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Abstract. We consider spherical averages of the Fourier transform of fractal
measures and improve the lower bound on the rate of decay by taking ad-
vantage of multilinear estimates. Maximal estimates with respect to fractal
measures are deduced for the Schrödinger and wave equations. This refines
the almost everywhere convergence of the solution to its initial datum as time
tends to zero. A consequence is that the solution to the wave equation cannot

diverge on a (d − 1)-dimensional manifold if the data belongs to the energy

space Ḣ1(Rd)× L2(Rd).

1. Introduction

Consider the Schrödinger equation, i∂tu + ∆u = 0, on R
d = R

n+1, with initial
data u(·, 0) = u0 in Hs defined by

Hs = (1−∆)−s/2L2 :=
{
Gs ∗ f : f ∈ L2(Rn)

}
.

Here Gs is the Bessel kernel defined as usual by Ĝs = (1 + | · |2)−s/2, where ̂ is
the Fourier transform. In [17], Carleson considered the problem of identifying the
exponents s > 0 for which

lim
t→0

u(x, t) = u0(x), a.e. x ∈ R
n, ∀ u0 ∈ Hs, (1.1)

and proved that this property holds as long as s ≥ 1/4 in the one-dimensional case.
Dahlberg and Kenig [20] then showed that (1.1) does not hold if s < 1/4.

The higher dimensional case has since been studied by many authors; see for
example [19, 14, 43, 50, 7, 38, 39, 48, 47, 25]. In two dimensions, Lee [33] used
bilinear techniques to prove that (1.1) holds if s > 3/8. In higher dimensions,
Bourgain took advantage of multilinear restriction estimates to prove that

s >
1

2
− 1

4n

is sufficient. Bourgain also improved the necessary condition of Dahlberg and Kenig
when n ≥ 5, showing that s ≥ 1/2− 1/n is necessary for (1.1) to hold. We improve
his condition in the following theorem.

Theorem 1.1. If (1.1) holds, then

s ≥ 1

2
− 1

n+ 2
.

This also improves the necessary condition of Dahlberg and Kenig when n ≥ 3.
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Altogether we see that (1.1) holds uniformly with respect to n if and only if
s ≥ 1/2. A natural refinement of the problem is to bound the size of the divergence
sets

D(u0) :=
{
x ∈ R

n : lim
t→0

u(x, t) 6= u0(x)
}
,

and in particular we consider

αn(s) := sup
u0∈Hs

dimH

(
D(u0)

)
,

where dimH denotes the Hausdorff dimension. A completely satisfactory theory
has already been developed in the one-dimensional case; see [2], [6], or [15]. Indeed

αn(s) ≤ n− 2s, if n
4 ≤ s ≤ n

2 ,

and this bound is sharp in the sense that initial data in Hs can be singular on
α-dimensional sets when α < n − 2s; see [53]. On the other hand, the solution is
continuous (and so αn(s) = 0) when s > n/2, and the example of Dahlberg and
Kenig tells us that αn(s) = n when s < 1/4. Altogether, the whole range is covered
when n = 1, and we note that α1 is discontinuous at s = 1/4. These results and a
more gentle introduction to the problem can also be found in [37, Chapter 17].

Here we improve the best known upper bounds for αn(s) in the remaining range
of interest, when s < n/4, in higher dimensions. In particular, we prove the fol-
lowing theorem that refines the almost everywhere convergence due to Bourgain.
At the same time, we improve the bound αn(s) ≤ n + 1 − 2s due to Sjögren and
Sjölin [42] and the bound αn(s) ≤ n+3

n+1

(
n − 2s) due to Barceló, Bennett, Carbery

and the second author [2].

Theorem 1.2. Let n ≥ 2. Then

αn(s) ≤





n+ 1−
(
2 + 2

2n−1

)
s, 1

2 − 1
4n < s ≤ 1− 3

2(n+1) ,

n+ 1− 1
n+1 − 2s, 1− 3

2(n+1) ≤ s < n
4 .

This will be a consequence of a maximal estimate (see Theorem 8.2) that holds
uniformly with respect to fractal measures in the following class. To avoid rep-
etition, we include positivity and a support condition inside the definition of ‘α-
dimensional’.

Definition 1.3. Let 0 < α ≤ d. We say that µ is (at least) α-dimensional if it is
a positive Borel measure, supported in the unit ball B(0, 1), and satisfies

cα(µ) := sup
x∈R

d

r>0

µ(B(x, r))

rα
<∞.

The Fourier transform of such a measure need not decay in every direction (for
example the Fourier transform of a piece of the surface measure on a hyperplane
does not decay in the normal direction), however it must decay on average. As the
class contains measures that are supported on α-dimensional sets, the uncertainty
principle suggests that there should be less decay for smaller values of α. Let βd(α)
denote the supremum of the numbers β for which1

‖µ̂(R · )‖2L2(Sd−1) . cα(µ)‖µ‖R−β (1.2)

1We write A . B if A ≤ CB for some constant C > 0 that only depends on the dimension d

and/or a small parameter ε, in this case ε = βd(α)− β. If the constant depends on anything else,
say a power of N , we write A .N B. We also write A ≃ B if A . B and B . A.
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whenever R > 1 and µ is α-dimensional. The problem of identifying the precise
value of βd(α) was proposed by Mattila; see for example [36, pp. 42] or [37, Chap-
ter 15]. In two dimensions, the sharp decay rates are now known;

β2(α) =





α, α ∈ (0, 1/2],
(Mattila [35])

1/2, α ∈ [1/2, 1],

α/2, α ∈ [1, 2], (Wolff [52]).

The work of Wolff, later simplified by Erdoğan [21], improved upon a lower bound
due to Bourgain [8] who was the first to bring Fourier restriction theory to bear on
the problem. In higher dimensions, the best known lower bounds are

βd(α) ≥





α, α ∈ (0, d−1
2 ],

(Mattila [35])
d−1
2 , α ∈ [d−1

2 , d2 ],

α− 1 + d+2−2α
4 , α ∈ [d2 ,

d+2
2 ], (Erdoğan [22, 23])

α− 1, α ∈ [d+2
2 , d], (Sjölin [44]).

On the other hand, by considering limits of simple measures supported on small
sets; see for example [37, Chapter 15.2], it is easy to show that

βd(α) ≤





α, α ∈ (0, d− 2],

α− 1 + d−α
2 , α ∈ [d− 2, d].

The second part, for α ≥ d − 2, is given by what is sometimes known as the
‘Knapp example’. We see that the difference between this upper bound and the
best known lower bound is never more than one and the bounds coincide when
α < d−1

2 or α = d. Worse counterexamples have been constructed for signed
measures by Iosevich and Rudnev [31], or when the averages are taken over a
piece of paraboloid rather than the sphere by Barceló, Bennett, Carbery, Ruiz and
Vilela [3]. Indeed, there is an extensive literature regarding averages over different
manifolds and other generalisations; see for example [12, 13, 27, 29, 28, 30, 45] and
the references therein.

The following upper bound, due to Iosevich and Rudnev, follows from their
conditional Theorem 3.1 in [32] after taking their convex body K to be the unit
ball, their γ = 0, and combining with a number theoretic estimate that counts
the number of times the square of a large integer can be represented as a sum of
squares. The bound is not explicitly stated in [32], and has been overlooked in the
recent literature, so we present it here.

Theorem 1.4. [32] Let d ≥ 5. Then

βd(α) ≤ α− 1 +
2(d− α)

d
.

Most of the article will be dedicated to proving the following lower bound, which
improves the estimate of Sjölin for all α < d and the estimate of Erdoğan for2

α ≥ d/2 + 2/3 + 1/d.

Theorem 1.5. Let d ≥ 3. Then

βd(α) ≥ α− 1 +
(d− α)2

(d− 1)(2d− α− 1)
.

2in fact in a very slightly larger range.
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This is not enough to improve the state-of-the-art for the Falconer distance
set conjecture (the argument of Mattila [35] combined with Theorem 1.5 implies
that distance sets associated to α-dimensional sets have positive Lebesgue measure
whenever α > d/2 + 5/12). On the other hand, the difference between the best
known upper and lower bounds is now strictly less than 5/6, from which we can
deduce new information regarding the pointwise convergence of solutions to the
wave equation.

Considering ∂ttv = ∆v on R
d+1, with v(·, 0) = v0 and ∂tv(·, 0) = v1, we take

initial data in the homogeneous space Ḣs × Ḣs−1, where

Ḣs = (−∆)−s/2L2 :=
{
Is ∗ f : f ∈ L2(Rd)

}
.

Here Is is the Riesz kernel defined by Îs = |·|−s. The almost everywhere convergence
question was first considered by Cowling [19], who proved

lim
t→0

v(x, t) = v0(x), a.e. x ∈ R
d, ∀ (v0, v1) ∈ Ḣs × Ḣs−1

as long as s > 1/2. Walther [51] then proved that this is not true when s ≤ 1/2,
and so the Lebesgue measure question is completely solved for the wave equation.
As before we write

D(v0, v1) :=
{
x ∈ R

d : lim
t→0

v(x, t) 6= v0(x)
}
,

and consider the refined problem of providing upper bounds for

γd(s) := sup
(v0,v1)∈Ḣs×Ḣs−1

dimH

(
D(v0, v1)

)
.

Sharp estimates were proven in the two-dimensional case in [2], using the following
proposition which forms the link with the decay estimate (1.2).

Proposition 1.6. Let d ≥ 2 and 0 < s < d/2. Then βd(α) > d−2s ⇒ γd(s) ≤ α.

Estimates for the inhomogeneous spaces Hs(Rd) were proven in [2], which puts
unnecessary restrictions on the data v1, however we will see that the implication
also holds in this slightly more general context. Using Sjölin’s bound βd(α) ≥ α−1
they deduced that γd(s) ≤ d + 1 − 2s, so a consequence of Theorem 1.5 is that
γd(1) < d − 1, ruling out divergence on spheres if the initial data belongs to the

energy space Ḣ1(Rd)× L2(Rd).
The exponent βd(α) is also connected to dimension estimates for orthogonal

projections; see for example the recent work of Oberlin–Oberlin [41]. For a related
problem regarding Fourier convergence at the points where the function is zero, see
[16] or [18] and the references therein.

Although Theorem 1.5 yields new bounds for the Schrödinger equation, via an
appropriate version of Proposition 1.6, those presented in Theorem 1.2 follow by
a more direct use of the techniques developed to prove Theorem 1.5. Compared
to the cone, the paraboloid has an extra nonzero principal curvature, and so it is
not always efficient to use Proposition 1.6 in that case. For this reason we have
presented the results for the Schrödinger equation in R

n+1 and the results for the
wave equation in R

d+1, where d = n + 1, and this convention will be maintained
throughout.

It seems unlikely that our lower bound for βd(α) is best possible. Indeed, Iosevich
and Rudnev [32] proved that βd(α) ≥ α−α/d when restricting attention to a class
of well-distributed measures and conjectured that this should hold for the full class
of α-dimensional measures.

The key ingredient in the proofs of Theorems 1.2 and 1.5 will be the multilinear
extension estimate due to Bennett, Carbery and Tao [5], which was first success-
fully employed to prove linear estimates by Bourgain and Guth [11]. We present
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the multilinear estimates in Section 4 and a decomposition due to Bourgain and
Guth in Section 5. In Section 6 we prove Theorem 1.5 and in Section 8 we prove
Theorem 1.2. In Section 7 we present the simple proof of Proposition 1.6, via polar
coordinates. In the following section we prove Theorem 1.1 and in the third sec-
tion we give a direct proof of Theorem 1.4. The principal novelties, if any, will be
described near the beginning of each section.

2. Proof of Theorem 1.1

When the initial data u0 is a Schwartz function, the solution u to the Schrödinger
equation can be written as

u(x, t) = eit∆u0(x) :=
1

(2π)n/2

ˆ

Rn

û0(ξ) e
ix·ξ−it|ξ|2dξ, (2.1)

where û0 denotes the Fourier transform of u0. By the Nikǐsin–Stein maximal prin-
ciple [40, 46], the almost everywhere convergence (1.1) implies a weak L2-estimate
for the maximal operator, which in turn implies the strong estimate (2.2) by in-
terpolation with a trivial bound (see for example [2, Proof of Lemma C.1]). Thus
Theorem 1.1 is a consequence of the following theorem.

Theorem 2.1. Let n ≥ 3 and suppose that there is a constant Cs such that∥∥∥∥ sup
0<t<1

∣∣eit∆f
∣∣
∥∥∥∥
L2(B(0,1))

≤ Cs‖f‖Hs(Rn) (2.2)

whenever f is a Schwartz function. Then s ≥ n
2(n+2) .

The counterexample of Dahlberg and Kenig can be interpreted as a concentrated
solution, or wave-packet, that travels over a large area, making the left-hand side of
(2.2) large. On the other hand, Bourgain considered a sum of data, with different
velocities, carefully chosen to create regions of constructive interference, recalling
Young’s double slit experiment. Again the regions of coherence travel over a large
area, making the left-hand side of the maximal inequality large.

In the light of Bourgain’s example, a physical interpretation of Carleson’s prob-
lem could be to identify the lowest frequency at which an initial state can generate
interference patterns, thus obscuring its original state. Inspired by this, we take a
variant of the data considered in [3] for which the corresponding solution interferes
with itself periodically in time. The difficulty of using their example directly in this
context is that the constructive interference reoccurs in the same relatively small
regions of space. In order to take advantage of the periodic coherence, we perturb
the initial state so that the whole solution travels in a single direction. We then use
an ergodicity argument to show that this direction can be taken so that the regions
of constructive interference never reappear in exactly the same places, forcing the
left-hand side of (2.2) to be large.

