
Average Execution Time Analysis of a
Self-stabilizing Leader Election Algorithm

Juan Paulo Alvarado-Magaña and José Alberto Fernández-Zepeda

CICESE
Department of Computer Science

Km. 107 Carretera Tijuana-Ensenada
Ensenada, B.C. 22860, Mexico
{alvarado, fernan}@cicese.mx

Abstract

This paper deals with the self-stabilizing leader election
algorithm of Xu and Srimani [10] that finds a leader in a
tree graph. The worst case execution time for this algorithm
is O(N4), where N is the number of nodes in the tree. We
show that the average execution time for this algorithm, as-
suming two different scenarios, is much lower than O(N4).
In the first scenario, the algorithm assumes a equiprobable
daemon and it only privileges a single node at a time. The
average execution time for this case is O(N2). For the sec-
ond case, the algorithm can privilege multiple nodes at a
time. We eliminate the daemon from this algorithm by mak-
ing random choices to avoid interference between neighbor
nodes. The execution time for this case is O(N). We also
show that for specific tree graphs, these results reduce even
more.

1. Introduction

A self-stabilizing system has the ability to go from any
arbitrary global state to a legitimate global state in a finite
number of steps without any outside intervention. Self-
stabilization is useful to design fault tolerant distributed sys-
tems for transient faults. Dijkstra [4] proposed the concept
of self-stabilization in 1974. Since then, self-stabilization
has received a lot of attention and researchers have pub-
lished a number of papers in this area. General references
on self-stabilization are [2, 9].

A fundamental problem in distributing computing is
leader election. Roughly speaking, leader election is the
problem of selecting any one element from a given set of

1-4244-0910-1/07/$20.00 c©2007 IEEE.

candidates. This problem has many variations depending on
the assumptions about the features of the candidates; one of
the most difficult variations to solve is when each candidate
is indistinguishable from the others and when the commu-
nication among candidates is restricted.

Researcher have design many self-stabilizing algorithms
that solve the leader election problem for different topolo-
gies. We can mention the following. Huang [7] and Itkis
et al. [8] designed algorithms for bidirectional prime size
uniform rings. Gosh and Gupta [6] and Fich and Johnen [5]
designed algorithms for unidirectional prime size uniform
rings. Dolev et al. [3] solved the problem for a general
graph. Antonoiu and Srimani [1] designed an algorithm for
a tree graph in which only an internal node can be leader.
They proved that the algorithm terminates in finite time, but
they did not perform temporal complexity analysis. Later,
Xu and Srimani [10] simplified and generalized the algo-
rithm of [1]. They argue that their algorithm can choose
any node of the tree as leader and the execution time for the
worst-case scenario is O(N4).

The worst-case execution time of an algorithm is a very
useful parameter to characterize an algorithm; however,
sometimes the worst-case execution time is very far from
the typical execution time. When this happens, program-
mers may choose and implement a wrong algorithm to solve
some specific problem, especially when the typical execu-
tion time of the algorithm is unknown. This is the case for
the leader election algorithm of Xu and Srimani [10], whose
worst execution time is O(N4). In their paper, they con-
jecture that the typical execution time may be much lower
O(N4).

In this paper, we analyze the average execution time
of this algorithm on arbitrary trees of N nodes under two
assumptions. The first assumption is when the algorithm
allows a single node to change its internal variables at a



time; for this case, the average execution time is O(N2).The
second assumption is when the algorithm allows multiple
nodes to change their variables simultaneously; for this
case, the average execution time is O(N). For both cases,
these values decrease considerably when the algorithm runs
on specific types of trees.

We organize the remaining sections of this paper as fol-
lows. Section 2 briefly describes the algorithm of Xu and
Srimani [10]. Section 3 provides basic notation and defi-
nitions. Section 4 discusses the behavior of the two main
stabilizing rules of the algorithm. Section 5 and 6 presents
the analysis of the average execution time of the algorithm
for two different scenarios. Finally, Section 7 presents some
concluding remarks.

2. Xu and Srimani’s Self-Stabilizing Leader
Election Algorithm

Xu and Srimani [10] designed a self-stabilizing leader
election algorithm for arbitrary trees. This section provides
a brief description of the algorithm.

