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Abstract 

In many empirical settings involving microeconomic panel data, the researcher’s ob-

jective is to identify the average partial effect of a variable on an outcome of interest. 

This paper examines nonparametric identification of average partial effects in this setting 

and proposes tests of identifying assumptions that do not rely on functional-form restric-

tions. The paper first studies the nonparametric identification problem starting from a 

data-generating process that exhibits both individual and time heterogeneity. The trade-

off between identifying assumptions that restrict individual and/or time heterogeneity 

is formally characterized. The paper then proposes a menu of identifying assumptions 

that the empirical researcher may choose from. To test the identifying assumptions, 

bootstrap-adjusted Kolmogorov-Smirnov and Cramer-von-Mises statistics are proposed 

and are shown to be asymptotically valid. The tests include a nonparametric test of the 

fixed effects assumption, which is applied to the human capital earnings function using 

a subsample of the national longitudinal survey of youth, previously used in Angrist and 

Newey (1991). 
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1 Introduction 

In many empirical settings, the researcher’s objective is to identify the ceteris paribus 

effect of a particular variable on an outcome of interest; for instance, the effect of a job 

training program on participants’ employment or income, the effect of having children on 

female labor participation, and the effect of schooling on income. While economic theory 

gives us some direction about which variables to include in order to identify the ceteris 

paribus effect, the functional form governing the relationship between the variables is often 

left unspecified. This is where nonparametric identification becomes particularly useful, 

even when parametric models are used as an approximation to the unknown relationship 

for estimation purposes. 

The paper at hand examines the identification of the average partial effect (APE) of a 

discrete regressor in a nonseparable panel data model, where the time dimension, T , is 

fixed. This reflects the situation in many microeconomic panel data settings, where we 

observe a large number of individuals over a short time horizon. In this setup, the APE 

is point-identified only for a subpopulation.1 

This paper starts with an unrestricted data-generating process (DGP), where the outcome 

variable for individual i in period t, Yit, is given by the following, 

Yit = ξt(Xit, Ai, Uit), for i = 1, 2, ..., n and t = 1, 2, ..., T (1) 

where Xit is a vector of regressors, Ai includes time-invariant, individual-specific vari-

ables that are unobservable,2 and Uit are idiosyncratic shocks. This paper is concerned 

with static models. Hence, Xit does not include lags of the outcome variable as well as 

other regressors that may introduce feedback mechanisms from Yit to Xis for s ≥ t. 3 The 

structural function, ξt(.), is assumed to be unknown and is allowed to vary over time.4 

1For the purposes of this paper, we will use use identification and point-identification interchangeably. If a 
priori bounds exist for the outcome variable, then bounds on the APE can be constructed as in Chernozhukov, 
Fernandez-Val, Hahn and Newey (2010). However, for the purposes of this paper, I am concerned with point-
identification only. 

2In linear models, Ai is referred to as an individual fixed effect. I refrain from this terminology, since it 
misrepresents what Ai stands for. 

3This rules out dynamic selection. 
4It is structural in the sense that Y x = ξt(x, Ai, Uit), where Y x is the outcome variable when Xit is fixed to it it 

x. 
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Furthermore, observables and unobservables are allowed to interact in arbitrary ways in  

the structural function. Without further assumptions, the DGP reflects arbitrary individ-

ual and time heterogeneity, which I formally define in Section 3. 

Restrictions on this general DGP achieve identification of the APE for a subpopulation.5 

There are three goals behind starting with a general DGP: (1) to formally characterize 

the trade-off between identifying assumptions that restrict the structural function, indi-

vidual and/or time heterogeneity, (2) to present a menu of identifying assumptions, (3) 

to propose tests thereof. 

From a theoretical viewpoint, the characterization of the trade-off contributes to the un-

derstanding of nonparametric identification of APEs in nonseparable panel data models. 

The menu of identifying assumptions includes existing methods in the literature as a spe-

cial case. It also suggests new methods that fall under both the fixed-effects and correlated-

random-effects categories, which are referred to in this paper as within-group and within-

period identification, respectively. Finally, the testing problem addresses new issues for 

testing the equality of distributions in the two-sample problem, where samples are de-

pendent and the data is possibly demeaned. Bootstrap-adjusted Kolmogorov-Smirnov 

(KS) and Cramer-von-Mises (CM) statistics are proposed and shown to be asymptoti-

cally valid. 

For practical purposes, the menu of identifying assumptions provides the empirical re-

searcher with a set of alternative identification strategies to choose from. Since the iden-

tification strategies may not be justified a priori, the tests are tools to aid the empirical 

researcher in justifying the choice of a particular identification strategy. The tests pro-

posed here include a nonparametric test of the fixed-effects assumption in the presence of 

time effects. 

Angrist and Newey (1991) propose an over-identification test of the fixed-effects assump-

tion in the linear model and find evidence against it for the human capital earnings function 

using a subsample of the national longitudinal survey of youth (NLSY). We revisit the 

same dataset in the empirical illustration. When we apply our nonparametric test, we do 

5The intuition here is similar to the distinction between average treatment effect (ATE) and Treatment on 
the Treated (TOT). For fixed T , we only observe a subpopulation with and without the treatment. In the 
presence of unobservable heterogeneity, we can only point-identify the APE for a subpopulation and cannot 
point-identify the APE for the entire population. 
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not find evidence against the fixed-effects assumption.6 We also estimate the APE. Our 

results indicate that implications of the linear model, such as constant APEs across time, 

are violated. We conclude that testing nonparametric identification may be useful to the 

empirical researcher, even when parametric models are used for estimation purposes to 

approximate the unknown structural relationship. 

Related Literature. Athey and Imbens (2006), Chernozhukov, Fernandez-Val, Hahn, 

and Newey (2010), hereinafter, CFHN2010, and Hoderlein and White (2009) impose re-

strictions on time heterogeneity to achieve identification. We will refer to this category 

of restrictions as time homogeneity, but it is also referred to as time invariance and time 

stationarity in the literature.7 The papers mentioned above are categorized as ‘fixed ef-

fects’, since they do not restrict individual heterogeneity. As CFHN2010 point out, time 

homogeneity is a very strong assumption, and its empirical content may be thought of as 

time being “randomly assigned.” Bester and Hansen (2009) propose a correlated random 

effects approach where they impose restrictions on individual heterogeneity, but allow for 

time heterogeneity. Altonji and Matzkin (2005) discuss the issue of identifying average 

effects for cross-sectional and panel data models. Although they do not explicitly allow 

for time heterogeneity, they propose exchangeability restrictions that are similar in spirit 

to Bester and Hansen (2009)’s approach. 

Similar to the paper at hand, the approach of the aforementioned papers is focused on 

the identification of a particular object of interest, the APE of a discrete or continuous re-

gressor. The approach in this strand of the literature extends the intuition of differencing 

out individual heterogeneity in linear models to nonseparable models, which was termed 

by Magnac (2004) and Hoderlein and White (2009) as quasi-differencing. Hence, this 

literature is quite relevant for situations where the linear model is used to approximate an 

unknown, possibly nonseparable model. In the absence of separability, quasi-differencing 

here is simply averaging over unobservables in an “appropriate way.” 

The quasi-differencing approach originated in parametric binary choice models, such as 

6The test in Angrist and Newey (1991) uses restrictions implied by the linear model in addition to restrictions 
implied by the fixed-effects assumptions. Hence, the rejection of the test may be either due to violations of the 
linear model or the fixed-effects assumption. 

7CFHN2010 show that in the presence of location and scale time effects, one can still identify the effect of a 
discrete regressor using time homogeneity. 
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conditional logit (Chamberlain 1984, 2010), where the presence of a sufficient statistic for  

the individual effect allowed for the identification of the common parameter while treat-

ing individual heterogeneity nonparametrically. Magnac (2004) introduces the concept of 

quasi-differencing as the presence of a sufficient statistic for the individual effect. The 

term quasi-differencing has been more generally used to refer to identification strategies 

that extend the intuition of differencing in the linear model to more general settings, where 

the distribution of individual heterogeneity is left unrestricted. For semiparamteric binary 

choice models, Honore and Kyriazydou (2000) use the intuition of quasi-differencing to 

nonparametrically identify the common parameter. Hoderlein and White (2009) refer to 

their approach as quasi-differencing. For random coefficient models, Graham and Powell 

(2012) also use a differencing approach to identify the APE. 

This paper further generalizes the concept of quasi-differencing to refer more generally to 

any approach where the APE is identified using average changes of the outcome variable 

across time or subpopulations that coincide with a change in the variable of interest.8 

This definition allows us to include works such as Altonji and Matzkin (2005) and Bester 

and Hansen (2009) under this category. 

The key intuition behind the quasi-differencing approach is that if we seek to identify the 

APE of a regressor from average changes of the outcome variable across time, then we have 

to assume that the distribution of unobservables does not change over time. However, if 

we would like to use average changes of the outcome variable across subpopulations, then 

we have to assume that the distribution of unobservables is the same across subpopula-

tions. Hence, some form of homogeneity assumption is required either across time periods 

or subpopulations. Time homogeneity assumptions are widely used in the literature as 

noted above. Homogeneity assumptions across subpopulations are less prevalent in the 

nonparametric identification literature. For continuous regressors, Bester and Hansen 

(2009) proposes assumptions that are closest to this in spirit.9 

Another strand in the literature follows the classical identification approach, which seeks 

8It is important to note here that the generalization of quasi-differencing here is different from the gen-
eralization proposed in Evdokimov (2011), which is used to identify all structural objects. However, both 
generalizations allow us to include situations where the structural function is not assumed to be stationary 
across time. 

9For cross-sectional setups, Angrist (2004) uses this type of homogeneity assumptions to relate local average 
treatment effect (LATE) to the average treatment effect (ATE). 
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to identify all structural objects, i.e. the structural function and the conditional distribu-

tion of unobservables, which include Altonji and Matzkin (2005), Evdokimov (2010), and 

Evdokimov (2011). The key differences between this category and the quasi-differencing 

approach is that the former identifies all objects, whereas the latter focuses on a specific 

object and hence requires weaker conditions. In other words, the quasi-differencing liter-

ature answers the question: What object can one identify under minimal assumptions? 

The classical identification literature on the other hand answers a different question: What 

assumptions are sufficient to identify all structural objects? Both contribute immensely 

to our understanding of the possibilities and limits of identification of various objects of 

interest from panel data without parametric assumptions. The paper at hand falls under 

the quasi-differencing category. Its findings are related to the classical identification lit-

erature and attempts to point to the relative merits of both approaches. 

Outline of the Paper. The rest of the paper is organized as follows: Section 2 illus-

trates the basic identification problem with an empirical example. Section 3 presents the 

unrestricted DGP and includes the characterization of the trade-off between identifying 

assumptions. It also gives a menu of identification strategies. Section 4 includes the re-

sults for the bootstrap-adjusted tests. Section 5 includes an empirical illustration using a 

subsample of the national longitudinal survey of youth (NLSY). Section 6 concludes. 

2 Basic Identification Problem: Job Training Ex-

ample 

Now let our variable of interest, X, be a binary variable for the participation in a job 

training program and our outcome of interest, Y , be earnings. Our object of interest is the 

effect of participating in a job training program on earnings, and we observe individuals in 

two time periods, t = 1, 2. We assume that there are three subpopulations: (1) individuals 

that never participate in the job training program, Xi = (0, 0), (2) individuals that 

participate in the first time period, but not in the second, Xi = (1, 0), (3) individuals 

that participate in the second time period, but not in the first, Xi = (0, 1). 

