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1. Introduction. This paper provides sufficient conditions for the existence of stationary optimal policies
for average cost Markov decision processes (MDPs) with Borel state and action sets and weakly continuous
transition probabilities. The cost functions may be unbounded, and the action sets may be noncompact. The
main contributions of this paper are: (i) general sufficient conditions for the existence of stationary discount
optimal and average cost optimal policies and descriptions of properties of value functions and sets of optimal
actions (Theorems 1, 3, and 4), (ii) a new sufficient condition for average cost optimality based on optimality
inequalities (Theorem 2), and (iii) approximations of average cost optimal actions by discount optimal actions
(Theorem 5).

For infinite-horizon MDPs, there are two major criteria: average costs per unit time and expected total dis-
counted costs. The former is typically more difficult to analyze. The so-called vanishing discount factor approach
is often used to approximate average costs per unit time by normalized expected total discounted costs. The
literature on average cost MDPs is vast. Most of the earlier results are surveyed in Arapostathis et al. [1]. Here,
we mention just a few references.

For finite-state and action sets, Derman [10] proved the existence of stationary average cost optimal policies.
This result follows from Blackwell [6] and it also was independently proved by Viskov and Shiryaev [31]. When
either the state set or action set is infinite, even �-optimal policies may not exist for some � > 0; Ross [25],
Dynkin and Yushkevich [11, Chapter 7], Feinberg [12, §5]. For a finite-state set and compact action sets, optimal
policies may not exist; Bather [2], Chitashvili [9], and Dynkin and Yushkevich [11, Chapter 7].

For MDPs with finite-state and action sets, there exist stationary policies satisfying optimality equations
(see Dynkin and Yushkevich [11, Chapter 7], where these equations are called canonical), and, furthermore,
any stationary policy satisfying optimality equations is optimal. The latter is also true for MDPs with Borel
state and action sets, if the value and weight (also called bias) functions are bounded; Dynkin and Yushkevich
[11, Chapter 7]. When the optimal value of average costs per unit time does not depend on the initial state (the
optimal value function is constant), the pair of optimality equations become a single equation. For bounded one-
step costs, Taylor [30] and Ross [23] for a countable state space and Ross [24] and Gubenko and Shtatland [17]
for a Borel state space provided sufficient conditions for the validity of optimality equations with a bounded
bias function; see also Dynkin and Yushkevich [11, Chapter 7].

In many applications of infinite-state MDPs, one-step costs are unbounded from above. For example, holding
costs may be unbounded in queueing and inventory systems. Sennott [27, 28] (and references therein) developed a
theory for countable state problems with unbounded one-step costs. For unbounded costs, optimality inequalities
are used instead of optimality equations to construct a stationary average cost optimal policy. Cavazos-Cadena [7]
provided an example, when optimality inequalities hold while optimality equations do not.

Schäl [26] developed a theory for Borel state spaces and compact action sets. Two types of continuity assump-
tions for transition probabilities are considered in Schäl [26]: the setwise and weak continuity. For a countable
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state space, these assumptions coincide; see Chen and Feinberg [8, Appendix]. Setwise convergence of probabil-
ity measures is stronger than weak convergence; Hernández-Lerma and Lasserre [19, p. 186]. Formally speaking,
the setwise continuity assumption for MDPs is not stronger than the weak continuity assumption, because the
former claims that the transition probabilities are continuous in actions, while they are jointly continuous in
states and actions in the latter. However, the joint continuity of transition probabilities in states and actions often
holds in applications. For example, for inventory control problems with uncountable state spaces, setwise con-
tinuity of transition probabilities takes place if demand is a continuous random variable, while weak continuity
holds for arbitrarily distributed demand; see Feinberg and Lewis [14, §4]. The importance of weak convergence
for practical applications is mentioned in Hernández-Lerma and Lasserre [20, p. 141].

In many applications, action sets are not compact. Hernández-Lerma [18] extended Schäl’s [26] results under
the setwise continuity assumptions to possibly noncompact action sets. Schäl’s [26] assumptions on compactness
of action sets and lower semicontinuity of cost functions in the action argument are replaced in Hernández-
Lerma [18] by a more general assumption; namely, that the cost functions are inf-compact in the action argument.
For weakly continuous transition probabilities and possibly noncompact action sets, Feinberg and Lewis [14]
proved the existence of stationary optimal policies for MDPs with cost functions being inf-compact in both state
and action arguments when, in addition to Schäl’s [26] boundedness assumption on the relative discounted value
at each state, the so-called local boundedness condition was assumed.

The original goal of this study was to show that the results from Feinberg and Lewis [14] hold without
the local boundedness condition. However, the results of this paper are more general. This paper provides a
weaker boundedness condition on the relative discounted value (Assumption (B)) in §5) than Assumption (B))
introduced in Schäl [26]. It also provides a more general and natural assumption (Assumption (W∗), §3) than
inf-compactness of the one-step cost function in both arguments. The main result of this paper, Theorem 3,
establishes the validity of optimality inequalities and the existence of stationary optimal policies under Assump-
tions (W∗) and (B).

While inf-compactness of the cost function in the action parameter is a natural assumption, inf-compactness
in the state argument is a more restrictive condition. For example, when the state space is unbounded (e.g.,
the set of nonnegative numbers) and action sets are compact, the assumption, that the cost function is inf-
compact in both arguments, does not cover the case of bounded costs functions studied by Ross [24], Gubenko
and Shtatland [17], and Dynkin and Yushkevich [11, Chapter 7]. Assumption (W∗) covers this case as well as
unbounded costs and noncompact action sets.

As follows from the example presented in Luque-Vásquez and Hernández-Lerma [22], MDPs with lower semi-
continuous cost functions may possess pathological properties, even if the one-step cost function is inf-compact
in the action variable. Assumption (W∗(ii)) removes this difficulty. As stated in Lemma 1, this assumption is
weaker than Schäl’s [26] compactness and continuity assumptions for weakly continuous transition probabilities
and than inf-compactness of one-step cost functions in both arguments (state and action) assumed in Feinberg
and Lewis [14].

2. Model description. For a metric space S, let B4S5 be a Borel �-field on S; that is, the �-field generated
by all open sets of metric space S. For a set E ⊂ S, we denote by B4E5 the �-field whose elements are
intersections of E with elements of B4S5. Observe that E is a metric space with the same metric as on S,
and B4E5 is its Borel �-field. For a metric space S, we denote by �4S5 the set of probability measures on
4S1B4S55. A sequence of probability measures 8�n9 from �4S5 converges weakly to � ∈ �4S5 if for any
bounded continuous function f on S

∫

S
f 4s5�n4ds5→

∫

S
f 4s5�4ds5 as n→ �0

Consider a discrete-time MDP with a state space �, an action space �, one-step costs c, and transition
pobabilities q. Assume that � and � are Borel subsets of Polish (complete separable metric) spaces with the
corresponding metrics � and �. For all x ∈�, a nonempty Borel subset A4x5 of � represents the set of actions
available at x. Define the graph of A by

Gr4A5= 84x1a52 x ∈�1 a ∈A4x590

Assume also that
(i) Gr4A5 is a measurable subset of �×�; that is, Gr4A5 ∈B4�×�5, where B4�×�5=B4�5⊗B4�5;

(ii) there exists a measurable mapping �2 �→� such that �4x5 ∈A4x5 for all x ∈�.
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The one-step cost, c4x1a5 ≤ +�1 for choosing an action a ∈ A4x5 in a state x ∈ �, is a bounded below
measurable function on Gr4A5. Let q4B � x1a5 be the transition kernel representing the probability that the next
state is in B ∈B4�5, given that the action a is chosen in the state x. This means that

(i) q4· � x1a5 is a probability measure on 4�1B4�55 for all 4x1a5 ∈�×�;
(ii) q4B � ·1 ·5 is a Borel function on 4Gr4A51B4Gr4A555 for all B ∈B4�5.
The decision process proceeds as follows:
(i) at each time epoch n= 0111 : : : 1 the current state x ∈� is observed;

(ii) a decision maker chooses an action a ∈A4x53
(iii) the cost c4x1a5 is incurred;
(iv) the system moves to the next state according to the probability law q4· � x1a5.

As explained in the text following the proof of Lemma 2, if for each x ∈ � there exists a ∈ A4x5 with
c4x1a5 <�, the measurability of Gr4A5 and inf-compactness of the cost function c in the action variable a
assumed later imply that assumption (ii) holds.