2.1 Features and assumptions

The main features and assumptions of this algorithm are
the following:

1. The worst execution time of the algorithm is O(N4),
where N is the number of nodes in the tree.

2. The algorithm works on anonymous trees, so the algo-
rithm does not have access to the index of each vertex.

3. The algorithm can choose any arbitrary vertex (internal
or leaf) of the tree as a leader.

4. The algorithm does not assume any particular order in
the execution of stabilizing operations of the vertices.

5. To avoid conflicts, the algorithm uses a variation of the
central daemon to decide the node or nodes that execute
stabilizing operations.

2.2 How it works

Each node i stores an integer variable xi and a pointer
pi. Pointer pi can take any value from the set {N(i) ∪ i},
where N(i) refers to the set of neighbors of node i. Each
node i has access to variable xj if j ∈ N(i). At any step of
the algorithm, node i compares its variable xi against vari-
ables xj of its neighbors. The algorithm checks whether the
results of these comparisons and the value of pi satisfy the
conditions of any of the three stabilizing rules (described
in Section 2.3). When a node i satisfies the conditions of
a rule, it can execute the stabilizing operations of that rule
(provided the daemon privileges node i). The values of each
variable x and p change continuously until no node satisfies

any of the three rules. At this point, the algorithm termi-
nates and there is exactly one node i such that pi = i and
xi > xj for all j ∈ V − {i}; node i is the global maximum
and the leader. An interesting property of the algorithm is
that if node i is the leader and j any other node in the tree,
then xi − xj is the number of edges between nodes i and
j. At the end, we can view this tree as a rooted tree where
the leader is the root and each node points to the direction
of the leader.

2.3 Stabilizing Rules

Each rule in the algorithm consists of some conditions
that a node needs to satisfy to execute its stabilizing opera-
tions, provided the demon privileges the node. These rules
are the following:

Rule R1. If node i has at least two neighbors, say j and k,
such that xj ≥ xi and xk ≥ xi, then node i executes the
following operations:

xi := max
j∈N(i)

{xj} + 1

Pi := i

Rule R2. If node i has exactly one neighbor j, such that
xj ≥ xi AND (xi �= xj − 1 OR Pi �= j), then node i
executes the following operations:

xi := xj − 1
Pi := j

Rule R3. If xi > xj for all j ∈ N(i) AND if Pi �= i, then
node i executes the following operation.

Pi := i.

3. Basic definitions

Let T = (VT , ET ) be an undirected tree, where |VT | =
N . A candidate node is a node that satisfies the conditions
of any of the three stabilizing rules. Let Cα denote the set
of candidate nodes that satisfy the conditions of rule Rα,
where α ∈ {1, 2, 3}. Let C0 denote the set of nodes that
are not candidates. When the daemon chooses a candidate
node to execute some stabilizing operations, then this node
is a privileged node. The exter-level and inter-level are la-
bels with positive integer values that we assign to each node
in a tree, according to its position in the tree. These labels
facilitate the explanation of the algorithm in the paper. The
nodes with exter-level zero are the leaves of the tree. The
nodes with exter-level m are those nodes that became leaves
when we remove from the tree all the nodes with exter-level
0, 1, ..., m−1. The node with greatest exter-level is the cen-
ter of the tree. Figure 1a shows a tree with exter-level labels
inside the nodes. (The concept of exter-level is equivalent
to the definition of the sets Si from the paper of Xu and



Figure 1. a) Tree with exter-level labels inside
the nodes. b) Tree with inter-level labels in-
side the nodes; node 5 is the reference node

Srimani [10]; each node of the set Sm has exter-level m.).
The inter-level of node j indicates the distance (number of
edges) between node j and a specific reference node k. Fig-
ure 1b shows a tree with inter-level labels inside the nodes;
notice that node 5 is the reference node.

The daemon is very useful abstraction that prevents a
node to interfere with its neighbors. Since the goal of Xu
and Srimani [10] was to calculate the worst execution time
of the algorithm, they assumed an adversary daemon. This
daemon, at each step of the algorithm, privileges the candi-
date that maximizes the execution time.

Our intention in this paper is to calculate the average exe-
cution time of the algorithm, so we assume an equiprobable
daemon in the analysis of Section 5. This daemon, at each
step of the algorithm and with the same probability, chooses
only one candidate to execute its stabilizing operations. In
Section 6, we remove the daemon from the algorithm.