Now there are several unobservable factors here that may confound our effect of interest 
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if we examine average changes across time or subpopulations that coincide with changes  

in job training status: (1) macroeconomic conditions, which may change over time, (2) 

time-invariant individual characteristics, such as innate ability, which makes different 

subpopulations incomparable, (3) time-varying unobservable individual characteristics, 

such as the development of new skills, which may change the probability of participation 

across time. If all of these confounding factors are present, then the effect of job training 

on earnings cannot be identified for any subpopulation. For instance, the average change 

of earnings across time for subpopulation Xi = (0, 1) is partly due to the change in job 

training status and partly due to changing macroeconomic conditions and time-varying 

ability. 

Now if one assumes that macroeconomic conditions are the same across both time periods 

and ability was only time-invariant, then one can identify the APE of job training for 

the subpopulations that participate in the program using average within-group changes 

across time, specifically, E[Yi2 − Yi1|Xi = (0, 1)] and E[Yi1 − Yi2|Xi = (1, 0)]. 

However, if macroeconomic conditions were changing over time and affect individuals’ 

decision to participate in the job training program, within-group changes over time can no 

longer be interpreted as the APE of the job training program. The change over time will be 

confounded by the changing macroeconomic climate and are only partly due to changes 

in job training status. In this setup, one could examine within-period changes across 

groups. If one assumes that subpopulations Xi = (0, 1) and Xi = (1, 0) have the same 

unobservable tendencies, e.g. they have the same proportion of high-types to low-types, 

then comparing individuals with Xi = (0, 1) and Xi = (1, 0) within the same period would 

not confound our effect of interest. In this case, {E[Yi1|Xi = (1, 0)]− E[Yi1|Xi = (0, 1)]} 

and {E[Yi2|Xi = (0, 1)]−E[Yi2|Xi = (1, 0)]} identify the effect of job training for the two 

subpopulations in the first and second period, respectively. Note that in the presence of 

time-varying unobservables, the APE is different in each period. 

Finally, another possible strategy for within-period identification is assuming that job 

training status in the second period is random conditional on the first. This implies 

selection on observables, as introduced in Heckman and Robb (1985), in the second time 

period conditional on job training status in the first time period. In this case, one can 
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identify the effect of job training on earnings from {E[Yi2|Xi = (0, 1)]−E[Yi2|Xi = (0, 0)]}. 

One of the key points of the paper at hand is that neither of the above identification 

strategies is justified a priori. However, they all have clear testable implications. Hence, 

this paper proposes strategies to test for these identifying assumptions. We first proceed 

to a formal discussion of the identification problem. 

3 Nonparametric Identification of APEs 

3.1 DGP and Definitions 

We begin with a general DGP exhibiting arbitrary individual and time heterogeneity, 

formally defined below. Let Yit be the outcome variable of interest with support Y ⊆ R. 

For i = 1, 2, ..., n, t = 1, 2, 

Yit = ξt(Xit, Ai, Uit) (2) 

where Xit is a d × 1 vector of discrete regressors, Ai denotes unobservable individual-

specific, time-invariant factors, and Uit denotes individual-specific, time-varying unobserv-

ables. {Yit, Xit} are observables, whereas {Ai, Uit} are unobservables that may confound 

our effect of interest. For simplicity, we assume that Ai and Uit are scalar real-valued 

random variables for t = 1, 2. However, the results would hold for any finite-dimensional 

vectors Ai and Uit. 
10 Calligraphic letters are used to distinguish unobservable from ob-

servable factors. ξt is unknown and is referred to as the structural function in the sense 

that Yit(x) = ξt(x, Ai, Uit). 

Notation. Let X denote the support of Xit. x and x� denote elements in X . Now 

Xi ≡ (Xi1, Xi2, ..., XiT ), a d × T matrix with support X T ≡ ×T . x and x� denote t=1X

elements in X T . Note that x = (x1, x2, ..., xT ), hence xt denotes the t
th column of x. For 

random variables, Wit and Zi, let FWit|Zi
(.|.) denote the conditional distribution function 

of Wit given Zi in period t. For a set S, |S| of a set denotes the cardinality of S. 

Assumption 3.1 (General DGP) 

10The support of Ai and Uit could also be different from R. 
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(i) Yit = ξt(Xit, Ai, Uit), where ξt : X × R
2 �→ Y, where Y ⊆ R, 

(ii) X is finite, |X | = K, 

(iii) E[Yit] < ∞ for all t = 1, 2, .., T , 

(iv) P (Xi = x) > 0 for all x ∈ X T . 

The main content of the above assumption is the finite support of Xit in (ii).11 Since X 

is finite and T is fixed, X T is also a finite set. Assumption 3.1 (i) may be thought of 

as a ‘correct specification’ assumption. However, it is important to note that the choice 

of variables to include in Xit is so far not restrictive, since the assumption allows for 

an arbitrary, time-varying structural relationship and there are no assumptions on the 

distribution of unobservables.12 It is also important to note that Ai and Uit may be any 

finite-dimensional vector, we assume that they are scalar real-valued random variables for 

simplicity. Assumption 3.1 (iii) and (iv) are regularity conditions that ensure that the 

APE exists for all elements in the support of Xi, which simplifies our analysis. 

The general DGP does not impose any further restrictions on the structural functions ξt 

or the conditional distributions of unobservables FAi,Uit|Xi 
= . 13 Now we FUit|Xi,Ai 

FAi|Xi 

formally define what we mean by a nonstationary structural function, arbitrary individual 

and time heterogeneity. 

Definition 1 (Nonstationary Structural Function) ξt(.) may vary for t = 1, 2, ..., T . 

Definition 2 (Arbitrary Individual Heterogeneity) A DGP exhibits arbitrary individual 

heterogeneity, if FAi|Xi
(.|.) is unrestricted. 

The above is the fundamental definition of a ‘fixed effect’. Arellano (2003) shows how the 

linear fixed effects estimator is equivalent to the maximum likelihood estimator where the 

distribution of individual heterogeneity is unrestricted. Fixed effects logit and Poisson are 

examples of nonlinear parametric models where the presence of a sufficient statistic for 

11It is important to note that the identification component of this paper applies to a discrete change of 
continuous variables as well. 

12Once we impose identifying assumptions, the choice of Xit will be very important. 
13Depending on the nature of Yit, a priori bounds may be given as assumed in CFHN2010. It is important 

to note however that, unlike the case of set-identification, a priori bounds are irrelevant for the discussion of 
point-identification. 
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individual heterogeneity allows one to identify parameters of interest without assumptions  

on the distribution of individual heterogeneity. 

Definition 3 (Arbitrary Time Heterogeneity) A DGP exhibits arbitrary time heterogene-

ity, when FUit|Xi,Ai
(.|., .) may vary for t = 1, 2, ..., T . 

The key content in the above definition is that the distribution of time-varying unobserv-

ables may change over time. However, the definition does not impose that FUit|Xi,Ai 
is 

unrestricted. This is a key distinction between the definition of arbitrary individual and 

time heterogeneity. 

We will also use the terminology of movers and stayers introduced in Chamberlain (1982) 

to refer to subpopulations that change the regressor vector, Xit, over time and those who 

do not, respectively.14 The following definition uses the realizations of Xi to define a 

subpopulation. 

Definition 4 (Subpopulation) A subpopulation is defined by its realization of Xi = x, 

where x ∈ X T . 

Since |X T | is finite, we have finitely many subpopulations. It is important to note that each 

subpopulation, x ∈ X T , is characterized by having the same distribution of unobservables 

for all time periods, i.e. FAi,Uit|Xi
(.|x). Together with the structural function, this yields 

a distribution of the outcome variable for each subpopulation. Hence, we can think of the 

subpopulation as infinitely many realizations from the same distribution. This is not to be 

confused with individuals in the same subpopulation having the same ‘fixed effect’.15 Back 

to our job training example, individuals in a subpopulation have the same distribution of 

ability, this does not mean that they all have the same ability or that they all respond in 

the same way to macroeconomic shocks. But rather that they have the same likelihood 

of being high-achieving or fast-learners. 

14For the latter subpopulations, all columns of Xi are equal, i.e. Xi1 = ... = XiT as defined in Chamberlain 
(1982). 

15The case here is really one where correlated random effects and fixed effects are equivalent. Correlated 
random effects are approaches that integrate over the distribution of individual effects, whereas fixed effects 
treat them as fixed in repeated sampling. In the linear model, fixed effects and correlated random effects are 
equivalent under certain assumptions, as shown in Mundlak (1978). 
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3.2 Object of Interest and the Quasi-differencing Approach  

Now we would like to learn about the average effect of a discrete regressor X on Y for 

a particular subpopulation x. The problem is that there is both individual and time 

heterogeneity that may confound our effect if we simply look at the change in Y as X 

changes over time. Formally, our object of interest is the APE of changing Xit from x to 

x , x = x�, for subpopulation Xi = x, given as follows 

βt(x → x �|Xi = x) = E[Yit 
x� |Xi = x]− E[Yit

x|Xi = x], 

where Y x = ξt(x, a, u) is the counterfactual notation, i.e. Yit 
x is the outcome variable if it 

the regressor vector was fixed at x. We distinguish between x and x� and the columns of 

x, since they may not be equal. For instance, if we are interested in the effect of obtaining 

a master degree (x�) on top of a bachelor degree (x), then for individuals that only have 

a high school degree, i.e. x = (12, ..., 12), xt = x and xt  x� for all t = 1, 2, ..., T . 16  = 

Note that the APE is indexed by the time period t and the subpopulation x. This reflects 

the presence of time heterogeneity (the effect is different across time periods) as well as 

individual heterogeneity (the effect is different across subpopulations). 

Given our DGP in Assumption 3.1, we can write the APE as follows 

�
E[Yit 

x |Xi = x]− E[Yit
x|Xi = x] 

  

= ξt(x , a, u)dFAi,Uit|Xi
(a, u|x)− ξt(x, a, u)dFAi,Uit|Xi

(a, u|x) (3) 

It is important to note that in (3) the only difference between the two terms is that 

one is evaluated at x and the other at x� . Otherwise, the structural function ξt and 

the unobservable distribution FAi,Uit|Xi
(., .|x) are the same. This is the key difficulty in 

identifying a ceteris paribus effect in panel data. In an experiment, one could randomize 

individuals from the same subpopulation in the same period, thereby holding individual 

and time heterogeneity fixed. In observational settings, assumptions on {ξt, FAi,Uit|Xi
}T t=1 

are required to ensure that average within-group or within-period changes are taken with 

respect to the same structural function and unobservable distribution. This is the key 

16Note that in this situation, identification of the APE for these subpopulations requires assumptions on 
individual heterogeneity in the spirit of Angrist (2004). 
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intuition behind quasi-differencing in general nonseparable panel data models that will be  

examined in the following. 

3.3 Characterization of the Trade-off between Identifying 

Assumptions 

To simplify notation, we assume T = 2. More specifically, we would like to identify the 

APE of a subpopulation (x, x�) 

βt(x → x �|Xi = (x, x �)) = (ξt(x , a, u)− ξt(x, a, u))dFAi,Uit|Xi
(a, u|(x, x �)) (4) 

In observational settings, an obvious candidate for the identification of βt(x → x�|Xi = 

(x, x�)) is E[Yi2 − Yi1|Xi = (x, x�)], which we can decompose as follows 

E[Yi2 − Yi1|Xi = (x, x �)] = E[Yi2 − Yi
x 
2|Xi = (x, x �)] + E[Yi

x 
2 − Yi1|Xi = (x, x �)] 

= β2(x → x �|Xi = (x, x �)) + E[Yi
x 
2 − Yi1|Xi = (x, x �)]. 