We first prove the ergodic lemma. We say that a set E is δ–dense in F if for
every point x ∈ F there is a point y ∈ E such that |x − y| ≤ δ. The following
lemma is optimal in the sense that the statement fails for larger κ. To see this,
we can place balls of radius εR−1 at the points of the set Eθ and assume that the
balls are disjoint. Then the volume of such a set would be of the order R1−(n+2)κ,
a quantity that tends to zero as R tends to infinity when κ > 1

n+2 .

Lemma 2.2. Let n ≥ 3 and 0 < κ < 1
n+2 . Then, for all ε > 0 and sufficiently

large R > 1, there exists θ ∈ S
n−1 such that

Eθ :=
⋃

t∈R2κ−1Z∩(0,1)

{
x ∈ Rκ−1

Z
n : |x| ≤ 2

}
+ tθ

is εR−1–dense in B(0, 1/2).
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Proof. By rescaling, the statement of the lemma is equivalent to showing that
⋃

t∈RκZ∩(0,R1−κ)

{
x ∈ Z

n : |x| ≤ 2R1−κ
}
+ tθ

is εR−κ–dense in B(0, R1−κ/2) for a certain θ ∈ S
n−1. That is to say, for any

x ∈ B(0, R1−κ/2) there exists a yx ∈ Z
n ∩ B(0, 2R1−κ) and tx ∈ Rκ

Z ∩ (0, R1−κ)
such that

|x− (yx + txθ)| ≤ εR−κ, (2.3)

for a certain fixed θ ∈ S
n−1, independent of x. By taking the quotient Rn/Zn = T

n,
this would follow if for any [x] ∈ T

n there exists tx ∈ Rκ
Z ∩ (0, R1−κ) such that

|[x]− [txθ]| ≤ εR−κ. (2.4)

To see this, assume (2.4) and cover B(0, R1−κ) with a family of disjoint copies of
axis-parallel Tn. Denote the copy that contains x by T

n
x , and let zx be the point in

T
n
x such that [zx] = [txθ]. Then yx := zx − txθ ∈ Z

n and by construction

|x− (yx + txθ)| = |[x]− [txθ]| ≤ εR−κ. (2.5)

Note that we also automatically have that

|yx| ≤ |x|+ |tx|+ εR−κ ≤ 1
2R

1−κ +R1−κ + εR−κ < 2R1−κ, (2.6)

and so we recover all of the required properties. It seems likely that ergodic results,
similar to (2.4), are well-known, however we prove this using Fourier series as in [9].
We write x instead of [x] from now on.

Let φ : Tn → [0, (2/ε)n) be smooth, supported in B(0, ε/2), such that
´

φ = 1,
and set

φR(x) := φ
(
Rκx

)
. (2.7)

If we could show that there exists θ ∈ S
n−1 such that for all x ∈ T

n there is a
tx ∈ (Rκ

Z+ [− ε
2R

−κ, ε2R
−κ]) ∩ (0, R1−κ) satisfying

φR(x− txθ) > 0, (2.8)

then (2.4) would follow. Let ψ : (−ε/2, ε/2) → [0, 2/ε) be a one-dimensional
Schwartz function such that

´

ψ = 1, and define

ηR(t) := R3κ−1
∑

j∈Z

0<j<R1−2κ

ψ(Rκ(t−Rκj)).

Noting that ηR is supported in Rκ
Z + [− ε

2R
−κ, ε2R

−κ], we will show that there

exists θ ∈ S
n−1 such that, for all x ∈ T

n,
ˆ

R

φR(x− tθ)ηR(t)dt > 0, (2.9)

which implies (2.8). Expanding in Fourier series;

φR(x− tθ) = φ̂R(0) +
∑

k∈Z
n

k 6=0

φ̂R(k)e
2πix·ke−2πitθ·k =: φ̂R(0) + Φ(t, x, θ),

and noting that
´

R
ηR ≃ 1 and φ̂R(0) =

´

Tn φR ≃ R−nκ, it would be sufficient to
find θ ∈ S

n such that
∣∣∣
ˆ

R

Φ(t, x, θ)ηR(t)dt
∣∣∣ . R−γ , γ > nκ (2.10)

whenever x ∈ T
n.
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For the proof of (2.10), we note that

∣∣∣
ˆ

R

Φ(t, x, θ)ηR(t)dt
∣∣∣ ≤

∑

k∈Z
n

k 6=0

∣∣∣φ̂R(k)
∣∣∣
∣∣∣
ˆ

R

e−2πitθ·kηR(t)dt
∣∣∣

=
∑

k∈Z
n

k 6=0

∣∣∣φ̂R(k)
∣∣∣
∣∣∣η̂R(θ · k)

∣∣∣

.
∑

k∈Z
n

k 6=0

R−nκ

(1 +R−κ|k|)n+1

∣∣∣η̂R(θ · k)
∣∣∣, (2.11)

where the final inequality follows by integrating by parts in the formula for the
Fourier coefficients. Noting that the right-hand side of (2.11) no longer depends
on x, so in order to find a θ ∈ S

n−1 such that (2.10) holds for all x ∈ T
n, it will

suffice to prove that the the right-hand side of (2.11) is similarly bounded after
averaging over the sphere. As

∑

k∈Z
n

k 6=0

R−nκ

(1 +R−κ|k|)n+1 .

ˆ

Rn

R−nκ

(1 +R−κ|k|)n+1 dk . 1,

by Fubini’s theorem, for this it would suffice to prove that
ˆ

Sn−1

∣∣∣η̂R(θ · k)
∣∣∣dθ . R2κ−1 logR. (2.12)

Here we use that κ < 1
n+2 so that 1− 2κ > nκ.

To see (2.12), we note that

η̂R(t) = R3κ−1
∑

j∈Z

0<j<R1−2κ

ψ
(
Rκ(· −Rκj)

)∧
(t) (2.13)

= R2κ−1ψ̂(R−κt)
∑

j∈Z

0<j<R1−2κ

e−2πiRκjt

= R2κ−1ψ̂(R−κt)
e2πi⌊R

1−2κ⌋Rκt − e−2πiRκt

e2πiRκt − 1
.

Now since |ψ̂ | . 1 this yields
ˆ

Sn−1

∣∣∣η̂R(θ · k)
∣∣∣dθ . R2κ−1

ˆ

Sn−1

∣∣∣ sin(πNR
κθ · k)

sin(πRκθ · k)
∣∣∣dθ,

where N = ⌊R1−2κ⌋ + 1. By the Funk–Hecke theorem (see for example [1, pp.
35-36]), we have that

ˆ

Sn−1

∣∣∣ sin(πNR
κθ · k)

sin(πRκθ · k)
∣∣∣dθ = |Sn−2|

ˆ 1

−1

∣∣∣ sin(πNR
κ|k|t)

sin(πRκ|k|t)
∣∣∣(1− t2)

n−3
2 dt

≤ |Sn−2|
|k|Rκ

ˆ |k|Rκ

−|k|Rκ

∣∣∣ sin(πNt)
sin(πt)

∣∣∣ dt

. logN . logR,

where the penultimate inequality is a well-known property of the Dirichlet kernel
(see for example [26, pp. 182]). This completes the proof of (2.12) which completes
the proof of the lemma. �
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Proof of Theorem 2.1. Writing t/(2πR) in place of t, the maximal estimate (2.2)
implies that ∥∥∥∥ sup

0<t<1

∣∣ei t
2πR∆f

∣∣
∥∥∥∥
L2(B(0,1))

. Rs‖f‖2 (2.14)

whenever supp f̂ ⊂ B(0, 2R) and R > 1. In fact this is equivalent to (2.2); see [33]
or [34], so we have not thrown anything away here. Thus it suffices to prove that
s ≥ n

2(n+2) is necessary for (2.14) to hold.

Let 0 < κ < 1
n+2 and define

Ω :=
{
ξ ∈ 2πR1−κ

Z
n : |ξ| ≤ R

}
+B(0, ρ),

where ρ, to be chosen later, will be sufficiently small. Letting θ ∈ S
n−1, we consider

initial data fθ defined by

fθ(x) = eiπRθ·xf(x)

with R large, where

f̂ =
1√
|Ω|

χΩ. (2.15)

Note that |supp f̂θ | = |Ω| ≃ Rnκ, and ‖fθ‖2 = 1. In [3], it was shown that

|ei t
2πR∆f(x)| &

√
|Ω| for all (x, t) ∈ Λ, (2.16)

where, taking ε sufficiently small, Λ is defined by

Λ =
{
x ∈ Rκ−1

Z
n : |x| ≤ 2

}
+B(0, εR−1)×

{
t ∈ R2κ−1

Z : 0 < t < 1
}
.

In fact they proved that the time can be taken in small intervals, however this will
suffice for our needs. We provide the short proof of this for completeness. The idea
is that the phase in the integrand in (2.1) never strays too far from zero modulo 2πi,
and so the different pieces of the integral, corresponding to different pieces of Ω,
cannot cancel each other out.

We start by showing that

x · ξ ∈ 2πZ+ (− 1
10 ,

1
10 ), (2.17)

provided that ξ ∈ Ω and x ∈ Rκ−1
Z
n ∩B(0, 2) +B(0, εR−1). To see this, we write

ξ = 2πR1−κℓ+ v, where ℓ ∈ Z
n, |ℓ| ≤ Rκ, |v| ≤ ρ

and

x = Rκ−1m+ u, where m ∈ Z
n, |m| ≤ 2R1−κ, |u| ≤ εR−1,

so that

x · ξ = (Rκ−1m+ u) · (2πR1−κℓ+ v) (2.18)

= 2πm · ℓ+Rκ−1m · v + 2πR1−κℓ · u+ u · v
=: I1 + I2 + I3 + I4.

Since I1 ∈ 2πZn and

|I2| ≤ R1−κ2Rκ−1ρ = 2ρ, |I3| ≤ 2πR1−κRκ ε

R
= 2πε, |I4| ≤ ρ

ε

R
,

we see that (2.17) holds by taking ρ and ε sufficiently small. On the other hand,
we also have that

t

2πR
|ξ|2 ∈ 2πZ+

(
− 1

10 ,
1
10

)
, (2.19)

provided that t ∈ R2κ−1
Z ∩ (0, 1). To see this, we write

t = R2κ−1k, where k ∈ N, |k| ≤ R1−2κ,
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so that

t

2πR
|ξ|2 =

1

2π
R2(κ−1)k|2πR1−κℓ+ v|2 (2.20)

=
1

2π
R2(κ−1)k(4π2R2(1−κ)|ℓ|2 + |v|2 + 4πR1−κℓ · v)

=: II1 + II2 + II3,

where II1 ∈ 2πZ while

|II2| ≤
1

2π
R2(κ−1)|k||v|2 ≤ 1

2π
R2(κ−1)R1−2κρ2 =

ρ2

2πR
,

and

|II3| ≤ 2R2(κ−1)|k|R1−κ|ℓ · v| ≤ 2Rκ−1|k||ℓ||v| ≤ 2Rκ−1R1−2κRκρ ≤ 2ρ,

so that (2.19) is satisfied for sufficiently small ρ. Indeed altogether |ρ|, |ε| ≤ 1
100 is

sufficient for our purposes. Now (2.17) and (2.19) imply that the phase in

ei
t

2πR∆f(x) =
1

(2π)n/2
1√
|Ω|

ˆ

Ω

eix·ξ−i t
2πR |ξ|2dξ,

is close enough to zero modulo 2πi as long as (x, t) ∈ Λ, yielding (2.16).
We now consider Γθ,t ⊂ R

n defined by

Γθ,t :=
{
x ∈ Rκ−1

Z
n : |x| ≤ 2

}
+B(tθ, εR−1).

Noting that

x ∈ Γθ,t and t ∈ R2κ−1
Z ∩ (0, 1) ⇒ (x− tθ, t) ∈ Λ,

by (2.16) we have that

sup
0<t<1

∣∣ei t
2πR∆f(x− tθ)| &

√
|Ω| for all x ∈ Γθ :=

⋃

t∈R2κ−1Z∩(0,1)

Γθ,t.

By Galilean invariance, or direct calculation using the formula (2.1), we have

sup
0<t<1

∣∣ei t
2πR∆fθ(x)| = sup

0<t<1

∣∣ei t
2πR∆f(x− tθ)|,

and we recall that ‖fθ‖2 = ‖f‖2 = 1. Thus, by taking fθ in (2.14), we obtain

Rs &
√

|Ω||Γθ|.
Since Γθ is nothing more that the εR−1–neighbourhood of Eθ from the second
section, we can use Lemma 2.2 to take θ ∈ S

n−1 so that |Γθ| ≥ |B(0, 1/2)| for R
sufficiently large. As |Ω| & Rnκ, we obtain

s ≥ nκ

2
,

and the proof is completed by letting κ tend to 1
n+2 as we may. �

3. Proof of Theorem 1.4

The philosophy of this section will be somewhat similar to the previous one,
however we will be less explicit this time and we will have no need for the ergodicity
arguments. In fact, the argument follows more closely the philosophy of Iosevich
and Rudnev [32] who counted lattice points on general surfaces. Counting such
points is of course easier when the surface is the graph of a polynomial as in the
previous section. For the sphere we take advantage of a number theoretic result
that counts the number of ways the square of a large integer can be represented as
a sum of squares.

First we will require the following simple lemma.
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Lemma 3.1. Let 0 < α ≤ d and 0 < ε, κ < 1. For all R > 1, define

Λ :=
(
Rκ−1

Z
d +B(0, εR−1)

)
∩B(0, 1)

and dµ := χΛdx, where dx is the Lebesgue measure on R
d. Then

cα(µ) . max
(
R−dκ, Rα−d

)
. (3.1)

Proof. Notice that Λ is the union of approximately Rd(1−κ) balls of radius εR−1

whose centres are pairwise separated by Rκ−1. We consider different cases depend-
ing on the size of r.

