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1 Introduction 

A wireless sensor network (WSN) is a network which is 

formed by numerous sensor nodes deployed over a sensing 

field for a wide range of monitoring applications. These 

nodes are usually battery-powered and they communicate 

with each other through a wireless channel in an ad hoc 

fashion without a need for a fixed backbone infrastructure. In 

these networks, power is the main scarce resource due to the 

size limitations of nodes. WSNs also suffer from the scarcity 

of other resources such as limited storage and bandwidth, 

application-specific sensing capabilities, and moderate on-

board processing power. Although there are many 

constraints, limitations and challenges during the operation 

of WSNs, numerous applications, which had not been 

conceived before the launch of WSNs, can be easily realized. 

Each sensor node in a WSN is typically responsible 

for monitoring a physical phenomenon (i.e., coverage) 

around its vicinity. These sensing devices then work 

collaboratively to route (i.e., connectivity) the sensed data to 

the base station (BS). Further, when coverage and 

connectivity are tackled jointly (i.e., connected coverage), 

they are considered as two primary performance metrics in a 

given deployment scenario as is stated in Maher et al. (2016). 

The sensor nodes are positioned according to either 

deterministic or random deployment. In the deterministic 

scenario, the locations of the sensor nodes are known in 

advance. On the contrary, in random deployment, the 

locations of the sensor nodes are not deterministic as the term 

itself also implies. It has been observed that randomly 

deployed WSNs (RDWSNs) are used more often than their 

deterministic counterparts because RDWSNs have a higher 

potential to be devised in real-life scenarios, especially when 

there is a need to monitor a phenomenon taking place in 

hostile and inaccessible environments. 
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In a deterministic deployment scenario, as there is

prior knowledge about the locations of the deployed nodes,

the average distance between each node and its neighbours,

and similarly the average distance between deployed nodes

and the BS, can easily be calculated. However, in the random

deployment scenarios, the above mentioned distances, which

indeed affect the energy consumption and thus the lifetime of

an application, are not known before the deployment.

Therefore, a probabilistic approach is required to estimate

this average distance which would provide a beneficial tool

for the network designers. For example, for a given number

of sensor nodes that fulfil the required system parameters

such as connected coverage, the network designer might need

to estimate, if possible, the average distance between each

sensor and a BS to adopt either multi-hop communication or

single-hop communication before the deployment.

In a number of RDWSN applications, each sensor

node is assumed to reach the BS within a single-hop.

However, in these applications which exploit direct

communication, it is observed that a set of sensor nodes,

which is distant from the BS, consumes a considerable

amount of energy because it needs to perform long-haul

direct transmissions. Therefore, these nodes, which are

distant from the BS, tend to die early and thus shorten the

lifetime of the network. To tackle this problem, multi-hop

communication is usually taken into consideration because it

is more energy-efficient than direct communication in such

dense environments. In multi-hop WSNs, however, the nodes

close to the BS have to forward data for the rest of the nodes

that are away from the BS. Thus, they are again more likely

to die earlier, causing the network to become partitioned and

the network lifetime to get shortened. This is known as the

energy-hole problem as is defined in Gong et al. (2013) and

Du et al. (2015). Even before attempting to tackle an energy-

hole problem, the use of this estimated average distance to

BS is imperative in some cases. For example, consider a

WSN in which N nodes are deployed randomly. Let us

assume that the average distance between these nodes and the

BS is estimated and it is denoted by 𝑑̅. And further assume

that 𝑑0  is the maximum transmission range (MTR) of the

sensor nodes. The MTR is a threshold value related to the

physical attributes of the nodes such as initial battery power,

wireless circuitry, etc. as is stated in Du et al. (2015). If 𝑑̅ is

found to be greater than 𝑑0, the use of single-hop

communication in this network is not viable because we

already know that some nodes would not reach the BS. In this

special case, there is no other way than using multi-hop

communication. For such a justification, a network designer

requires the knowledge of this average distance, 𝑑̅, to

compare it with the  𝑑0  value.

In addition, the energy-hole problem is inevitable in

most of the random deployment scenarios. Yet, the effects of

this problem can be reduced by adopting clustering.

Clustering is used as the most common technique due to its

direct impact on energy-efficiency, network scalability and,

more importantly, on the overall network lifetime. This is the

reason why there are numerous studies on this subject in the

related literature. The reader is encouraged to refer to recent

and comprehensive surveys of Tyagi and Kumar (2013),

Afsar and Tayarani-Najaran (2014), and Soroush et al. (2012)

for an overview of different clustering schemes. In a clustered

WSN, the sensor nodes are basically grouped into clusters 

based on the proximity of the neighbouring nodes, the 

average distance to the BS, energy levels, etc. The problem 

of finding the average distance between the sensor nodes and 

a BS is very important not only for comparing the average 

value with the MTR value as is mentioned before but also for 

using this average value during the selection process of 

clustering schemes. 

With the above problems in mind, this paper puts 

forward a general-purpose mathematical framework to find 

the expected distance value between every point within any 

n-sided simple polygon shaped sensing field and an arbitrarily 

located BS whose position is known a priori. The 

contribution of this paper lies in estimating the average 

distance between a given number of sensor nodes deployed 

randomly and uniformly over a sensing field and a BS which 

would provide a beneficial tool for the network designers. 

The formulations in our framework are important because 

these might provide a network designer with the opportunity 

to estimate the system parameters before the deployment. 

Having the knowledge of this expected distance value is very 

imperative particularly in random deployment as it is used 

typically to evaluate the energy-efficient cluster size either to 

improve the lifetime or to compare it with other counterpart 

cluster-based schemes.  

The rest of this paper is organised as follows: 

Section 2 introduces a review of related literature devoted to 

this field to identify the reasons of clustering and the 

importance of optimum number of clusters in RDWSNs. 

Section 3 introduces the network model employed and the 

relevant assumptions used throughout the paper. Section 4 

illustrates our derivations of 𝐸[𝑑𝑡𝑜𝐵𝑆] and 𝑑̅ for a number of 

deployment scenarios used in potential real-life WSN 

applications. The last section concludes our study. 

2 Related Work 

A WSN generally contains numerous battery-operated sensor 

nodes that have limited resources such as energy, bandwidth, 

memory, and processing power (Qingguo and P. (2017)). The 

most common goal of employing WSNs is to reduce energy 

consumption as much as possible while fulfilling a given set 

of system requirements for continuous and effective 

connected coverage. To achieve this objective, there are three 

major issues that should be considered by a network designer: 

1) the data routing mechanism 2) the location of the BS, and 

3) the deployment of the nodes or the coverage of the sensing 

field as mentioned in Guney et al. (2012). These three issues 

are indeed highly interrelated, which virtually cause the 

design of a WSN to be challenging. 
In a WSN, the sensor nodes typically route the 

sensed data wirelessly to a single BS or multiple BSs. 