The identification of E[Yi
x 
2 −Yi1|Xi = (x, x�)] is necessary and sufficient for the identifica-

tion of β2(x → x�|Xi = (x, x�)). We will refer to the former as the counterfactual trend, 

i.e. it is the change that would have occurred to the subpopulation (x, x�) had the change  

from x to x� not occurred.  

In the following, we will give a sufficient condition under which we can identify the coun-

terfactual trend, E[Yi
x 
2 − Yi1|Xi = (x, x�)], from a stayer subpopulation, (x, x), i.e.  

E[Yi
x 
2 − Yi1|Xi = (x, x �)] = E[Yi2 − Yi1|Xi = (x, x)]. (5) 

This condition will help us characterize the trade-off between various identifying assump-

tions. We first introduce some standard regularity conditions on the distribution of un-

observables. 

Assumption 3.2 (Distribution of Unobservables) 

(i) FAi,Ui1,Ui2|Xi
(., ., .|.) admits a density, fAi,Ui1,Ui2|Xi

(., ., .|.), 

(ii) fAi,Ui1,Ui2|Xi
(., ., .|.) > 0, fAi,Uit|Xi

(., .|.) > 0 for t = 1, 2, fAi|Xi
(.|.) > 0. 
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The following theorem gives a sufficient condition for (5).  

Theorem 3.1 Let Assumptions 3.1 and 3.2 hold, 

E[Yi
x 
2 − Yi1|Xi = (x, x �)] = E[Yi2 − Yi1|Xi = (x, x)] 

if 

(ξ2(x, a, u2)− ξ1(x, a, u1)) 

× (fAi,Ui1,Ui2|Xi
(a, u1, u2|(x, x �))− fAi,Ui1,Ui2|Xi

(a, u1, u2|(x, x))) = 0. 

∀(a, u1, u2) ∈ R3 

All proofs of Section 3 are given in Appendix A. The above condition depends on the 

change in the structural function and the difference between unobservable distributions, 

both across time and subpopulations. 

We illustrate how the condition characterizes the trade-off between different identifying 

assumptions in the following variations on the above theorem. The first two variations 

reflect a situation where the researcher would like to leave individual heterogeneity unre-

stricted, which reflects the standard fixed-effects approach. 

Variation 3.1 (Stationary Structural Function up to Generalized Time Effect) Let As-

sumptions 3.1 and 3.2 hold. 

d
Under arbitrary individual heterogeneity and Ui1|Xi, Ai = Ui2|Xi, Ai, 

E[Yi
x 
2 − Yi1|Xi = (x, x �)] = E[Yi2 − Yi1|Xi = (x, x)] 

if 

ξt(x, a, u) = ξ(x, a, u) + λt(x) ∀(a, u) ∈ R2 

d
In the above variation on Theorem 3.1, time homogeneity, i.e. Ui1|Xi, Ai = Ui2|Xi, Ai, is 

maintained. If individual heterogeneity is left unrestricted, then the structural function 

has to be decomposed into a stationary and nonstationary component, ξ(x, a, u) and λt(x), 

respectively. The nonstationary component may only depend on observable regressors. We 
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will refer to this as stationary in unobservables. Hence, in the quasi-differencing approach,  

time homogeneity alone is not sufficient. Hoderlein and White (2009) and CFHN2010 

assume both time homogeneity and a stationary structural function without time effects 

to achieve identification of the APE for discrete and continuous regressors, respectively.17 

Note that for continuous regressors, conditional independence restrictions are required to 

ensure that the marginal change in the regressor vector does not change the distribution 

of the unobservables, as in Altonji and Matzkin (2005) and Hoderlein and White (2009). 

Variation 3.2 (Time Homogeneity) Let Assumptions 3.1 and 3.2 hold.  

Under arbitrary individual heterogeneity and ξt(x, a, u) = ξ(x, a, u) + λt(x),  

E[Yi
x 
2 − Yi1|Xi = (x, x �)] = E[Yi2 − Yi1|Xi = (x, x)] 

if ∀x ∈ {(x, x), (x, x�)} 

fUi2|Xi,Ai
(u2|x, a) = fUi1|Xi,Ai

(u1|x, a) ∀(a, u1, u2) ∈ R2 

In Variation 3.2, the structural function is assumed to be stationary up to a generalized 

time effect. In this case, time homogeneity has to be assumed. Hence, the last two varia-

tions show that the stationarity of the structural function and time homogeneity are both 

required to identify the APE using within-group changes across time. This is not at all 

surprising for the quasi-differencing approach, since we simply take average within-group 

changes and remain agnostic about the functional form of the structural function and the 

distribution of unobservables. Thus, without information about these objects, we cannot 

hope to use time homogeneity without the stationarity of the structural function in un-

observables and vice versa. 

Variations 3.1 and 3.2 characterize a situation where identification would be achieved 

within-group, since individual heterogeneity is unrestricted. Section 3.4.1 generalizes the 

setup here where subpopulations other than (x, x) can be used to identify the generalized 

time effect. 

So far we have seen that restrictions on time heterogeneity and the stationarity of the 

17With an additional restriction, CFHN2010 can allow for nonstochastic location and scale time effects, i.e. 
Yit = ξ(Xit, Ai, Uit)σt + λt. 
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structural function are required if we would like individual heterogeneity to be unre-

stricted. In this setup, we use average within-group changes across time to identify the  

APE for a subpopulation. Now we move to the case where we would like to have un-

restricted time heterogeneity. Here, we will see that we have to impose restrictions on  

individual heterogeneity.  

Variation 3.3 (Individual Homogeneity) Given Assumptions 3.1, 3.2.  

Under arbitrary time heterogeneity  

E[Yi
x 
2 − Yi1|Xi = (x, x �)] = E[Yi2 − Yi1|Xi = (x, x)] 

if 

R
3fAi,Ui1,Ui2|Xi

(a, u1, u2|(x, x �)) = fAi,Ui1,Ui2|Xi
(a, u1, u2|(x, x)) ∀(a, u1, u2) ∈ 

The above condition implies that the subpopulations (x, x�) and (x, x) are homogeneous, 

i.e. they have the same distribution of unobservables.18 This allows us to identify the  

APE using average within-period changes across subpopulations. Specifically,  

β2(x → x �|Xi = (x, x �)) = (ξ2(x , a, u)− ξ2(x, a, u))dFAi,Ui2|Xi
(a, u|(x, x �)) 

= ξ2(x , a, u)dFAi,Ui2|Xi
(a, u|(x, x �))− ξ2(x, a, u)dFAi,Ui2|Xi

(a, u|(x, x)) 

= E[Yi2|Xi = (x, x �)]− E[Yi2|Xi = (x, x)], 

where the penultimate equality follows from the individual homogeneity assumption. Note  

that in this setup, we are using the information obtained from the first time period, i.e.  

Xi1, to identify the APE in the second time period, which is a cross-section of all indi-

viduals.19 Section 3.4.2 generalizes this type of homogeneity assumptions to allow sub-

populations other than (x, x) as a control group for (x, x�). Angrist (2004) discusses the  

use of this type of homogeneity assumptions to relate the local average treatment effect  

(LATE) to the average treatment effect (ATE) for instrumental variables methods in the  

18It is important to note here that in the above case, the result holds because E[Y
i

x 
2|Xi = (x, x�)] = E[Yi2|Xi = 

(x, x)] and E[Yi1|Xi = (x, x�)] = E[Yi1|Xi = (x, x)]. 
19Recall that microeconomic panel data models are also called cross-sectional time series. For each time 

period, we observe a cross-section. 
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cross-sectional setup.  

So far we have characterized the obvious trade-off between individual and time hetero-

geneity. Since we only have two dimensions that we are differencing over, we cannot leave 

both unrestricted. In the next variation on Theorem 3.1, the setup assumes that we would 

like to leave both individual and time heterogeneity unrestricted. The result shows that 

separability and conditional independence assumptions are required to aid identification. 

We first introduce some more regularity conditions. 

Assumption 3.3 (Smoothness and Dominating Function) 

(i) ∂ξ(x, a, u)/∂a, ∂2ξ(x, a, u)/∂a∂ut, fUit|Xi,Ai
(u|x, a), ∂fUit|Xi,Ai

(u|x, a)/∂a exist and 

are continuous for all a, u, x ∈ X , x ∈ X T and t = 1, 2, ..., T , 

(ii) |ξ(x, a, ut)fUit|Xi,Ai
(u|x, a)| ≤ g(x, u, x), where E[|g(x, Uit, Xi)||Xi = x] < ∞ ∀x ∈ 

X T . 

The characterization of separability of a function in two variables is characterized by 

the cross-partial derivative being zero.20 Hence, Assumption 3.3 (i) ensures that sufficient 

smoothness conditions hold. Assumption 3.3 (ii) ensures that we can apply the dominating 

convergence theorem. 

Variation 3.4 (Separability and Independence) Let Assumptions 3.1, 3.2 and 3.3 hold. 

Under unrestricted individual and time heterogeneity, and ξt(x, a, u) = ξ(x, a, u), t = 1, 2, 

E[Yi
x 
2 − Yi1|Xi = (x, x �)] = E[Yi2 − Yi1|Xi = (x, x)] 

if 

∂2ξ(x, a, u)/∂a∂u = 0 ∀(a, u) ∈ R2 , (Separability)  

(Ui1, Ui2) ⊥ (Xi, Ai). for t = 1, 2 (Independence)  

There are two interesting findings in the above result. The first is that separability aids 

identification in this setup if it is coupled with independence. The separability of Ai 

and Uit alone is not sufficient if they are dependent. We can think of independence as 

220For instance, m(a, u) = a +u2, then ∂m(a, u)/∂a = 2a and ∂m(a, u)/∂u = 2u. Thus, ∂2m(a, u)/∂a∂u = 0. 
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“stochastic separability”.21 Hence, both functional-form and “stochastic separability” are 

required. The other interesting issue to note here is that even though we have arbitrary 

individual and time heterogeneity, i.e. FAi|Xi 
is unrestricted, and FUit|Xi,Ai 

is allowed to 

change over time, the idiosyncratic shocks, Uit are independent of individual heterogeneity 

and observables, since FUit|Xi,Ai 
= FUit

. 

Relation to the Classical Identification Literature. In the classical identification 

literature, stronger assumptions are imposed to identify all structural objects, whereas 

the quasi-differencing is much more parsimonious. In the following, we will discuss the 

relative merits of both approaches with special attention given to the model in Evdokimov 

(2010). It is given by the following 

Yit = m(Xit, Ai) + Uit. (6) 

Under the separability of Uit in the structural function, the conditional independence 

= , 22 monotonicity of m(x, a) in a and regularity conditions, Ev-FUit|Xi,Ai,Ui(t) 
FUit|Xit

dokimov (2010) shows the identification of FUit|Xit 
for t = 1, 2, FAi|Xi 

and m(x, a), ∀x, a. 

Under the above model, we can decompose the average within-group change for subpop-

ulation (x, x�) as follows, 

E[Yi2 − Yi1|Xi = (x, x �)] = E[m(x , Ai)−m(x, Ai)|Xi = (x, x �)] 

+ E[Ui2|Xi2 = x �]− E[Ui1|Xi1 = x] 

= β(x → x �|Xi = (x, x �)) + ∆. (7) 

Since FUit|Xit 
is identified for t = 1, 2, we can identify ∆. Hence, the above identification  

strategy allows us to identify our object of interest in the presence of time heterogeneity,  

while allowing individual heterogeneity to be unrestricted.  