When 0 < r ≤ εR−1, the ball B(x, r) overlaps with only one ball Bj of Λ. Thus

r−αµ(B(x, r)) ≤ r−α|B(x, r) ∩Bj |
. r−α min(rd, R−d)

≤ rd−α . Rα−d.

On the other hand, if εR−1 < r ≤ Rκ−1, then B(x, r) overlaps with at most N . 2d

balls Bj , with j = 1, . . . , N , contained in Λ. Thus

r−αµ(B(x, r)) ≤ r−α
∣∣∣B(x, r)

⋂ ⋃

j=1,...,N

Bj

∣∣∣

. r−α|BN | . r−αR−d . Rα−d.

Finally, if Rκ−1 < r, then B(x, r) overlaps with at most N . min(rd, 1)Rd(1−κ)

balls Bj , with j = 1, . . . , N , contained in Λ. In this case,

r−αµ(B(x, r)) ≤ r−α
∣∣∣B(x, r)

⋂ ⋃

j=1,...,N

Bj

∣∣∣

. r−αNR−d . r−α min(rd, 1)R−dκ.

Now as

r−α min(rd, 1)R−dκ =

{
r−α+dR−dκ ≤ R−dκ if r ≤ 1
r−αR−dκ ≤ R−dκ if r > 1,

by collecting the three cases, the proof is complete. �

Let σ denote the surface measure on S
d−1, and write g = g1 − g2 + i(g3 − g4),

where each component gj is positive. Then by considering the positive measures
gjµ, an application of the triangle inequality combined with (1.2) tells us that

‖ĝµ(R · )‖2L2(Sd−1) . cα(µ)‖µ‖R−β‖g‖L∞(Sd−1).

Thus, by duality, we are looking for an upper bound for the β such that

‖(fdσ)∨(R · )‖L1(dµ) . R−β/2
√
cα(µ)‖µ‖‖f‖L2(Sd−1), (3.2)

where

(fdσ)∨(x) =
1

(2π)d/2

ˆ

Sd−1

eiω·xf(ω) dσ(ω).

We test this on the characteristic function associated to Ω defined by

Ω = {ω ∈ S
d−1 : dist(ω,Γ) ≤ ρR−1},

where ρ > 0 is sufficiently small, to be chosen later, and Γ is defined by

Γ = {ω ∈ S
d−1 : Rκω ∈ 2πZd},

with 0 < κ < 1. Considering f defined by

f =
χΩ√
σ(Ω)

,

we have that ‖f‖L2(Sd−1) = 1.
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Now it is well-known (see for example [24]) that for d ≥ 4, there is a lower bound

#Γ & Rκ(d−2),

as long as R is large enough and satisfies ( 1
2πR

κ)2 ∈ N. Thus, for these values of R,
we have

σ(Ω) & Rκ(d−2)−(d−1). (3.3)

We claim that

|(fdσ)∨(Rx)| =
∣∣∣∣
ˆ

Sd−1

eiω·Rxf(ω)dσ(ω)

∣∣∣∣ &
√
σ(Ω) ∀ x ∈ Λ, (3.4)

where, taking ε sufficiently small, Λ is defined by

Λ =
(
Rκ−1

Z
d +B(0, εR−1)

)
∩B(0, 1).

Again, the idea is that the phase of the integrand in (3.4) never strays too far
from zero modulo 2πi, and so the different pieces of the integral, corresponding to
different pieces of Ω, do not cancel each other out.

More precisely we prove that

ω ·Rx ∈ 2πZ+ (− 1
10 ,

1
10 ), (3.5)

provided that ω ∈ Ω and x ∈ Λ. To see this, we write

ω = 2πR−κℓ+ v, where ℓ ∈ Z
d, |ℓ| = 1

2πR
κ, |v| < ρR−1

and

x = Rκ−1m+ u, where m ∈ Z
d, |m| < R1−κ, |u| < εR−1,

so that

ω ·Rx = (2πR−κℓ+ v) · (Rκm+Ru)

= 2πℓ ·m+ v ·Rκm+ 2πR1−κℓ · u+ v ·Ru
=: I1 + I2 + I3 + I4.

Since I1 ∈ 2πZ and |I2| ≤ ρR−1RκR1−κ = ρ,

|I3| < R1−κRκεR−1 = ε and |I4| < ρR−1RεR−1 = ρεR−1,

we see that (3.5) holds by taking ρ and ε sufficiently small. This implies that the
phase in (3.4) is close enough to zero modulo 2πi as long as x ∈ Λ, yielding the
bound.

Now, defining µ by dµ = χΛdx, where dx is the Lebesgue measure in R
d, and

taking κ = d−α
d , by Lemma 3.1, we have

cα(µ) . Rα−d = R−dκ. (3.6)

On the other hand,

‖µ‖ = |Λ| ≃ R−dRd(1−κ) = R−dκ. (3.7)

Now (3.2) combined with (3.4) tell us that
√
σ(Ω)‖µ‖ . R−β/2

√
cα(µ)‖µ‖,

so that by plugging in (3.3), (3.6) and (3.7), we obtain

R
1
2 (κ(d−2)−(d−1)) . R−β/2.

Letting R tend to infinity, we see that

β ≤ d− 1− κ(d− 2) = α− 1 +
2(d− α)

d
, (3.8)

and so taking β sufficiently close to βd(α), the proof is complete. �
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4. Multilinear extension estimates

Here we present the multilinear extension estimates due to Bennett, Carbery
and Tao [5]. As we saw in the previous section, the extension operator, defined
below, is also the adjoint of the operator that restricts the Fourier transform to a
surface, and so these dual estimates are also referred to as restriction estimates.
We consider the surfaces

S := {(ξ, φ(ξ)) ∈ R
d : |ξ| ≤ 1/2}

with φ(ξ) = −|ξ|2 or φ(ξ) =
√
1− |ξ|2. For a cap τ = {(ξ, φ(ξ)) : ξ ∈ Q} ⊂ S

associated to a cube Q, we define the extension operator Tτ by

Tτg(x, t) =

ˆ

Q

g(ξ) eix·ξ+itφ(ξ)dξ,

Letting Y (ξ) ∈ S
d−1 be the outward unit normal vector at a point (ξ, φ(ξ)) ∈ S,

we say that the caps τ1, . . . , τm are m-transversal with constant θ > 0 if

|Y (ξ1) ∧ · · · ∧ Y (ξm)| > θ,

for all ξ1 ∈ Q1, . . . ξm ∈ Qm. In the following theorem, and throughout, BR will
denote a ball of radius R with arbitrary centre.

Theorem 4.1. [5] Let d ≥ 2, ε > 0 and let τ1, . . . , τd ⊂ S be d-transversal caps
with constant θ > 0. Then, for all R > 1,

∥∥∥∥
d∏

k=1

Tτkg

∥∥∥∥
2

d−1

L
2

d−1 (BR)

. c(θ)Rε
d∏

k=1

‖g‖
2

d−1

L2(Qk)
.

The exact dependence of c on θ is an interesting open question. The following
lower-dimensional and discretised version was proven in [11, pp. 1250]. This is the
version we will require in the following section.

Proposition 4.2. [11] Let 0 < ε < 1
4d and let τ1, . . . , τm ⊂ τ be m-transversal caps

with constant θ, where 2 ≤ m ≤ d− 1. Let Vm be an m-dimensional subspace of Rd

and let Qjk ⊂ Qk be disjoint cubes of side length 1/K such that dist (Y (ξ),Vm) ≤
1/K for some ξ ∈ Qjk . Then, for all K > 1,

 

BK

m∏

k=1

∣∣∣∣
∑

jk

Tτjk g

∣∣∣∣
2

m−1

. c(θ)Kε

(
 

BK

m∏

k=1

(∑

jk

∣∣Tτjk g
∣∣2
) 1

2m

) 2m
m−1

.

Due to rescaling arguments we will require these estimates for a slightly more
general class of phases φ. As we are only interested in the modulus of the extension
operator, we are free to add and subtract constants to the phase φ and so we work
instead with φ(ξ) =

√
1− |ξ|2 − 1 in the spherical case so that it looks very similar

to the parabolic case. Then, for ξ0 ∈ {ξ ∈ R
d−1 : |ξ| ≤ 1/2 − δ/2} and 0 < δ < 1,

we define the scaling map Sξ0,δ by

Sξ0,δφ(ξ) = δ−2
(
φ(ξ0 + δξ)− δ∇φ(ξ0) · ξ − φ(ξ0)

)
.

Note that the paraboloid is unchanged by this operation, and the sphere is altered
only very mildly. The estimates of this section hold uniformly for all the extension
operators defined with a phase obtained by applying the scaling map a finite number
of times to φ.

Finally we present a globalised-in-space version of Theorem 4.1 that we will need
in the final sections. It follows by a standard localisation argument.
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Proposition 4.3. Let ε > 0, p = 2d
d−1 and let τ1, . . . , τd ⊂ S be d-transversal caps

with constant θ > 0. Let {Ω} be a partition of Rd−1 into cubes of side length R.
Then, for all R > 1,
∥∥∥∥

d∏

k=1

|Tτkg|
1
d

∥∥∥∥
2

Lp(Rd−1×(−R,R))

≤
∑

Ω

∥∥∥∥
d∏

k=1

|Tτkg|
1
d

∥∥∥∥
2

Lp(Ω×(−R,R))

. c(θ)Rε‖g‖22.

Proof. Noting that the first inequality is nothing more than the inclusion ℓ2 ⊂ ℓp,
it remains to prove the second which we rewrite as

∑

Ω

∥∥∥∥
d∏

k=1

Tτkg

∥∥∥∥
2/d

L
2

d−1 (Ω×(−R,R))

. c(θ)Rε‖g‖22.

For this we write gΩ =
(
(gχQk

)∨χΩ∗)∧ and gΩc = gχQk
− gΩ, where χΩ∗ is a

Schwartz function adapted to the cube Ω∗, with same centre as Ω, but with side
length

10 sup
|ξ|≤1/2

|1 +∇φ(ξ)|R. (4.1)

Now that we have taken the support restriction inside the definition of the functions,
we will consider the operator T defined by

Tg(x, t) :=

ˆ

Rd−1

ψ(ξ)g(ξ) eix·ξ+itφ(ξ)dξ, (4.2)

where ψ is a Schwartz function supported in the unit ball and equal to one on
|ξ| ≤ 1/2. By applications of the triangle inequality it would then suffice to bound
the main term as

∑

Ω

∥∥∥∥
d∏

k=1

TgΩ

∥∥∥∥
2/d

L
2

d−1 (Ω×(−R,R))

. c(θ)Rε‖g‖22,

and prove other mixed inequalities, like for example

∑

Ω

∥∥∥∥TgΩc

d∏

k=2

TgΩ

∥∥∥∥
2/d

L
2

d−1 (Ω×(−R,R))

. ‖g‖22. (4.3)

The main term is bounded directly using Theorem 4.1 and the finite overlapping
of the frequency supports. For the second estimate we first note that by Hölder’s
inequality, followed by Bernstein’s inequality (or Young’s inequality given the com-
pact frequency support and the reproducing formula that it yields, see below) and
Plancherel’s identity in the x-variable, the left-hand side of (4.3) is bounded by

∑

Ω

(∥∥∥‖TgΩc‖L2(Ω)‖gΩeitφ(·)‖d−1
2

∥∥∥
L

2
d−1 (|t|≤R)

)2/d
.

Then by Hölder’s inequality in the time integral, we see that this is bounded by

R
d−2
d

∑

Ω

(
‖TgΩc‖L2(Ω×(−R,R))‖gΩ‖d−1

2

)2/d
.

A final application of Hölder’s inequality in the sum, and the finite overlapping of
the frequency supports, shows that this is bounded by

R
d−2
d ‖g‖2

(∑

Ω

‖TgΩc‖2L2(Ω×(−R,R))

)1/2
.

Thus in order to complete the proof of (4.3), we need only prove that
∑

Ω

‖TgΩc‖2L2(Ω×(−R,R)) . R−N‖g‖22 (4.4)
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for large enough N ∈ N.
For this we write the operator as a convolution,

TgΩc(x, t) =

ˆ

Rd−1

ψ(ξ)gΩc(ξ) eix·ξ+itφ(ξ)dξ =

ˆ

z−x/∈Ω∗

T [1](z, t)(gχQ1)
∨(z − x)dz.

Recalling the definitions (4.1) and (4.2), we have that |z| ≥ 2|∇φ(ξ)t| when (x, t) ∈
Ω× (−R,R), so by repeated integration by parts we see that

|T [1](z, t)| . CN (1 + |z|)−N−d−1,

so that, for (x, t) ∈ Ω× (−R,R), we have

|TgΩc(x, t)| . R−N−1

ˆ

Rd−1

(1 + |z|)−d|(gχQ1)
∨(z − x)|dz.