Let �n = 4� × �5n × � be the set of histories up to epochs n = 0111 : : : and B4�n5 = 4B4�5 ⊗

B4�55n ⊗ B4�5. A randomized decision rule at epoch n = 0111 : : : is a regular transition probability
�n2 Hn →� concentrated on A4�n5; that is, (i) �n4· � hn5 is a probability on 4�1B4�551 given the history
hn = 4�01 u01 �11 u11 : : : 1 un−11 �n5 ∈ �n satisfying �n4A4�n5 � hn5 = 1, and (ii) for all B ∈ B4�5, the function
�n4B � ·5 is Borel on 4�n1B4�n55. A policy is a sequence � = 8�n9n=0111 : : : of decision rules. Moreover, � is
called nonrandomized if each probability measure �n4· � hn5 is concentrated at one point. A nonrandomized
policy is called Markov if all of the decisions depend on the current state and time only. A Markov policy is
called stationary if all the decisions depend on the current state only. Thus, a Markov policy � is defined by a
sequence �01�11 : : : of Borel mappings �n2 �→� such that �n4x5 ∈A4x5 for all x ∈�. A stationary policy
� is defined by a Borel mapping �2 �→� such that �4x5 ∈A4x5 for all x ∈�. Let

�= 8�2 �→�2 � is Borel and �4x5 ∈A4x5 for all x ∈�9

be the set of stationary policies.
The Ionescu-Tulcea theorem (Bertsekas and Shreve [4, pp. 140–141] or Hernández-Lerma and Lasserre [19,

p. 178]) implies that an initial state x and a policy � define a unique probability P�
x on the set of all trajectories

�� = 4� × �5� endowed with the product of �-field defined by Borel �-field of � and �. Let Ɛ�
x be an

expectation regarding P�
x .

For a finite-horizon N = 0111 : : : , let us define the expected total discounted costs

v�N1� 2= Ɛ�
x

N−1
∑

n=0

�nc4�n1 un51 x ∈�1 (1)

where �≥ 0 is the discount factor and v�01�4x5= 0. When N = � and � ∈ 60115, (1) defines an infinite-horizon
expected total discounted cost denoted by v�� 4x5.

The average cost per unit time is defined as

w�4x5 2= lim sup
N→+�

1
N
v�N114x51 x ∈�0 (2)

For any function g�4x5, including g�4x5= v�N1�4x5, g
�4x5= v�� 4x5, and g�4x5=w�4x5, define the optimal cost

g4x5 2= inf
�∈ç

g�4x51 x ∈�1

where ç is the set of all policies.
A policy � is called optimal for the respective criterion, if g�4x5 = g4x5 for all x ∈ �. For g� = v�n1�, the

optimal policy is called n-horizon discount optimal; for g� = v�� , it is called discount optimal; for g� =w� , it is
called average cost optimal.

It is well known (see, e.g., Bertsekas and Shreve [4, Proposition 8.2]) that the functions vn1�4x5 recursively
satisfy the following optimality equations with v01�4x5= 0 for all x ∈�,

vn+11�4x5= inf
a∈A4x5

{

c4x1a5+�
∫

�
vn1�4y5q4dy � x1a5

}

1 x ∈�1 n= 0111 : : : 0 (3)
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In addition, a Markov policy �, defined at the first N steps by the mappings �01 : : : 1�N−11 that satisfy for all
n= 11 : : : 1N the equations

vn1�4x5= c4x1�N−n4x55+�
∫

�
vn−11�4y5q4dy � x1�N−n4x551 x ∈�1 (4)

is optimal for the horizon N3 see, e.g., Bertsekas and Shreve [4, Lemma 8.7].
It is also well known (Bertsekas and Shreve [4, Propositions 9.8 and 9.12]) that v�, where � ∈ 60115 satisfies

the following discounted cost optimality equation:

v�4x5= inf
a∈A4x5

{

c4x1a5+�
∫

�
v�4y5q4dy � x1a5

}

1 x ∈�1 (5)

and a stationary policy �� is discount optimal if and only if

v�4x5= c4x1��4x55+�
∫

�
v�4y5q4dy � x1��4x551 x ∈�0 (6)

3. General assumptions and auxiliary results. Following Schäl [26], consider the following assumption.

Assumption (G). w∗ 2= infx∈�w4x5 <+�.

This assumption is equivalent to the existence of x ∈� and � ∈ç with w�4x5 <�. If Assumption (G) does
not hold, then the problem is trivial, because w4x5= � for all x ∈� and any policy � is average cost optimal.
Define the following quantities for � ∈ 60115:

m� = inf
x∈�

v�4x51 u�4x5= v�4x5−m�1

w = lim inf
�↑1

41 −�5m�1 w̄ = lim sup
�↑1

41 −�5m�0

Observe that u�4x5≥ 0 for all x ∈�. According to Schäl [26, Lemma 1.2], Assumption (G) implies

− �<w ≤ w̄ ≤w∗ <+�0 (7)

According to Schäl [26, Proposition 1.3], under Assumption (G), if there exists a measurable function u2 �→

601+�5 and a stationary policy � such that

w+ u4x5≥ c4x1�4x55+

∫

�
u4y5q4dy � x1�4x551 x ∈�1 (8)

then � is average cost optimal and w4x5=w∗ =w = w̄ for all x ∈�. Here, we need a different form of such a
statement.

Theorem 1. Let Assumption (G) hold. If there exists a measurable function u2 �→ 601+�5 and a station-
ary policy � such that

w̄+ u4x5≥ c4x1�4x55+

∫

�
u4y5q4dy � x1�4x551 x ∈�1 (9)

then � is average cost optimal and

w4x5=w�4x5= lim sup
�↑1

41 −�5v�4x5= w̄ =w∗1 x ∈�0 (10)

Proof. Similarly to Hernández-Lerma [18, p. 239] or Schäl [26, Proposition 1.3], since u is nonnegative,
by iterating (9), we obtain

nw̄+ u4x5≥ v
�
n114x51 n≥ 11 x ∈�0

Therefore, after dividing the last inequality by n and setting n→ �, we have

w̄ ≥w�4x5≥w4x5≥w∗1 x ∈�1 (11)

where the second and third inequalities follow from the definitions of w and w∗, respectively. Since w̄ ≥ w∗,
inequalities (7) imply that for all � ∈ç,

w∗
= w̄ ≤ lim sup

�↑1
41 −�5v�4x5≤ lim sup

�↑1
41 −�5v�� 4x5≤w�4x51 � ∈ç1 x ∈�0
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Finally, we obtain that

w∗
= w̄ ≤ lim sup

�↑1
41 −�5v�4x5≤ inf

�∈ç
w�4x5=w4x5≤w�4x5≤ w̄1 x ∈�1 (12)

where the last inequality follows from (11). Thus all the inequalities in (12) are equalities. �
Let us set �= 6−�1+�5, �+ = 601�5, and �̄=�∪ 8+�9. For an �̄-valued function f , defined on a Borel

subset U of a Polish space �1 consider the level sets

Df 4�5= 8y ∈U2 f 4y5≤ �91 (13)

−�<�<+�. We recall that the function f is lower semicontinuous on U if all the level sets Df 4�5 are closed
and the function is inf-compact on U if all these sets are compact. The level sets Df 4�5 satisfy the following
properties that are used in this paper:

(a) if �1 >�, then Df 4�5⊆Df 4�15;
(b) if g1 f are functions on U satisfying g4y5≥ f 4y5 for all y ∈U , then Dg4�5⊆Df 4�5.
A set is called �-compact if it is a union of a countable number of compact sets. Denote by K4�5 the family

of all nonempty compact subsets of � and by K�4�5 the family of all �-compact subsets of �; K4�5⊂K�4�5.
Also, denote by S4�5 the set of nonempty subsets of �.

A set-valued mapping F 2 � → S4�5 is upper semicontinuous at x ∈ � if, for any neighborhood G of the
set F 4x5, there is a neighborhood of x; say, U4x5 such that F 4y5 ⊆ G for all y ∈ U4x5 (see, e.g., Berge
[3, p. 109] or Zgurovsky et al. [32, Chapter 1, p. 7]). A set-valued mapping is called upper semicontinuous if it
is upper semicontinuous at all x ∈�.

For weakly continuous transition probabilities, the following basic assumptions were considered in Schäl [26].