The quasi-differencing approach gives two strategies to identify the same objects. First,  

Variation 3.1 and 3.2 show that neither time homogeneity nor stationarity of the structural  

21This term is used here to convey the intuition and is not related to the definition of separability of stochastic 
processes. 

22Ui(t) is the idiosyncratic shock for the other period τ = t. 
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function are sufficient on their own. Hence, the following model  

Yit = ξ(Xit, Ai, Uit) + λt(Xit), t = 1, 2  

d Ui1|Xi, Ai = Ui2|Xi, Ai, (8) 

where λ1(x) = 0 for all x ∈ X . Hence, ξ1(x, a, u) = ξ(x, a, u) and ξ2(x, a, u) = ξ(x, a, u) + 

λ2(x). Now the APE of moving from x to x� for subpopulation (x, x�) in the period t is 

given by 

βt(x → x �|Xi = (x, x �)) = (ξt(x , a, u)− ξt(x, a, u))dFAi,Uit|Xi
(a, u|(x, x �)) 

(8) � = (ξt(x , a, u)− ξt(x, a, u))dFAi,Ui1|Xi
(a, u|(x, x �)) (9) 

Note that using average within-group changes 

E[Yi2 − Yi1|Xi = (x, x �)] = E[Yi2 − Yi
x 
2|Xi = (x, x �)] + E[Yi

x 
2 − Yi1|Xi = (x, x �)] 

= (ξ2(x , a, u)− ξ2(x, a, u))dFAi,Ui1|Xi
(a, u|(x, x �)) 

+ (ξ2(x, a, u)− ξ1(x, a, u))dFAi,Ui1|Xi
(a, u|(x, x �)) 

= β2(x → x �|Xi = (x, x �)) + λ2(x) (10) 

The APE is indexed by the time period, since the structural function is not stationary in 

the observables, ξ2(x, a, u) = ξ1(x, a, u) + λ2(x).
23 Now to identify the APE in (10), we 

have to identify λ2(x), the counterfactual trend. Now noting that 

E[Yi2 − Yi1|Xi = (x, x)] = (ξ2(x, a, u)− ξ1(x, a, u))dFAi,Ui1|Xi
(a, u|(x, x)) 

= λ2(x)dFAi,Ui1|Xi
(a, u|(x, x)) = λ2(x). (11) 

The last equality illustrates why identification of the counterfactual trend would not be 

achieved if the nonstationary component of the structural function depended on the un-

observables as pointed out in Variation 3.1. Plugging (11) into (10) identifies the APE. 

Note that the setup of Evdokimov (2010) may also accommodate generalized time effects 

23This implies that ξ2(x , a, u) − ξ1(x, a, u) = ξ1(x , a, u) + λ(x�) − ξ1(x, a, u) − λ(x), which is equal to 
ξ1(x , a, u) − ξ1(x, a, u) iff λt(x

�) = λt(x). For instance, if λt(x) = λ, then this condition would be fulfilled 
and the APE would be constant across time. 
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as in λt(Xit). The key difference between the two approaches is that with the identification 

of the entire distribution of Uit|Xit, Evdokimov (2010) can allow for time heterogeneity, 

whereas the quasi-differencing approach used here does not allow for time heterogeneity. 

Since the structural functions in (6) and (8) are different, it may be hard to compare the 

two models. On the other hand, (6) is very similar to the setup in Variation 3.4, which is 

given by 

Yit = µ(Xit, Ai) + Uit  

d Uit|Xi, Ai = Uit, t = 1, 2 (12) 

E[Yi2 − Yi1|Xi = (x, x �)] = (µ(x , a) + u2 − (µ(x, a) + u1))dFAi,Ui1,Ui2|Xi
(a, u1, u2|(x, x �)) 

= (µ(x , a)− µ(x, a))dFAi|Xi
(a|(x, x �)) 

+ E[Ui2|Xi = (x, x �)]− E[Ui1|Xi = (x, x �)] 

(12) 
= β(x → x �|Xi = (x, x �)) + E[Ui2]− E[Ui1] (13) 

Here, the counterfactual trend is given by {E[Ui2] − E[Ui1]}. Since the distribution of 

Uit is independent of Xi and Ai, we can use any stayer subpopulation to identify the 

counterfactual trend. 

(12)
E[Yi2 − Yi1|Xi = (x, x)] = E[Ui2 − Ui1|Xi = (x, x)] = E[Ui2]− E[Ui1]. (14) 

Plugging (14) into (13) identifies the APE. In Evdokimov (2010), E[Uit|Xit] = E[Uit]. If 

this were true, then we could not identify the APE using the quasi-differencing approach. 

It is important to point out that the classical identification results in Evdokimov (2010) 

require stronger assumptions than the quasi-differencing approach. Hence, it is hard to 

compare the two approaches. The above examples are simply meant to illustrate the 

advantages of imposing stronger assumptions and identifying all structural objects. 

Relation to the Classical Difference-in-Difference Model. Let Xit ∈ {0, 1} and 

T = 2. Now consider the following two linear models. Model 1 follows the setup in 
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Variations 3.1 and 3.2,  

Yit = βXit + Ai + λt + Uit, t = 1, 2  

d Ui2|Xi, Ai = Ui1|Xi, Ai. (15) 

Model 2 follows the setup in Variation 3.4, 

Yit = βXit + Ai + Uit  

d Uit|Xi, Ai = Uit, t = 1, 2. (16) 

Under both models, β is identified by the probability limit of the difference-in-difference es-

    n n n ntimator β̂ ≡ ∆Yi1{Xi = (0, 1)}/ 1{Xi = (0, 1)}− ∆Yi1{Xi = (0, 0)}/ 1{Xi = i=1 i=1 i=1 i=1 

(0, 0)}. 

For Model 1, 

p
β̂ → E[Yi2 − Yi1|Xi = (0, 1)]− E[Yi2 − Yi1|Xi = (0, 0)] 

= β + E[Ai + λ2 + Ui2 − (Ai + λ1 + Ui1)|Xi = (0, 1)] 

− E[Ai + λ2 + Ui2 − (Ai + λ1 + Ui1)|Xi = (0, 0)] 

(15) 
= β + E[Ui1 − Ui1|Xi = (0, 1)]− E[Ui1 − Ui1|Xi = (0, 0)] 

= β (17) 

Note that in the above, idiosyncratic shocks may be correlated with the regressors as well 

as unobservable individual heterogeneity in arbitrary ways. However, time homogeneity 

has to hold, i.e. the conditional distribution of idiosyncratic shocks has to be the same 

across time. Furthermore, the structural relationship has to be stationary up to a non-

stochastic time effect. Thus, the generalization of Model 1 to a nonseparable model yields 

Model 1’, given by 

Yit = ξ(Xit, Ai, Uit) + λt, t = 1, 2  

d Ui2|Xi, Ai = Ui1|Xi, Ai. (18) 
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The above is a generalization of Athey and Imbens (2006) for the panel context, where a  

nonstochastic time effect is allowed for.  

For Model 2, on the other hand,  

p
β̂ → E[Yi2 − Yi1|Xi = (0, 1)]− E[Yi2 − Yi1|Xi = (0, 0)] 

= β + E[Ui2 − Ui1|Xi = (0, 1)]− E[Ui2 − Ui1|Xi = (0, 0)] 

(16) 
= β + E[Ui2 − Ui1]− E[Ui2 − Ui1] 

= β. (19) 

The intuition here is that, even though idiosyncratic shocks are heterogeneously dis-

tributed across time, they are independent of regressors and individual heterogeneity. 

Hence, counterfactual trends for mover subpopulations, (x, x�) can be identified from 

stayer subpopulations, (x, x). Generalizing this model to the nonseparable setup yields 

Model 2’, given by 

Yit = ξ(Xit, Ai, Uit),  

d Uit|Xi, Ai = Uit. t = 1, 2 (20) 

Recall that the parallel-trends assumption in the linear model implies that Cov(Uit, Ai) = 

0 and Cov(Uit, Xit) = 0 for t = 1, 2. Hence, the above may be viewed as the nonseparable 

version of the parallel-trends assumption.24 

3.4 Menu of Identifying Assumptions 

The previous section gives directions to some new identification strategies. For within-

group identification, we use time homogeneity and the stationarity of the structural func-

tion in unobservables. For instance, the structural function may be given as follows 

Yit = ξ(Xit, Ai, Uit) + λt(Xit). (21) 

24In the empirical literature, the parallel-trends assumption is tested by look at pre-trial years and ensuring 
that both control and treatment groups follow the same trends in average within-group changes across time. 
It is important to note that if only changes are considered, both Model 1’ and Model 2’ would yield the same 
‘parallel-trends’ prediction. However, they have different testable implications if we look at the distribution of 
unobservables as a whole. This issue will be left for future work. 
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For within-period identification, restrictions on individual heterogeneity, such as FAi,Uit|Xi
(., .|(x, x)) =  

FAi,Uit|Xi
(., .|(x, x�)), allow us to identify the effect of interest in period t in the presence  

of time heterogeneity.  

In the following section, we will give generalizations of (21) as well as other options for  

within-period identification.  

3.4.1 Within-Group Identification: Restrictions on Structural Function  

and Time Heterogeneity  

Time homogeneity was proposed in CFHN2010, where the structural function is assumed  

to be stationary in both observables and unobservables. In this paper, we allow the struc-

tural function to be nonstationary in observables, however we maintain its stationarnity  

in unobservables. The following theorem gives conditions under which one can identify  

the APE of a subpopulation using average within-group changes across time, when we  

allow for generalized time effects in the structural function.  

Yit = ξ(Xit, Ai, Uit) + λt(h(Xi)) (22) 

where h : X T �→ R. 25 The following theorem gives conditions under which one can identify  

the APE given the above structural relationship. Let xt denote the t
th column of x.  

Theorem 3.2 (Within-Group Identification)  

Given Assumption 3.1, if the following conditions are satisfied for some t, τ ∈ {1, 2, ...T },  

τ = t,  

(i) FUit|Xi,Ai
(.|., .) = FUiτ |Xi,Ai

(.|., .), 

(ii) ξτ (x, a, u) = ξt(x, a, u) + λτ (h(x)), ∀(x, a, u) ∈ X × R
2 

c c(iii) h(x) = h(xc) and xt = xτ , 

then 

βt(xt → xτ |Xi = x) = E[Yiτ − Yit|Xi = x]− E[Yiτ − Yit|Xi = x c] 

25Note that this mapping is not onto. X T is a finite set, whereas R is infinite. 
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The above theorem shows that in order to allow for a time effect that depends on Xi, 

there has to be a restriction h(Xi) that allows one to identify λτ (h(x)) from another 

subpopulation, a control group, xc, this is implied by condition (iii) in the above theorem. 

To illustrate this, given (i) and (ii), 

E[Yiτ − Yit|Xi = x] = (ξτ (xτ , a, u)− ξt(xt, a, u))dFAi,Ui1|Xi
(a, u|x) 

= βτ (xt → xτ |Xi = x) + λτ (h(x)). 