Moreover, a substantial amount of energy by the sensor nodes 

is consumed during the wireless transmission of the sensed 

data as is reported in Kulkarni and Venayagamoorthy (2011) 

and Alia (2017). Due to the fact that these nodes are severely 

power-constrained and the wireless communication is mainly 

dependent on the distance, the location of BS(s) and the 

physical distance(s) from the nodes are significant. For the 

transmission of these sensed data, the sensor nodes use either 

single-hop or alternatively multi-hop communication until 

data reaches the BS. The selection of single-hop or multi-hop 
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routing of the sensed data depends on many issues: the node

density, the deployment method, the nodes’ initial energy,

MTR, etc., as well as the positioning of the BS(s). In addition

to its importance in data routing, the location of the BS

relative to sensor nodes is also one of the key determinants of

the network lifetime. For this reason, there are a lot of studies

that have been carried out for analysing the effects of

positioning and other attributes of BS(s) in the related

literature.

There are two main sets of problems studied by

several works that focus on the location of a BS in WSNs. In

the first one, the researchers find an optimal transmission

scheme for a given BS location. In the second one, they find

an optimal BS location for a given set of constraints as is cited

in Akkaya et al. (2007).

As is mentioned earlier in this study, the most

common objective of devising WSNs is to reduce energy

consumption as much as possible while fulfilling a given set

of system requirements for continuous and effective

connected coverage. To achieve an accepted level of

connected coverage while conserving energy, the topology

management techniques in WSNs are exploited (Younis et al.

(2014)). Topology management in WSNs can be done

through deterministic node placement or performed

autonomously after random deployment by human

intervention to a certain extent. Authors in Younis et al.

(2014) categorize five techniques and algorithms used in

topology management: Node Discovery, Sleep Cycle

Management, Power Control, Movement Control and

Clustering.

Clustering has been widely used in WSNs to achieve

scalability and energy efficiency, where nodes of a WSN may

be grouped to form a hierarchical topology as is stated in

Younis et al. (2014). Moreover, other than stabilizing

network topology, one clustering mechanism or another is

used for the following objectives: increasing scalability

and/or fault tolerance, taking advantage of data

aggregation/fusion and/or load balancing, and extending

network lifetime Afsar and Tayarani-Najaran (2014).

 LEACH (Low-Energy Adaptive Clustering

Hierarchy) presented in Heinzelman et al. (2002) is a

pioneering paper that proposes a cluster-based solution to

prolong lifetime; therefore, it is unquestionably the most

widely-used and influential work. Most of the cluster-based

WSN architectures have been inspired by LEACH and they

either ignore LEACH’s inherent weaknesses and disregard its

strong assumptions or simply adapt LEACH to a different

scenario. In fact, even a presence of a survey of Tyagi and

Kumar (2013) that solely reviews a number of variants of

LEACH itself is an indicator of the considerable impact of

LEACH in the WSN domain.

 LEACH mainly integrates the concept of energy-

efficient cluster-based routing into medium access to prolong

the system lifetime in a single-hop communication mode. It

addresses energy consumption minimization problems by

making use of a distributed round-based algorithm. In each

round of this distributed algorithm, it is expected that there is

initially a chosen number of clusters. After the completion of

each round, clusterheads can be re-elected periodically and

randomly to balance the energy consumption. Thus, LEACH

highly relies on the optimal number of clusters (𝑘𝑜𝑝𝑡) and in

each round it is assumed that WSN consists of 𝑘𝑜𝑝𝑡 number 

of clusters. During LEACH’s setup phase, each sensor node 

tries to become a cluster head according to the probability 

model. Further, the authors discuss the trade-off between the 

inter-cluster communication and the intra-cluster 

communication that balances energy consumption, and they 

derive analytical expressions from simplifying 

approximations. They also present analytical and simulation 

results and demonstrate the high performance of LEACH 

when compared with minimum transmission energy (MTE) 

and static clustering.  

 Regardless of the clustering technique employed or 

the communication mode (i.e., multi-hop or single-hop) 

exploited, a RDWSN application can take advantage of 

clustering if and only if the application is grouped into 𝑘𝑜𝑝𝑡 

clusters. While grouping the nodes into clusters different 

from 𝑘𝑜𝑝𝑡, the energy consumption of the RDWSN may 

become inefficient and the application’s lifespan may shorten 

even faster. The authors in Amini et al. (2011) and Amini et 

al. (2012) state that 𝑘𝑜𝑝𝑡 is a function of the expected distance 

value (i.e. 𝐸[𝑑𝑡𝑜𝐵𝑆
𝑛 ]) between the sensor nodes and the BS. 

They provide a complete theoretical framework for the 

characterization of cluster size that minimizes the total 

energy expenditure in such networks where all sensors 

communicate data through their elected clusterheads to the 

BS in a decentralized fashion. The analytical outcomes are 

given in terms of closed-form expressions for various widely-

used network configurations. Extensive simulations are 

performed for the validation purposes when three cluster-

based architectures, namely LEACH, LEACH-Coverage 

Tsai (2007), and DBS Amini et al. (2011) are used. There can 

be several scenarios where the BS is positioned relative to the 

sensing field. A majority of these scenarios have been studied 

by Amini et al. (2012) and 𝐸[𝑑𝑡𝑜𝐵𝑆
𝑛 ] and thus 𝑘𝑜𝑝𝑡values are 

derived for n=1, n=2, and n=4 when the sensing field is a disc 

or a square. Authors address the problem of determining the 

𝑘𝑜𝑝𝑡 of randomly deployed nodes when the BS is located 

inside the field, on the perimeter and outside (on the axis of) 

the sensing field. They also analyse the 𝐸[𝑑𝑡𝑜𝐵𝑆]  
formulations by varying the locations of the BS as follows: 

The BS is located 1) in the center 2) on the perimeter 3) 

outside the sensing field (on the axis of symmetry). Although 

the formulations they found in their paper are important, 

these derivations are only valid for the sensing fields with 

symmetrical shapes, and furthermore, it is assumed that the 

BS is also symmetrically positioned relative to these 

symmetrically shaped sensing fields.  However, in that study, 

we observe that these special cases lack the real practice 

experience. For example, the case that gives 𝐸[𝑑𝑡𝑜𝐵𝑆], when 

the sensing field is any non-regular polygon and/or when the 

BS is located arbitrarily outside the field, is not covered by 

their formulations. Thus, a general-purpose derivation 

reflecting many real-life scenarios is missing and therefore 

there is a gap to be filled. 

Herein, one of our contributions is to close this gap 

by deriving 𝐸[𝑑𝑡𝑜𝐵𝑆] for the above mentioned special case. It 

is worth mentioning that the value of 𝐸[𝑑𝑡𝑜𝐵𝑆] simply 

represents the mean (hereinafter, the terms, mean and 

average, will be used interchangeably in the remainder of the 

paper) distance (𝜇𝑑) of the whole population (i.e., all points 
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in the sensing field). However, instead of finding out the

mean distance of the whole population, it will be more

practical to derive the mean distance of a certain sample size,

specifically for random deployment scenarios. For this

reason, we also extend the preliminary analysis in our

previous work in Sevgi and Ali (2014) to enable a network

designer to estimate mean distance (𝑑̅) for a sample size of

N. The sample here indicates one realization of a deployment

with N sensor nodes.