Plugging this into (4.4), and integrating in time, we see that

∑

Ω

‖TgΩc‖2L2(Ω×(−R,R)) . R−N

ˆ

Rd−1

∣∣∣
ˆ

(1 + |z|)−d|(gχQ1
)∨(z − x)|dz

∣∣∣
2

dx

. R−N‖g‖22,

where the final inequality is by Young’s inequality and the Plancherel identity. This
completes the proof of (4.4) and thus (4.3), and the other mixed terms are bounded
in an analogous manner. �

5. The Bourgain–Guth decomposition

In order to take advantage of the multilinear estimates, we must first decompose
the operator in such a way that transversality presents itself. In order to take
advantage of bilinear estimates, this can be done by employing something like
a Whitney decomposition. A triumph of the work of Bourgain and Guth [11]
was to achieve something similar in the multilinear setting. In fact they used the
lower dimensional multilinear estimates of Proposition 4.2 in order to create the
‘decomposition’ (really it is an inequality) and in the coming sections we will need
pointwise control of this. Indeed we will make essential use of the fact that the
right-hand side of the inequality is almost constant at certain scales. As they point
out, this only holds after mollifications, and the final decomposition is obtained
by an iteration. In this section, we keep track of some of the details that they
omitted so as to check that these approximations, as well as the lack of control of
the constant c from the previous section, do not feedback in an uncontrolled way.

Let Q ⊂ {ξ ∈ R
d−1 : |ξ| ≤ 1/2} be a box of side length δ and let τ denote the

associated cap. Take 0 < ε < 1
4d and R > 1 and introduce d different scales

R1/c(ε) < K2 < · · · < Kd+1 < Rε

that satisfy K8m
m c(K−m

m ) ≤ Kε
m+1, where c(ε) ≥ 1/ε2d dominates the constant from

the previous section. As long as it does not blow up at zero in a very unexpectedly

fast way, it would suffice to take Km ≃ Rε2(d+2−m)

. One can calculate that we also

have R
1

εc(ε)Km ≤ Km+1.
Take a partition {Q2,ℓ} of Q made of pairwise disjoint cubes of side length δ/K2

and centered in ξℓ. Then, for all m = 3, . . . , d, define recursively a sub-partition
{Qm,j} made by pairwise disjoint cubes of side length δ/Km and centered at ξj
in such a way that for every Qm,j there exists an Qm−1,ℓ that contains it. For

this we need to suppose that R > 2c(ε) in order to have room to choose the scales
appropriately, and so this is assumed from now on.
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We say that the caps τm,j associated to Qm,j are at scale δ/Km. Recalling that

Tτm,j
g(x, t) =

ˆ

Qm,j

g(ξ) eix·ξ+itφ(ξ)dξ,

for each m = 2, . . . , d, we have

Tτg =
∑

j

Tτm,j
g.

We will also need a restricted version of Tτm,j
. Let Vm be an m-dimensional sub-

space of Rd and define

TVm
τm,j

g :=
∑

υ⊂τm,j

υ∈Vm,τ

Tυg,

where Vm,τ := { τm+1,ℓ ⊂ τ : dist(Y (ξ),Vm) ≤ δ/Km+1 for some ξ ∈ Qm+1,ℓ } .
The following pointwise estimate [11, pp. 1256] will be a key ingredient:

|Tτg(x, t)| . K2d
d max
τ1,...,τd⊂τ

d∏

k=1

|Tτkg(x, t)|
1
d (5.1)

+

d−1∑

m=2

K2m
m max

Vm
τ1,...,τm⊂τ

m∏

k=1

|TVm
τk
g(x, t)| 1

m +

d∑

m=2

max
τm⊂τ

|Tτmg(x, t)|.

Here the caps τ1, . . . , τm in the first two maxima are m-transversal at scale δ/Km,
and the final maximum is over caps τm at scale δ/Km. This is proved by iterating
the following dichotomy: either the operator is bounded by a product of m + 1
operators associated to transversal caps, or it is not, in which case, given m caps
where the operator is large and the hyperplane Vm that their normals generate, the
operators associated to the caps with normal lying outside of Vm must be small.

The uncertainty principle tells us that the terms should be essentially constant
at different scales δ/K. This can be formalised by replacing them with suitable
majorant functions. Indeed, define the dual set τ ′ to be the d-dimensional cuboid
with dimensions δ−1×. . .×δ−1×δ−2 centred at the origin, and with long side normal
to τ (pointing in the direction of the normal Yτ to the centre of a cap τ). The scaled
version Kτ ′ denotes the similar set but with dimensions Kδ−1× . . .×Kδ−1×Kδ−2.
Let ψ̂ = ψ̂o ∗ ψ̂o be a smooth radially symmetric cut-off function, supported on
B(0, d) ⊂ R

d and equal to one on B(0,
√
d) ⊂ R

d and let ψKτ ′ denote the scaled
version of ψ adapted to Kτ ′. By this we mean that

ψKτ ′(x, t) :=
δd+1

Kd
ψ

(
δx′

K
,
δ2t′

K

)
, (x′, t′) = Λτ (x, t), (5.2)

where Λτ ∈ SO(d) and Λτ (Yτ ) = (0, . . . , 0, 1). By the modulated reproducing
formula,

|Tτg| ≤ |Tτg| ∗ |ψτ ′ |.
and one can also calculate (see Lemma 8.6 of the appendix) that

|Tτg| .
(
|Tτg|

1
m ∗ |ψτ ′ | 1

m

)m
,

for any m ≥ 1. This yields

|Tτg|
1
m . |Tτg|

1
m ∗ ζτ ′ , ζ(x, t) :=

(
1 + |x|2 + |t|2

)−c(ε)
,

and as ζτ ′ is essentially constant on translates of τ ′, which is a property that is
preserved under convolution, we have majorised by an essentially constant function.
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By elementary trigonometry one sees that 1
2Kmτ

′ ⊂ υ′ whenever υ ⊂ τ is at scale
δ/Km, so that the dual of the latter is contained in the former and so

|TVm
υ g| 1

m . |TVm
υ g| 1

m ∗ ζKmτ ′ .

Using these observations, (5.1) can be rewritten as

|Tτg| . K2d
d max

τ1,...,τd

d∏

k=1

|Tτkg|
1
d ∗ ζτ ′

k
(5.3)

+

d−1∑

m=2

K2m
m max

Vm
τ1,...,τm

m∏

k=1

|TVm
τk
g| 1

m ∗ ζKmτ ′ +

d−1∑

m=1

max
τm+1

|Tτm+1g| ∗ ζτ ′

m+1
,

where as before τ1, . . . , τm ⊂ τ are m-transversal caps at scale δ/Km and the
maximum in the last term is taken over caps of size δ/Km+1.

Remark 5.1. The maximum over τ1, . . . , τm,Vm depends on the value of (x, t), but
we can now choose the same τ1, . . . , τm,Vm for all (x, t) in a translate of Kmτ

′. In
fact, given the dichotomy with which the initial decomposition is obtained, Vm can
be chosen to be the same in any translate of Km+1τ

′. This is because we only need
to consider this lower dimensional case in the absence of m+1 transversal caps for
which the operator is large. These caps are at scale Km+1 and so the definition of
the subspace Vm can be taken uniformly at that scale.

Definition 5.1. Set Φτ,V1,τ2 = 1 and, for m = 2, . . . , d− 1, define

Φτ,Vm,τm+1
:=

K2m
m maxτ1,...,τm⊂τ

∏m
k=1 |TVm

τk
g| 1

m ∗ ζKmτ ′ + |Tτm+1g| ∗ ζτ ′

m+1(∑
υ∈Vm,τ∪{τm+1} (|Tυg| ∗ ζυ′)

2
)1/2

+R−1/ε‖g‖L2

.

With this function, the decomposition (5.3) can be rewritten as

|Tτg| . K2d
d max

τ1,...,τd⊂τ

d∏

k=1

|Tτkg|
1
d ∗ ζτ ′

k
(5.4)

+

d−1∑

m=1

max
Vm,τm+1

Φτ,Vm,τm+1

( ∑

υ∈Vm,τ∪{τm+1}

(
|Tυg| ∗ ζυ′

)2
)1/2

+Rτ (g),

where the remainder term Rτ (g) is defined by

Rτ (g) := R−1/ε
d−1∑

m=1

max
Vm,τm+1

Φτ,Vm,τm+1
‖g‖L2 .

Although Φτ,Vm,τm+1 looks complicated, we will no longer care about its explicit
form, and focus instead on its properties. These properties, one of which we prove
now using the multilinear extension estimate, hold uniformly for all hyperplanes
Vm and caps τm+1 at scale δ/Km+1.

Lemma 5.2. Let 0 < ε < 1
4d and 0 < δ ≤ 1. Let τ1, . . . , τm be m-transversal

caps at scale δ/Km and let τ be a cap at scale δ that contains them. Then, for all

Vm ⊂ R
d and a ∈ R

d,

 

a+Km+1τ ′

(
m∏

k=1

|TVm
τk
g| 1

m ∗ ζKmτ ′

) 2m
m−1

. c(K−m
m )Kε

m+1

( ∑

υ∈Vm,τ

(
|Tυg| ∗ ζυ′

)2
(a)

) m
m−1

+
(
R−1/ε‖g‖L2

) 2m
m−1

.
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Proof. Denoting q := 2m
m−1 , by the trivial bound ‖Tτm+1

g‖L∞ ≤ K
−n/2
m+1 ‖g‖L2 , and

the definition of the Km, this would follow from the slightly stronger estimate
 

a+Km+1τ ′

(
m∏

k=1

|TVm
τk
g| 1

m ∗ ζKmτ ′

)q

. (5.5)

c(K−m
m )Kε

m+1

( ∑

υ∈Vm,τ

(
|Tυg| ∗ ζυ′

)2
(a)

)q/2

+
(( Km

Km+1

)
c(ε)

K
n/2
m+1 max

υ∈Vm,τ

‖Tυg‖∞
)q
.

By scaling as in the proof of the forthcoming Lemma 6.3, it will be enough to prove
this with δ = 1, so we can replace a+Km+1τ

′ by BKm+1
centred at a. By Hölder’s

inequality and Fubini’s theorem, we see that
 

BKm+1

(
m∏

k=1

ˆ

|TVm
τk
g((x, t)− yk)|

1
m ζ

1/q
Kmτ ′(yk)ζ

1−1/q
Kmτ ′ (yk) dyk

)q

dxdt

.

ˆ

(
 

BKm+1

m∏

k=1

|TVm
τk
g((x, t)− yk)|

2
m−1 dxdt

)
w(y) dy,

where
∏m

k=1 ζKmτ ′(yk) dy1 . . . dym =: w(y)dy. Then by Proposition 4.2 (with K =
Km+1 and θ = K−m

m ), Hölder’s inequality and Fubini, this is bounded by a constant
multiple of

c(K−m
m )Kε

m+1

ˆ

(
 

BKm+1

m∏

k=1

( ∑

υ⊂τk
υ∈Vm,τ

|Tυg((x, t)− yk)|2
) 1

2m

dxdt

)q

w(y) dy

. c(K−m
m )Kε

m+1

 

BKm+1

ˆ m∏

k=1

( ∑

υ⊂τk
υ∈Vm,τ

|Tυg((x, t)− yk)|2
) q

2m

w(y) dydxdt.

By Hölder’s inequality again and the reproducing formula, we can bound this as

. c(K−m
m )Kε

m+1

 

BKm+1

m∏

k=1

( ∑

υ⊂τk
υ∈Vm,τ

(
|Tυg| ∗ ζυ′

)2
∗ ζKmτ ′(x, t)

) q
2m

dxdt

≤ c(K−m
m )Kε

m+1

 

BKm+1

( ∑

υ∈Vm,τ

(
|Tυg| ∗ ζυ′

)2
∗ ζKmτ ′(x, t)

)q/2

dxdt.

Finally we can apply Lemma 8.7 of the appendix, with K = Km+1 and K ′ = Km,
to conclude that this is bounded by a constant multiple of

c(K−m
m )Kε

m+1

( ∑

υ∈Vm,τ

(
|Tυg| ∗ ζυ′

)2
(a)

)q/2

+
(( Km

Km+1

)
c(ε)

K
n/2
m+1 max

υ
‖Tυg‖L∞

)q
.

The chain of inequalities yields (5.5) and hence the result. �

Property 5.1. It is clear that Φτ,Vm,τm+1 is essentially constant on translates of

Kmτ
′. Given that by definition K

4m2

m−1
m c(K−m

m ) ≤ Kε
m+1, Lemma 5.2 yields

 

a+Km+1τ ′

Φ
2m

m−1

τ,Vm,τm+1
. K2ε

m+1,

where m = 2, . . . , d− 1. By Hölder’s inequality this also implies that
 

a+Km+1τ ′

Φ
2(d−1)
d−2

τ,Vm,τm+1
. K2ε

m+1,
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uniformly over all a ∈ R
d, Vm ⊂ R

d and τm+1 ⊂ τ at scale δ/Km+1.

We could have convolved both sides of (5.3) with ζτ ′ , before introducing the func-
tion Φτ,Vm,τm+1 . In order to then replace the double convolutions on the right-hand
side by single convolutions we again use Lemma 8.7 of the appendix. Introducing
Φτ,Vm,τm+1

after this process, we can also write

|Tτg| ∗ ζτ ′ . K2d
d max

τ1,...,τd

d∏

k=1

|Tτkg|
1
d ∗ ζτ ′

k
(5.6)

+
d−1∑

m=2

max
Vm,τm+1

Φτ,Vm,τm+1

( ∑

υ∈Vm,τ∪{τm+1}

(
|Tυg| ∗ ζυ′

)2
)1/2

+Rτ .

As the terms on the right-hand side have the same form as the left-hand side at a
different scale, we can iterate this inequality to obtain the following theorem. From
now on we write τ ∼ δ/K if τ is a cap at scale δ/K.

Definition 5.3. Define Ψυ recursively by

Ψυ := 1 υ ∼ 1,
Ψυ := Ψτ maxVm,τm+1

Φτ,Vm,τm+1
υ ⊂ τ, υ ∼ δ/Km+1, τ ∼ δ.

We keep track of the maximal number of caps in the following sets Eδ as this
information is used when proving linear restriction estimates. However the cardi-
nality will have no consequence in this article - it will only be important that the
caps of these sets are disjoint.