Assumption (W).
(i) c is lower semicontinuous and bounded below on Gr4A5;

(ii) A4x5 ∈K4�5 for x ∈� and A2 �→K4�5 is upper semicontinuous; and
(iii) the transition probability q4· � x1a5 is weakly continuous in 4x1a5 ∈ Gr4A5.

Weak continuity of q in 4x1a5 means that
∫

�
f 4z5q4dz � xk1 ak5→

∫

�
f 4z5q4dz � x1a5 as k → +�

for any sequence 84xk1 ak51 k ≥ 09 converging to 4x1a5, where 4xk1 ak5, 4x1a5 ∈ Gr4A5, and for any bounded
continuous function f 2 � → �. We notice that there is an additional assumption in Schäl [26]; namely, that
� is a locally compact space with countable base. However, as follows from this paper, the assumption is not
necessary here as well as in Feinberg and Lewis [14], because there exists at least one stationary policy. We also
remark that the assumptions in (W) were presented in a different order here than in Schäl [26], and that it is
assumed in Schäl [26] that c is nonnegative. Because for discounted and average cost criteria the cost function
can be shifted by adding any constant, the boundedness and nonnegativity of c are equivalent assumptions. We
consider Assumption (Wu) from Feinberg and Lewis [14] without assuming that � is locally compact.

Assumption (Wu).
(i) c is inf-compact on Gr4A5; and

(ii) Assumption (W(iii)) holds.

In this paper, we consider the following more general assumption. The topological meaning of Assump-
tion (W∗(ii)) is explained in Feinberg et al. [15, Lemma 2.5].

Assumption (W∗).
(i) Assumption (W(i)) holds;

(ii) if a sequence 8xn9n=1121 : : : with values in � converges and its limit x belongs to �, then any sequence
8an9n=1121 : : : with an ∈ A4xn5, n = 1121 : : : 1 satisfying the condition that the sequence 8c4xn1 an59n=1121 : : : is
bounded above, has a limit point a ∈A4x53 and

(iii) Assumption (W(iii)) holds.

Lemma 1. The following statements hold:
(i) Assumption (W) implies Assumption (W∗); and

(ii) Assumption (Wu) implies Assumption (W∗).
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Proof. (i) Let xn → x as n → �, where x ∈ � and xn ∈ �, n = 11 : : : 0 We show that under Assump-
tion (W(ii)), any sequence 8an9n=1121 : : : with an ∈ A4xn5 has a limit point a ∈ A4x5. Indeed, since K 2=
4
⋃

n≥18xn95 ∪ 8x9 is a compact set and set-valued mapping A2 � → K4�5 is upper semicontinuous, then
Berge [3, Theorem 3, p. 110] implies that the image A4K5 is also compact. As 8an9n≥1 ⊂ A4K5, then the
sequence 8an9n≥1 has a limit point a ∈�. Consider a sequence nk → � such that ank

→ a. Since A4z5 ∈K4�5
for all z ∈ X, the upper semicontinuous set-valued mapping A is closed, and since A is closed, a ∈ A4x5;
Berge [3, Theorems 5–6, pp. 111–112].

(ii) Since c is inf-compact, it is lower semicontinuous and bounded below. We just need to show that Assump-
tion (W∗(ii)) holds. Let us consider xn → x as n → +� and an ∈ A4xn5, n = 1121 : : : such that xn1 x ∈ � and
for some � < �, the inequality c4xn1 an5 ≤ � holds for all n = 1121 : : : 0 Then, by inf-compactness of c on
Gr4A5, the level set Dc4�5 is compact. Thus the sequence 8xn1 an9n≥1 has a limit point 4x1a5 ∈Dc4�5⊆ Gr4A5.
Since 4x1a5 ∈ Gr4A5, we have a ∈A4x5. �

For any �≥ 0 and lower semicontinuous nonnegative function u2 �→ �̄, we consider an operation ��
u ,

��
u 4x1a5= c4x1a5+�

∫

�
u4y5q4dy � x1a51 4x1a5 ∈ Gr4A50 (14)

Let L4�5 be the class of all lower semicontinuous and bounded below functions �2 � → �̄ with dom� 2=
8x ∈�2 �4x5 <+�9 6= �. Observe that ��

u = �1
�u.

Lemma 2. For any x ∈�, the following statements hold:
(a) under Assumption (W∗4ii5), the function c4x1 ·5 is inf-compact on A4x5; and
(b) under Assumptions (W∗(ii, iii)), for any u ∈ L4�5 and � ≥ 0, the function ��

u 4x1 ·5 is inf-compact on
A4x5.

Proof. (a) For an arbitrary � ∈ � and fixed x ∈ �, consider the set Dc4x1 ·54�5 = 8a ∈ A4x52 c4x1a5 ≤ �9.
Assumption (W∗(ii)) means that this set is compact. Thus (a) is proved.

(b) Fix x ∈� again. Since u ∈ L4�5 and q is weakly continuous in a, the second summand in (14) is a lower
semicontinuous function on A4x5 (Hernández-Lerma and Lasserre [19, p. 185]) and it is bounded below by the
same constant as u. According to statement (a), c4x1 ·5 is inf-compact on A4x5. The sum of an inf-compact
function and a bounded below lower semicontinuous function is an inf-compact function. �

A measurable mapping �2 �→� such that �4x5 ∈A4x5 for all x ∈� is called a selector (or a measurable
selector). In our case, selectors and decision rules are the same objects. Since we identify a stationary policy
with a decision rule, selectors and stationary policies are the same objects. The existence of selector for the
mapping A is the necessary and sufficient condition for the existence of a policy. Let E ⊆�×� and proj� E =

8x ∈�2 4x1a5 ∈E for some a ∈E9 be a projection of E on �. A Borel map f 2 proj� E →� is called a Borel
uniformization of E if 4x1 f 4x55 ∈E for all x ∈ proj� E. Let Ex = 8a2 4x1a5 ∈E9 be a cut of E at x ∈�.

Arsenin-Kunugui Theorem (Kechris [21, p. 297]. If E is a Borel subset of �×� and Ex ∈ K�4�5 for
all x ∈�, then there exists a Borel uniformization of E and proj� E is a Borel set.

We remark that it is assumed in Kechris [21, p. 297] that � is a standard Borel space (that is, isomorphic to
a Borel subset of a Polish space) and � is a Polish space. Here, � and � are Borel subsets of Polish spaces.
These two formulations are obviously equivalent.

We recall that Gr4A5 is assumed to be Borel and A4x5 6= �, x ∈ �. With E = Gr4A5, the Arsenin-Kunugui
theorem implies the existence of a stationary policy under the assumption A4x5 ∈K4�5, x ∈�. Thus, Assump-
tion (W) implies the existence of a policy for the MDP.

Let Assumption (W∗) hold. Set F 4x5 = 8a ∈ A4x52 c4x1a5 < �9, x ∈ �. In view of Lemma 2, F 4x5 =
⋃

n∈81121 : : : 9Dc4x1 ·54n5 ∈K�4�5. In addition, Gr4F 5= 84x1a5 ∈ Gr4A52 c4x1a5 <�9 is a Borel subset of �×�.
Thus, if the function c takes only finite values, a stationary policy exists in view of the Arsenin-Kunugui
Theorem.

Of course, if it is possible that c4x1a5 = �, a uniformization may not exist. For example, this takes place
when c4x1a5= � for all 4x1a5 ∈ Gr4A5 and Gr4A5 does not have a measurable selector. However, c4x1a5= �

means from a modeling prospective that this state-action pair should be excluded, because selecting a in x leads
to the worst-possible result. If there are state-action pairs 4x1a5 with c4x1a5 = � and Gr4A5 does not have a
uniformization, the MDP can be transformed into an MDP modeling the same problem and with a nonempty
set of policies. Let us exclude the situation when c4x1a5 = � for all 4x1a5 ∈ Gr4A5, because it is trivial: all
the actions are bad. Define X = proj� Gr4F 5 and Y = �\X. Under Assumption (W∗), the Arsenin-Kunugui
Theorem implies that X is Borel and there exist a Borel mapping f from X to � such that f 4x5 ∈ F 4x5 for
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all x ∈X. If Y = � (that is, there exists an action a ∈A4x5 with c4x1a5 <� for each x ∈�), then �= f is a
stationary policy.