Another motivation of this study is that our 𝐸[𝑑𝑡𝑜𝐵𝑆]
and 𝑑̅ derivations serve as useful tools to reduce the overhead

in the existing techniques and simulations that exclusively

aim to estimate these values as part of their algorithms. The

findings in this paper can be used in existing cluster-based

architectures Gong et al. (2013), Chen et al. (2014), and Sun

et al. (2011) either to calculate or to estimate the average

distance between sensor nodes and the BS as a part of their

clustering algorithm. Our findings might reduce the overhead

in the existing techniques and simulations that exclusively

aim to estimate 𝑑̅ or calculate 𝐸[𝑑𝑡𝑜𝐵𝑆].

3 System Model

In this section, the general system model is provided, and the

relevant assumptions and the preliminaries used throughout

the paper to facilitate the derivation of 𝐸[𝑑𝑡𝑜𝐵𝑆] and 𝑑̅
expressions are given.

3.1 Network Model and Assumptions

In this study, we assume a model suited for a stationary WSN

application where N sensor nodes are deployed randomly and

uniformly over a sensing field. We consider that the shape of

the sensing field can be any simple n-sided polygon. The

main reason behind this assumption is that a given simple

polygon has at least one triangulation. We discuss

diagonalization and triangulation of a simple polygon in

detail later in the subsequent subsection. Considering this

attribute of a simple polygon, the analytical findings derived

in this paper can easily be generalized for the most of the

WSN deployment scenarios that employ numerous different

shapes. For example, when n is 4 in an n-sided polygon, the

shape of sensing field may be a square, a rectangle, a

trapezoid, or any other quadrilateral.  Apart from these well-

known polygon shapes, the sensing field may also be any

arbitrary polygon.  For instance, if n is 9 in an n-sided

polygon, then the shape of the sensing field is a nonagon as

shown in Figure 1. Therefore, having this flexibility of

choosing the shape of the sensing field from many different

shapes can reflect real-life scenarios in a better way. This

general-purpose assumption is one key contribution of this

study.

Recall that, in a typical WSN, the sensor nodes are

designed to monitor the sensing field and to forward the

sensed data to the BS. Therefore, the location of the BS, the

orientation of the BS relative to the sensing field, the number

of the BSs deployed, and the mobility of the BS and the nodes

are of crucial importance. As such, in our network model, it

is assumed that there is only one BS whose location is fixed

(i.e., stationary). Similar to the BS, each sensor node is

assumed to be stationary and, additionally, they are

unattended. Moreover, we consider that the BS is positioned

arbitrarily outside or inside the sensing field.

In an illustrative example, the BS may be located 

outside the sensing field and near one of the edges as it can 

be seen in Figure 1 (a) and (c), or it may be positioned to a 

location again outside the field but near the middle as shown 

in Figure 1 (b).  At this point, it is also worth mentioning that 

each Point O shown in Figure 1 is the coordinate of the BS 

and at the same time it is assumed to be the origin of any 

coordinate system relative to the orientation of the sensing 

field. In fact, the origin point according to which a BS is 

assumed to be located is not specifically important. It is 

solely a reference point for the coordinate system used in the 

calculations. Therefore, we believe that our assumption on 

relative orientation of a BS can be used frequently in real-life 

deployment scenarios. 

As for the last assumption, let coordinates of BS and 

each vertex of the polygonal sensing field be known in 

advance before the deployment. Here, knowing the 

coordinates of the vertexes is essential since these values are 

required for the derivation of 𝐸[𝑑𝑡𝑜𝐵𝑆] after triangulation of 

the polygon. 

3.2 Preliminaries 
In this subsection, we provide the notations used in Table 1. 

In order to be consistent with the related literature, we rely on 

the notations used in Amini et al. (2012). The reader should 

note that we use three different expectation value functions: 

𝐸[𝑑𝑡𝑜𝐵𝑆], 𝐸[𝑑𝑃𝑡𝑜𝐵𝑆], and 𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆]. The letter E stands for 

the expected value function for the variable in square 

brackets. The letter d in the square brackets specifies the 

distance function, while the letters (P and 𝑇𝑖) on the right of 

the letter d represent the sensing field under study. The 

remaining part, “toBS”, indicates the base station whose 

coordinates will be used to calculate the distance between 

itself and each point in the sensing field. If no letter is used 

on the left of the letter d, this means the entire sensing field 

is considered.  

Table 1 Summary of notation 

Symbol Definition 
N The number of sensor nodes deployed 

randomly over a given sensing field 
P A simple n-sided polygon shaped sensing 

field 
𝑇𝑖  The ith triangle after the triangulation of P 
A The surface area of the polygon shaped 

sensing field P 
𝐴𝑖  The surface area of the ith triangle 

𝐸[𝑑𝑃𝑡𝑜𝐵𝑆] The expected distance between each point 

within P and the BS  

𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] The expected distance between each point 

within ith triangle, Ti, and the BS  

𝑑̅ The mean distance between N randomly 

deployed sensor nodes over a given sensing 

field 
When we use 𝐸[𝑑𝑡𝑜𝐵𝑆], we mean the average 

distance between each point in the sensing field and the BS. 

On the other hand, when we use 𝑑̅, we express the average 

distance between the given number of sensor nodes in the 

sensing field and the BS. 

 



 

 
Figure 1 (a) Randomly deployed nodes over a simple 9-sided polygon sensing field P (b) One possible triangulation of P     

(c) Another triangulation of P 

3.2 Triangulation of a Simple Polygon 
Recall that our objective is to derive 𝐸[𝑑𝑡𝑜𝐵𝑆] formulation for 

a given polygon shaped sensing field. Thus, let sensing field 

P be a simple n-sided polygon in the plane, not necessarily a 

convex shape (Garey et al. (1978)). One of the most 

important features of a simple polygon is that it has a well-

defined bounded interior and an unbounded exterior, where 

the interior is surrounded by edges as stated in Weisstein, E. 

(2016). Note also that a diagonal of P is a line segment 

joining two non-adjacent vertices of P.  The triangulation of 

the polygon is defined in (de Berg et al. (2008)) as the 

decomposition of a polygon into triangles by a maximal set 

of non-intersecting diagonals. The authors also showed the 

proof of a related theorem in which every simple polygon 

admits a triangulation, and any triangulation of a simple 

polygon with n vertices consists of exactly n−2 triangles. 

This proof actually implies that a simple polygon must have 

at least one triangulation. Often a simple polygon has more 

than one triangulation. Multiple triangulations for a polygon 

can be exemplified by the two triangulations as illustrated in 

Figure 1 (b) and (c). 

The reflection of this proof to the WSN domain 

regarding the existence of triangulation of a simple polygon 

is significant. This is because triangulation facilitates the 

analysis and the estimation of system parameters in WSNs. 

These system parameters are often functions of the polygon 

shaped sensing field under study.  For example, suppose that 

we have a sensing field with a fairly complex shape similar 

to the 9-sided polygon given in Figure 1 and an arbitrarily 

positioned BS. First, we have to triangulate the 9-sided 

polygon. For each triangle, we should calculate the 

𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] which will be explained in the next section. If one 

encounters a difficulty in solving the integral in 𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆], 

the triangles can be divided into further triangles to make it 

easier to integrate. Once all the integrations for each triangle 

are calculated, their average values can be computed to reach 

𝐸[𝑑𝑡𝑜𝐵𝑆]  for the entire sensing field that has been initially 

triangulated. 