Definition 1. Let T = (VT , ET ) be a tree and let k, l ∈ VT

two arbitrary neighbor nodes. A sub-tree T¬(k,l) of T is the
tree that contains node k after removing edge (k, l) from
T . ��

Example 1: Notice that after removing edge (5, 4) from
the tree of Figure 2, the tree on the right is sub-tree T¬(5,4)

of T since it contains node 5.

Definition 2. A tree T (sub-tree T¬(k,l)) is stable with re-
spect to (w.r.t.) rule R1 if it satisfies the following condi-
tions:
1. No node is candidate under rule R1 in T (T¬k,l)).
2. There exist a node k that is a global maximum in T

(T¬(k,l)), that is xk > xi, for all i �= k. ��
A consequence of the above conditions is the following.

If a node j is located at a distance t from node k, the value
of xj is less than the values of all variables x of the nodes
that are on the path between node j and node k.

Figure 2. A tree that is stable w.r.t. rule R1

Example 2: The tree of Figure 2 is stable w.r.t. rule R1

and its global maximum is node 3. Notice, that sub-tree
T¬(5,4) is also stable w.r.t. rule R1 and its global maximum
is node 5.

Definition 3. Let T = (VT , ET ) be a tree. A sub-tree Tk(δ)

of T is the tree generated after removing from T all the
nodes with inter-level greater than δ, assuming that node k
is the reference node. ��

Example 3: Consider the tree of Figure 2. The sub-tree
T3(1) is the tree integrated by nodes 1, 2, 3, and 4. Node
k = 3 is the reference node and its inter-level label is zero.
The inter-level labels for nodes 1, 2, and 4 are ones. The
remaining nodes have inter-level labels greater than δ = 1.

Definition 4. A tree T = (VT , ET ) (sub-tree Tk(δ) of T ) is
stable w.r.t. rule R2 if it satisfies the following conditions:

1. Node i ∈/ C2 for all i in the tree T (sub-tree Tk(δ)).
2. There exists a node k that is a global maximum in the

tree T (sub-tree Tk(δ)).
3. For each node i in the tree T (sub-tree Tk(δ)), xk − xi is

equal to the number of edges between nodes k and i. ��
Example 4: Consider the tree of Figure 2. Notice that

sub-tree T3(1) is stable w.r.t. rule R2.
Since any node in a sub-tree stable w.r.t. rule R1 (R2)

never executes rule R1 (R2) again, we can say that a node
is stable w.r.t. rule R1 (R2) if it belongs to a sub-tree that is
stable w.r.t. rule R1 (R2).

4. Global effect of rules R1 and R2

Let T = (VT , ET ) be a tree. To understand the behavior
of the algorithm under rule R1, assume that the algorithm



only privileges nodes candidates under rule R1. At the be-
ginning, the stabilizing operations of rule R1 can occur in
any node of T (except the leaves); however, after some it-
erations, one can observe that these operations execute on
nodes around a specific region of T . This region gradu-
ally reduces until, eventually, it becomes a single node, the
global maximum. We can say that the stabilizing process of
rule R1 starts in the leaves of T and gradually propagates
to the node that eventually becomes the global maximum.
The position of the global maximum can be any at the end
of the algorithm. This position depends on the initial values
of variables x and the choices of the daemon.

To understand the behavior of the algorithm under rule
R2, assume that T is stable w.r.t. rule R1. Assume that we
assign inter-level labels to each node of the tree using node
k, the global maximum, as reference node. Notice that node
k is already stable w.r.t. rule R2, because it belongs to sub-
tree Tk(0), which is stable w.r.t. rule R2. Similarly, as the
previous case, the stabilizing operations of rule R2 can oc-
cur in any node (except the global maximum), but gradually
these operations take place further from the global maxi-
mum. At the end, leaves are the last nodes that execute the
operations. We can say that the stabilizing process w.r.t.
rule R2 starts at the global maximum and propagates to-
wards the leaves of T .

5. Average execution time of the algorithm for
the single-privileged node assumption

To facilitate the analysis, we split the algorithm in two
phases. The first phase ends when |C1| = 0 (i.e. when all
the nodes in the tree are stable w.r.t. rule R1). The second
phase starts at this point and includes the remaining steps of
the algorithm.