Let us consider the situation when Y 6= �. In such an MDP, as soon as the state is in Y , the losses are infinite
and there is no reason to model the process after this. Let us transform the model by choosing any x∗ ∈ Y and
any a∗ ∈ � and setting the new state set �∗ = X ∪ 8x∗9, keeping the original action set �, setting new action
sets A∗4x5= F 4x5 for x ∈X and A∗4x∗5= 8a∗9, defining the new cost function

c∗4x1a5=

{

c4x1a5 if x ∈ Y and a ∈ F 4x51

� if x = x∗ and a= a∗1

and considering new transition probabilities defined for x ∈X∗ and a ∈A∗4x5 by

q∗4B � x1a5=











q4B � x1a5 if B ⊆X1 B ∈B4�5 and x ∈X1

q4Y � x1a5 if B = 8x∗9 and x ∈X1

1 if B = 8x∗9 and x = x∗0

The new MDP is nontrivial in the sense that the set of policies is not empty. Finding an optimal policy for this
MDP is equivalent to finding a policy for the original MDP until its first exit time from X, and in both cases,
the process incurs infinite losses if it leaves X. So, the original and the new MDP model are the same problem.

The following lemma is useful for establishing continuity properties of the value functions vn1�4x5 and v�4x5
in x ∈�; for later relevant results, see Feinberg et al. [15].

Lemma 3. If Assumption (W∗) holds and u ∈ L4�5, then the function

u∗4x5 2= inf
a∈A4x5

[

c4x1a5+

∫

�
u4y5q4dy � x1a5

]

1 x ∈�1 (15)

belongs to L4�51 and there exists f ∈ � such that

u∗4x5= c4x1 f 4x55+

∫

�
u4y5q4dy � x1 f 4x551 x ∈�0 (16)

Moreover, infimum in (15) can be replaced by minimum, and the nonempty sets

A∗4x5=

{

a ∈A4x52 u∗4x5= c4x1a5+

∫

�
u4y5q4dy � x1a5

}

1 x ∈�1 (17)

satisfy the following properties:
(a) the graph Gr4A∗5= 84x1a52 x ∈�1 a ∈A∗4x59 is a Borel subset of �×�;
(b) if u∗4x5= +�, then A∗4x5=A4x5, and if u∗4x5 <+�, then A∗4x5 is compact.

Proof. Under Assumption (W∗), for any lower semicontinuous on �, bounded below function u2 � → �̄
and � ∈ 40117, the function ��

u 4x1 ·5 is inf-compact on A4x5, x ∈�. This follows from Lemma 2. Thus, infimum
in (15) can be replaced by minimum and A∗4x5 is nonempty for any x ∈�.

Now, we show that u∗ is lower semicontinuous on �. Let us fix an arbitrary x ∈� and any sequence xn → x
as n→ +�. We need to prove the inequality

u∗4x5≤ lim inf
n→+�

u∗4xn50 (18)

If lim infn→+� u∗4xn5= +�, then (18) obviously holds. Thus we consider the case, when lim infn→+� u∗4xn5 <
+�. There exists a subsequence 8xnk9k≥1 ⊆ 8xn9n≥1 such that

lim inf
n→+�

u∗4xn5= lim
k→+�

u∗4xnk50

Setting � = limk→+� u∗4xnk5 + 1, we get the inequality u∗4xnk5 ≤ � for all k ≥ K, where K is some natural
number. Since the function �1

u4x1 ·5 is inf-compact on A4x5, Equation (15) can be rewritten as

u∗4x5 2= min
a∈A4x5

�1
u4x1a51 x ∈�0
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Thus, for any k ≥K, there exists ak ∈A4xnk5 such that u∗4xnk5= �1
u4xnk 1 ak5. Therefore

c4xnk 1 ak5≤ �1
u4xnk 1 ak5≤ �1 k ≥K0

In view of Assumption (W∗4ii5), there exists a convergent subsequence 8akm
9m≥1 of the sequence 8ak9k≥1 such

that akm
→ a ∈A4x5 as m→ +�. Due to lower semicontinuity of �1

u on Gr4A5,

lim inf
n→+�

u∗4xn5= lim
k→+�

u∗4xnk5= lim
m→+�

u∗4xnkm
5= lim

m→+�
�1
u4xnkm

1 akm
5≥ �1

u4x1a5≥ u∗4x50

Inequality (18) holds. Thus u∗ is lower semicontinuous on �.
Now, we consider the nonempty sets A∗4x5, x ∈ �, defined in (17). The graph Gr4A∗5 is a Borel subset of

�×�, because Gr4A∗5= 84x1a52 u∗4x5= �1
u4x1a59, and the functions �1

u and u∗ are lower semicontinuous on
Gr4A5 and �, respectively, and therefore they are Borel.

We remark that if u∗ = +�, then A∗4x5 = A4x5. If u∗4x5 < �, then Lemma 2 implies that the set A∗4x5
is compact. Indeed, fix any x ∈ �f 2= 8x ∈ �2 u∗4x5 < �9 and set � = u∗4x5. Then, the set A∗4x5 = 8a ∈

A4x52 �1
u4x1a5≤ �9=D�1

u4x1 ·5
4�5 is compact, because �1

u4x1 ·5 is inf-compact on A4x5.
Let us prove the existence of f ∈ � satisfying (16). Since the function u∗ is lower semicontinuous, it is Borel

and the sets X� 2= 8x ∈�2 u∗4x5= +�9 and �f are Borel. Therefore the graph of the mapping A∗2 �f → 2� is
the Borel set Gr4A5\4�� ×�5. Since the nonempty sets A∗4x5 are compact for all x ∈�f , the Arsenin-Kunugui
Theorem implies the existence of a Borel selector f12 �f →� such that f14x5 ∈A∗4x5 for all x ∈�. Consider
any Borel mapping f2 from � to � satisfying f24x5 ∈A4x5 for all x ∈� and set

f 4x5=

{

f14x5 if x ∈�f 1

f24x5 if x ∈��0

Then, f ∈ � and f 4x5 ∈A∗4x5 for all x ∈�. �
The following Lemma 4 is formulated in Schäl [26, Lemma 2.3(ii)] without proof. Reference Serfozo [29]

mentioned in Schäl [26, Lemma 2.3(ii)] contains relevant facts, but it does not contain this statement. The proofs
of Lemma 4 and its generalization to the functions hn that can take negative values are provided in Feinberg
et al. [16]. To make the current paper self-contained, we provide the proof of Lemma 4 in the appendix. Recall
that for a metric space S, the family of all probability measures on 4S1B4S55 is denoted by �4S5.

Lemma 4. Let S be an arbitrary metric space, 8�n9n≥1 ⊂�4S5 converges weakly to � ∈�4S5, and 8hn9n≥1

be a sequence of measurable nonnegative �̄-valued functions on S. Then
∫

S
h4s5�4ds5≤ lim inf

n→+�

∫

S
hn4s5�n4ds51

where h4s5= lim infn→+�1 s′→s hn4s
′5, s ∈ S.

Proof. See the appendix. �
We remark that lim infn→+�1 s′→s hn4s

′5 is the least upper bound of the set of all � ∈ � such that there exist
N = 1121 : : : and a neighborhood U4s5 of s such that �≤ inf8hn4s

′52 n≥N1 s′ ∈U4s59.

4. Expected total discounted costs. In this section, we establish under Assumption (W∗) the standard prop-
erties of discounted MDPs: the existence of stationary optimal policies, description of the sets of stationary
optimal policies, and convergence of value iterations. Theorem 2 strengthens Feinberg and Lewis [14, Propo-
sition 3.1], where these facts are proved under Assumption (Wu). In terms of applications to inventory and
queuing control, Assumption (W∗) does not require that holding costs increase to infinity as the inventory level
(or work load, or the number of customers in queue) increases to infinity.