4 Expected Distance between each point in a 

Polygon and the BS – 𝑬[𝒅𝑷𝒕𝒐𝑩𝑺] 
To find the expected distance, 𝐸[𝑑𝑃𝑡𝑜𝐵𝑆], between each point 

within polygon shaped (the terms, polygon and simple 

polygon, will be used interchangeably in the remainder of the 

paper) sensing field, P, and the arbitrarily located BS, one 

should integrate the product of two functions over P in the 

Cartesian Coordinates as shown in the  Eqn. 1. 

𝐸[𝑑𝑃𝑡𝑜𝐵𝑆] = ∬ 𝑝(𝑥, 𝑦). 𝑓(𝑥, 𝑦). 𝑑𝑥. 𝑑𝑦 (1) 

However, it is not easy to formulate such a 

generalized integration over a given polygon because the 

shape of each polygon depends on the measures of the 

interior angles between adjacent sides and the number of the 

sides it has. Thus, instead of using the given polygon in the 

integration directly, it is necessary to divide this polygon into 

smaller and integrable shapes. It is evident that a triangle is 

an atomic unit as is discussed in Section 3.2 and has an easy-

to-integrate shape in any given polygon shaped sensing field.  

Considering the benefits of the triangulation and 

assuming that we have k triangles after the triangulation of P, 

one should start with calculating 𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] from 1st triangle 

till to kth triangle, and then find the average of 𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆]  

values for all triangles. This average value given in Eqn. 2 

actually gives the 𝐸[𝑑𝑃𝑡𝑜𝐵𝑆] value for the entire polygon 

shaped sensing field. 

𝐸[𝑑𝑃𝑡𝑜𝐵𝑆] =  
1

𝐴
 ∑ 𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆]

𝑘

𝑖=1

 𝐴𝑖 (2) 

The reader should note that the value of 𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] 

given in Eqn. 2 is formulated in Eqn. 3. 

𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] = ∬ 𝑝(𝑥, 𝑦). 𝑓(𝑥, 𝑦). 𝑑𝑥. 𝑑𝑦 (3) 

The first function in 𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] in Eqn. 3 identifies 

the probability of a point being at a specific location within 

ith triangle, Ti. The second function determines the distance 

between the given point and the BS. First, we attempt to 

integrate the double integral in the Cartesian Coordinates as 

shown in Figure 2 (a). Note again that the relative location of 

the BS is assumed to be at the origin (Point O in Figure 2 (a)) 

and it is known in advance before the deployment. Moreover, 

the coordinates of the vertex, V1, V2, and V3, of this triangle 

illustrated in Figure 2 (a) are (X1, Y1), (X2, Y2) and (X3, Y3), 

respectively. At this point, it is important to state that the 

triangle analysed in Figure 2 can be thought as the shaded 

triangle obtained after the polygon triangulation which is 

illustrated in Figure 1 (c). 

Let the infinitesimal rectangular segment in the 

Cartesian Coordinates be 𝑑𝐴 = 𝑑𝑥. 𝑑𝑦.This is a rectangle 

whose side lengths are 𝑑𝑥 and 𝑑𝑦. Suppose that the 

probability of a point being at location (x, y), which is 

√𝑥2 + 𝑦2 units away from the BS, is 𝑝(𝑥, 𝑦). Since the 

probability of having that point at each location within the 

sensing field is identical, 𝑝(𝑥, 𝑦) is independent of x and y 

and is equal to 1 𝐴𝑖⁄ . 

Base Station

Base Station

Base Station
(a) (b) (c)

Surface Area = A

P P P

O

O

O

Ti
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Figure 2 Integration of 𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] over a triangular field shown in the (a) Cartesian Coordinates (b) Polar Coordinates 

 

This is because the nodes are randomly and uniformly 

deployed and the sum of these probabilities is 1. However, 

any known (not necessarily uniform) probability distribution 

can be plugged into this function in the integration and the 

rest of the approach pursued in the paper will still be the 

same. By substituting 1 𝐴𝑖⁄  value with 𝑝(𝑥, 𝑦), the 

integration to find 𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆(𝑥, 𝑦)] in the Cartesian 

Coordinates can be written as:  

𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆(𝑥, 𝑦)] = ∬ 𝑝(𝑥, 𝑦) √𝑥2 + 𝑦2. 𝑑𝑥. 𝑑𝑦

=
1

𝐴𝑖

 ∬  √𝑥2 + 𝑦2. 𝑑𝑥. 𝑑𝑦 

(4) 

However, it is not easy to integrate 𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆(𝑥, 𝑦)]  

in Eqn. 4 using the Cartesian Coordinates. Then, we attempt 

to solve the same problem by using the Polar Coordinates and 

by integrating an infinitesimal ring shaped segment 𝑑𝐴 =
𝑟. 𝑑𝑟. 𝑑𝜃. Before starting to integrate in the Polar 

Coordinates, note again that this time the probability of a 

point node being in this ring shaped segment, which is r radial 

distance from the BS, is p(r) as is shown in Figure 2 (b). 

Owing to the same argument in the Cartesian Coordinates, 

the probability value p(r) is also equal to1 𝐴⁄
𝑖. Therefore, we 

have:  

𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆(𝑟, 𝜃)] = ∬ 𝑝(𝑟). 𝑟. 𝑑𝑟. 𝑑𝜃

=
1

𝐴𝑖

 ∬  𝑟2. 𝑑𝑟. 𝑑𝜃 

(5) 

In what follows, we describe how to integrate 𝑟2. 𝑑𝑟. 𝑑𝜃 

expression in Eqn. 5 over the ith triangle in detail. 

4.1 Derivation of 𝑬[𝒅𝑻𝒊𝒕𝒐𝑩𝑺]: Generic Case 
To facilitate our analysis, we introduce a static BS and a 

triangular sensing field, 𝑇𝑖 , whose surface area is 𝐴𝑖 as shown 

in Figure 3. Moreover, the location of the BS is assumed to 

be located at the origin (Point O in Figure 3). The coordinates 

of the vertexes, V1, V2, and V3, of this triangle illustrated in 

Figure 3 are (X1, Y1), (X2, Y2) and (X3, Y3), respectively. It is 

also seen that the base side of triangle is tilted α degrees 

relative to the x-axis and none of its sides is on the axis of 

symmetry. We call this deployment scenario as the generic 

case. 

 
Figure 3 One orientation of the BS relative to the triangle 𝑇𝑖  

(none of the sides is on the axis of symmetry) General Case 

Herein, we start the derivation of 𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] by mapping the 

limits of the definite integral in the Cartesian Coordinates 

into the limits in Polar Coordinates. (See Figure 3). 

As far as the Polar Coordinates system is concerned, 

we need to find the limits of r by holding θ fixed and let r 

increase (since we are integrating with respect to r). As the 

point moves, it traces out a ray going out from the origin. 