First, we compute the average number of steps the algo-
rithm needs to finish phase one for an arbitrary tree.

5.1 Phase 1

Let ym be the number of nodes in exter-level m. Our
first goal is to calculate the average number of steps, Tm,
necessary to privilege all the nodes in exter-level m. The
following is a list with our assumptions.
1. A demon can privilege only one node at a time. The

privileged node can be any from the set {C1 ∪C2 ∪C3}
with the same probability. This is the single-privileged
node assumption.

2. All the nodes with exter-level < m are already stable
w.r.t. rule R1.

3. Each node in exter-level m is element of C1

4. Each node not included in exter-level m is element of
{C2 ∪ C3} and the daemon can privilege this node any
number of times.

The following are some remarks.
1. Sets C0, C1, C2, and C3 are disjoint and {C0∪C1∪C2∪

C3} = VT .
2. In a typical scenario, nodes in exter-level m may belong

to any of the sets C0, C1, C2, or C3, so, Assumption 3 is
the worst-case scenario to stabilize nodes of exter-level
m w.r.t. rule R1.

3. Any stabilizing operation of rule R2 or R3 in a sub-tree
stable w.r.t. rule R1 keeps the sub-tree stable w.r.t. rule
R1.
Initially, the daemon can privilege a node of inter-level

m with a probability ym/N , since there are ym candidates
in exter-level m and N possible candidates in T . Let k1

be a random variable that represents the number of steps
required to privilege the first node of exter-level m. The ex-
pected value of k1 is N/ym, because k1 has a geometric dis-
tribution. The average number of steps required to privilege
the second candidate of inter-level m is k2 = N/(ym − 1).
In general, the average number of steps required to privilege
the j-ary node of inter-level m is kj = N/(ym − j + 1).
Equation 1 computes the value of Tm.

Tm =
ym∑
j=1

kj = N

ym∑
i=1

1
i

= cmN log ym, (1)

where cm is a constant. Let Tsp−1(N) be the average
number of steps required to stabilize all the nodes of T w.r.t.
rule R1 (“sp” stands for single-privileged). If the maximum
exter-level is r, then

Tsp−1(N) =
r∑

m=1

Tm ≤ cN(log y1 + · · · + log yr)

= O(N2) (2)

where c = max{cm} for all m. Since
∑

∀m ym = N ,
then

∑
∀m log ym < N . The values of ym and r depend

on the topology of the tree. (Notice that when the topology
of the tree is a chain of nodes, ym = 2 for all m, then∑

∀m log ym = O(N).)

5.2 Phase 2

Now, our goal is to calculate the average number of steps,
Tn, necessary to privilege all the nodes of inter-level n w.r.t.
rule R2. The following is a list with our assumptions.
1. Each node with inter-level < n is already stable w.r.t.

rule R2.
2. Each node in inter-level n is candidate under rule R2

3. Each node in any inter-level > n is element of C2 and
the daemon can privilege this node any number of times.
Remark 1. We are not considering execution of rule R3

in the analysis because the number of times the algorithm



executes R3 is much smaller than the number of times the
algorithm executes rules R1 and R2.

Let yn be the number of nodes in inter-level n and let
zn be the number of nodes in all the inter-levels equal or
greater than n. The value of Tn is the following:

Tn =
yn−1∑
j=0

zn − j

yn − j
=

yn∑
i=1

(
(zn − yn)

i

)
+ yn

= cn (zn − yn) log yn + yn (3)

where cn is a constant. Notice that (zn − yn) = zn+1 <
N for all n. Let Tsp−2(N) be the average number of steps
required to stabilize all the nodes of the tree w.r.t. rule R2.
If the maximum inter-level is s, then

Tsp−2(N) =
s∑

n=1

Tn <

s∑
n=1

(cN log yn + yn)

= O(N2) (4)

Thus, the average execution time of the algorithm with
the single-privileged node assumption is:

Tsp(N) = Tsp−1(N) + Tsp−2(N) = O(N2) (5)

Section 7 shows that the average execution time is
smaller than O(N2) for specific trees.