Hence, the counterfactual trend here is λτ (h(x)). Now we would like to identify this 

counterfactual trend from a subpopulation xc, given by 

c cE[Yiτ − Yit|Xi = x c] = (ξτ (xτ , a, u)− ξt(x , a, u))dFAi,Ui1|Xi
(a, u|x c)t

c c = (ξτ (xτ , a, u)− ξt(xt , a, u))dFAi,Ui1|Xi
(a, u|x c) 

c c(x =x )τ = t λτ (h(x c)) 

(h(x)=h(xc)) 
= λτ (h(x)). 

The last two equalities follow from the conditions given in (iii). 

Within-group identification strategies are very popular in the empirical literature, the 

above result can be thought of as a generalization of the fixed-effects methods, such as 

the difference-in-difference model discussed above. Section 4 proposes tests for the models 

implied by the above theorem, which may be viewed as nonparametric tests of the fixed-

effects assumption. 

3.4.2 Within-Period Identification: Restrictions on Individual Hetero-

geneity 

Within-period identification solves a cross-sectional identification problem using the panel 

information. Traditional cross-sectional identification strategies may be applied, such as 

instrumental variables approaches which require completeness conditions in the nonpara-

metric setup, which are known to be very strong.26 What we propose here are alternative 

26Canay, Santos and Shaikh (2011) give conditions under which no non-trivial tests of the completeness 
condition exist. 
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strategies to the classical cross-sectional identification strategies. For continuous regres-

sors, Bester and Hansen (2009) show how average effects in a specific time period can 

be identified through index restrictions on the distribution of individual heterogeneity, 

while relying on special properties of continuous variables.27 In many ways, within-period 

identification strategies presented here may be thought of as the counterpart of Bester 

and Hansen (2009) for discrete regressors. 

Theorem 3.3 (Within-Period Identification)  

Given Assumption 3.1, if  

(i) FAi,Uit|Xi
(., .|.) = FAi,Uit|h(Xi)(., .|.), 

c(ii) h(x) = h(xc), where x = x , 

then 

c cβt(xt → xt|Xi = x) = βt(xt → xt|Xi = x c) 

= E[Yit|Xi = x]− E[Yit|Xi = x c]. 

c cNote in the above that βt(x → xt|Xi = x) = βt(x → xt|Xi = xc) by (i) and (ii). Hence, t t 

we identify the effect for the control group as well. The particular effect that we identify 

cis determined by the realizations of Xit for both subpopulations in period t, xt and xt , 

respectively. 

There are two types of restrictions that may be of particular interest here, (1) exchange-

ability restrictions and (2) exclusion restrictions. Exchangeability restrictions, which are 

similar in spirit to the restrictions in Bester and Hansen (2009), were proposed in Altonji 

and Matzkin (2005) to relax the conditional independence assumption in the identification 

of average derivatives.28 In that case, exchangeability is not sufficient for identification. 

However, for discrete regressors, exchangeability is sufficient. We give an empirical exam-

ple where we use the exchangeability restriction to identify the effect of interest. 

Example 3.1 (Female Labor Participation: Exchangeability Restriction)  

Let Yit be a binary variable for employment status, Xit a binary variable for having a child  

d27Bester and Hansen (2009) impose the restriction that Uit|Xi, Ai = Uit|Xit, Ai.  
28Note that in Hoderlein and White (2009) time homogeneity alone is not sufficient for the identification of  

the local average structural derivative, but a conditional independence restriction is also imposed. 
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under 6 months of age.  

Yit = ξt(Xit, Ai, Uit) (23) 

The effect of child-bearing on female labor participation is a classical example of panel 

data models using fixed effects approach, i.e. within-group identification, whether in linear 

or nonlinear models, as in Heckman and MaCurdy (1980) and (1982), Hyslop (1999), and 

Fernandez-Val (2009). In the presence of time heterogeneity, within-group identification 

could not identify the APE of child-bearing on female labor participation. However, if 

we assume FAi,Uit|Xi 
= , then within-period identification is possible. The FAi,Uit| t Xit

justification behind such an assumption is that, generally speaking, individuals are more 

likely to select how many children to have in a given time period but they cannot fully 

control when their children are born. This would imply that the number of times that an 

Tindividual has children under 6 months of age, i.e. t=1 Xit, characterizes unobservable 

characteristics, as opposed to Xi. For T = 2, this assumption implies that subpopulations 

(0, 1) and (1, 0) have the same distribution of unobservables, i.e. FAi,Uit|Xi
(., .|(0, 1)) = 

FAi,Uit|Xi
(., .|(1, 0)) for t = 1, 2. Hence, they can be used to identify the counterfactual for 

one another. This yield the following APEs for the first and second time period. 

β1(0 → 1|Xi = (0, 1)) = β1(0 → 1|Xi = (1, 0)) = E[Yi1|Xi = (1, 0)]− E[Yi1|Xi = (0, 1)] 

β2(0 → 1|Xi = (0, 1)) = β2(0 → 1|Xi = (1, 0)) = E[Yi2|Xi = (0, 1)]− E[Yi2|Xi = (1, 0)]. 

Hence, within-period changes across subpopulations identify the effect of interest for indi-

viduals that switch their Xit across time. Note that in the presence of time heterogeneity, 

β1(0 → 1|Xi = (0, 1)) = β2(0 → 1|Xi = (0, 1)). The intuition here is that in the presence 

of changing macroeconomic conditions, the APE in one year is generally different from 

another, even for the same subpopulation. 

Another class of restrictions is exclusion restrictions such as FAi,Uit|Xi
(.) = (.), FAi,Uit|Xi(τ) 

where Xi(t) = {Xi1, .., Xi,τ−1, Xi,τ+1, ..., XiT }. The distribution of unobservables is de-

termined by observables, Xi(τ), hence Xiτ does not provide additional information about 

these unobservables. This assumption implies selection on observables, Xi(τ), as in Heck-
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man and Robb (1985).  

Example 3.2 (Hypothetical Example: Family Panel Model with Exclusion Restriction) 

Now let us think of a panel of families and their children. Our outcome variable is income 

of the child, and the variable of interest is a binary variable for whether the parents helped 

their child with college tuition or not. 

Yij = ξj(Xij , Ai, Uij), i = 1, 2, ..., n, j = 1, 2, ..., J. (24) 

For simplicity, assume that all families in the panel have exactly 2 children, i.e. J=2. 

In this setup, it is very important to allow for unobservable heterogeneity at the child 

level, since every child has his/her own abilities. Thus, a within-period approach is more 

suitable. In this situation, once we condition on whether parents help their first child with 

their college tuition, whether they help their second child contains no further information 

about the unobservable characteristics of the family. This justifies an exclusion restriction 

on the distribution of unobservables, FAi,Uij |Xi 
= , j = 1, 2. As a result, we can FAi,Uij |Xi1 

identify the effect of interest for the second child. If we observe all subpopulations, (0, 0), 

(0, 1), (1, 0) and (1, 1), then we can identify the following objects: 

β2(0 → 1|Xi = (0, 1)) = β2(0 → 1|Xi = (0, 1)) = E[Yi2|Xi = (0, 1)]− E[Yi2|Xi = (0, 0)] 

β2(0 → 1|Xi = (1, 0)) = β2(0 → 0|Xi = (1, 1)) = E[Yi2|Xi = (1, 1)]− E[Yi2|Xi = (1, 0)], 

which are the APE of parents’ help with college tuition on the second child’s income for 

subpopulations that did not help their first child with college tuition and the subpopulation 

that helped their first child with college tuition, respectively. 

4 Testing Identifying Assumptions 

The purpose of the previous section is to better understand how identification of a specific 

object is achieved and to characterize the trade-off between individual and time hetero-

geneity as well as assumptions on the the structural function. It also provides different 

assumptions that can achieve identification of the same object and may not be justified a 
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priori. Fortunately, the identification strategies proposed here have testable implications.  

In this section, we propose tests for these implications. 

4.1 Basic Testing Problem 

The identifying assumptions proposed above impose restrictions on {ξt, FAi,Uit|Xi
}T t=1, 

which imply equality restrictions on the conditional distribution of the outcome vari-

able.29 The equality of two distributions is a well-known problem in statistics, the so-

called two-sample problem, where the two samples are random and independent of each 

other. When testing within-group identification in the panel setting, the two samples 

are not independent, since both samples are realizations of the same individuals across 

time. For within-period identification, our statistic is a linear combination of KS and CM 

statistics. For both cases, bootstrap methods are proposed to obtain the critical values 

for the statistics. 

It is important to note that the tests proposed here are not over-identification tests. They 

test implications of the identifying assumptions. Hence, rejecting them is clear evidence 

against the identifying assumptions. Two examples are given below. 

Example 4.1 (Time Homogeneity for the Scalar Binary Example) 

Let T = 2 and Xit ∈ {0, 1}. Assume a stationary structural function and time homogene-

ity, ξt = ξ and FAi,Ui1|Xi 
= FAi,Ui2|Xi 

for t = 1, 2. This implies the following restriction 

FY x (.|x) = FY x (.|x), ∀x. (25) 
i1|Xi i2|Xi

Back to our job training program, if a subpopulation does not change its job training status 

across time, then the distribution of its outcome variable should also not change over time. 

Note that this is exactly what allows us to identify the effect of job training on earnings 

for subpopulations that switch their job training status across time. 

29As a result, these restrictions imply restrictions on the set of distributions, D ≡ {FY x (.|x) : t = |Xiit 

1, 2, ..., T, x ∈ X , x ∈ X T }, where Xit is fixed. Note that this set is not observable. Now let us define the 
set of observable distributions Do ≡ {FYit|Xi 

(.|x) : t = 1, 2, ..., T, x ∈ X T }. If the restrictions imply that the 
map Do → D is non-injective, then the identifying assumptions imply equality restrictions on the conditional 
distribution of the outcome variable. 
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Thus, we have the following restrictions  

FYi1|Xi
(.|(0, 0)) = FYi2|Xi

(.|(0, 0))  

FYi1|Xi
(.|(1, 1)) = FYi2|Xi

(.|(1, 1)) (26)  

However, note that the APE for subpopulations (0, 1) and (1, 0) is just-identified as follows 

β1(0 → 1|Xi = (0, 1)) = E[Yi2|Xi = (0, 1)]− E[Yi1|Xi = (0, 1)]  

β1(0 → 1|Xi = (1, 0)) = E[Yi1|Xi = (1, 0)]− E[Yi2|Xi = (1, 0)].  

Thus, the tests proposed here may be implemented even if there are no over-identifying 

restrictions. 

Example 4.2 (Exclusion Restriction Example for the Scalar Binary Example) 

Again, let T = 2 and Xit ∈ {0, 1}. We now impose the following exclusion restriction 

FAi,Uit|Xi
(., .|x) = FAi,Uit|Xi1 

(., .|x1). This assumption implies that 

FYi
x 
1|Xi

(., .|(x, x �)) = FYi
x 
1|Xi

(., .|(x, x ��)) ∀x, x , x �� ∈ X , x = x (27) 

Hence, we have testable implications for the first period, where FYi1|Xi
(.|(0, 0)) = FYi1|Xi

(.|(0, 1)) 

and FYi1|Xi
(.|(1, 0)) = FYi1|Xi

(.|(1, 1)). Here our object of interest is also just identified. 

β2(0 → 1|Xi = (0, 1)) = E[Yi2|Xi = (0, 1)]− E[Yi2|Xi = (0, 0)]  

β2(0 → 1|Xi = (1, 0)) = E[Yi2|Xi = (1, 1)]− E[Yi2|Xi = (1, 0)]  

In the following, the classical two-sample problem is reviewed. Then, the validity of the 

bootstrap procedures for within-group and within-period identification is shown. 