Thus, the integration for 𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆]  starts from r1, where the 

ray enters region Ai, and ends with r2, where the ray leaves 

this region. Since the ray enters Ai at a point on 𝑦 =
𝑌3−𝑌2

𝑋3−𝑋2
𝑥 +

𝑘3 line and exits Ai at a point on 𝑦 =
𝑌2−𝑌1

𝑋2−𝑋1
𝑥 + 𝑘2 line in the 

Cartesian Coordinates, the trigonometric substitutions,  

𝑟1 = 𝑘3 (sin 𝜃 −
𝑌3−𝑌2

𝑋3−𝑋2
cos 𝜃)⁄  and 𝑟2 =

𝑘2 (sin 𝜃 −
𝑌2−𝑌1

𝑋2−𝑋1
cos 𝜃)⁄ , are used to map these line 
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equations to the Polar Coordinates. Here, the k1, k2, and k3 are

the y-intercepts of the three lines that form the triangle Ti.

Similarly, the lower and upper limits of θ can be written as α

and β respectively, as seen in Figure 3.

After plugging the limits of r and θ into Eqn. 5, we have:

𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] =
1

𝐴𝑖

∫ ∫ 𝑟2. 𝑑𝑟. 𝑑𝜃

𝑘2

(𝑠𝑖𝑛 𝜃−
𝑌2−𝑌1
𝑋2−𝑋1

𝑐𝑜𝑠 𝜃)

𝑘3

(𝑠𝑖𝑛 𝜃−
𝑌3−𝑌2
𝑋3−𝑋2

𝑐𝑜𝑠 𝜃)

𝛽

𝛼

 (6) 

where area, Ai , is a constant and given in Eqn. 7 (Weisstein, 

E. (2017)) 

𝐴𝑖 =
1

2
(−𝑋2𝑌1 + 𝑋3𝑌1 + 𝑋1𝑌2 − 𝑋3𝑌2 − 𝑋1𝑌3

+ 𝑋2𝑌3) 

(7) 

Substitute 

𝑡3 =
𝑌3 − 𝑌2

𝑋3 − 𝑋2

   𝑎𝑛𝑑  𝑡2 =
𝑌2 − 𝑌1

𝑋2 − 𝑋1

 (8) 

Plug 𝑡2 and 𝑡3 into solved integrals: 

𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] =
1

3. 𝐴𝑖

∫ 𝑟3|
𝑟=

𝑘3
(𝑠𝑖𝑛 𝜃−𝑡3 𝑐𝑜𝑠 𝜃)

𝑟=
𝑘2

(𝑠𝑖𝑛 𝜃−𝑡2 𝑐𝑜𝑠 𝜃)
 𝑑𝜃

𝛽

𝛼

     (9) 

Now solving 

𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] =
1

3. 𝐴𝑖

[𝑘2
3 ∫   

𝑑𝜃

(𝑠𝑖𝑛 𝜃 − 𝑡2 𝑐𝑜𝑠 𝜃)3

𝛽

𝛼

− 𝑘3
3 ∫   

𝑑𝜃

(𝑠𝑖𝑛 𝜃 − 𝑡3 𝑐𝑜𝑠 𝜃)3

𝛽

𝛼

] 

(10) 

We introduce the following substitutions:  

𝑍𝑡2
(𝜃) = ∫

𝑑𝜃

(𝑠𝑖𝑛 𝜃 − 𝑡2 𝑐𝑜𝑠 𝜃)3
  

 𝑍𝑡3
(𝜃) = ∫

𝑑𝜃

(𝑠𝑖𝑛 𝜃 − 𝑡3 𝑐𝑜𝑠 𝜃)3
 

(11) 

Finally, we have the formulation for one of our research 

problems after substituting the upper and lower bounds for α 

and β, given in Eqn.12: 

𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] =
1

3. 𝐴𝑖

[𝑘2
3 (𝑍𝑡2

(𝛽) − 𝑍𝑡2
(𝛼))

− 𝑘3
3(𝑍𝑡3

(𝛽) − 𝑍𝑡3
(𝛼))] 

(12) 

Note that 𝑍𝑡2
(𝜃) and 𝑍𝑡3

(𝜃) in Eqn. 12 could not be replaced 

explicitly with their exact values. They are presented in 

Appendix A-1 due to the size limitation of this paper and the 

readability concerns. 

 
Figure 4 Two orientations of the BS relative to relative to a triangle 𝑇𝑖  (only one side is on the axis of symmetry) (a) Case 1-A 

(b) Case 1-B 

 
Figure 5 Two orientations of the BS relative to a right-angle triangle 𝑇𝑖  (two sides are on the axis of symmetry) (a) Case 2-A 

(b) Case 2-B
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4.2 Derivation of 𝑬[𝒅𝑻𝒊𝒕𝒐𝑩𝑺]: Specific Cases 

In the previous section, a triangle is considered after the 

triangulation of a polygon shaped sensing field. The scenario 

given in Figure 1 describes a generic triangle none of whose 

sides are on the axis of symmetry. In other words, there is a 

certain degree of angle between the sides of the triangle and 

the axis. In this section, we consider the deployment 

scenarios where the side(s) of the triangle is/are either 

parallel to or on the axis. 

Case 1: Assume that we have a triangular shaped sensing 

field whose only one side is on the axis of symmetry as is 

shown in Figure 4 (a) or (b). Then, we can find 𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] 

value with the same approach described in the previous 

subsection.  

Case 1-A: For a deployment scenario as illustrated in Figure 

4 (a), the 𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] value is formulated in Eqn. 13. 

𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] =
1

𝐴𝑖

∫ ∫ 𝑟2. 𝑑𝑟. 𝑑𝜃

𝑘2
𝑐𝑜𝑠 𝜃

𝑘3

(𝑠𝑖𝑛 𝜃−
𝑌3−𝑌2
𝑋3−𝑋2

𝑐𝑜𝑠 𝜃)

𝛽

𝛼

 (13) 

𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] =
1

3. 𝐴𝑖

[𝑘2
3 ∫   

𝑑𝜃

(𝑐𝑜𝑠 𝜃)3

𝛽

𝛼

− 𝑘3
3 ∫   

𝑑𝜃

(𝑠𝑖𝑛 𝜃 − 𝑡3 𝑐𝑜𝑠 𝜃)3

𝛽

𝛼

] 

 

(14) 

∫
𝑑𝜃

(𝑐𝑜𝑠 𝜃)3
 = 𝐶(𝜃)

=  
𝑙𝑛 (|𝑡𝑎𝑛 (𝜃) + 𝑠𝑒𝑐 (𝜃)|) + 𝑠𝑒𝑐 (𝜃)𝑡𝑎𝑛 (𝜃)

2
+ 𝐶 

(15) 

𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] =
1

3. 𝐴𝑖

[𝑘2
3 (𝐶(𝛽) − C(𝛼))

− 𝑘3
3(𝑍𝑡3

(𝛽) − 𝑍𝑡3
(𝛼))] 

(16) 

where 𝐶(𝛽) and C(𝛼) can be found by substituting 

the upper and lower bounds for β and α given in Eqn. 15. 

