 (2

65
)

93
.1

%
 (2

76
)

94
.1

%
 (3

29
)

 
Ta

yl
or

-n
or

m
al

92
.2

%
 (2

35
)

94
.0

%
 (2

63
)

92
.6

%
 (2

74
)

93
.3

%
 (3

26
)

 
B

oo
ts

tra
p-

pe
rc

en
til

e
92

.5
%

 (2
31

)
93

.0
%

 (2
63

)
93

.5
%

 (2
83

)
93

.4
%

 (3
35

)

 
B

oo
ts

tra
p-

no
rm

al
92

.2
%

 (2
33

)
93

.8
%

 (2
64

)
93

.4
%

 (2
85

)
94

.1
%

 (3
39

)

A
C

ER
 (i

m
pr

ov
ed

)
2

6
5

9

 
Fi

el
le

r-
no

rm
al

92
.8

%
 (2

26
)

94
.6

%
 (2

54
)

93
.2

%
 (2

53
)

94
.4

%
 (2

93
)

 
Ta

yl
or

-n
or

m
al

92
.2

%
 (2

25
)

94
.0

%
 (2

52
)

92
.6

%
 (2

52
)

93
.3

%
 (2

90
)

 
B

oo
ts

tra
p-

pe
rc

en
til

e
91

.9
%

 (2
23

)
93

.3
%

 (2
51

)
92

.8
%

 (2
54

)
93

.5
%

 (2
90

)

 
B

oo
ts

tra
p-

no
rm

al
91

.8
%

 (2
25

)
93

.7
%

 (2
53

)
92

.5
%

 (2
56

)
93

.7
%

 (2
97

)

N
ai

ve
 d

en
ot

es
 th

e 
es

tim
at

or
 th

at
 d

oe
s n

ot
 a

cc
ou

nt
 fo

r c
en

so
rin

g 
in

 c
os

t. 
B

ia
s i

s t
he

 a
bs

ol
ut

e 
bi

as
 in

 th
e 

po
in

t e
st

im
at

e.
 F

or
 b

oo
ts

tra
p 

m
et

ho
ds

, B
=1

00
0 

re
pl

ic
at

es
 w

er
e 

ge
ne

ra
te

d.
 1

00
0 

si
m

ul
at

io
ns

 w
er

e 
us

ed
.

J Biopharm Stat. Author manuscript; available in PMC 2013 January 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Bang and Zhao Page 14

Ta
bl

e 
2

B
ia

s a
nd

 c
ov

er
ag

e 
pr

ob
ab

ili
ty

 (m
ed

ia
n 

le
ng

th
) o

f 9
5%

 tw
o-

si
de

d 
co

nf
id

en
ce

 in
te

rv
al

s f
or

 th
e 

A
C

ER
 - 

si
m

ul
at

io
n 

st
ud

y 
fo

r s
ce

na
rio

 2

C
en

so
ri

ng
L

ig
ht

 c
en

so
ri

ng
H

ea
vy

 c
en

so
ri

ng

Sa
m

pl
e 

si
ze

Su
rv

iv
al

 ti
m

e
U

ni
fo

rm
E

xp
on

en
tia

l
U

ni
fo

rm
E

xp
on

en
tia

l

10
0

A
C

ER
- n

ai
ve

−
56
9

−
61
7

−
92
9

−
10
00

A
C

ER
 (s

im
pl

e-
w

ei
gh

te
d)

−
9

−
13

−
7

5

 
Fi

el
le

r-
no

rm
al

92
.7

%
 (6

91
)

93
.1

%
 (7

56
)

91
.6

%
 (8

24
)

87
.6

%
 (9

94
)

 
Ta

yl
or

-n
or

m
al

91
.4

%
 (6

85
)

92
.2

%
 (7

47
)

91
.0

%
 (8

16
)

86
.6

%
 (9

78
)

 
B

oo
ts

tra
p-

pe
rc

en
til

e
92

.0
%

 (6
92

)
92

.4
%

 (7
56

)
93

.3
%

 (8
61

)
91

.1
%

 (1
07

5)

 
B

oo
ts

tra
p-

no
rm

al
91

.6
%

 (6
91

)
92

.4
%

 (7
57

)
92

.7
%

 (8
60

)
90

.3
%

 (1
07

0)

A
C

ER
 (i

m
pr

ov
ed

)
−
7

−
10

−
8

2

 
Fi

el
le

r-
no

rm
al

93
.1

%
 (6

36
)

92
.7

%
 (6

77
)

92
.9

%
 (7

30
)

94
.7

%
 (8

89
)

 
Ta

yl
or

-n
or

m
al

91
.4

%
 (6

31
)

92
.2

%
 (6

68
)

91
.0

%
 (7

23
)

86
.6

%
 (8

75
)