4.2 Review of the Classical Two-Sample Problem 

Given two independent random samples of continuous variables, {Xi}n and {Yi}m , i.e. i=1 i=1

all the random variables are mutually independent, we would like to test the equality of 
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the two distributions from which the samples are drawn, i.e.  

H0 : FX(.) = FY (.) versus H1 : FX(.) = FY (.)  (28) 

nwhere FW (.) denotes the distribution of W . Now let FW,n(.) = 1{Wi ≤ .}/n, the i=1 

empirical cumulative distribution function (cdf). Now we can define the Kolmogorov-

Smirnov (KS) and Cramer-von-Mises (CM) statistics as follows, 

KSnZ =  sup |FX,n(z)− FY,n(z)| ≡  FX,n(.)− FY,m(.) ∞,Z (29) 
z∈Z 

and 

CMn,FZ 
= (FX,n(z)− FY,n(z))

2dFZ(z) ≡  FX,n(.)− FY,m(.) 2,FZ
, (30) 

respectively. FZ is the pooled distribution. Note that FZ(.) = FX(.) = FW (.) under the 

null. Since FZ(.) is unknown, CMn,FZ 
is infeasible. There is a feasible statistic equivalent 

to CMn,FZ 
that will be discussed in the following. 

Under the independence of the two random samples and the continuity of the underlying 

pooled distribution, both statistics are pivotal, i.e. their distribution does not depend on 

the distributions of X and Y . The result follows from the probability integral transform 

theorem and is given for the one-sample KS statistic in Gibbons (1985).30 For the two-

sample CM statistic, Anderson (1962) gives the asymptotic distribution of the two-sample 

CM statistic. For a detailed outline of the development of the KS statistic, see Andrews 

(1997). 

Let N = n + m, and {Zi}N be the pooled sample of {Xi}n and {Yi}m Under the i=1 i=1 i=1 . 

above conditions, the aforementioned statistics are equivalent to the following 

KSn,N = max |FX,n(Zi)− FY,n(Zi)| ≡  FX,n(.)− FY,m(.) ∞,N (31) 
1≤i≤N 

and 

N
 nm 

CMn,N = 
N2 

(FX,n(Zi)− FY,n(Zi))
2 ≡  FX,n(.)− FY,m(.) 2,N , (32) 

i=1 

30The extension to the two-sample case is straightforward and is given in Section C. 
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which are based on the empirical measure.  

There are two related testing problems that we are interested in here. In the following, the 

cross-sectional independence assumption is maintained. First, the testing of within-group 

identifying assumptions, which are generalizations of time homogeneity, is a paired-sample 

problem, which deviates from the classical two-sample problem due to the dependence be-

tween the samples. The dependence is a result of the nature of panel data, where we 

track the same individuals across time. Hence, the sources of dependence between the 

observations across time are (1) time-invariant unobservables and (2) possible dependence 

between idiosyncratic shocks. 

Testing the equality of two distributions with dependence has recently attracted some 

interest in the statistics literature. Quessy and Ethier (2012) propose the use of the mul-

tiplier method to adjust CM and characteristic function tests for the k-sample problem, 

where the samples are dependent. In the presence of a time effect, the data must be appro-

priately demeaned before testing the equality of distributions. In section 4.3, a bootstrap 

method is proposed for both the KS and CM tests that is shown to be asymptotically 

valid to test time homogeneity in the presence of generalized time effects. 

Testing within-period identification under cross-sectional independence is a k-sample prob-

lem, where the samples are independent. Hence, it is a more straightforward extension of 

the two-sample problem and is discussed in section 4.4. 

4.3 Testing Within-Group Identification 

For within-group identification, there are two specific cases, time homogeneity with and 

without a generalized time effect. In the following, bootstrap-adjusted KS and CM statis-

tics to test both variants of time homogeneity are proposed. To simplify illustration, the 

case where T = 2 is examined. Extensions to T > 2 are discussed in section 4.3.3. 
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4.3.1 Time Homogeneity  

Under time homogeneity, we assume that for i = 1, 2, ..., n 

Yit = ξ(Xit, Ai, Uit), t = 1, 2 

FUi2|Xi,Ai
(.|.) = FUi1|Xi,Ai

(.|.).  (33) 

It is important to note that the two time periods need not be adjacent to each other. We 

refer to them as period 1 and 2 for simplicity, but they could be any two periods in a time 

series. 

Let Xi = (Xi1, Xi2), time homogeneity implies the following 

FYi1|Xi
(.|(x, x)) = FYi2|Xi

(.|(x, x)), ∀x ∈ X .  (34) 

Recall that |X | = K by Assumption 3.1. Integrating the above with respect to FXi|∆Xi
(.|0), 

where ∆Xi ≡ Xi2 −Xi1, we obtain the following hypothesis 

H0
1 : FYi1|∆Xi

(.|0) = FYi2|∆Xi
(.|0) vs. HA : FYi1|∆Xi

(.|0) = FYi2|∆Xi
(.|0) (35) 

Since Yi1 and Yi2 are observations from the same individual, the above testing problem 

is a paired-sample problem. To simplify notation, let Ft(.|∆Xi = 0) ≡ FYit|Xi
(.|0) and 

Ft,n(.|∆Xi = 0) denote the empirical counterpart of Ft(.|∆Xi = 0) for t = 1, 2, given as 

follows 

n 
i=1 1{Yit ≤ .}1{∆Xi = 0}

Ft,n(.|∆Xi = 0) = n  . 
1{∆Xi = 0}i=1 

Now the paired KS and CM tests are defined by the following 

√ 
KSn,Y =  sup | n(F1,n(.|∆Xi = 0)− F2,n(.|∆Xi = 0))| 

y∈Y  

≡ F1,n(.|∆Xi = 0)− F2,n(.|∆Xi = 0) ∞,Y  (36) 

√ 
CMn,φ  = { n(F1,n(y|∆Xi = 0)− F2,n(y|∆Xi = 0))}2φ(y)dy 

≡ F1,n(.|∆Xi = 0)− F2,n(.|∆Xi = 0) 2,φ (37) 
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where φ is some user-specified density.  

Given the dependence between Yi1 and Yi2, the probability-integral transform theorem 

no longer applies and hence the above statistics are not pivotal. The following boot-

strap procedure is proposed to adjust the p-value of the above statistic. Let (Yi, X
�) = i

{(Yi1, Yi2)
� , (Xi1, Xi2)

�}. Let ˆ (.|∆Xi = 0) be the empirical cdf of the bth bootstrap F b t,n

sample, (Ŷi
b , X̂i

b) given as follows 

n 1{Ŷ b ≤ .}1{∆X̂i
b = 0}ˆ i=1 it F b (.|∆Xi = 0) = .t,n n 1{∆X̂i

b = 0}i=1 

The bootstrap procedure proposed here is given by the following: 

1. Compute the statistic KSn,Y and CMn,φ for {(Y1, X1), ..., (Yn, Xn)}, hereinafter the 

original sample. 

ˆ ˆ2. Resample n observations {(Ŷ1, X1), ..., (Ŷn, Xn)} with replacement from the original 

sample. Compute the centered statistics 

√ 
F b F bKSb = n{ ˆ (.|∆Xi = 0)− ˆ (.|∆Xi = 0)− (F1,n(.|∆Xi = 0)− F2,n(.|∆Xin,Y 1,n 2,n

√ 
F b F bCM b = n{ ˆ (.|∆Xi = 0)− ˆ (.|∆Xi = 0)− (F1,n(.|∆Xi = 0)− F2,n(.|∆Xin,φ 1,n 2,n

3. Repeat 1-2 B times. 

4. Calculate the p-values of the tests with 

B  

pKS,n = n,Y > KSn,Y} 1{KSb 

b=1  

B  

pCM,n = 1{CM b  
n,φ > CMn,φ}. 

b=1 

Reject if p-value is smaller than some significance level α. 

Note that as a paired sample problem, the resampling procedure is very similar to a one-

sample problem, where we just resample across i. The above procedure approximates the 

distribution of the KS and CM statistics, under the null F1(.|∆Xi = 0) = F2(.|∆Xi = 

0), which allows us to then estimate the p-value. The following theorem shows that 

the bootstrap-adjusted tests have asymptotic level α and are consistent against fixed 

alternatives. 

= 0))} ∞,Y 

= 0))} 2,φ 
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Theorem 4.1 Given that {(Yi, Xi
�)}n is an iid sequence, |X | = K, P (∆Xi = 0) > 0,i=1 

and Ft(.|∆Xi) are non-degenerate for t = 1, 2, the procedure described in 1-4 for KSn,Y 

and CMn,φ to test H0
1 (i) provides correct asymptotic size α and (ii) is consistent against 

any fixed alternative. 

The proof is in Appendix B. The convergence of the bootstrap empirical process follows 

by straightforward application of results in Van der Vaart and Wellner (2000). Since the 

limit process is a tight Brownian bridge and both test statistics are norms thereof, the 

statistics have positive densities. Hence, the correct asymptotic size and consistency of 

the test follows. 

4.3.2 Testing Time Homogeneity with Time Effects 

For time homogeneity with generalized time effects, we assume that 

Yit = ξ(Xit, Ai, Uit) + λt(Xit), t = 1, 2 

FUi2|Xi,Ai
(.|.) = FUi1|Xi,Ai

(.|.), (38) 

where we normalize λ1(.) to be zero and hence drop the subscript for λ2(.) = λ(.). Hence, 

FY x |Xi
(.|x) = FY x−λ2(x)|Xi

(.|x)
i1 i2

= FY x (. + λ2(x)|x), ∀x, x (39) 
i2|Xi

which implies that 

FYi1|Xi
(.|(x, x)) = FYi2|Xi

(. + λ2(x)|(x, x)), ∀x (40) 

Now let Λ = (λ(x1), ..., λ(xK))� and recall that |X | = K, we introduce the following 

notation 

K 
k kFYi2|∆Xi

(., Λ|0) = P (Xi = (x , x k))FYi2|Xi
(. + λ2(x k)|(x , x k)).  

k=1  

Hence, we can write our hypothesis as follows 

H0
2 : FYi1|∆Xi

(.|0) = FYi2|∆Xi
(., Λ|0) vs. HA : FYi1|∆Xi

(.|0) = FYi2|∆Xi
(., Λ|0) (41) 

33  



 

  

  

  

  

�

�

We will adapt the simplified notation from above F2(., Λ|∆Xi = 0) ≡ FYi2|∆Xi
(., Λ|0). 

K  

F2(., Λ|∆Xi = 0) = P (Xi1 = Xi2 = x k|∆Xi = 0)F2(. + λ(x k)|Xi1 = Xi2 = x k).  
k=1  

Ft,n(.|.) is the empirical cdf of Ft(.|.). Λn is the sample analogue of Λ, given by 

⎛ ⎞ 

λn(x
1) 

⎜ ⎟ 
⎜ ⎟ 
⎜ ⎟Λn = ... 
⎜ ⎟ 
⎝ ⎠ 

λn(x
K) 

⎛ � ⎞ 
n ∆Yi1{Xi=(x1,x1)}i=1 

⎜ n
i=1 1{Xi=(x1,x1) 

⎟ 
⎜ ⎟ 
⎜ ⎟= ... (42) 
⎜ ⎟ 
⎝ � ⎠ 

n K
i=1 ∆Yi1{Xi=(x ,xK)} 

n K1{Xi=(x ,xK)i=1 

√ 
KSn,Y(Λn) = n(F1,n(.|∆Xi = 0)− F2,n(., Λn|∆Xi = 0)) ∞,Y 

√ 
CMn,φ(Λn) = n(F1,n(., Λn|∆Xi = 0)− F2,n(.|∆Xi = 0)) 2,φ. (43) 

The following bootstrap procedure can be used to adjust the p-values of the above statis-

tics. Let Λ̂b be the estimator of Λ in the bth bootstrap sample. n 

1. Compute the statistics KSn,Y(Λn) and CMn,φ(Λn) for {{Y1, X1}, ..., {Yn, Xn}}, here-

inafter the original sample.  