 

Case 1-B: For a very similar deployment scenario described 

in Figure 4 (a), consider that we have a triangular sensing 

field located as illustrated in Figure 4 (b). Then the 

𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] value is formulated in Eqn. 17 and 18. 

𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] =
1

𝐴𝑖

∫ ∫ 𝑟2. 𝑑𝑟. 𝑑𝜃

𝑘2

(𝑠𝑖𝑛 𝜃−
𝑌2−𝑌1
𝑋2−𝑋1

𝑐𝑜𝑠 𝜃)

𝑘3
𝑐𝑜𝑠 𝜃

𝛽

𝛼

 (17) 

𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] =
1

3. 𝐴𝑖

[𝑘2
3 (𝑍𝑡2

(𝛽) − 𝑍𝑡2
(𝛼))

− 𝑘3
3(𝐶(𝛽) − C(𝛼))] 

(18) 

Case 2: In this particular deployment scenario, assume that 

we have a triangular shaped sensing field whose two sides are 

on the axis of symmetry as is shown in Figure 5 (a) or (b). 

Then, we can find 𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] value with the same approach 

described in the previous subsection. 

Case 2-A: For a deployment scenario as illustrated in Figure 

5 (a), the 𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] value is formulated in Eqn. 19. 

𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] =
1

𝐴𝑖

∫ ∫ 𝑟2. 𝑑𝑟. 𝑑𝜃

𝑘2
𝑐𝑜𝑠 𝜃

𝑘1
𝑠𝑖𝑛 𝜃

𝛽

𝛼

 (19) 

 

𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] =
1

3. 𝐴𝑖

[𝑘2
3 ∫   

𝑑𝜃

(𝑐𝑜𝑠 𝜃)3

𝛽

𝛼

− 𝑘1
3 ∫   

𝑑𝜃

(𝑠𝑖𝑛 𝜃)3

𝛽

𝛼

] 

(20) 

∫
𝑑𝜃

(𝑠𝑖𝑛 𝜃)3
= 𝑆(𝜃)  

= −
𝑙𝑛 (|𝑐𝑠𝑐 (𝜃) + 𝑐𝑜𝑡 (𝜃)|) + 𝑐𝑜𝑡 (𝜃)𝑐𝑠𝑐 (𝜃)

2
+ 𝐶 

(21) 

𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] =  
1

3. 𝐴𝑖

[𝑘2
3 (𝐶(𝛽) − 𝐶(𝛼))

− 𝑘1
3 (𝑆(𝛽) − 𝑆(𝛼))] 

(22) 

where 𝑆(𝛽) and S(𝛼) can be found by substituting 

the upper and lower bounds for β and α given in Eqn. 21. 

 

Case 2-B: For a very similar deployment scenario described 

in Figure 5 (a), assume that we have a triangular sensing field 

located as illustrated in Figure 5 (b). Then the 𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] 

value is formulated in Eqn. 17 and 18. 

𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] =
1

𝐴𝑖

∫ ∫ 𝑟2. 𝑑𝑟. 𝑑𝜃

𝑘2
𝑠𝑖𝑛 𝜃

𝑘3
𝑐𝑜𝑠 𝜃

𝛽

𝛼

 (23) 

𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] =  
1

3. 𝐴𝑖

[𝑘2
3 (𝑆(𝛽) − 𝑆(𝛼))

− 𝑘3
3 (𝐶(𝛽) − 𝐶(𝛼))] 

(24) 

Through the derivations in section 4.1 for a generic case and 

derivations in section 4.2 for specific cases, we have covered 

𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] derivations for all the deployment scenarios. This 

generalized approach forms the basis of our a general-

purpose mathematical framework to find the expected 

distance value 

4.3 Derivation of Mean Distance (𝒅̅) for N 

Randomly Deployed Sensor Nodes 
One can easily observe that derived 𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] formulation 

is actually the mean distance (𝜇𝑑) between every point (the 

entire population) within the sensing field and an arbitrarily 

located BS. Moreover, 𝜇𝑑 is finite as the expectation is 

integrated over the finite domain, 𝐴𝑖. However, due to a cost 

constraint, it is not feasible to deploy a node on every point 

in a sensing field. Having considered this real-life constraint, 

let us further assume that N sensor nodes are to be deployed 

randomly and uniformly over this finite field. In this case, the 

observed mean distance, which is the sample mean (i.e., 

sample size=N), is denoted as 𝑑̅. Having the knowledge of 𝑑̅ 

might be critical for a number of RDWSN applications 

because in that case a network designer has the opportunity 

to estimate the mean distance between these sensor nodes to 

the BS (𝑑̅) prior to the actual deployment. This is why our 

analytical derivation of 𝑑̅ is another key contribution of this 

study. The remainder of this subsection will discuss how 𝑑̅ is 

derived. 
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Owing to the central limit theorem, the sampling

distribution of 𝑑̅ will be normal or nearly normal with mean

𝜇𝑑̅ and the standard deviation 𝜎𝑑̅, if the sample size is 

sufficiently large (N > 30). As far as the WSN applications 

are concerned, N > 30 assumption makes sense. This is 

because the number of deployed nodes in a WSN application 

is typically ranging hundreds to thousands. Thus, it can safely 

be assumed that the sampling distribution of 𝑑̅ is distributed 

normally (𝑁~ [𝜇𝑑̅ , 𝜎𝑑̅]) with mean 𝜇𝑑̅  and the standard 

deviation 𝜎𝑑̅ which are shown below: 

 𝜇𝑑̅ =  𝜇𝑑     𝑎𝑛𝑑    𝜎𝑑̅ =  
𝜎

√𝑁
 (25) 

𝜇𝑑, which is actually equal to 𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆], is already derived 

in Eqn. 12. Therefore, in order for our derivations to be used 

in practical cases, it is required that the population standard 

deviation (σ) be specified. And, σ can be calculated in terms 

of expected values as are given in Weisstein (2015). 

 
𝜎 =  √𝐸[𝑑2

𝑇𝑖𝑡𝑜𝐵𝑆] −  𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆]
2
 (26) 

To find σ, one needs to proceed by finding out 𝐸[𝑑2
𝑇𝑖𝑡𝑜𝐵𝑆] 

value, which is the solution of the integral in the Polar 

Coordinates as is given in Eqn. 27: 

𝐸[𝑑2
𝑇𝑖𝑡𝑜𝐵𝑆]

=
1

𝐴𝑖

∫ ∫ 𝑟2. 𝑟. 𝑑𝑟. 𝑑𝜃

𝑘2

(𝑠𝑖𝑛 𝜃−
𝑌2−𝑌1
𝑋2−𝑋1

𝑐𝑜𝑠 𝜃)

𝑘3

(𝑠𝑖𝑛 𝜃−
𝑌3−𝑌2
𝑋3−𝑋2

𝑐𝑜𝑠 𝜃)

𝛽

𝛼

 
(27) 

Plug 𝑡2 and 𝑡3 (See Eqn. 8) into solved integrals: 

𝐸[𝑑2
𝑇𝑖𝑡𝑜𝐵𝑆] =

1

4. 𝐴𝑖

∫ 𝑟4|
𝑟=

𝑘3
(𝑠𝑖𝑛 𝜃−𝑡3 𝑐𝑜𝑠 𝜃)