Theorem 2. Let Assumption (W∗) hold. Then
(i) the functions vn1�, n = 011121 : : : , and v� are lower semicontinuous on �, and vn1�4x5 → v�4x5 as

n→ +� for all x ∈�;
(ii)

vn+11�4x5= min
a∈A4x5

{

c4x1a5+�
∫

�
vn1�4y5q4dy � x1a5

}

1 x ∈�1 n= 0111 : : : 1 (19)

where v01�4x5 = 0 for all x ∈ �, and the nonempty sets An1�4x5 2= 8a ∈ A4x52 vn+11�4x5 = ��
vn1�

4x1a59, x ∈ �,
n = 0111 : : : 1 satisfy the following properties: (a) the graph Gr4An1�5 = 84x1a52 x ∈ �1 a ∈ An1�4x59, n =

0111 : : : 1 is a Borel subset of �×�, and (b) if vn+11�4x5= +�, then An1�4x5=A4x5, and if vn+11�4x5 <+�,
then An1�4x5 is compact;



Feinberg, Kasyanov, and Zadoianchuk: Average Cost Markov Decision Processes
Mathematics of Operations Research 37(4), pp. 591–607, © 2012 INFORMS 599

(iii) for any N = 1121 : : : , there exists a Markov optimal N -horizon policy 4�01 : : : 1�N−15, and if, for an
N -horizon Markov policy 4�01 : : : 1�N−15, the inclusions �N−1−n4x5 ∈An1�4x5, x ∈�1 n= 01 : : : 1N − 1 hold,
then this policy is N -horizon optimal;

(iv) for � ∈ 60115,

v�4x5= min
a∈A4x5

{

c4x1a5+�
∫

�
v�4y5q4dy � x1a5

}

1 x ∈�1 (20)

and the nonempty sets A�4x5 2= 8a ∈ A4x52 v�4x5 = ��
v�
4x1a59, x ∈ � satisfy the following properties: (a) the

graph Gr4A�5 = 84x1a52 x ∈ �1 a ∈ A�4x59 is a Borel subset of �×�, and (b) if v�4x5 = +�, then A�4x5 =

A4x5, and, if v�4x5 <+�, then A�4x5 is compact.
(v) for an infinite horizon, there exists a stationary discount optimal policy ��, and a stationary policy is

optimal if and only if ��4x5 ∈A�4x5 for all x ∈�.
(vi) (Feinberg and Lewis [14, Proposition 3.1(iv)]) under Assumption (Wu), the functions vn1�, n= 1121 : : : ,

and v� are inf-compact on �.

Proof. (i)–(v). First, we prove these statements for a nonnegative cost function c. In this case, vn1�4x5≥ 0,
n= 0111 : : : 1 and v�4x5≥ 0 for all x ∈�.

By (3) and Lemma 3, v11� ∈ L4�5 since v01� = 0 ∈ L4�5. By the same arguments, if vn1� ∈ L4�5, then
vn+11� ∈ L4�5. Thus vn1� ∈ L4�5 for all n = 0111 : : : 0 By Lemma 2, for any n = 1121 : : : , x ∈ �, and
� ∈�, the set D��

vn1�
4x1 ·54�5 is a compact subset of �. By Bertsekas and Shreve [4, Proposition 9.17], vn1� ↑ v�

as n → +�. Since the limit of a monotone increasing sequence of lower semicontinuous functions is again a
lower semicontinuous function, v� ∈ L4�5. Lemma 3, applied to Equations (3) and (5), implies statements (ii)
and (iv), respectively. Statement (iii) follows from (4) and statement (v) follows from (6).

Now, let c4x1a5 ≥ K for all 4x1a5 ∈ Gr4A5 and for some K > −�. For K ≥ 0, statements (i)–(v) are
proved. For K < 0, consider the value functions c̃ = c −K ≥ 0. If the cost function c is substituted with c̃, we
substitute the notation v with ṽ. Then v�n1� = ṽ�n1� + 441 −�n5/41 −�55K, n= 0111 : : : for all policies �. Thus
vn1� = ṽn1� + 441 −�n5/41 −�55K1 n = 0111 : : : 1 and v� = ṽ� +K/41 −�5. Since statements (i)–(v) hold for
the shifted costs c̃ and the value functions ṽn1� and ṽ�, they also hold for the initial cost function c and the
value functions vn1� and v�. �

We remark that the conclusions of Theorem 2 and its proof remain correct when �= 1 and the function c is
nonnegative.

5. Average costs per unit time. In this section, we show that Assumption (W∗) and “boundedness” Assump-
tion (B) on the function u�, which is weaker than the boundedness Assumption (B) introduced by Schäl [26], lead
to the validity of stationary average cost optimal inequalities and the existence of stationary policies. Stronger
results hold under Assumption (B).

Assumption 4B5. (i) Assumption (G) holds, and (ii) lim inf�↑1 u�4x5 <� for all x ∈�.

Assumption (ULB(ii)) is weaker than the assumption sup�∈60115 u�4x5 < � for all x ∈ � considered in
Schäl [26]. This assumption and Assumption (G) were combined in Feinberg and Lewis [14] into the following
assumption.

Assumption (B). (i) Assumption (G) holds, and (ii) sup�∈60115 u�4x5 <� for all x ∈�.

It seems natural to consider the assumption lim sup�↑1 u�4x5 <� for all x ∈�, which is stronger than Assump-
tion (B(ii)) and weaker than Assumption (B(ii)). However, as the following lemma shows, under Assumption (G),
this assumption is equivalent to Assumption (B(ii)).

Lemma 5. Let the cost function c be bounded below and Assumption (G) hold. Then, for each x ∈ �, the
following two inequalities are equivalent:

(i) sup�∈60115 u�4x5 <�,
(ii) lim sup�↑1 u�4x5 <�.

Proof. Obviously, (i)→(ii). Let us prove (ii)→(i). Let (ii) hold. Assume that (i) does not hold. Since
sup�∈60115 u�4x5 = max8sup�∈601�∗5 u�4x51 sup�∈6�∗115 u�4x59 for any �∗ ∈ 60115, there exists �∗ ∈ 60115 such that
sup�∈601�∗5 u�4x5= �.

Since the function u� remains unchanged if a finite constant is added to the cost function c, we assume without
loss of generality that c4x1a5≥ 0 for all 4x1a5 ∈ Gr4A5. Since c ≥ 0, the functions v�4x5 and m� are nonnegative
nondecreasing functions in � ∈ 60115. Since v�4x5 = u�4x5 + m� ≥ u�4x5, we have sup�∈601�∗5 v�4x5 = �, and
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therefore v�4x5= � for all � ∈ 6�∗1151 because of the monotonicity of v� in �. Thus lim sup�↑141 −�5v�4x5= �.
However, lim sup�↑141 − �5v�4x5 = lim sup�↑141 − �54u�4x5 + m�5 ≤ lim sup�↑141 − �5u�4x5 + w̄ < �, where
the last inequality follows from (ii) and (7). The obtained contradiction completes the proof. �

Until the end of this section, we assume that Assumption (B) holds. Let us set

u4x5 2= lim inf
�↑11 y→x

u�4y51 x ∈�1 (21)

where lim inf�↑11 y→x u�4y5 is the least upper bound of the set of all � ∈�+ such that there exist � ∈ 60115 and a
neighborhood U4x5 of x such that �≤ inf8u�4y52 � ∈ 6�1151 y ∈U4x5∩�9.

Also, define the following nonnegative functions on �:

U�4x5= inf
�∈6�115

u�4x51 u�4x5= lim inf
y→x

U�4y51 � ∈ 601151 x ∈�0 (22)

Observe that all three defined functions take finite values at x ∈�. Indeed,

u�4x5≤U�4x5≤ sup
�∈60115

inf
�∈6�115

u�4x5= lim inf
�↑1

u�4x5 <�1 � ∈ 601151 x ∈�1 (23)

where the first two inequalities follow from the definitions of u� and U�, respectively, and the last inequality
follows from Assumption (B). For x ∈�,

u4x5 = sup
�∈601151R>0

[

inf
�∈6�1151 y∈BR4x5

u�4y5
]

= sup
�∈60115

sup
R>0

inf
y∈BR4x5

inf
�∈6�115

u�4y5

= sup
�∈60115

sup
R>0

inf
y∈BR4x5

U�4y5= sup
�∈60115

lim inf
y→x

U�4y5= sup
�∈60115

u�4x5 <�1
(24)

where BR4x5= 8y ∈�2 �4y1 x5 < R9, the first equality is (21), the second equality follows from the properties of
infima, the third and fifth equalities follow from (22), the fourth equality follows from the definition of lim sup,
and the last inequality follows from (23). In view of (22), the functions U�4x5 and u�4x5 are nondecreasing in �.
Therefore, in view of (24),

u4x5= lim
�↑1

u�4x51 x ∈�0 (25)

We also set for u from (25)

A∗4x5 2=

{

a ∈A4x52 w̄+ u4x5≥ c4x1a5+

∫

�
u4y5q4dy � x1a5

}

1 x ∈�1 (26)

and let A∗4x5, x ∈� be the sets defined in (17) for this function u; A∗4x5⊆A∗4x5.