ˆ ˆ2. Resample n observations {(Ŷ1, X1), ..., (Ŷn, Xn)} with replacement from the original  

sample. Compute the centered statistics  

KSn,
b 
Y(Λ̂n) 

√ 
= n{F̂1

b
,n(.|∆Xi = 0)− F̂2

b
,n(., Λ̂

b
n|∆Xi = 0)− (F1,n(.|∆Xi = 0)− F2,n(., Λn|∆Xi = 0))} ∞,Y 

CM b )n,φ(Λ̂n

√ 
= n{F̂ b (.|∆Xi = 0)− F̂ b (., Λ̂b |∆Xi = 0)− (F1,n(.|∆Xi = 0)− F2,n(., Λn|∆Xi = 0))}1,n 2,n n 2,φ 

3. Repeat 1-2 B times.  
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4. Calculate the p-values of the tests with  

B  

pKS,n n,Y(Λ̂n = 1{KSb ) > KSn,Y(Λn)}
b=1  

B  

pCM,n n,φ(Λ̂n = 1{CM b ) > CMn,φ(Λn)}. 
b=1 

Reject if p-value is smaller than some significance level α. 

The presence of the generalized time effects adds noise to the empirical cdf. In order 

to ensure the convergence of the empirical process that are used to compute the KS 

and CM statistics, we impose the following condition, which ensures that the underlying 

distribution is uniformly continuous. 

Assumption 4.1 (Bounded Density) 

31 Ft(.) has a density ft(.) that is bounded, i.e. supy∈Y |ft(y)| < ∞, t = 1, 2. 

Theorem 4.2 Given that {(Yi, Xi
�)}ni=1 is an iid sequence, |X | = K, P (∆Xi = 0) > 0, 

Ft(.|∆Xi = 0) is non-degenerate for t = 1, 2, and Assumption 4.1 holds, the procedure 

described in 1-4 for KSn,Y(Λn) and CMn,φ(Λn) to test H0
2 (i) provides correct asymptotic 

size α and (ii) is consistent against any fixed alternative. 

The proof is given in Appendix B. The key difference between the above result and Theo-

rem 4.1 is that we have to ensure that the functional Delta method applies to ensure that 

the empirical process converges, hence we impose Assumption 4.1. The intuition behind 

imposing this regularity condition is that by demeaning the variables, we are introducing 

asymptotically normal noise to the empirical process. Assumption 4.1 ensures that the 

empirical process converges nonetheless to a Brownian bridge, by allowing us to apply 

the functional delta method. From here, it is straightforward to show that the bootstrap 

empirical process converges to the same tight limit process as the empirical process. Then, 

we show that the bootstrap-adjusted tests have correct asymptotic size and are consistent 

against fixed alternatives. 

31Since we only demean Yi2, it is sufficient to impose the above condition for that time period. It is imposed 
on both time periods, since the choice of demeaning the variables in the second time period is arbitrary. 
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4.3.3 Extensions to T > 2 

For the case where T > 2, there are two possible approaches. First, one could approach 

this problem as a multiple testing problem, where the hypothesis would be which two 

periods in the time series exhibit time homogeneity. In this situation, for the different 

pairs of time periods, the p-values of the statistics can be computed by the bootstrap 

procedure given above. A multiple-testing correction, as in Romano and Shaikh (2006), 

can then be applied to control the family-wise error rate. An alternative approach would 

be to test that all time periods have the same distribution. In this situation, one can apply 

the bootstrap procedure above to a convex combination of the statistics for the different 

pairs of time periods. 

4.4 Testing Within-Period Identification 

For within-period identification, we have the following setup 

Yit = ξt(Xit, Ai, Uit) 

FAi,Uit|Xi
(., .|x) = FAi,Uit|h(Xi)(., .|h(x)) for t = 1, 2, ..., T . (44) 

By the finiteness of X T , h(x) also has finite-support.32 Let H denote the support of h(x) 

and |H| = L. Let hl ∈ H. For l = 1, ..., L, define Xl ≡ {x ∈ X T : h(x) = hl}. Let 

kl = |Xl|. 

H0
3 : FYit|Xi

(.|x1) = FYit|Xi
(.|x2) = ... = FYit|Xi

(.|xkl
), x ∈ Xl, ∀l = 1, ..., L, t = 1, 2, ..., T 

Similar to Quessy and Ethier (2012), we define 

1
F̄t,l = FYit|Xi

(.|x). (45) 
kl 

x∈Xl 

32For identification purposes, its support has to be smaller than X , otherwise there would be no identification 
gain from the restriction as shown in Theorem ??. 
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The KS and CM test statistics for the restrictions in each time period are given by  

L √ 
KSn,t = P (h(Xi) = hl) P (Xi = x|h(Xi) = hl) n{Ft,n(.|x)− F̄t,l,n(.)} ∞,Y 

l=1 x∈Xl 

L √ 
CMn,t = P (h(Xi) = hl) P (Xi = x|h(Xi) = hl) n{Ft,n(.|x)− F̄t,l,n(.)} 2,φ 

l=1 x∈Xl 

Averaging the above statistics over t, we obtain the following, 

T
1  

KSn,Y = KSn,t  
T 

t=1  

T 
1  

CMn,φ = CMn,t.  
T 

i=1 

Now the following bootstrap procedure is used to approximate the distribution of the 

above statistics. 

1. Compute the statistics KSn,Y and CMn,φ for {{Y1, X1}, ..., {Yn, Xn}}, hereinafter 

the original sample. 

ˆ ˆ2. Resample n observations {(Ŷ1, X1), ..., (Ŷn, Xn)} with replacement from the original 

sample. Compute the centered statistics 

T
1 

KSb = n,t n,Y KSb 

T 
t=1  

T 
1 

CMn,φ 
b = CM b 

n,t,T 
t=1 

where KSb and CM b are given below. n,t n,t 

3. Repeat 1-2 B times. 

4. Calculate the p-values of the tests with 

B 

= 1{KSb ) > KSn,Y(Λn)}
b=1 

B 

pKS,n n,Y(Λ̂n

pCM,n = n,φ(
ˆ ) > CMn,φ(Λn)}.1{CM b Λn 

b=1  

Reject if p-value is smaller than some significance level α. 
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L 

For event Ai, let P̂
b(Ai) be the empirical probability of Ai in the b

th bootstrap sample. n

KSb and CM b are given as follows: n,t n,t 

KSb 
n,t 

√
ˆ ˆ ¯= P b(h(Xi) = hl) P b(Xi = x|h(Xi) = hl) n{F̂1,n(.|x)− F̂1,l,n(.|x)− (F1,n(.|x)− F̄l,n(.|x))} ∞,Yn n 

l=1 x∈Xl  

CM b 
n,t  

L  √
ˆ ¯= Pn
b(h(Xi) = hl) P̂n

b(Xi = x|h(Xi) = hl) n{F̂t,n(.|x)− F̂t,l,n(.|x)− (F1,n(.|x)− F̄l,n(.|x))} 2,φ. 
l=1 x∈Xl 

The following theorem shows that the bootstrap-adjusted tests are justified asymptoti-

cally. 

Theorem 4.3 Given {(Yi, Xi
�)}n is an iid sequence, |X | = x) > 0 for all i=1 K, P (Xi = 

x ∈ X T , and FYit|Xi
(.) is nondegenerate for all t, the procedure described in 1-4 for KSn,Y 

and CMn,φ to test H0
3 (i) provides correct asymptotic size α and (ii) is consistent against 

fixed alternatives. 

The proof is in Appendix B. The convergence of the empirical and bootstrap empirical 

processes to a tight Brownian bridge follows from results in Van der Vaart and Wellner 

(2000). The remainder of the proof follows by similar arguments to Theorem ??. 

4.5 Monte Carlo Study 

The baseline model is from Evdokimov (2010), but is adapted to have a binary regressor. 

Yit = m(Xit, Ai) + Uit 

m(x, a) = 2a + (2 + a)(2x − 1)3 

Xit ∼ i.i.d.Bernoulli(0.5),  
T  √ � 

Ai = √ 12(Xit − 0.5) + 1− ρ2ψi  
T  

ρ 

t=1 

ψi ∼ i.i.d.N(0,1)

 it ∼ N(0, 1). 
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where ρ = 0.5. Note that the above model exhibits time homogeneity without a time effect.  

Now we also include the following three variants of the above model for our simulations: 

(A) Time Homogeneity with no Trend 

Uit = (1 +Xit) it 

Yit = m(Xit, Ai) + Uit, t = 1, 2 

(B) Time Homogeneity up to a Time Effect 

Yit = m(Xit, Ai) + Uit + λt, where λ1 = 0, λ2 = 0.5 

(C) Time Homogeneity up to a Generalized Time Effect 

Yit = m(Xit, Ai)+Uit+λt(Xit), where λ1(0) = λ2(0) = 0, λ2(0) = −0.5, λ2(1) = 0.5 

(D) Time Heterogeneity with Exclusion Restriction FAi,Uit|Xi
(.) = (.)FAi,Uit|Xi1 

12 Ai = ρ (Xi1 − 0.5) + 1− ρ2ψiT 

Ui1 = (1 +Xi1) i1 

Ui2 = (1+Xi1)( i2 + λ2)σ2, where λ2 = 0.5, σ2 = 1.5 Yit = m(Xit, Ai) +Uit, t = 1, 2 

Under each model, the behavior of the bootstrap procedure for the following statistics is 

examined, where we use the notation introduced in sections 4.3 and 4.4. 

KSnt = = = 0) ∞,Y (46) n,Y F1,n(.|∆Xi 0)− F2,n(.|∆Xi  

pt  KS = F1,n(.|∆Xi = 0)− F2,n(. + λn|∆Xi = 0) ∞,Y (47) n,Y 

KSgt = (.|∆Xi = (., Λn|∆Xi = 0) ∞,Y (48) n,Y F1,n 0)− F2,n 

KSexcl  
n,Y = Pn(Xi1 = 0) F1,n(.|Xi = (0, 0))− F1,n(.|Xi = (0, 1)) ∞,Y 

+ Pn(Xi1 = 1) F1,n(.|Xi = (1, 0))− F1,n(.|Xi = (1, 1)) ∞,Y (49) 

CMnt 
n,φ = F1,n(.|∆Xi = 0)− F2,n(.|∆Xi = 0) 2,φ (50) 

CMpt = F1,n(.|∆Xi = 0)− F2,n(. + λn|∆Xi = 0) 2,φ (51) n,φ 

CMgt = = (., Λ|∆Xi = (52) n,φ F1,n(.|∆Xi 0)− F2,n 0) 2,φ  

CM excl  = Pn(Xi1 = 0) F1,n(.|Xi = (0, 0))− F1,n(.|Xi = (0, 1)) 2,φ n,φ 

+ Pn(Xi1 = 1) F1,n(.|Xi = (1, 0))− F1,n(.|Xi = (1, 1)) 2,φ. (53) 

where φ is the standard normal density.  