𝑟=
𝑘2

(𝑠𝑖𝑛 𝜃−𝑡2 𝑐𝑜𝑠 𝜃)

𝛽

𝛼

𝑑𝜃 (28) 

𝐸[𝑑2
𝑇𝑖𝑡𝑜𝐵𝑆] =

1

4. 𝐴𝑖

[𝑘2
4 ∫   

𝑑𝜃

(𝑠𝑖𝑛 𝜃 − 𝑡2 𝑐𝑜𝑠 𝜃)4

𝛽

𝛼

− 𝑘3
4 ∫   

𝑑𝜃

(𝑠𝑖𝑛 𝜃 − 𝑡3 𝑐𝑜𝑠 𝜃)4

𝛽

𝛼

] 

(29) 

We introduce the following substitutions: 

𝐵𝑡2
(𝜃) = ∫

𝑑𝜃

(𝑠𝑖𝑛 𝜃 − 𝑡2 𝑐𝑜𝑠 𝜃)4
   𝑎𝑛𝑑 𝐵𝑡3

(𝜃)

= ∫
𝑑𝜃

(𝑠𝑖𝑛 𝜃 − 𝑡3 𝑐𝑜𝑠 𝜃)4
 

(30) 

After substituting the upper and lower bounds for α and β, we 

have Eqn. 19: 

𝐸[𝑑2
𝑇𝑖𝑡𝑜𝐵𝑆] =

1

4. 𝐴𝑖

[𝑘2
4(𝐵𝑡2

(𝛽) − 𝐵𝑡2
(𝛼))

− 𝑘3
4(𝐵𝑡3

(𝛽) − 𝐵𝑡3
(𝛼))] 

(31) 

Note again that 𝐵𝑡2
(𝜃) and 𝐵𝑡3

(𝜃) in Eqn. 31  could 

not be replaced explicitly with their exact values. They are 

presented in Appendix (Section B) due to the size limitation 

of this paper and the readability concerns. 

Finally, to find σ, one can easily plug 𝐸[𝑑2
𝑇𝑖𝑡𝑜𝐵𝑆] value given 

in Eqn. 29  and 𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] (𝜇𝑑) value given in Eqn. 12 into 

Eqn. 26. 

Since the sampling distribution of 𝑑̅ is assumed to 

be normal with 𝑁~ [𝜇𝑑̅ , 𝜎𝑑̅], the z-scores can be used for the 

estimation of 𝑑̅. At this stage, it should be emphasized that 

our contribution is the estimation of the mean distance 

between a given number of nodes and the BS by using Eqn. 

32 to the related literature. 

𝑑̅ ∈ (𝜇𝑑 ±
𝜎

√𝑁
)    𝑓𝑜𝑟 %68.27 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒

𝑑̅ ∈ (𝜇𝑑 ±
2𝜎

√𝑁
)    𝑓𝑜𝑟 %95.45 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒

𝑑̅ ∈ (𝜇𝑑 ±
3𝜎

√𝑁
)    𝑓𝑜𝑟 %99.73 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒

 (32) 

For the deployment scenarios given in Figure 4 and 

Figure 5, 𝐸[𝑑2
𝑇𝑖𝑡𝑜𝐵𝑆] derivations can easily be found by the 

approach described in this section. 

5 Conclusion 
This paper proposes a general-purpose mathematical 

framework to find the expected distance value (𝐸[𝑑𝑡𝑜𝐵𝑆]) 
between every point within any n-sided simple polygon 

shaped sensing field and an arbitrarily placed BS whose 

location is known in advance. The novelty of our work is that 

the sensing field under study does not need to have a well-

known shape (i.e., square, rectangle, trapezoid, etc.). 

Moreover, we do not enforce to locate the BS in the center on 

the perimeter or on the axis symmetry of the sensing field. 

That is, the location of the BS can be at any point inside or 

outside this field. Based on this generic scenario, we further 

provide a derivation for the estimation of mean distance (i.e., 

𝑑̅) for a given number of sensor nodes when these nodes are 

deployed randomly and uniformly. Aside from the pure 

theoretical interest, the derivation of 𝑑̅ is important because 

estimation of 𝑑̅ can be facilitated by network designers in 

real-life applications before the actual deployment. 𝐸[𝑑𝑡𝑜𝐵𝑆] 
and or 𝑑̅ values are also required not only for the calculation 

of the optimum number of clusters in clustered RDWSNs, but 

also for the decision about whether a multi-hop or a direct 

communication should be devised or not. Moreover, the 

analytical derivation of 𝐸[𝑑𝑡𝑜𝐵𝑆] value might reduce the 

overhead in the existing techniques and simulations that aim 

to estimate this value as part of their algorithms. 

Last but not least, the use of our derivation is not 

limited to the WSN domain. It can also be used in any domain 

when there is a need for a probabilistic approach to find the 

average distance between any given number of points which 

are all assumed to be randomly and uniformly located in any 

n-sided simple polygon shaped region and at any point near 

this region. 

As future research directions, we envision that the 

use of multiple BSs will be a promising direction for 

research. Based on the findings of this study, we intend to 

exploit our 𝐸[𝑑𝑡𝑜𝐵𝑆] and 𝑑̅ formulations to solve the 

following two research problems:  

 How can our 𝐸[𝑑𝑡𝑜𝐵𝑆] and 𝑑̅ formulations be exploited 

during the selection process of clustering schemes and/or 

routing techniques, when the number of BSs is more than 

one? 

 How can our 𝐸[𝑑𝑡𝑜𝐵𝑆] and 𝑑̅ formulations be exploited in 

the relocation problem for a given number of mobile 

BS(s) that maximize the network lifetime and/or 

maximize the throughput?  
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A Appendix

A-1 Derivation of 𝒁𝒕𝟐
(𝜽) and 𝒁𝒕𝟑

(𝜽)

In this section, we discuss a specific form of integral

aforementioned in Section 4.1. For the sake of readability,

𝐸[𝑑𝑇𝑖𝑡𝑜𝐵𝑆] formulation in Eqn. 10 includes a substitution

(i.e., 𝑍𝑡𝑛
(𝜃) ) to denote this specific form. The substitutions

𝑍𝑡2
(𝜃) and 𝑍𝑡3

(𝜃) are used to represent ∫
𝑑𝜃

(sin 𝜃−𝑡2 cos 𝜃)3 and 

∫
𝑑𝜃

(sin 𝜃−𝑡3 cos 𝜃)3, which is the special case of 

∫
d𝜃

(sin (𝜃)−𝑎 cos (𝜃))3 when  𝑎 = 𝑡2 and  𝑎 = 𝑡3 respectively. 