Proposition 5.4. Let 0 < ε < 1
4d and let S = {(ξ, φ(ξ)) : |ξ| ≤ 1/2}. Then, for

all N ∈ N,

|TSg| .N K2d
d

∑

K−N
2 <δ≤1

max
Eδ

( ∑

τ∈Eδ

Ψ2
τ

(
max

τ1,...,τd⊂τ

d∏

k=1

|Tτkg|
1
d ∗ ζτ ′

k

)2)1/2

+
∑

K−N
2 K−1

d <δ≤K−N
2

max
Eδ

(∑

τ∈Eδ

Ψ2
τ (|Tτg| ∗ ζτ ′)

2

)1/2

+
∑

K−N
2 K−1

d <δ≤1

max
Eδ

(∑

τ∈Eδ

Ψ2
τ

)1/2

R−1/ε‖g‖L2 , (5.7)

provided supp g ⊂ {ξ ∈ R
d−1 : |ξ| ≤ 1/2}. Here δ is restricted to taking values of

the form K−γ2

2 · ... ·K−γd

d with γ2, . . . , γd ∈ N∪ {0} and τ1, . . . , τd are d-transversal

caps at scale δ/Kd. The sets Eδ consist of at most 4Nδ2−d disjoint caps at scale δ.

Proof. When N = 1, there is only one term in the sum over K−N
2 < δ ≤ 1 and the

inequality follows from (5.4) at scale one. So we proceed by induction on N .
Suppose the inequality is true for N . Note that if it were not for the upper

bound on δ in the second sum on the right-hand side, the inequality with N + 1
would immediately follow from the Nth version. Thus it remains to bound the part
of the sum that appears in the Nth version that does not appear in the version
with N + 1;

∑

K
−(N+1)
2 <δ≤K−N

2

max
Eδ

(∑

τ∈Eδ

Ψ2
τ (|Tτg| ∗ ζτ ′)

2

)1/2

.
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Applying (5.6) to the summands, this is bounded by a constant multiple of

∑

K
−(N+1)
2 <δ≤K−N

2

max
Eδ

( ∑

τ∈Eδ

Ψ2
τ

(
K2d

d max
τ1,...,τd⊂τ

d∏

k=1

|Tτkg|
1
d ∗ ζτ ′

k

)2)1/2

+
∑

K
−(N+1)
2 <δ≤K−N

2

max
Eδ

( ∑

τ∈Eδ

Ψ2
τ

d−1∑

m=1

max
Vm,τm+1

Φ2
τ,Vm,τm+1

∑

υ∈Vm,τ∪{τm+1}
(|Tυg| ∗ ζυ′)

2

)1/2

+
∑

K
−(N+1)
2 <δ≤K−N

2

max
Eδ

(∑

τ∈Eδ

Ψ2
τR2

τ (g)

)1/2

.

Here τ1, . . . , τd are d-transversal caps of size δ/Kd and Vm,τ is the set of all the
caps υ ⊂ τ of size δ/Km+1 and such that dist(Y (ξ),Vm) ≤ δ/Km+1 for some ξ
in the orthogonal projection of υ. The first term is clearly acceptable and, by the
definitions of Ψτ and Rτ , we can bound the other two as

∑

K
−(N+1)
2 <δ≤K−N

2

max
Eδ

( ∑

τ∈Eδ

d−1∑

m=2

∑

υ∈Vm,τ∪{τm+1}
Ψ2

υ (|Tυg| ∗ ζυ′)
2

)1/2

+
∑

K
−(N+1)
2 <δ≤K−N

2

nmax
Eδ

( ∑

τ∈Eδ:υ⊂τ

Ψ2
υR

−2/ε‖g‖2L2

)1/2

.

Using the induction hypothesis again, there are at most

4Nδ2−d4(δ/(δ/Km))d−2 = 4N+1(δ/Km)2−d

terms in the product Eδ × Vm,τ ∪ {τm+1}, so we shift the scale and bound this by
a constant multiple of

∑

K
−(N+1)
2 K−1

d <δ≤K
−(N+1)
2

max
Eδ

( ∑

υ∈Eδ

Ψ2
υ (|Tυg| ∗ ζυ′)

2

)1/2

+
∑

K
−(N+1)
2 K−1

d <δ≤K
−(N+1)
2

max
Eδ

(∑

υ∈Eδ

Ψ2
υ

)1/2

R−1/ε‖g‖L2 .

This is also acceptable and so the proof is complete. �

Definition 5.5. If τ is a cap at scale K−γ2

2 · · ·K−γd

d we write l(τ) :=
∑d

j=2 γj .

The functions Ψτ also have good essentially constant properties, that we record
in the following proposition.

Proposition 5.6. Let 0 < ε < 1
4d . Then the functions Ψτ are essentially constant

at scale one. Moreover, for all a ∈ R
d,

 

a+τ ′

Ψ
2(d−1)
d−2

τ (x, t) dxdt .l(τ) |τ ′|ε.

Proof. The essentially constant property is an immediate consequence of the def-
inition and the corresponding property for Φυ with υ ⊂ τ , so it remains to prove
the averaged property.

If τ ∼ 1, then Ψτ := 1 and the estimate is trivially satisfied. If υ ∼ 1/Km+1,
then Ψυ := maxVm,τm+1 Φτ,Vm,τm+1 where υ ⊂ τ ∼ 1 and we can cover a+ υ′ with
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a family of translates of Km+1τ
′ which are essentially balls Bj of diameter Km+1.

We can of course do this in such a way that
⋃

j

Bj ⊂ a+ 4υ′.

Then we have
ˆ

a+υ′

Ψq
υ ≤

∑

j

ˆ

Bj

max
Vm,τm+1

Φq
τ,Vm,τm+1

.
∑

j

|Bj |
 

Bj

max
Vm,τm+1

Φq
τ,Vm,τm+1

Recalling Remark 5.1, in fact we have the same Vm for all (x, t) ∈ Bj . Similarly
as Φτ,Vm,τm+1

is essentially constant on Bj we can suppose that the maximum is

attained on the same τm+1 for a given Bj . Thus, taking q = 2(d−1)
d−2 , by Property

5.1 we obtain
ˆ

a+υ′

Ψq
υ .

∑

Bj

|Bj |K2ε
m+1 . |υ′|K2ε

m+1 ≤ |υ′|1+ε

as claimed.
We have proved the proposition for τ such that l(τ) = 0 or 1. Thus we can

proceed by induction on this quantity. Supposing that we have the estimate for τ
such that l(τ) = N , it will suffice to prove the estimate for υ such that l(υ) = N+1.
That is we suppose that

 

a+τ ′

Ψq
τ . |τ ′|ε, a ∈ R

d, (5.8)

and attempt to prove the same for υ at scale δ/Km+1 such that υ ⊂ τ at scale δ.
We cover a+ υ′ with a family {Tℓ} of pairwise disjoint translates of τ ′ with centres
at (xℓ, tℓ). We can do this in such a way that

⋃

ℓ

Tℓ ⊂ a+ 2υ′.

As Φq
τ,Vm,τm+1

is essentially constant on Tℓ, we have

ˆ

a+υ′

Ψq
υ ≤

∑

ℓ

ˆ

Tℓ

Ψq
τ max
Vm,τm+1

Φq
τ,Vm,τm+1

.
∑

ℓ

max
Vm,τm+1

Φq
τ,Vm,τm+1

(xℓ, tℓ)|Tℓ|
 

Tℓ

Ψq
τ .

Then, by the induction hypothesis (5.8), we see that
ˆ

a+υ′

Ψq
υ ≤ |τ ′|ε

∑

ℓ

max
Vm,τm+1

Φq
τ,Vm,τm+1

(xℓ, tℓ)|Tℓ|

. |τ ′|ε
ˆ

∪ℓTℓ

max
Vm,τm+1

Φq
τ,Vm,τm+1

.

We are now in a similar position as in the case l(τ) = 1. We cover
⋃

ℓ Tℓ with a
family {Tj} of disjoint translates of Km+1τ

′. As the angle between Yυ and Yτ is
bounded by δ, elementary trigonometry tells us that we can do this so that

⋃

j

Tj ⊂ a+ 4υ′.
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Thus, by Remark 5.1 and Property 5.1,
ˆ

a+υ′

Ψq
υ ≤ |τ ′|ε

∑

j

|Tj | max
Vm,τm+1

 

Tj

Φq
τ,Vm,τm+1

. |τ ′|εK2ε
m+1

∑

j

|Tj | . |τ ′|εK2ε
m+1|υ′| ≤ |υ′|1+ε

where in the final inequality we used that |υ′|1+ε = |τ ′|εK(d+1)ε
m+1 |υ′|, and so the

proof is complete. �

Returning to the decomposition (5.7), we stop the iteration at the biggest value
of N such that KN

2 Kd < Rλ, where λ > 0, so that

|TSg| . Rε
∑

R−λ<δ≤1

max
Eδ

( ∑

τ∈Eδ

Ψ2
τ

(
max

τ1,...,τd⊂τ

d∏

k=1

|Tτkg|
1
d ∗ ζτ ′

k

)2)1/2

+
∑

R−λ<δ≤R−λ+ε

max
Eδ

(∑

τ∈Eδ

Ψ2
τ (|Tτg| ∗ ζτ ′)

2

)1/2

+
∑

R−λ<δ≤1

max
Eδ

(∑

τ∈Eδ

Ψ2
τ

)1/2

R−1/ε‖g‖L2 . (5.9)

This is what we call the Bourgain–Guth decomposition [11, pp. 1259]. Note that
as |τ ′| < R(d+1)λ, we have

 

a+τ ′

Ψ
2(d−1)
d−2

τ . R(d+1)λε, a ∈ R
d, (5.10)

Later we will dispose of the sets Eδ and take the inner sums in τ over the full
partition of S. The outer sum (over the scales at which the partition is taken) has
less than λc(ε) terms in it, where c is the constant from the Bennett–Carbery–Tao
extension estimate. The inequality recalls the way in which the Whitney decompo-
sition can be used to take advantage of bilinear estimates, stopping at a scale for
which easy estimates are available. The big difference between this and the Whit-
ney decomposition are the functions Ψτ , which have reasonably nice properties, but
will prove to be something of a hindrance. Indeed, the easy estimates for the linear
terms are no longer so good that we can ignore them completely.

6. Proof of Theorem 1.5

After the usual duality argument, we will use the Bourgain–Guth decomposition
of the previous section in order to bound the extension operator. The first term on
the right-hand side of (5.9) will of course be estimated using the Bennett–Carbery–
Tao multilinear estimate from Section 4. The second term on the right-hand side
of (5.9) will be estimated using a variant of Sjölin’s argument [44], first taking
advantage of the fact that the restricted extension operator is essentially constant
on tubes of width Rλ and length R2λ. The first estimate worsens as λ increases
whereas the second estimate improves. The argument is completed by optimising
in λ so that the two bounds are the same.

Indeed, recalling that by duality the desired estimate (1.2) is equivalent to

‖(fdσ)∨(R · )‖L1(dµ) . R−β/2
√
cα(µ)‖µ‖‖f‖L2(Sd−1),

by Hölder’s inequality, it will suffice to prove

‖(fdσ)∨(R · )‖L2(dµ) . R−β/2
√
cα(µ)‖f‖L2(Sd−1) (6.1)
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for all β satisfying

β < α− 1 +
(d− α)2

(d− 1)(2d− α− 1)
.

Defining the measure µR by
ˆ

ψ(x) dµR(x) :=

ˆ

ψ(x)Rαdµ(x/R) := Rα

ˆ

ψ(Rx) dµ(x),

it is clear that cα(µR) = cα(µ), so that (6.1) is equivalent to

‖(fdσ)∨‖L2(dµR) . R
α−β

2

√
cα(µ)‖f‖L2(Sd−1). (6.2)

By a finite splitting, the triangle inequality and the rotational invariance of
the inequality (which holds uniformly for all α-dimensional measures µR) we can

suppose that σ is supported on S = {(ξ, φ(ξ)) : |ξ| ≤ 1/2}, where φ(ξ) =
√

1− |ξ|2.
Defining

g(ξ) :=
1

(2π)d/2
f(ξ, φ(ξ))√
1− |ξ|2

,

we can write

(fdσ)∨(x, t) =

ˆ

|ξ|≤1/2

g(ξ) eix·ξ+itφ(ξ)dξ,

so we see that (6.2) is equivalent to

‖TSg‖L2(dµR) . R
α−β

2

√
cα(µ)‖g‖L2(Rd−1). (6.3)

For this we will use the Bourgain–Guth decomposition with λ = d−α
2d−α−1 ;

|TSg| . Rε
∑

R−λ≤δ≤1

(∑

τ∼δ

(
Ψτ max

τ1,...,τd⊂τ

d∏

k=1

|Tτkg|
1
d ∗ ζτ ′

k

)2
)1/2

+
∑

R−λ≤δ≤R−λ+ε

(∑

τ∼δ

(Ψτ |Tτg| ∗ ζτ ′)
2

)1/2

(6.4)

+
∑

R−λ≤δ≤1

(∑

τ∼δ

Ψ2
τ

)1/2

R−1/ε‖g‖L2(Rd−1),

which follows from estimate (5.9) by summing in τ over the full partition of S at
scale δ instead of over the restricted subsets Eδ.