6. Average execution time for the multiple-
privileged node assumption

In the previous analysis, we assume that the daemon
privileges only a single node at each step. Now we allow
the algorithm to privilege more than one candidate at a time.
This is the multiple- privileged node assumption. For this
purpose, we made the following changes:
1. At each step, each node i generates a random bit that

stores in variable bi.
2. We add extra conditions in the rules R1 and R2.
3. The execution of rule R1 has higher priority than rule

R2.
4. We eliminate the daemon from the algorithm.

The modified rules are the following:

Rule R1+. If node i has at least two neighbors, say j and k,
such that xj ≥ xi and xk ≥ xi AND bi = 1 AND bl = 0
for all l ∈ {C1 ∩ N(i)}, then node i executes the following
operations:

xi := max
j∈N(i)

{xj} + 1

Pi := i

Rule R2+. If node i has exactly one neighbor j, such that
xj ≥ xi, AND (xi �= xj − 1 OR Pi �= j) AND {N(i) ∩
C1} = ∅ AND j /∈ C2 then node i executes the following
operations:

xi := xj − 1
Pi := j

Rule R3+. It is the same as rule R3.
The purpose of the additional conditions in rules R1+

and R2+ is to avoid two or more adjacent nodes to be priv-
ileged simultaneously. These changes give rule R1 higher
priority than rule R2. With this modification, the execution
time of the algorithm reduces considerably as we show.

Remark 2. A especial case occurs when there are no can-
didates under rule R1+ and there are two neighbor nodes, i
and j, that are maximum. For this case, it is necessary that
rule R2+ breaks the symmetry by generating random num-
bers bi and bj in each node and allowing one of them to ex-
ecute the stabilizing operations of R2+. Once the symmetry
is broken, an additional operation of rule R1+ stabilizes the
tree w.r.t. rule R1+. This especial condition can be added
to rule R2+.

6.1 Phase 1

We follow the same procedure we use in Section 5.1.
First, we calculate the average number of steps necessary to
stabilize all the nodes of exter-level m w.r.t. rule R1+. We
assume that all the nodes with exter-level < m are already
stable w.r.t. rule R1+.

Each node i of exter-level m may have a conflict with its
neighbor j in exter-level m+1, if both are candidates under
rule R1+. (Notice that node i may have one or more neigh-
bors in exter-level m − 1 and only one neighbor in exter-
level m + 1. Since we assume that all nodes of exter-level
< m are already estable w.r.t. rule R1+, the only possible
conflict of node i is with its neighbor in exter-level m + 1.)
So only when bi = 1 and bj = 0 (this happens with prob-
ability 1/4), node i privileges itself and executes the stabi-
lizing operations of rule R1+. If we assume the worst case,
when all the ym nodes of exter-level m are candidates under
rule R1+, on average, ym/4 nodes privilege themselves af-
ter one step. This process continues and in each additional
step, 1/4 of the remaining candidates privilege themselves.
To calculate the average number of steps required to stabi-
lize all nodes, except one, of exter-level m w.r.t. rule R1+,
we solve Equation 6.

(
3
4

)α

ym = 1 =⇒ α = cm log ym (6)

where cm is a constant. Additionally, on average, the
algorithm needs four steps to privilege the last candidate



of exter-level m. Let Tm be the average number of steps
required to stabilize all nodes of exter-level m w.r.t. rule
R1+. Equation 7 gives the value of Tm.

Tm = cm log ym + O(1) (7)

Let Tmp−1(N) be the average number of steps required
to stabilize all the nodes of the tree w.r.t. rule R1+ (“mp”
stands for multiple-privileged). Assume that the maximum
exter-level is r.

Tmp−1(N) =
r∑

m−1

Tm = O(N) (8)

6.2 Phase 2

Now, our goal is to calculate the average number of steps,
Tn, necessary to privilege all the nodes of inter-level n w.r.t.
rule R2. Our assumptions for this phase are the following.
1. All the nodes with inter-level < n are already stable w.r.t.

rule R2+.
2. All nodes in inter-level n are candidate under rule R2+
3. Any node in any inter-level > n belongs to {C2} and

they can privilege any number of times.
Since all the nodes in inter-level (n − 1) /∈ {C2} and all

nodes in the tree are stable w.r.t. rule R1+, then Tn = O(1).
Let Tmp−2(N) be the average number of steps required to
stabilize all the nodes of the tree w.r.t. rule R2+. Assume
that maximum inter-level is s (In the worst case the height
s of the tree is O(N)).