𝑍𝑎(𝜃) = ∫
𝑑𝜃

(𝑠𝑖𝑛 (𝜃) − 𝑎𝑐𝑜𝑠 (𝜃))3
 (33) 

By using the tangent half-angle substitution, we have: 

𝑍𝑎(𝜃) = ∫
𝑑𝜃

(
2𝑡𝑎𝑛 (

𝜃
2

)

𝑡𝑎𝑛2 (
𝜃
2

) + 1
−

𝑎(1 − 𝑡𝑎𝑛2 (
𝜃
2

))

𝑡𝑎𝑛2 (
𝜃
2

) + 1
)3

 

(34) 

We can use integration by parts and substitute 𝑢 =

tan (
𝜃

2
)  →  d𝜃 =

2

sec2(
𝜃

2
)

 d𝑢     𝑑𝜃 =
2

𝑢2+1
d𝑢 

𝑍𝑎(𝑢) = 2 ∫
(𝑢2 + 1)2

(𝑎𝑢2 + 2𝑢 − 𝑎)3
𝑑𝑢 (35) 

By Ostrogradsky's method, we have the following: 

𝑍𝑎(𝑢)

=
1

2(𝑎2 + 1)
∫

𝑑𝑢

𝑎𝑢2 + 2𝑢 − 𝑎

+
(−𝑎3 − 2𝑎)𝑢3 + (𝑎2 − 2)𝑢2 + (2𝑎 − 𝑎3)𝑢 − 𝑎2

2𝑎2(𝑎2 + 1)(𝑎𝑢2 + 2𝑢 − 𝑎)2
 

(36) 

Now solving: 

∫
𝑑𝑢

𝑎𝑢2 + 2𝑢 − 𝑎

= ∫ −
𝑎 d𝑢

(−𝑎𝑢 + √𝑎2 + 1 − 1)(𝑎𝑢 + √𝑎2 + 1 + 1)
 (37) 

After factoring the denominator and performing 

partial fraction decomposition: 

= ∫(
𝑎

2√𝑎2 + 1(𝑎𝑢 − √𝑎2 + 1 + 1)

−
𝑎

2√𝑎2 + 1(𝑎𝑢 + √𝑎2 + 1 + 1)
)d𝑢 

(38) 

Then, linearity is applied: 

=
𝑎

2√𝑎2 + 1
∫

𝑑𝑢

𝑎𝑢 − √𝑎2 + 1 + 1

−
𝑎

2√𝑎2 + 1
∫

𝑑𝑢

𝑎𝑢 + √𝑎2 + 1 + 1
 

(39) 

Finally, using integration by parts again and 

undoing the substitution 𝑢 = tan (
𝜃

2
), one can find out Eqn. 

40. 

Having discussed the derivation of 𝑍𝑎(𝜃), it is time 

to plug our tan (
𝛽

2
) and tan (

𝛼

2
) values in Eqn. 40,   when 

a=𝑡2 and a=𝑡3. The trigonometric identities of these θ values 

in terms of the coordinates of the vertexes of the triangle 

under study are given in Eqn. 41.  

Furthermore, these identities are also plugged into 

𝑍𝑡2
(𝜃) and 𝑍𝑡3

(𝜃) formulations, which are the original 

contributions of this paper. 

𝑍𝑎(𝜃) = ∫
𝑑𝜃

(sin 𝜃 − 𝑎 cos 𝜃)3

=
(−𝑎3 − 2𝑎)tan3 (

𝜃
2

) + (𝑎2 − 2)tan2 (
𝜃
2

) + (2𝑎 − 𝑎3)tan (
𝜃
2

) − 𝑎2

𝑎2(𝑎2 + 1)(𝑎tan2 (
𝜃
2

) + 2tan (
𝜃
2

) − 𝑎)2

+
ln (|𝑎tan (

𝜃
2

) − √𝑎2 + 1 + 1|) − ln (|𝑎tan (
𝜃
2

) + √𝑎2 + 1 + 1|)

2(𝑎2 + 1)
3
2

+ 𝐶 

(40) 

tan (
𝛽

2
) =  tan (

tan−1 𝑌2

𝑋2

2
 )  tan (

𝛼

2
) =  tan (

tan−1 𝑌1

𝑋1

2
 ) 

(41) 

 

A-2 Derivation of 𝑩𝒕𝟐
(𝜽) and 𝑩𝒕𝟑

(𝜽) 

Herein, we discuss a specific form of integral aforementioned 

in Section 4.3. For the sake of readability, 𝐸[𝑑2
𝑇𝑖𝑡𝑜𝐵𝑆] 

formulation in Eqn. 31 includes a substitution (i.e., 𝐵𝑡𝑛
(𝜃) ) 

to denote this specific form. The substitutions 𝐵𝑡2
(𝜃) and 

𝐵𝑡3
(𝜃) are used to represent ∫

dθ

(sin θ−t2 cos θ)4 and 

∫
dθ

(sin θ−t3 cos θ)4, which is the special case of 

∫
d𝜃

(sin (𝜃)−𝑎 cos (𝜃))4 when  𝑎 = 𝑡2 and  𝑎 = 𝑡3 respectively. 

𝐵𝑎(𝜃) = ∫
𝑑𝜃

(𝑠𝑖𝑛 (𝜃) − 𝑎𝑐𝑜𝑠 (𝜃))4
 (42) 

  𝐵𝑎(𝜃) = ∫
d𝜃

(sin (𝜃) − 𝑎cos (𝜃))4

= ∫ sec2(𝜃) ⋅
tan2 (𝜃) + 1

(tan (𝜃) − 𝑎)4
d𝑥 

(43) 

Substitute 𝑢 = tan (𝜃) ⟶ d𝜃 =
1

sec2(𝜃)
d𝑢 

𝐵𝑎(𝑢) = ∫
𝑢2 + 1

(𝑢 − 𝑎)4
d𝑢 (44) 

Substitute 𝑣 = 𝑢 − 𝑎 ⟶ d𝑢 = d𝑣 

= ∫ (
1

𝑣2
+

2𝑎

𝑣3
+

𝑎2 + 1

𝑣4
) d𝑣 (45) 

After appling linearity, the power rule, and undoing 

substitution 𝑣 = 𝑢 − 𝑎 : 
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𝐵𝑎(𝑢) = −
1

𝑢 − 𝑎
−

𝑎

(𝑢 − 𝑎)2
−

𝑎2 + 1

3(𝑢 − 𝑎)3
 (46) 

Undo substitution 𝑢 = tan (𝑥) 

𝐵𝑎(𝜃) = −
1

tan (𝜃) − 𝑎
−

𝑎

(tan (𝜃) − 𝑎)2

−
𝑎2 + 1

3(tan (𝜃) − 𝑎)3
 

(47) 

Rewrite/simplify: 

   𝐵𝑎(𝜃) = ∫
d𝜃

(sin (𝜃) − 𝑎cos (𝜃))4

= −
3tan2 (𝜃) − 3𝑎tan (𝜃) + 𝑎2 + 1

3(tan (𝜃) − 𝑎)3
+ 𝐶 

(48) 

Having discussed the derivation of 𝐵𝑎(𝜃), it is time 

to plug our tan 𝛽 and tan 𝛼 values in Eqn. 31 when a=𝑡2 and 

a=𝑡3. The trigonometric identities of these in terms of the 

coordinates of the vertexes of the triangle under study are 

given below in Eqn. 42. 

tan 𝛽 =  
𝑌2

𝑋2

     tan 𝛼 =
𝑌1

𝑋1

 (49) 
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