 
B

oo
ts

tra
p-

pe
rc

en
til

e
91

.2
%

 (6
28

)
92

.3
%

 (6
68

)
92

.0
%

 (7
19

)
94

.3
%

 (8
57

)

 
B

oo
ts

tra
p-

no
rm

al
91

.2
%

 (6
25

)
91

.4
%

 (6
66

)
91

.6
%

 (7
18

)
93

.8
%

 (8
82

)

20
0

A
C

ER
-n

ai
ve

−
56
7

−
61
5

−
92
7

−
10
11

A
C

ER
 (s

im
pl

e-
w

ei
gh

te
d)

3
−
7

12
−
6

 
Fi

el
le

r-
no

rm
al

92
.1

%
 (5

15
)

93
.4

%
 (5

67
)

91
.8

%
 (6

44
)

91
.7

%
 (7

80
)

 
Ta

yl
or

-n
or

m
al

91
.2

%
 (5

13
)

92
.7

%
 (5

64
)

90
.8

%
 (6

41
)

91
.0

%
 (7

75
)

 
B

oo
ts

tra
p-

pe
rc

en
til

e
90

.9
%

 (5
13

)
92

.5
%

 (5
66

)
92

.4
%

 (6
55

)
92

.4
%

 (7
98

)

 
B

oo
ts

tra
p-

no
rm

al
91

.1
%

 (5
11

)
92

.7
%

 (5
69

)
91

.6
%

 (6
54

)
92

.0
%

 (7
92

)

A
C

ER
 (i

m
pr

ov
ed

)
4

−
6

13
−
2

 
Fi

el
le

r-
no

rm
al

90
.9

%
 (4

78
)

92
.7

%
 (5

13
)

93
.5

%
 (5

48
)

93
.9

%
 (6

20
)

 
Ta

yl
or

-n
or

m
al

91
.2

%
 (4

76
)

92
.7

%
 (5

10
)

90
.8

%
 (5

46
)

91
.0

%
 (6

16
)

 
B

oo
ts

tra
p-

pe
rc

en
til

e
90

.0
%

 (4
71

)
90

.8
%

 (5
10

)
91

.5
%

 (5
33

)
92

.0
%

 (5
78

)

 
B

oo
ts

tra
p-

no
rm

al
89

.5
%

 (4
73

)
91

.4
%

 (5
10

)
91

.3
%

 (5
34

)
92

.2
%

 (5
85

)

N
ai

ve
 d

en
ot

es
 th

e 
es

tim
at

or
 th

at
 d

oe
s n

ot
 a

cc
ou

nt
 fo

r c
en

so
rin

g 
in

 c
os

t. 
B

ia
s i

s t
he

 a
bs

ol
ut

e 
bi

as
 in

 th
e 

po
in

t e
st

im
at

e.
 F

or
 b

oo
ts

tra
p 

m
et

ho
ds

, B
=1

00
0 

re
pl

ic
at

es
 w

er
e 

ge
ne

ra
te

d.
 1

00
0 

si
m

ul
at

io
ns

 w
er

e 
us

ed
.

J Biopharm Stat. Author manuscript; available in PMC 2013 January 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Bang and Zhao Page 15

Table 3

Data analysis of MADIT

ICD (95% CI) Conventional (95% CI) Difference (95% CI)

Effectiveness* 3.45 yrs (3.26, 3.65) 2.65 yrs (2.34, 2.96) 0.80 yr (0.43, 1.17)

Cost (simple-weighted)* $110109 (96526, 123692) $70044 (51879, 88209) $40065 (17383, 62747)

Cost (improved)* $99548 (88786, 110,310) $72754 (56023, 89485) $26794 (6901, 46687)

ACER (simple-weighted) $31883/yr $26408/yr $5475/yr

 Fieller-normal (27801, 36121) (19290, 34198) (−3061, 14011)+

 Taylor-normal (27730, 36036) (19014, 33803) (−2773, 13723)

 Bootstrap-percentile (27962, 36140) (19992, 35088) (−4030, 13788)

 Bootstrap-normal (27716, 36050) (18801, 34015) (−3289, 14191)

ACER (improved) $28825/yr $27430/yr $1395/yr

 Fieller-normal (25603, 32173) (20799, 34746) (−6313, 9140)+

 Taylor-normal (25546, 32104) (20513, 34346) (−6259, 9049)

 Bootstrap-percentile (25568, 32099) (20753, 36503) (−7693, 8856)

 Bootstrap-normal (25587, 32063) (19723, 35137) (−7043, 9833)

*
for cost and effectiveness and their differences, normal-based formulae were used for CI.

+
for CIs for the difference of the ACERs using Fieller’s method, we used the approximate relationship of standard error = (length of the CI)/

(2*1.96).

For bootstrap methods, B=1000 replicates were generated.
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