Recalling that there are less that λc(ε) < c(ε) terms in each of the δ-sums, by the
triangle inequality, we need only prove estimates which are uniform in δ. Writing
gτ := gχτ , if we could prove

∥∥∥Ψτ |Tτg| ∗ ζτ ′

∥∥∥
L2(dµR)

.
√
cα(µ)R

α
2 −α−1

2 −λ(d−α)
2(d−1)

+dε‖gτ‖2, (6.5)

uniformly for τ at scale δ with R−λ ≤ δ ≤ R−λ+ε, then using orthogonality, we
could bound the middle term on the right-hand side of (6.4). Similarly, replacing
the maxτ1,...,τd⊂τ with an ℓ2-norm, and using the fact that there are no more than
Rε choices in such a sum, in order to treat the first term it will suffice to prove

∥∥∥Ψτ

d∏

k=1

|Tτkg|
1
d ∗ ζτ ′

k

∥∥∥
L2(dµR)

.
√
cα(µ)R

α
2 −α−1

2 −λ(d−α)
2(d−1)

+dε‖gτ‖2, (6.6)

uniformly for τ at scale δ with R−λ ≤ δ ≤ 1 and uniformly for choices of transversal
caps τ1, . . . , τd ⊂ τ . In fact we will only prove this for α > 1 however we can safely
ignore the other cases as Mattila already proved the sharp bound for βd for low
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dimensions [35]. Finally, in order to deal with the remainder term, by taking ε
sufficiently small, it will suffice to prove that

‖Ψτ‖L2(dµR) .
√
cα(µ)R

d/2+λ, (6.7)

uniformly for τ at scale δ with R−λ ≤ δ ≤ 1. Taking for granted the proofs of (6.5),
(6.6) and (6.7), which we will present in the forthcoming lemmas, starting with the
easier (6.7), this completes the proof of Theorem 1.5.

Lemma 6.1. Let 0 < ε < 1
4d . Then, for all caps τ ∼ δ with R−λ ≤ δ ≤ 1,

‖Ψτ‖L2(dµR) .
√
cα(µ)R

d/2+λ.

Proof. Writing q = 2(d−1)
d−2 , we prepare to use the property (5.10). First of all, as

Ψτ is essentially constant at scale one, we know that
ˆ

Bj

|Ψτ (x)|qdµR(x) ≤ µR(Bj) sup
x∈Bj

|Ψτ (x)|q

≤ cα(µR) sup
x∈Bj

|Ψτ (x)|q . cα(µR)

ˆ

Bj

|Ψτ (x)|qdx,

whenever Bj is a ball of diameter less than one. Thus, we can bound

‖Ψτ‖L2(dµR) . µR(BR)
1
2− 1

q ‖Ψτ‖Lq(dµR)

. cα(µR)
1
2− 1

qRα( 1
2− 1

q )cα(µR)
1
q ‖Ψτ‖Lq(BR)

=
√
cα(µ)R

α( 1
2− 1

q )‖Ψτ‖Lq(BR).

Covering BR with a family {Tj} of translates of τ ′ with disjoint interiors, cuboids
of dimension δ−1 × · · · × δ−1 × δ−2, we can then bound this as

‖Ψτ‖L2(dµR) .
√
cα(µ)R

α( 1
2− 1

q )
(∑

j

‖Ψτ‖qLq(Tj)

)1/q

.
√
cα(µ)R

α( 1
2− 1

q )
(∑

j

|Tj ||τ ′|ε
)1/q

.
√
cα(µ)R

d
2 δ−

(d+1)ε
q ,

where the second inequality is by Proposition 5.6. For the range of δ under consid-
eration, this is easily enough to give the stated bound. �

Lemma 6.2. Let 0 < ε < 1
4d . Then, for all caps τ ∼ δ with R−λ ≤ δ ≤ R−λ+ε,

∥∥Ψτ |Tτg| ∗ ζτ ′

∥∥
L2(dµR)

.
√
cα(µ)R

1
2−

λ(d−α)
2(d−1)

+dε‖gτ‖2. (6.8)

Proof. Again we cover BR by a family {Tj} of translations of τ ′ with disjoint
interiors. Setting Gτ := |Tτg| ∗ ζτ ′ , and denoting the measure dµR restricted to Tj
by dµj

R, we can write

‖ΨτGτ‖L2(dµR) =

(∑

j

‖ΨτGτ‖2L2(dµj
R)

)1/2

. (6.9)

As in the previous lemma, we use that Ψτ is essentially constant at scale one, so

‖Ψτ‖L2(dµj
R) . µR(Tj)

1
2− 1

q ‖Ψτ‖Lq(dµj
R)

. µR(Tj)
1
2− 1

q cα(µR)
1
q ‖Ψτ‖Lq(Tj)

. cα(µ)
1
q µR(Tj)

1
2− 1

qR
d+1
2q ε|Tj |

1
q ,
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where the final inequality is by the property (5.10). Using this and the fact that
Gτ is essentially constant on Tj ,

‖ΨτGτ‖L2(dµj
R) . cα(µ)

1
q µR(Tj)

1
2− 1

qR
d+1
2q ε|Tj |

1
q ‖Gτ‖L∞(Tj)

. cα(µ)
1
q µR(Tj)

1
2− 1

qR
d+1
2q ε|Tj |

1
q |Tj |−

1
2 ‖Gτ‖L2(Tj).

Plugging this into (8.5), we obtain

‖ΨτGτ‖L2(dµR) . cα(µ)
1
q µR(Tj)

1
2− 1

qR
d+1
2q ε|Tj |

1
q |Tj |−

1
2

(∑

j

‖Gτ‖2L2(Tj)

)1/2

.
√
cα(µ)R

d+1
2q εδ(d−α)( 1

2− 1
q )
(∑

j

‖Gτ‖2L2(Tj)

)1/2

.
√
cα(µ)R

d+1
2q εδ

d−α
2(d−1) ‖Gτ‖L2(BR) (6.10)

where in the second inequality we use µR(Tj) . cα(µ)δ
−(α+1) which follows by

covering the Tj by δ−1 balls of radius δ−1.
On the other hand, by Minkowski’s integral inequality, we can bound

‖Gτ‖L2(BR) = ‖|Tτg| ∗ ζτ ′‖L2(BR) ≤
ˆ

‖Tτg(· − y)‖L2(BR)ζτ ′(y) dy

≤
ˆ ∥∥∥‖g∨y ‖L2(Rd−1)

∥∥∥
L2(|t|≤R)

ζτ ′(y) dy,

where

gy(ξ) := g(ξ)χτ (ξ)e
−iπ(y)·ξ+i(t−ty)φ(ξ), ty := y − π(y).

Here π is the orthogonal projection onto R
d−1. Then by Plancherel’s theorem, the

fact that ‖gy‖2 = ‖gτ‖2, and the fact that the integral of ζτ ′ is bounded, we obtain

‖Gτ‖L2(BR) . R1/2‖gτ‖2.

Plugging this into (6.10), we see that

∥∥Ψτ |Tτg| ∗ ζτ ′

∥∥
L2(dµR)

.
√
cα(µ)R

1
2+

d+2
2q εδ

d−α
2(d−1) ‖gτ‖2, (6.11)

which, with R−λ ≤ δ ≤ R−λ+ε, yields the desired uniform estimate. �

Lemma 6.3. Let 0 < ε < 1
4d and α > 1 and λ = d−α

2d−α−1 . Then, for all caps τ ∼ δ

with R−λ ≤ δ ≤ 1 and all d-transversal caps τ1, . . . τd ∼ δ/Kd contained in τ ,

∥∥∥Ψτ

d∏

k=1

|Tτkg|
1
d ∗ ζτ ′

k

∥∥∥
L2(dµR)

.
√
cα(µ)R

1
2−

λ(d−α)
2(d−1)

+dε‖gτ‖2. (6.12)

Proof. Setting Gτ :=
∏d

k=1 |Tτkg|
1
d ∗ ζτ ′

k
, we will prove that

‖ΨτGτ‖L2(dµR) .
√
cα(µ)R

dεR
α
2d δ

d−α
2d(d−1)

− d−1
2d ‖gτ‖2, (6.13)

which on can calculate gives the required bound for δ ≥ R− d−α
2d−α−1 .. By Hölder’s

inequality with p = 2d
d−1 , we first note that

‖ΨτGτ‖L2(dµR) . cα(µ)
1
2− 1

pRα( 1
2− 1

p )‖ΨτGτ‖Lp(dµR) (6.14)

= cα(µ)
1
2− 1

pR
α
2d

(∑

j

‖ΨτGτ‖pLp(dµj
R)

)1/p

,
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where dµj
R denotes the measure dµR a member of the cover of BR by translates

of τ ′. Using that Ψτ is essentially constant at scale one,

‖Ψτ‖Lp(dµj
R) . µ(Tj)

1
p− 1

q ‖Ψτ‖Lq(dµj
R)

. µ(Tj)
1
p− 1

q cα(µ)
1
q ‖Ψτ‖Lq(Tj)

. µ(Tj)
1
p− 1

q cα(µ)
1
q |Tj |

1
qR

d+1
2q ε,

where the final inequality is by the property (5.10). As τ ′ ⊂ τ ′k we still have that
that Gτ is essentially constant on Tj , so that

‖ΨτGτ‖Lp(dµj
R) . µ(Tj)

1
p− 1

q cα(µ)
1
q |Tj |

1
qR

d+1
2q ε‖Gτ‖L∞(Tj)

. µ(Tj)
1
p− 1

q cα(µ)
1
qR

d+1
4 ε|Tj |

1
q− 1

p ‖Gτ‖Lp(Tj)

. cα(µ)
1
pR

d+1
4 εδ(d−α)( 1

p− 1
q )‖Gτ‖Lp(Tj)

= cα(µ)
1
pR

d+1
4 εδ

d−α
2d(d−1) ‖Gτ‖Lp(Tj)

Plugging this into (6.14), we obtain

‖ΨτGτ‖L2(dµR) .
√
cα(µ)R

d+1
4 εR

α
2d δ

d−α
2d(d−1) ‖Gτ‖Lp(BR).

In order to bound ‖Gτ‖Lp(BR), we write

Gτ (x, t) =

d∏

k=1

ˆ

|Tτkg|
1
d ((x, t)− yk)ζτ ′

k
(yk) dyk

=

d∏

k=1

ˆ

|Tτkgyk
| 1d (x, t)ζτ ′

k
(yk) dyk,

where this time

gyk
:= g χτke

−iπ(yk)·ξ−itkφ(ξ), tk := yk − π(yk).

Then, by Minkowski’s integral inequality, it will suffice to bound

ˆ ∥∥∥
d∏

k=1

|Tτkgyk
| 1d
∥∥∥
Lp(BR)

d∏

k=1

ζτ ′

k
(yk) dy1 . . . dyd.

Again ‖gyk
‖2 = ‖gτk‖2, and so it remains to prove the multilinear extension estimate

∥∥∥
d∏

k=1

|Tτkg|
1
d

∥∥∥
Lp(BR)

. R2εδ−
d−1
2d ‖gτ‖2. (6.15)

We recall that τk are transversal caps at scale δ/Kd and so a direct application of

Theorem 4.1 would give us the inequality with the constant c(δdK−d
d ). We do not

know how large this is, however we have chosen the scales so that at least we know

that c(K−d
d ) ≤ Rε2 . Thus, using the fact the caps τk are contained in τ at scale δ,

we can modulate and scale in order to get back into this situation.

Denoting by ξ0 the center of π(τ) = Q we let Q̃k be the scaled versions of Qk

which are first translated by −ξ0. Indeed, introducing new variables,

(x′, t′) = (δx, δ2t), ξ − ξ0 = δξ′,

and writing

f(ξ′) := δ
d−1
2 g(ξ0 + δξ′),

so that ‖f‖2 = ‖g‖2, it is trivial to calculate that

|Tτkg(x, t)| = δ
d−1
2 |T̃τ̃kf(x′ + δ−1∇φ(ξ0)t′, t′)|,
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where

T̃τ̃kf(x, t) :=

ˆ

Q̃k

eix·ξ+itSξ0,δφ(ξ)f(ξ) dξ (6.16)

and the scaled phase is given by

Sξ0,δφ(ξ
′) = δ−2

(
φ(ξ0 + δξ′)− δ∇φ(ξ0) · ξ′ − φ(ξ0)

)
.

The d-transversal caps τ̃k satisfying π(τ̃k) = Q̃k are now at scale 1/Kd. Writing

d∏

k=1

|Tτkg|
1
d (x, t) = δ

d−1
2

d∏

k=1

|T̃τ̃kf |
1
d (x′ + δ−1∇φ(ξ0)t′, t′),

we see that the left-hand side of (6.15) is bounded by

δ
d−1
2 − d+1

p

( ˆ

|t′|≤δ2R

ˆ

|x′|≤δR

∣∣∣
d∏

k=1

|T̃τ̃kf |
1
d (x′ + δ−1∇φ(ξ0)t′, t′)

∣∣∣
p

dx′dt′
)1/p

≤ δ−
d−1
2d

∥∥∥
d∏

k=1

|T̃τ̃kf |
1
d

∥∥∥
Lp([−δ2R,δ2R]×B2δR)

,

Here, we change variables x = x′+δ−1∇φ(ξ0)t′ and use that δ−1∇φ(ξ0)t′ is bounded
above by δR so that the oblique tube can be covered by the fatter cylinder. Now,
by Proposition 4.3,

∥∥∥
d∏

k=1

|T̃τ̃kf |
1
d

∥∥∥
Lp(Rd−1×[−δ2R,δ2R])

. c(K−d
d )(δ2R)ε‖f‖2 ≤ R2ε‖f‖2,

using the original choice of scales and so altogether we get (6.15), which completes
the proof. �

The conjectured m-linear extension estimates [4, Conjecture 4], with m ≤ d− 1,
combined with the arguments of this section, would yield

βd(α) ≥ min
{
α− 1 +

(d− α)(d+m− 2α)

2(m− 1)(d+m− α− 1)
, α− 2α

d+m

}
, (6.17)

whenever 3 ≤ m ≤ d − 1. Comparing the second term in the minimum with the
bound of Theorem 1.5, it is clear that this is not an improvement for larger α.
However, by taking m = d/2 + 1 (assuming that d is even), this would improve
our bound and Erdoğan’s in a neighbourhood of α = d/2 + 2/3. It would not be
sufficient to improve the state-of-the-art for Falconer’s conjecture however.