Theorem 3. Suppose Assumptions (W∗) and (B) hold. There exist a stationary policy � satisfying (9) with u
defined in (21). Thus, equalities (10) hold for this policy �. Furthermore, the following statements hold:

(a) the function u2 �→�+, defined in (21), is lower semicontinuous;
(b) the nonempty sets A∗4x5, x ∈�, satisfy the following properties:

4b15 the graph Gr4A∗5= 84x1a52 x ∈�1 a ∈A∗4x59 is a Borel subset of �×�; and
4b25 for each x ∈�, the set A∗4x5 is compact;

(c) a stationary policy � is optimal for average costs and satisfies (9) with u defined in (21) if �4x5 ∈A∗4x5
for all x ∈�;

(d) there exists a stationary policy � with �4x5 ∈A∗4x5⊆A∗4x5 for all x ∈�; and
(e) if, in addition, Assumption (Wu) holds, then the function u defined in (21), is inf-compact.

Before the proof of Theorem 3, we establish some auxiliary facts.

Lemma 6. Under Assumption (B), the functions u1u�2 � → �+, � ∈ 60115 are lower semicontinuous
on �. If additionally Assumption (W∗) holds, the functions u�2 � → �+, � ∈ 60115 are lower semicontinu-
ous on �. Under Assumptions (Wu) and (B), the functions u1u�1u�2 �→�+, � ∈ 60115 are inf-compact on �.

Proof. Since u�4x5 ≥ 0, � ∈ 60115, and x ∈ �, the functions u�, � ∈ 60115 are lower semicontinuous;
Feinberg and Lewis [14, Lemma 3.1]. Since supremum over any set of lower semicontinuous functions is a lower
semicontinuous function, the function u is lower semicontinuous.
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According to (7), w̄ 2= lim sup�↑141−�5m� = inf�∈40115 sup�∈6�11541−�5m� <�. Thus, there exists �0 ∈ 60115
such that

�′ 2= sup
�∈6�0115

41 −�5m� <�0 (27)

Let us assume that the function c is bounded below. As explained in the proof of Lemma 5, without loss
of generality, we can assume that c ≥ 0. Then m� is a nonnegative nondecreasing function. Thus 41 − �5m� ≤

41 −�5m�0
≤ �′/41 −�05, � ∈ 601�05, and (27) implies that

�∗
= sup

�∈60115
41 −�5m� <�0 (28)

According to Theorem 2(i, iv, v) under Assumption (W∗), the function u�4x5 = v�4x5 − m� is lower semi-
continuous, and a stationary policy �� is �-discount optimal if and only if for all x ∈�,

v�4x5= min
a∈A4x5

{

c4x1a5+�
∫

�
v�4y5q4dy � x1a5

}

= c4x1��4x55+�
∫

�
v�4y5q4dy � x1��4x550 (29)

The first equality in (29) is equivalent to

41 −�5m� + u�4x5= min
a∈A4x5

[

c4x1a5+�
∫

�
u�4y5q4dy � x1a5

]

1 x ∈�0 (30)

Let Assumption (Wu) hold. The function u�4x5 = v�4x5−m� is inf-compact by Theorem 2(vi). Consider an
arbitrary � ∈ �+. Since u4x5 ≥ u�1

4x5 ≥ u�2
4x5, x ∈ � for all �11�2 ∈ 60115, �1 ≥ �2, then Du4�5 ⊆ Du�

4�5 ⊆

Du0
4�5, � ∈ 60115. Since the functions u and u� are lower semicontinuous, the sets Du4�5 and Du�

4�5 are closed,
� ∈ 60115. Therefore, if the set Du0

4�5 is compact, then those sets are also compact and the functions u and u�,
� ∈ 60115 are inf-compact.

Observe that (28) and (30) imply that u�4x5 ≥ v04x5 − �∗, x ∈ X for all � ∈ 60115. This implies U04x5 ≥

v04x5 − �∗, x ∈ X. Since u0 is the largest lower semicontinuous function that is less than or equal to U0 at all
x ∈ �, we have u04x5 ≥ v04x5 − �∗, x ∈ X. Since the function u0 is lower semicontinuous, the set Du0

4�5 is
closed. In addition, Du0

4�5 ⊆ Dv0
4�+ �∗5, where the set Dv0

4�+ �∗5 is compact (cf. Theorem 2(vi)). Thus the
set Du0

4�5 is compact, and the functions u and u�, � ∈ 60115 are inf-compact. �

Corollary 1. Under Assumption (B), for every sequence �n ↑ 1 as n→ +� and for every x ∈�1

u�n
4x5 ↑ u4x5= lim

n→�1 y→x
u�n

4y50

Proof. Let �n ↑ 1 as n→ +�, and x ∈�. Similar to (24),

lim inf
n→+�1 y→x

u�n
4y5 = sup

n=1121 : : :
sup
R>0

inf
y∈BR4x5

inf
m≥n

u�m
4y5= sup

n=1121 : : :
sup
R>0

inf
y∈BR4x5

u�n
4y5

= sup
n=1121 : : :

lim inf
y→x

u�n
4y5= lim

n→�
u�n

4x5= u4x51

where the second equality holds because the function u�4y5 is nondecreasing in �, the fourth equality holds
because it is lower semicontinuous, and the last equality follows from (25). �

Lemma 7. Under Assumptions (W∗) and (B), the following inequalities hold:

w̄+ u4x5≥ min
a∈A4x5

[

c4x1a5+

∫

�
u4y5q4dy � x1a5

]

1 x ∈�0 (31)

Proof. Let us fix an arbitrary �∗ > 0. Since w̄ = lim sup�↑141 −�5m�1 there exists �0 ∈ 60115 such that

w̄+ �∗ > 41 −�5m�1 � ∈ 6�01150 (32)

Our next goal is to prove the inequality

w̄+ �∗
+ u4x5≥ min

a∈A4x5

[

c4x1a5+�
∫

�
u�4y5q4dy � x1a5

]

1 x ∈�1 � ∈ 6�01150 (33)
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Indeed, by (30) and (32) for every �1� ∈ 6�0115 such that �≤ �, and for every x ∈�,

w̄+ �∗
+ u�4x5 > 41 −�5m� + u�4x5= min

a∈A4x5

[

c4x1a5+�
∫

�
u�4y5q4dy � x1a5

]

≥ min
a∈A4x5

[

c4x1a5+�
∫

�
U�4y5q4dy � x1a5

]

0

As the right-hand side does not depend on � ∈ 6�115, we have for all x ∈� and for all � ∈ 6�0115,

w̄+ �∗
+U�4x5 = inf

�∈6�115
6w̄+ �∗

+ u�4x57≥ min
a∈A4x5

[

c4x1a5+�
∫

�
U�4y5q4dy � x1a5

]

≥ min
a∈A4x5

[

c4x1a5+�
∫

�
u�4y5q4dy � x1a5

]

= min
a∈A4x5

��
u�
4x1a50

By Lemma 3, the function x → mina∈A4x5 �
�
u�
4x1a5 is lower semicontinuous on �. Thus

lim inf
y→x

min
a∈A4y5

��
u�
4y1a5≥ min

a∈A4x5
��
u�
4x1a51 x ∈�1 � ∈ 601151

and as by definition (22), u�4x5= lim infy→x U�4y5, we finally obtain

w̄+ �∗
+u�4x5≥ min

a∈A4x5
��
u�
4x1a51 x ∈�1 � ∈ 6�01150 (34)

Since by Corollary 1 u4x5= sup�∈6�0115 u�4x5 for all x ∈�, (34) yields (33).
To complete the proof of the lemma, we fix an arbitrary x ∈ �. By Lemma 3, for any � ∈ 60115, there exists

a� ∈ A4x5 such that mina∈A4x5 �
�
u�
4x1a5 = ��

u�
4x1a�5. Since u� ≥ 0 for � ∈ 6�0115, the inequality (33) can be

continued as
w̄+ �∗

+ u4x5≥ ��
u�
4x1a�5≥ c4x1a�50 (35)

Thus, for all � ∈ 6�0115,

a� ∈D��
u�

4x1·54w̄+ �∗
+ u4x55⊆Dc4x1 ·54w̄+ �∗

+ u4x55⊆A4x50

By Lemma 2, the set Dc4x1 ·54w̄+�∗ +u4x55 is compact. Thus, for every sequence �n ↑ 1 of numbers from 6�0115,
there is a subsequence 8�n9n≥1 such that the sequence 8a�n

9n≥1 converges and a∗ 2= limn→� a�n
∈A4x5.