Tmp−2(N) =
s∑

n−1

Tn = O(s) = O(N) (9)

Thus, the average execution time of the algorithm with
the multiple-privileged node assumption is:

Tmp(N) = Tmp−1(N) + Tmp−2(N) = O(N) (10)

Notice that the average execution time is smaller than
O(N) for specific trees, as shown in Section 7.

7. Analysis for specific tree topologies

The average execution time of the algorithm for the
single-privileged node assumption is O(N2), for an arbi-
trary tree of N nodes. Notice that by replacing the values
of ym, yn, zn, r and s, in Equations 1 to 4, for the parame-
ters of specific types of trees, the value of Tsp(N) reduces
greatly, as shown in Table 1.

The average execution time of the algorithm for the
multiple-privileged node assumption is O(N), for an arbi-
trary tree of N nodes. Table 2 shows that this time reduces

Table 1. Average execution time of the al-
gorithm of Xu and Srimani [10] for different
types of trees for the single-privileged node
assumption.

Type of tree (N nodes) Average execution time, Tsp(N)

Arbitrary tree O(N2)

Tree with diameter O(log N) O(N log2 N)

Double depth logarithmic tree O(N log N log log N)

for specific types of trees. Compute Tmp(N) by replacing
the values of ym, yn, zn, r and s in Equations 6 to 9.

Table 2. Average execution time of the al-
gorithm of Xu and Srimani [10] for different
types of trees for the multiple-privileged node
assumption.

Type of tree (N nodes) Average execution time, Tsp(N)

Arbitrary tree O(N)

Tree with diameter O(log N) O(log2 N)

Double depth logarithmic tree O(log N log log N)

8. Concluding remarks

We compute an upper bound on the average execution
time of the self-stabilizing algorithm for leader election of
Xu and Srimani [10]. We present the analysis for two dif-
ferent scenarios. The first scenario assumes that the dae-
mon privileges only one node at time, the second assumes
that the algorithm privileges more than one node at a time.
The average execution times for these scenarios are O(N2)
and O(N), respectively. In the second scenario, we made
some minor changes to the rules to avoid two or more ad-
jacent nodes to be privileged at the same time. With these
changes, the daemon is not required. We also show that
for some common tree topologies, the algorithm has a bet-
ter performance. These results show that the typical execu-
tion time of the algorithm is much smaller than O(N4), the
worst case scenario.

References

[1] G. Antonoiu and P. Srimani, A Self-Stabilizing Leader Elec-
tion Algorithm for Tree Graphs. Journal of Parallel and Dis-



tributed Computing, 34(2):227–232, 1996.
[2] S. Dolev. Self-Stabilization. The MIT press, Cambridge Mas-

sachusetts, 2000.
[3] S. Dolev, A. Israeli, and S. Moran. Uniform Dynamic Self-

Stabilizing Leader Election. IEEE Transactions on Parallel
and Distributed Systems, 8(8):424–440, 1997.

[4] E. W. Dijkstra. Self-Stabilizing Systems in Spite of Dis-
tributed Control. Communications of the ACM, 17(11):643–
644, 1974.

[5] F. Fich and C. Johnen. A Space Optimal, Deterministic, Self-
Stabilizing, Leader Election Algorithm for Unidirectional
Rings. In proc. of the 15th International Symposium on Dis-
tributed Computing, pages 224–239, 2001.

[6] S. Ghosh and A. Gupta. An Exercise in Fault-Containment:
Self-Stabilizing Leader Election. Information Processing Let-
ters, 59(5):281–288, 1996.

[7] S. Huang. Leader Election in Uniform Rings. ACM Transac-
tions on Programming Languages and Systems, 15(3):563–
573, 1993.

[8] G. Itkis, C. Lin, and J. Simon. Deterministic, Constant Space,
Self-Stabilizing Leader Election on Uniform Rings. In Pro-
ceedings of the 9th International Workshop on Distributed Al-
gorithms, pages 288–302, 1995.

[9] M. Schneider. Self-Stabilization. ACM Computing Surveys
25(1):45–67, 1993.

[10] Z. Xu and P. K. Srimani. Self-Stabilizing Anonymous Leader
Election in a Tree. International Journal of Foundations of
Computer Science, 17(2):323–335, 2006.