Given that m-linear estimates necessarily have worse integrability properties
than the d-linear estimates of Section 4, it is not obvious that anything can be
gained by lowering the degree of multinearity. The reason that such estimates can
be effective is that the decomposition of Bourgain and Guth improves if we take
the initial dichotomy at a lower level of multilinearity. The improvement manifests
itself in the fact that the functions Ψτ have better integrability properties and so
we pay less when we remove them. This kind of thing was first observed by Temur
in the context of the linear restriction problem [49]. Here, the reduced integrability
in the estimates leads to the estimate (6.13) having a worse dependency on R (this
produces the second term in the minimum), however the improved properties of Ψτ

lead to both (6.13) and (6.11) having a better dependency on δ, and together they
would yield (6.17) after choosing the limiting scale λ in an optimal fashion.
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7. Proof of Proposition 1.6

In order to avoid repetition in the following section, we consider m ≥ 1, however
it will suffice to consider m = 1 here. If v0 and v1 are in the Schwartz class then
the solution v to the wave equation with this initial data can be written as

v(·, t) = cos(t
√
−∆)v0 +

sin(t
√
−∆)√

−∆
v1

= eit
√
−∆f+ + e−it

√
−∆f−.

Here f+ = 1
2 (v0 − iI1 ∗ v1) and f− = 1

2 (v0 + iI1 ∗ v1), where I1 is the Riesz kernel,
and

eit(−∆)m/2

f(x) :=
1

(2π)d/2

ˆ

Rd

f̂(ξ) eix·ξ+it|ξ|mdξ.

For data in Ḣs × Ḣs−1, both f+ and f− belong to Ḣs, however this integral does
not necessarily exist in the sense of Lebesgue for s ≤ n/2. Instead we define v(x, t)
to be the pointwise limit

v(x, t) := lim
N→∞

SN,1
t f+(x) + SN,1

−t f−(x), (7.1)

whenever the limit exists, where

SN,m
t f :=

ˆ

Rd

ψ

( |ξ|
N

)
f̂(ξ) eix·ξ+it|ξ|mdξ

and ψ is a positive Schwartz function that equals (2π)−d/2 at the origin. This
coincides almost everywhere with the classical solution defined via the L2-limit.

Writing ‖Is ∗ f‖Ḣs := ‖f‖2, we know that f+, f− and the limit (7.1) are well-
defined with respect to fractal measures provided that α > d − 2s due to the
inequalities

‖Is ∗ f‖L1(dµ) .
√
cα(µ)‖µ‖ ‖f‖2,∥∥∥ sup

N>1
|SN,m

t Is ∗ f |
∥∥∥
L1(dµ)

.
√
cα(µ)‖µ‖ ‖f‖2;

see for example [2], [6] or [37, Chapter 17]. Then by standard arguments (see
for example Appendix B of [6]) and an application of Frostman’s lemma (see for
example [37, Theorem 2.7]), the implication

βd(α) > d− 2s ⇒ γd(s) ≤ α

can be deduced from from the following lemma.

Lemma 7.1. Let m ≥ 1, d ≥ 2 and 0 < s < d/2. Then
∥∥∥ sup

t∈R

sup
N≥1

|SN,m
t Is ∗ f |

∥∥∥
L1(dµ)

.
√
cα(µ)‖µ‖‖f‖2

whenever f ∈ L2(Rd), µ is an α-dimensional measure and s > d−βd(α)
2 .

Proof. First of all we remark that the maximal function is Borel measurable by
comparing with the maximum function with time restricted to the rationals; see
[37, Lemma 17.7]. Then, using polar coordinates we write

|SN,m
t Is ∗ f(x)| =

∣∣∣∣
ˆ

Rd

ψ(N−1|ξ|) |ξ|−sf̂(ξ) ei(x·ξ+t|ξ|m) dξ

∣∣∣∣

=

∣∣∣∣
ˆ ∞

0

ψ(N−1R)Rd−1−seitR
m

ˆ

Sd−1

f̂(Rω) eiRx·ωdσ(ω) dR

∣∣∣∣

.

ˆ ∞

0

Rd−1−s

∣∣∣∣
ˆ

Sd−1

f̂(Rω) eiRx·ωdσ(ω)

∣∣∣∣ dR,
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so that, by Fubini’s theorem,
∥∥∥ sup

t∈R

sup
N≥1

|SNt Is ∗ f |
∥∥∥
L1(dµ)

.

ˆ ∞

0

Rd−1−s
∥∥(f̂(R ·)dσ

)∨
(R · )

∥∥
L1(dµ)

dR. (7.2)

Noting that, even when R is small, we have

‖µ̂(R · )‖2L2(Sd−1) . ‖µ‖2 . cα(µ)‖µ‖,
the inequality (1.2) implies by duality that

∥∥(f̂(R ·)dσ
)∨

(R · )
∥∥
L1(dµ)

.
√
cα(µ)‖µ‖ (1 +R)−β/2‖f̂(R · )‖L2(Sd−1).

for all β < βd(α), so that (7.2) is bounded by

.
√
cα(µ)‖µ‖

ˆ ∞

0

Rd−1−s

(1 +R)β/2
‖f̂(R · )‖L2(Sd−1)dR.

Finally, by an application of the Cauchy–Schwarz inequality, we can continue to
estimate as

.
√
cα(µ)‖µ‖

(
ˆ ∞

0

Rd−1−2s

(1 +R)β
dR

)1/2(ˆ ∞

0

‖f̂(R · )‖2L2(Sd−1)R
d−1dR

)1/2

.
√
cα(µ)‖µ‖ ‖f‖L2(Rd),

where in the final inequality we choose β so that βd(α) > β > d−2s as we may. �

8. Proof of Theorem 1.2

As in the previous section, for data inHs we define the solution to the Schrödinger
equation to be

u(x, t) := lim
N→∞

SN,2
−t u0(x) (8.1)

whenever the limit exists. This coincides almost everywhere with the classical
solution defined via the L2-limit. Then, by standard arguments, an upper bound
for αn(s) can be obtained from appropriate maximal inequalities with respect to
fractal measures. We summarise this in the following lemma.

Lemma 8.1. [2] Let α > α0 ≥ n− 2s and suppose that
∥∥∥ sup

0<t<1
|eit∆u0|

∥∥∥
L1(dµ)

.
√
cα(µ)‖µ‖ ‖u0‖Hs(Rn)

whenever u0 is in the Schwartz class and µ is an α-dimensional. Then αn(s) ≤ α0.

Proof. First we use the argument at the beginning of the proof of Proposition 3.2
in [2] to conclude that (8.1) implies the maximal estimate

∥∥∥ sup
0<t<1

sup
N>1

|SN,2
−t u0|

∥∥∥
L1(dµ)

.
√
cα(µ)‖µ‖ ‖u0‖Hs+ε(Rn)

whenever u0 ∈ Hs+ε for all ε > 0. Then we use the density argument that invokes
Frostman’s lemma in the Appendix B of [6] or [37, Chapter 17] to conclude. �

Thus it remains to prove a priori maximal estimates that hold uniformly with
respect to compactly supported fractal measures. Indeed it remains to prove the
following theorem.

Theorem 8.2. Let n ≥ 1 and

s >





n−α
2 + n

2(n+1) , if 0 ≤ α ≤ n− 1 + 2
n+1 ,

(n− α+ 1)
(
1
2 − 1

4n

)
if n− 1 + 2

n+1 ≤ α ≤ n.
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Then ∥∥∥∥ sup
0<t<1

|eit∆f |
∥∥∥∥
L2(dµ)

.
√
cα(µ)‖f‖Hs(Rn)

whenever f is Schwartz and µ is α-dimensional.

Proof. Set so = max{n−α
2 + n

2(n+1) , (n− α+ 1)( 12 − 1
4n )}. After noting that

∥∥∥∥ sup
0<t<1

|eit∆f |
∥∥∥∥
L2(dµ)

.
√
cα(µ)

∥∥∥∥ sup
0<t<1

|eit∆f |
∥∥∥∥
L∞(B1)

.
√
cα(µ)|B2c(ε) |1/2

∥∥f̂
∥∥
2

.
√
cα(µ)‖f‖2

provided suppf̂ ⊂ {ξ ∈ R
n : |ξ| ≤ 2c(ε)}, by a dyadic decomposition in frequency,

the inequality (8.2) would follow from
∥∥∥∥ sup
0<t<1

|eit∆f |
∥∥∥∥
L2(dµ)

.
√
cα(µ)R

so+ε‖f‖2,

provided suppf̂ ⊂ {R/8 < |ξ| < R/2} for all R > 2c(ε). For this we make use of
temporal localisation lemma due to Lee [33, Lemma 2.3]. In fact we use a version
that holds with respect to fractal measures and where the ε-loss in derivatives was
avoided (see [34, Lemma 2.1]), so that it will suffice to prove

∥∥∥∥ sup
0<t<1/R

|eit∆f |
∥∥∥∥
L2(dµ)

.
√
cα(µ)R

so+ε‖f‖2.

Writing f̂R = Rnf̂(R · ) and scaling, we see that
∥∥∥∥ sup

0<t<1/R

|eit∆f |
∥∥∥∥
L2(dµ)

= R−α/2

(
ˆ

sup
0<t<R

|eit∆fR|2(x)Rαdµ(x/R)

)1/2

so that, by writing dµR(x) := Rαdµ(x/R), this is equivalent to
∥∥∥ sup

0<t<R
|eit∆f |

∥∥∥
L2(dµR)

.
√
cα(µ)R

α−n
2 +so+ε‖f‖2,

provided supp f̂ ⊂ {ξ : 1/8 ≤ |ξ| ≤ 1/2}. It is easy to check that cα(µR) = cα(µ).
Now by taking λ = 1/2 in (5.9) we have the pointwise bound

|eit∆f | . Rε
∑

R−1/2≤δ≤1

(∑

τ∼δ

(
Ψτ max

τ1,...,τn+1⊂τ

n+1∏

k=1

|Tτk f̂ |
1

n+1 ∗ ζτ ′

k

)2
)1/2

+
∑

R−1/2≤δ≤R−1/2+ε

(∑

τ∼δ

(
Ψτ |Tτ f̂ | ∗ ζτ ′

)2
)1/2

+
∑

R−1/2≤δ≤1

(∑

τ∼δ

Ψ2
τ

)1/2

R−1/ε‖f̂ ‖2.

Recalling that there are a finite number, independent of R, of terms in each of the
δ-sums, by the triangle inequality, we need only prove estimates which are uniform

in δ. Writing gτ := f̂χτ , if we could prove∥∥∥ sup
0<t<R

Ψτ |Tτg| ∗ ζτ ′

∥∥∥
L2(dµR)

.
√
cα(µ)R

α−n
2 +so+nε‖gτ‖2, (8.2)

uniformly for τ at scale δ with R−1/2 ≤ δ ≤ R−1/2+ε, then using orthogonality, we
could bound the middle term on the right-hand side of (8.2). Similarly, replacing
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the maxτ1,...,τn+1⊂τ with a ℓ2-norm, and using the fact that there are no more than
Rε choices in such a sum, in order to treat the first term it will suffice to prove

∥∥∥ sup
0<t<R

Ψτ

n+1∏

k=1

|Tτkg|
1

n+1 ∗ ζτ ′

k

∥∥∥
L2(dµR)

.
√
cα(µ)R

α−n
2 +so+nε‖gτ‖2, (8.3)

uniformly for τ at scale δ with R−1/2 ≤ δ ≤ 1 and uniformly for choices of transver-
sal caps τ1, . . . , τn+1 ⊂ τ . Finally, in order to deal with the remainder term, by
taking ε sufficiently small, it will suffice to prove that

‖ sup
0<t<R

Ψτ‖L2(dµR) .
√
cα(µ)R

n+1, (8.4)

uniformly for τ at scale δ with R−1/2 ≤ δ ≤ 1. Taking for granted the proofs
of (8.2), (8.3) and (8.4), which we will present in the forthcoming lemmas, this
completes the proof of Theorem 8.2. �

From now on, for nested norms, we write ‖f‖XY :=
∥∥‖f‖Y

∥∥
X
.

Lemma 8.3. Let 0 < ε < 1
8n . Then, for all caps τ ∼ δ with R−1/2 ≤ δ ≤ 1,

‖Ψτ‖L2(dµR)L∞(0,R) .
√
cα(µ)R

n+1.

Proof. Writing q = 2n
n−1 , we prepare to apply Proposition 5.6. First of all, as Ψτ is

essentially constant at scale one, we can bound

‖Ψτ‖L2(dµR)L∞(0,R) . ‖Ψτ‖L2(dµR)Lq(0,R)

.
√
cα(µ)‖Ψτ‖L2(BR)Lq(0,R)

.
√
cα(µ)R

n( 1
2− 1

q )‖Ψτ‖Lq(BR×(0,R)).