Consider a sequence �n ↑ 1 such that a�n
→ a∗ for some a∗ ∈A4x5. Due to Lemma 4 and Corollary 1,

lim inf
n→+�

�n

∫

�
u�n

4y5q4dy � x1an5≥

∫

�
u4y5q4dy � x1a∗50 (36)

Since the function c is lower semicontinuous, (35) and (36) imply

w̄+ �∗
+ u4x5≥ lim sup

n→�

��n
u�n

4x1a�n
5≥ c4x1a∗5+

∫

�
u4y5q4dy � x1a∗5≥ min

a∈A4x5
�1
u4x1a50

Since w̄+ �∗ + u4x5≥ mina∈A4x5 �
1
u4x1a5 for any �∗ > 0, this is also true when �∗ = 0. �

Proof of Theorem 3. Lemma 6 contains statements (a) and (e). Since Gr4A∗5 = 84x1a5 ∈ Gr4A5:
g4x1a5≥ 09, where g4x1a5= w̄+u4x5−c4x1a5−

∫

� u4y5q4dy � x1a5 is a Borel function, the set Gr4A∗5 is Borel.
The sets A∗4x5, x ∈� are compact in view of Lemma 2(b). Thus the statement (b) is proved. The Arsenin-Kunugui
Theorem implies the existence of a stationary policy � such that �4x5 ∈A∗4x5 for all x ∈�. Statement (d) follows
from Lemma 3 and the Arsenin-Kunugui Theorem. The rest follows from Theorem 1. �

Theorem 4. Suppose Assumptions (W∗) and (B) hold. Then, all the conclusions of Theorem 3 hold, and in
addition, for a stationary policy � satisfying (9) with u defined in (21),

w�4x5=w = lim
�↑1

41 −�5v�4x5= lim
N→�

1
N
v
�
N114x51 x ∈�0 (37)
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Proof. Consider a sequence 8�4n59n≥1 such that �4n5 ↑ 1 as n→ +�1 and

lim
n→+�

41 −�4n55m�4n5 =w0

Define the following nonnegative functions on �:

Ũn4x5= inf
m≥n

u�4m54x51 ũn4x5= lim inf
y→x

Ũn4y51 n≥ 11 x ∈�1

and
ũ4x5= sup

n≥1
ũn4x51 x ∈�0 (38)

Observe that
ũn4x5≤ Ũn4x5≤ lim inf

m→+�
u�4m54x5 <�1 x ∈�1 n= 1121 : : : 1 (39)

where the first two inequalities follow from the definitions of ũn and Ũn, respectively, and the last inequality
follows from Assumption (B). As follows from (38) and (39), ũ4x5≤ lim infm→+� u�4m54x5 <+�. According to
Feinberg and Lewis [14, Lemma 3.1], the functions ũn, n ≥ 1 are lower semicontinuous on �. Therefore their
supremum ũ is also lower semicontinuous. In addition,

ũ4x5= sup
n≥1

sup
R>0

inf
y∈BR4x5

inf
m≥n

u�4m54y5= lim inf
n→+�1 y→x

u�4n54y51 x ∈�1

where the first equality follows from the definitions of Ũn, ũn, and ũ, and the second equality is the definition of
the lim inf. Since Ũn4x5 ↑, we have ũn4x5 ↑ ũ4x5 as n→ � for all x ∈�.

We show next that for each x ∈�,

w+ ũ4x5≥ inf
a∈A4x5

[

c4x1a5+

∫

�
ũ4y5q4dy � x1a5

]

0 (40)

Indeed, let us fix any �∗ > 0. By the definition of w, there exists a subsequence 8�4nk59k≥1 ⊆ 8�4n59n≥1 such that
for k = 1121 : : :

w+ �∗
≥ 41 −�4nk55m�4nk5

0

Let x ∈� be an arbitrary state. By Theorem 2 for each k ≥ 1, there exists ank
∈A�4nk5

4x5 such that

41 −�4nk55m�4nk5
+ u�4nk5

4x5= c4x1ank
5+�4nk5

∫

�
u�4nk5

4y5q4dy � x1ank
50

Thus, similarly to the proof of Lemma 7, we get (40).
From Lemma 3 and the Arsenin-Kunugui Theorem, there exists a stationary policy �̃ ∈ � such that for any

x ∈�,
w+ ũ4x5≥ c4x1 �̃4x55+

∫

�
ũ4y5q4dy � x1 �̃4x550 (41)

Thus, by Schäl [26, Proposition 1.3] described in (8), for all x ∈�,

w̄ =w =w4x5=w�̃4x5= lim
�↑1

41 −�5v�4x5=w∗0 (42)

Let us choose any stationary policy � such that inequalities (8) and (9) hold with the function u defined in (21).
Since w̄ = w, according to Theorem 3, such a stationary policy exists. Theorem 1 implies that the stationary
policy � satisfies (10), and Schäl [26, Proposition 1.3] (see (8)) implies that (42) holds with �̃=�.

In addition, (42) with �̃=� implies that for all x ∈�,

w�4x5= lim
�↑1

41 −�5m� = lim
�↑1

41 −�54v�4x5− u�4x55= lim
�↑1

41 −�5v�4x51

where the last equality follows from Assumption (B). Thus, for all x ∈�,

w�4x5 = lim sup
n→�

1
n
v
�
n114x5≥ lim sup

�↑1
41 −�5v��4x5≥ lim inf

�↑1
41 −�5v��4x5

≥ lim
�↑1

41 −�5v�4x5=w�4x51

where the first inequality follows from the Tauberian theorem (see Sennott [27, §A.4] or [28, Proposition 5.7]),
and the last inequality follows from v��4x5 ≥ v�4x5 and the existence of the limit. So, we have the existence of
lim�↑141−�5v��4x5. Thus the Karamata Tauberian Theorem (Sennott [27, §A.4] or Sennott [28, Proposition 5.7])
implies w�4x5= limn→�41/n5v

�
n114x5. �
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Corollary 2. Under Assumptions (W∗) and (B), the conclusions of Theorems 3 and 4 remain correct if the
function u is substituted with the function ũ defined in (38).

Proof. As shown in the proof of Theorem 4, there exists a stationary policy �̃ satisfying (41). The function
ũ is nonnegative, lower semicontinuous, and takes finite values. Thus, both Schäl [26, Proposition 1.3] (see (8))
and Theorem 1 can be applied to this function. The proof of statements (a)–(d) of Theorem 3 uses just these
properties of u. Statement (e) follows from Lemma 6, whose proof remains unchanged if u is replaced by ũ. �

6. Approximation of average cost optimal strategies by �-discount optimal strategies. For a family of
sets 8Gr4A�59�∈40115, x ∈� considered in Theorem 2, we pay our attention to its upper topological limit

Lim
�↑1

Gr4A�5=







4x1a5 ∈�×�2
∃�n ↑ 11 n→ +�1 ∃4xn1 an5 ∈ Gr4A�n

51 n≥ 1

such that 4x1a5= lim
n→+�

4xn1 an5







1

defined, for example, in Zgurovsky et al. [32, Chapter 1, p. 3]. Let us set

Aapp4x5 2=

{

a ∈A∗4x52 4x1a5 ∈ Lim
�↑1

Gr4A�5

}

1 x ∈�0

Theorem 5. Under Assumptions (W∗) and (B), the graph Gr4Aapp5 is a Borel subset of Gr4A∗5, and for
each x ∈ �, the set Aapp4x5 is nonempty and compact. Furthermore, there exists a stationary policy �app such
that �app4x5 ∈Aapp4x5 for all x ∈X, and any such policy is average cost optimal.

Proof. Let us fix an arbitrary x ∈ �. From (21) (the definition of u), there exists 8yn1�n9n≥1 ⊆ �× 40115
such that yn → x, �n ↑ 1, u�n

4yn5→ u4x5, n→ +�.
Let us choose an arbitrary �∗ > 0 and bn ∈A�n

4yn5, n≥ 1. Since w̄ = lim sup�↑141 −�5m�, there exists N ≥ 1
such that u4x5+ �∗/2 ≥ u�n

4yn5 and w̄+ �∗/2 ≥ 41 −�n5m�n
for all n≥N .