Noting that n( 12 − 1
q ) =

1
2 , and covering BR×(0, R) with a family {Tj} of translates

of τ ′ with disjoint interiors, we can bound this as

‖Ψτ‖L2(dµR)Lq(0,R) .
√
cα(µ)R

1
2

(∑

j

‖Ψτ‖qLq(Tj)

)1/q

.
√
cα(µ)R

1
2

(∑

j

|Tj ||τ ′|ε
)1/q

.
√
cα(µ)R

1
2R

n+1
q δ−

(n+2)ε
q ,

where the second inequality is by Proposition 5.6. For the range of δ under consid-
eration, this is more than enough to give the desired bound. �

Lemma 8.4. Let 0 < ε < 1
8n . Then, for all caps τ ∼ δ with R−1/2 ≤ δ ≤ R−1/2+ε,

∥∥Ψτ |Tτg| ∗ ζτ ′

∥∥
L2(dµR)L∞(0,R)

.
√
cα(µ)R

1
2− 1

4n−n−α
4n +nε‖gτ‖2.

Proof. We cover BR × (0, R) by a family {Tjk} of translations of τ ′ with disjoint
interiors. Denote by Ij the projection orthogonal to time of Tjk onto R

n. Recall
that the sets Tjk have dimensions δ−1 × · · · × δ−1 × δ−2 and, as our functions are
frequency supported in the the unit annulus, the sets τ ′ make an angle greater than
π/8 with the time axis. Thus the projections Ij also have a long side of length a
constant multiple of δ−2.
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Set Gτ := |Tτg| ∗ ζτ ′ . Denoting by dµj
R the measure dµR restricted to Ij , by

Hölder’s inequality

‖ΨτGτ‖L2(dµR)L∞(0,R) =

(∑

j

‖ΨτGτ‖2L2(dµj
R)L∞(0,R)

)1/2

≤ µR(Ij)
1
2− 1

p

(∑

j

‖ΨτGτ‖2Lp(dµj
R)L∞(0,R)

)1/2

Denoting T x
jk = {(y, t) ∈ Tjk : y = x}, on the other hand we have

sup
0<t<R

|ΨτGτ |(x, t) ≤
(∑

k

‖ΨτGτ‖pL∞(Bx
jk)

)1/p

,

for all x ∈ Ij , so that

‖ΨτGτ‖L2(dµR)L∞(0,R) (8.5)

≤ µR(Ij)
1
2− 1

p

(∑

j

(∑

k

‖ΨτGτ‖pLpL∞(Tjk,dµRdt)

)2/p)1/2

.

As in the previous lemma, we use that Ψτ is essentially constant at scale one, so
that

‖Ψτ‖LpL∞(Tjk,dµRdt) . ‖Ψτ‖LpLq(Tjk,dµRdt)

≤ µR(Ij)
1
p− 1

q ‖Ψτ‖Lq(Tjk,dµRdt)

. µR(Ij)
1
p− 1

q cα(µ)
1
q ‖Ψτ‖Lq(Tjk,dxdt)

. cα(µ)
1
q µR(Ij)

1
p− 1

qR
n+2
2q ε|Tjk|

1
q ,

where the final inequality is by (5.10). Using this and the fact that Gτ is essentially
constant on Tjk,

‖ΨτGτ‖LpL∞(Tjk,dµRdt) . cα(µ)
1
q µR(Ij)

1
p− 1

qR
n+2
2q ε|Tjk|

1
q ‖Gτ‖L∞L∞(Tjk)

. cα(µ)
1
q µR(Ij)

1
p− 1

qR
n+2
4 ε|Tjk|

1
q δ

n+1
2 δ

1
p ‖Gτ‖L2Lp(Tjk).

Plugging this into (8.5), we obtain

‖ΨτGτ‖L2(dµR)L∞(0,R)

. cα(µ)
1
q µR(Ij)

1
2− 1

qR
n+2
4 ε|Tjk|

1
q δ

n+1
2 δ

1
p

(∑

j

(∑

k

‖Gτ‖pL2Lp(Tjk)

)2/p)1/2

.
√
cα(µ)R

n+2
4 εδ−(α+1)( 1

2− 1
q )δ(n+1)( 1

2− 1
q )+

1
p− 1

q

(∑

j

(∑

k

‖Gτ‖pL2Lp(Tjk)

)2/p)1/2

,

where in the second inequality we use µR(Ij) . cα(µ)δ
−(α+1) which follows by

covering the Ij by δ−1 balls of radius δ−1. Finally, using that Gτ is essentially
constant on Tjk and 1

2 − 1
q = 1

2n , we can sum up to obtain

‖ΨτGτ‖L2(dµR)L∞(0,R) .
√
cα(µ)R

n+2
4 εδ

n−α
2n + 1

p− 1
q ‖Gτ‖L2(BR)Lp(0,R). (8.6)
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In fact we have only performed this argument for general p to facilitate the proof
of the following lemma. Here we set p = 2 and so it remains to bound

‖|Tτg| ∗ ζτ ′‖L2(BR)L2(0,R) ≤
ˆ

‖Tτg(· − y)‖L2(0,R)L2(Rn)ζτ ′(y) dy

≤
ˆ

‖gτ‖L2(0,R)L2(Rn)ζτ ′(y) dy

. ‖gτ‖L2(0,R)L2(Rn) = R1/2‖gτ‖L2(Rn),

by Fubini, Minkowski’s integral inequality and Plancherel. Plugging this into the
previous estimate, we see that

∥∥Ψτ |Tτg| ∗ ζτ ′

∥∥
L2(dµR)L∞(0,R)

.
√
cα(µ)R

1
2+

n+2
4 εδ

n−α
2n + 1

2n ‖gτ‖2,

which, with R−1/2 ≤ δ ≤ R−1/2+ε, yields the desired uniform estimate. �

Lemma 8.5. Let 0 < ε < 1
8n . Then, for all caps τ ∼ δ with R−1/2 ≤ δ ≤ 1 and

all (n+ 1)-transversal caps τ1, . . . τn+1 ∼ δ/Kn+1 contained in τ ,

∥∥∥Ψτ

n+1∏

k=1

|Tτkg|
1

n+1 ∗ζτ ′

k

∥∥∥
L2(dµR)L∞(0,R)

.
√
cα(µ)R

nε max
(
R

1
2− 1

4n−n−α
4n , R

n
2(n+1)

)
‖gτ‖2.

Proof. As before we set Gτ :=
∏n+1

k=1 |Tτkg|
1

n+1 ∗ ζτ ′

k
, and this time we will prove

‖ΨτGτ‖L2(dµR)L∞(0,R) .
√
cα(µ)R

n
2(n+1)

+nεδ
n−α
2n + 1

2n− 1
n+1 ‖gτ‖2,

which yields the desired estimate uniform in the range R−1/2 ≤ δ ≤ 1. Covering
BR × (0, R) by translations of τ ′, as τ ′ ⊂ τ ′k we still have that Gτ is essentially

constant at this scale. Repeating the previous argument, this time with p := 2(n+1)
n ,

by (8.6) we have

‖ΨτGτ‖L2(dµR)L∞(0,R) .
√
cα(µ)R

n+2
4 εδ

n−α
2n + 1

p− 1
q ‖Gτ‖L2(BR)Lp(0,R),

and so it remains to bound ‖Gτ‖L2(BR)Lp(0,R). By Minkowski’s integral inequality,
it will suffice to treat

ˆ ∥∥∥
n+1∏

k=1

|Tτkgyk
| 1
n+1

∥∥∥
L2(BR)Lp(0,R)

n+1∏

k=1

ζτ ′

k
(yk) dy1 . . . dyn+1,

where

gyk
:= g χτke

−iπ(yk)·ξ+tk|ξ|2 , tk := yk − π(yk).

Noting that 1
p − 1

q = 1
2n − 1

2(n+1) and ‖gyk
‖2 = ‖gτk‖2, it remains to prove

∥∥∥
n+1∏

k=1

|Tτkg|
1

n+1

∥∥∥
L2(BR)Lp(0,R)

. R
n

2(n+1)
+εδ−

1
2(n+1) ‖g‖2.

By scaling as in the proof of Lemma 6.3 (see (6.16) for the definition), this would
follow from

∥∥∥
n+1∏

k=1

|T̃τ̃kf(x′ − 2δ−1ξ0t
′, t′)| 1

n+1

∥∥∥
L2(BδR)Lp(0,δ2R)

. R
n

2(n+1)
+εδ

2
p− 1

2(n+1) ‖f‖2.

By a rotation we can suppose that ξ0 is parallel to xn, so by an application of
Hölder’s inequality, and making the change of variables x = x′ − 2δ−1ξ0t

′, it would
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suffice to prove

∥∥∥
n+1∏

k=1

|T̃τ̃kf |
1

n+1

∥∥∥
L2(BδR)Lp

xn,t(−2δR,2δR)×(0,δ2R)
. R

n−1
2(n+1)

+εδ
3
p− 1

2− 1
2(n+1) ‖f‖2.

Now partitioning R
n−1 into cubes Ω of side length δ2R, and applying Hölder’s

inequality, the left-hand side is bounded by

(δ2R)(n−1)( 1
2− 1

p )

(∑

Ω

∥∥∥
n+1∏

k=1

|T̃τ̃kf |
1

n+1

∥∥∥
2

Lp(Ω)Lp
xn,t(−2δR,2δR)×(0,δ2R)

)1/2

.

Noting that

2(n− 1)
(1
2
− 1

p

)
=
n− 1

n+ 1
=

3

p
− 1

2
− 1

2(n+ 1)
,

the proof is completed by an application of Proposition 4.3. �

Appendix

The following lemma is well-known; see for example [49, pp. 1024].

Lemma 8.6. Let ψ̂ = ψ̂o ∗ ψ̂o be a smooth radially symmetric cut-off function

supported in B(0, d) ⊂ R
d and equal to one on B(0,

√
d) and consider the scaled

version φτ ′ adapted to τ ′. Then, for all m ≥ 1,

|F (x, t)| .
(
|F | 1

m ∗ |ψτ ′ | 1
m (x, t)

)m
, (8.7)

provided supp F̂ ⊂ τ ⊂ R
d.

Proof. As usual we set m′ := m/(m− 1). Letting

η(x, t) := ψτ ′(x, t)eix·ξo+itφ(ξo), (8.8)

where (ξo, φ(ξo)) is the centre of τ , we note that

|η| 1
m = |τ ′| 1

m′ |ψτ ′ | 1
m . (8.9)

By the self reproducing formula F = F ∗ η

|F (x, t)| ≤
ˆ

|F ((x, t)− y)η(y)| dy (8.10)

=

ˆ

|F ((x, t)− y)η(y)| 1
m |F ((x, t)− y)η(y)| 1

m′ dy,

≤ ‖F ((x, t)− ·)η‖
1

m′

L∞

ˆ

|F ((x, t)− y)η(y)| 1
m dy

. |τ ′|− 1
m′ ‖F ((x, t)− ·)η‖

1
m′

L1

ˆ

|F ((x, t)− y)η(y)| 1
m dy,

where in the last inequality we have used Bernstein’s inequality. Hence by dividing

by ‖F ((x, t)− ·)η‖
1

m′

L1 , we see that

(
ˆ

|F ((x, t)− y)η(y)| dy
) 1

m

. |τ ′|− 1
m′

(
ˆ

|F ((x, t)− y)η(y)| 1
m dy

)

=

(
ˆ

|F ((x, t)− y)| 1
m |ψτ ′(y)| 1

m dy

)
, (8.11)

where in the final identity we have used (8.9). Then (8.7) follows using (8.10). �
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Lemma 8.7. Let 0 < δ ≤ 1 and let K > (K ′)2 > 1. Let Λ1,Λ2 ∈ SO(d) be

such that Λ1Λ
−1
2 is a rotation by an angle less than δ. Then if F : Rd → R+ is

essentially constant on translates of Λ−1
1 (T ) where

T :=
[
− K

δ
,
K

δ

]
× · · · ×

[
− K

δ
,
K

δ

]
×
[
− K

δ2
,
K

δ2

]
,

and

ζ(x, t) .
δd+1

(K ′)d

(
1 +

∣∣∣ δx
K ′

∣∣∣
2

+
∣∣∣δ

2t

K ′

∣∣∣
2
)−N

,

or

ζ(x, t) .
δd+1

(K ′)d+1

(
1 +

∣∣∣ δx
K ′

∣∣∣
2

+
∣∣∣ δ2t

(K ′)2

∣∣∣
2
)−N

,

for some N ≥ d, then

F ∗ ζ(Λ2(·))(x1, t1) .L F (x2, t2) + ‖F‖L∞

(
K ′

K

)N

whenever (x1, t1)− (x2, t2) ∈ Λ−1
1 (T ).

Proof. If ζ takes the second form, then by a change of variables,
ˆ

Rd/T

ζ(x, t) dxdt .

ˆ

Rd/[−K/K′,K/K′]d−1×[−K/(K′)2,K/(K′)2]

|(x, t)|−2N dxdt

.

ˆ ∞

K/K′

ρ−2N+d−1 dρ .N

(
K ′

K

)2N−d

,

and the same is true if ζ takes the first form. Then note that
ˆ

F ((x1, t1)− y)ζ(Λ2(y)) dy =

ˆ

F ((x1, t1)− Λ−1
2 y)ζ(y) dy

=

ˆ

T

F ((x1, t1)− Λ−1
2 y)ζ(y) dy +

ˆ

Rd/T

F ((x1, t1)− Λ−1
2 y)ζ(y) dy =: I + II.

By trigonometry and the essentially constant assumption, we have

F ((x1, t1)− Λ−1
2 y)

∣∣∣
y∈Λ−1

1 T
. F (x2, t2),

whenever (x1, t1) − (x2, t2) ∈ Λ−1
1 T so that I . F (x2, t2). On the other hand, we

have that

II ≤ ‖F‖L∞

ˆ

Rd/T

ζ(y) dy . ‖F‖L∞

(
K ′

K

)2N−d

.

from before, and so the desired estimate follows by adding the two bounds. �
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