By definition of the sets A�4 · 5 for each n≥N ,

41 −�n5m�n
+ u�n

4yn5= c4yn1 bn5+�n

∫

�
u�n

4y5q4dy � yn1 bn5= ��n
u�n

4yn1 bn50

Thus, for all n≥N ,

w̄+ �∗
+ u4x5≥ ��n

u�n
4yn1 bn5≥ �

�n
U�n

4yn1 bn5≥ ��n
u�n

4yn1 bn5≥ c4yn1 bn50

Therefore, because of Assumption (W∗(ii)), the sequence 8bn9n≥1 has a subsequence 8bnk9k≥1 such that bnk → a,
as k → +� for some a ∈A4x5. Thus 4x1a5 ∈ Lim�↑1Gr4A�5.

Let us prove that 4x1a5 ∈ Gr4A∗5. Indeed, as �nk
u�nk

4 · 5 ↑ u4 · 5, k → +�, then due to Lemma 4 and
Corollary 1,

lim inf
k→+�

�nk

∫

�
u�nk

4x5q4dy � ynk 1 bnk5≥

∫

�
u4x5q4dy � x1a50

Thus, by Lemma 3, w̄+ �∗ + u4x5≥ �1
u4x1a5, and this is true for any �∗ > 0. This implies w̄+ u4x5≥ �1

u4x1a5.
This inequality means that 4x1a5 ∈ Gr4A∗5 and Aapp4x5 6= �, since 4x1a5 ∈ Lim�↑1Gr4A�5. The set Aapp4x5 is
compact because Lim�↑1Gr4A�5 is closed (see Zgurovsky et al. [32, Chapter 1, p. 3] and Theorem 3(b)). The
second statement of the theorem follows from the Arsenin-Kunugui Theorem. �

Corollary 3. Under Assumptions (W∗) and (B), for any stationary average cost optimal policy �app such
that �app4x5 ∈Aapp4x5 for all x ∈�, for every x ∈�, there exist �n4x5 ↑ 1 and yn4x5→ x as n→ +� such that
an4x5 ∈A�n4x5

4yn4x55, n≥ 11 and �app4x5= limn→+� an4x5.

Proof. Following Theorem 5, consider a stationary average cost optimal policy �app such that �app4x5 ∈

Aapp4x5 for all x ∈ X. Furthermore, since Aapp4x5 ⊆ A∗4x5 for all x ∈ �, any such a policy is optimal. Let us
fix an arbitrary x ∈ �. By definition of Aapp4x5, we have that 4x1�app4x55 ∈ Lim�↑1Gr4A�5. Then, there exist
�n4x5 ↑ 1, n → +�, and 4yn4x51an4x55 ∈ Gr4A�n

5, n ≥ 1 such that 4x1�app4x55 = limn→+�4yn4x51an4x55, i.e.,
�app4x5= limn→+� an4x5, where an4x5 ∈A�n4x5

4yn4x55, n≥ 1, �n4x5 ↑ 1, and yn4x5→ x as n→ +�. �



Feinberg, Kasyanov, and Zadoianchuk: Average Cost Markov Decision Processes
Mathematics of Operations Research 37(4), pp. 591–607, © 2012 INFORMS 605

We remark that if we replace in (26) the function u with the function ũ defined in (38), Theorem 5 and
Corollary 3 remain correct.

Let us set
X� 2= 8x ∈�2 v�4x5=m�91 � ∈ 60115

under Assumptions (G), m� <�. If Assumptions (G) and (Wu) hold, then Theorem 2 implies that X� is a compact
set for each � ∈ 60115. This fact is useful to establish the validity of Assumptions (G); see Feinberg and Lewis [14,
Lemma 5.1] and references therein.

Theorem 6. Let Assumptions (G) and (Wu) hold. Then, there exists a compact set K⊆� such that X� ⊆K
for each � ∈ 60115.

Proof. From Assumption (G) and Theorem 2, we have that for each � ∈ 60115,

� 6=X� = 8x ∈�2 u�4x5= 09=Du�
405⊆DU�

405⊆Du�
405⊆Du0

4050

In virtue of Lemma 6, we have that u02�→ 601+�5 is inf-compact function on �. Setting K=Du0
405, we obtain

the statement of the theorem. �

7. Illustrative example. The following example is from Hernández-Lerma [18]. Let

xn+1 = �xn +�an + �n1 n= 0111 : : : 1

and
c4x1a5= qx2

+ ra21

where (a) q and r are positive constants, � and � are two constants satisfying ��> 0, and (b) �n are independent
and identically distributed (iid) random variables with zero mean, finite variance, and continuous density.

This problem is solved in Hernández-Lerma [18], where a stationary average cost optimal policy is computed.
This problem corresponds to an MDP with � = � = � and with setwise continuous transition probabilities.
However, if �n do not have a density, the transition probability may not be setwise continuous, but they are weakly
continuous; see Feinberg and Lewis [13, p. 48] for details. If �n are arbitrary iid random variables with zero mean
and finite variance, this problem satisfies Assumption (Wu), and similarly to the case when there are densities, it
satisfies Assumption (B). Thus, Theorem 4 can be applied. The optimal policy provided in Hernández-Lerma [18]
is also optimal when �n may not have a density.

Acknowledgments. This research was partially supported by National Science Foundation grants CMMI-0900206 and
CMMI-0928490. The authors thank Professor M. Z. Zgurovsky for initiating their research cooperation.

Appendix. Proof of Lemma 4. First, we prove the lemma for uniformly bounded above functions hn. Let
hn4s5≤K <� for all n= 1121 : : : and all s ∈ S. For n= 1121 : : : and s ∈ S, define

Hn4s5= inf
m≥n

hm4s5 and hn4s5= lim inf
s′→s

Hn4s
′50

The functions hn2 S → 601+�5, n = 1121 : : : , are lower semicontinuous; see, for example, Feinberg and
Lewis [14, Lemma 3.1]). In addition, for s ∈ S,

hn4s5 ↑ h4s5 as n→ �0 (43)

Weak convergence of 8�n9n≥1 to � is equivalent to

lim inf
n→+�

�n4A5≥�4A5 for all A ∈ O1 (44)

where O is the family of all open subsets of the space S3 Billingsley [5, Theorem 2.1].
Fix an arbitrary t > 0. By (43), if h4s5 > t, then hn4s5 > t, n= 1121 : : : 1 and

8s ∈ S2 h4s5 > t9=
⋃

n≥1

Sn1 (45)

where
Sn = 8s ∈ S2 hn4s5 > t91 n= 1121 : : : 1
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are open sets, since the functions hn2 S →�+ are lower semicontinuous. In addition,

Sn ⊆ Sn+11 n= 1121 : : : 0 (46)

Thus

�48s ∈ S2 h4s5 > t95 = lim
n→+�

�4Sn5≤ lim
n→+�

lim inf
m→+�

�m4Sn5

≤ lim sup
n→+�

lim inf
m→+�

�m4Sm5= lim inf
n→+�

�n4Sn5= lim inf
n→+�

�n48s ∈ S2 hn4s5 > t951

where the first equality follows from (46) and (45), the first inequality follows from (44), and the second inequality
follows from (46).

Thus Serfozo [29, Lemma 2.1] yields
∫

S
h4s5�4ds5≤ lim inf

n→+�

∫

S
hn4s5�n4ds5≤ lim inf

n→+�

∫

S
hn4s5�n4ds51

where the second inequality is fulfilled due to

hn4s5≤Hn4s5≤ hn4s51 s ∈ S1 n= 1121 : : : 0

Second, consider a sequence 8hn9n≥1 of measurable nonnegative �̄-valued functions on S. For � > 0, set
h�
n4s5 2= min8hn4s51�9, s ∈ S, n= 1121 : : : . Since the functions h�

n are uniformly bounded above,
∫

S
h�4s5�4ds5≤ lim inf

n→+�

∫

S
h�
n4s5�n4ds5≤ lim inf

n→+�

∫

S
hn4s5�n4ds51

where h�4s5= lim infn→+�1 s′→s h
�
n4s

′5, �> 0, s ∈ S.
Then, using Fatou’s lemma,

∫

S
h4s5�4ds5≤ lim inf

�→+�

∫

S
h�4s5�4ds50
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