Note that the statistics with nt super-script test time homogeneity with no trend, pt time  

39  



homogeneity with a ‘pure’ time effect, gt time homogeneity with a generalized time effect,  

λt(Xit), and excl the exclusion restriction FAi,Uit|Xi 
= .FAi,Uit|Xi1 

Under the baseline model (A), all variants of time homogeneity are not violated, whereas 

the exclusion restriction is. Under Model (B), both the exclusion restriction and time ho-

mogeneity with no trend are violated. Under Models (C) and (D), only time homogeneity 

up to a generalized time effect and the exclusion restriction, respectively, are not violated. 

Table 1 reports the coverage probabilities of all of the above statistics under the four dif-

ferent models, when n = 1000, 1500, 2000, and T = 2, where we perform 1000 simulation 

replications (S). 

The CM statistics follow our asymptotic results in finite samples, since they control size 

when their respective null is true, and reject with high probability when their respec-

tive null does not hold. The KS statistic for the time homogeneity with no trend also 

performs well in finite samples. However, for time homogeneity with both pure and gen-

eralized time effect, the KS statistic is significantly under-sized. However, as n increases, 

the size properties improve. As for the exclusion restriction, the KS statistic tends to 

over-reject.33 

5 Empirical Illustration: Returns to Schooling 

The standard function for estimating returns to schooling is Mincer’s human capital earn-

ings function, given by 

Y = α + βS + γE + δE2 + U (54) 

where Y is log earnings, S is years of completed education, and E is the number of years an 

individual has worked. Since potential experience is used instead, where E = Age −S −6, 

many researchers just control for S and Age. Angrist and Newey (1991) examine fixed 

effects estimation of Mincer’s equation using a subsample of the national longitudinal 

survey of youth (NLSY), since they observe changes in schooling status for 20% of their 

33For n = 3000, under Model (D), its finite-sample performance matches the asymptotic results, and it 
exhibits good size control. 
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sample.34 They also propose a test of the over-identifying restrictions of the linear fixed 

effects model and reject it for Mincer’s equation. In the following, we will test time 

homogeneity up to a location time effect, which may be viewed as a nonparametric test 

of the fixed-effects assumption in the presence of time effects. The model is given by the 

following equation, 

Yit = ξ(Sit, Ai, Uit) + λt  

d Uit|Si, Ai = Ui1|Si, Ai. 

Our results indicate that we cannot reject the time homogeneity assumption. Hence, we 

cannot reject the fixed effects assumption nonparametrically. Since our nonparametric 

estimates of the APE indicate violations of the linear model, we conjecture that the 

rejection of the over-identification test in Angrist and Newey (1991) is due to linearity. 

5.1 Data and Methodology 

Angrist and Newey (1991) use a NLSY random subsample of young men from 1983-

1987. The young men are aged 18-26 in 1983. 20% of the subsample exhibits changes in 

schooling. We use a revised version of this sample with 1087 young men. The descriptive 

statistics are reported in Table 2.35 

The linear specification is the most widely used specification of Mincer’s equation. Card 

(1999) however points out that there is no economic justification for the linear specification 

and cites empirical findings of possible nonlinearities in the relationship between schooling 

and earnings. In this spirit, we propose the following model exhibiting time homogeneity 

up to a location time effect 

Yit = ξ(Sit, Ai, Uit) + λt  

d Uit|Si, Ai = Ui1|Si, Ai. 

34Panel data methods are not often used for the identification of returns to schooling, since it is unlikely to 
observe changes in schooling over the short span of a micro-panel. For instance, Chamberlain (1984) includes 
schooling as a time-invariant control variable in the union-wage example. 

35Angrist and Newey (1991) had 1045 in their sample. Despite the difference between their original sample 
and the revised one used here, the descriptive statistics are quite similar. Hence, this difference cannot be 
driving the difference in our results. We also replicate their estimation results in Table 5. 
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where Yit is log earnings, and we normalize λ1 to zero. As noted above, this model allows 

us to identify the effect of schooling on earnings using within-group variation. 

The model implies that individuals that do not change their schooling status, i.e. stay-

ers, should have the same distribution for log earnings across time, once appropriately 

demeaned. Formally, the testable implication is given as follows 

FYi1|∆Si
(.|0) = FYi2|∆Si

(. + λ2|0). (55) 

Now we test the above implication for the following year pairs, 1983-84, 1984-85, 1985-86, 

and 1986-87, using the following KS and CM statistics 

n 
� (1{Yi1 ≤ y} − 1{Yi2 − λn ≤ y})1{∆Si = 0} �i=1KSn,Y = sup 
� n 

� 
y∈Y 1{∆Si = 0}i=1 

� �2n (1{Yi1 ≤ y} − 1{Yi2 − λn ≤ y})1{∆Si = 0}i=1CMn,φ = φ(y)dy, n 1{∆Si = 0}i=1 

where Y36 is the support of Yit and φ is the standard normal density, but any other density 

n n may also be used. λn = (Yi2 − Yi1)1{∆Si = 0}/ 1{∆Si = 0}. The p-values for i=1 i=1 

both statistics were obtained using the bootstrap procedure outlined above.  

The above model has another implication. All stayer subpopulations regardless of the  

years of schooling completed must exhibit the same mean shift across time. Formally,  

E[Yi2 − Yi1|Si = (s, s)] = E[Yi2 − Yi1|Si = (s , s �)] ∀s, s � ∈ S, s = s , (56) 

where S denotes the support of Sit. This implication can be tested by an F-test, which 

we also report. 

For every year pair, the APEs for movers are then estimated as follows 

n (Yi2 − Yi1)1{Si = (s, s + 1)}ˆ i=1β(s → s + 1|Si = (s, s + 1)) = n − λ̂2,n, (57) 
1{Si = (s, s + 1)}i=1 

36To implement the KS statistic in practice, I search for the maximum over a fine grid between the minimum 
and maximum value of Yit in the sample. 
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37 n nwhere λ̂2,n = (Yi2 − Yi1)1{∆Si = 0}/ 1{∆Si = 0}. The APE for all moversi=1 i=1 

is given by 

β̂(∆Si = 1) = Pn(Si = (s, s + 1)|∆Si = 1)β̂(s → s + 1|Si = (s, s + 1)), (58) 
s∈S 

The standard errors are computed under the assumption of cross-sectional independence. 

5.2 Results and Discussion 

Table 3 shows the p-values for the bootstrap-adjusted KS and CM tests as well as the 

F test for time homogeneity up to a time effect. We use 500 bootstrap replications to 

adjust the p-value of the KS and CM statistics. The p-values indicate that we cannot 

reject the fixed-effects assumption for any of the year-pairs. Comparing our findings to 

Angrist and Newey (1991), we conjecture that the rejection in Angrist and Newey (1991) 

is due to misspecification of the linear model rather than a violation of the fixed-effects 

assumption, especially given our estimates of the APE, which we give below. 

The estimates of the APE for mover subpopulations are reported in Table 4. Similar to 

Angrist and Newey (1991), our APE estimates are not significant, except in 1985-1986. 

Our results also provides evidence against the implication of the linear model that the 

APE for identified subpopulations is constant across time. Furthermore, it is important 

to note here that the object we are estimating is not a ceteris paribus effect. Recall that 

E = Age − S − 6. Since everyone’s age increases across time, individuals that increase 

their schooling are forgoing a year of potential experience, while individuals that do not 

increase their schooling gain a year of potential experience. Hence, the estimate of the 

APE here identifies the effect of schooling corrected for the opportunity cost of forgoing 

one year of potential experience. 

Now the significance of the APE in 1985-86 is driven solely by individuals that completed 

their bachelor degree, i.e. 16 years of schooling. This is in line with the empirical evidence 

quoted in Card (1999) that the changes in schooling status have particularly significant 

effects on earnings around the completion of terminal degrees. 

37Since schooling only increases by unit increments only, ∆Si = 1 characterizes all mover subpopulations. 
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6 Concluding Remarks 

The paper at hand contributes to the nonparametric identification literature for nonsep-

arable panel data models in two main ways. It attempts to characterize the trade-off 

between different assumptions that achieve identification of the APE for a subpopulation 

by quasi-differencing. It also provides a menu of testable identifying assumptions and pro-

poses tests for these assumptions that are asymptotically valid and perform well in finite 

samples. The empirical illustration shows that testing identifying assumptions, such as 

the time homogeneity assumption, nonparametrically may aid the empirical researcher in 

justifying the choice of an identification strategy, even if a parametric model is used for 

estimation and inference. 

The identifying assumptions given above can be used to identify other aspects of the 

distribution of the outcome variable due to changes in variables of interest. This will be 

addressed in future work. The inclusion of continuous control variables, such as macroeco-

nomic indicators, is another important direction for future work. Finally, the identifying 

assumptions hold if the appropriate control variables are in place. Future work will ex-

amine a method that would allow the empirical researcher to select the control variables 

that aid identification. 
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A Proofs of Section 3 Results 

Proof (Theorem 3.1) 

Note that 

E[Yi
x 
2 − Yi1|Xi = (x, x �)]− E[Yi2 − Yi1|Xi = (x, x)] 

= (ξ2(x, a, u2)− ξ1(x, a, u1))(dFAi,Ui1,Ui2|Xi
(a, u1, u2|(x, x �))− dFAi,Ui1,Ui2|Xi

(a, u1, u2|(x, x))) 

= (ξ2(x, a, u2)− ξ1(x, a, u1)) 

×(fAi,Ui1,Ui2|Xi
(a, u1, u2|(x, x �))− fAi,Ui1,Ui2|Xi

(a, u1, u2|(x, x)))d(a, u1, u2) 

Let λ(x) = ξ2(x, a, u)− ξ1(x, a, u), where λ(x) is the component of the difference between 

the structural function that only depends on the regressors. Now adding and subtracting 

λ(x) to the integrand, we obtain the following, 

E[Yi
x 
2 − Yi1|Xi = (x, x �)]− E[Yi2 − Yi1|Xi = (x, x)] 

= (ξ2(x, a, u2)− ξ1(x, a, u1)− λ(x)) 

×(fAi,Ui1,Ui2|Xi
(a, u1, u2|(x, x �))− fAi,Ui1,Ui2|Xi

(a, u1, u2|(x, x)))d(a, u1, u2) 

= (ξ2(x, a, u2)− ξ1(x, a, u1)− λ(x)) 

fAi,Ui1,Ui2|Xi
(a, u1, u2|(x, x�)) 

× − 1 fAi,Ui1,Ui2|Xi
(a, u1, u2|(x, x))d(a, u1, u2). 

fAi,Ui1,Ui2|Xi
(a, u1, u2|(x, x)) 

The above is equal to zero if 

(ξ2(x, a, u2)− ξ1(x, a, u1)− λ(x)) 
fAi,Ui1,Ui2|Xi

(a, u1, u2|(x, x�)) 

fAi,Ui1,Ui2|Xi
(a, u1, u2|(x, x)) 

− 1 = 0. ∀a, u1, u2 

D 
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Proof (Variation 3.1)  

Under time homogeneity, the condition in Theorem 3.1 simplifies to 

( ) 
(ξ2(x, a, u)− ξ1(x, a, u)− λ(x)) fAi,Ui1|Xi

(a, u|(x, x �))− fAi,Ui1|Xi
(a, u|(x, x)) = 0. 

∀a, u 

Under unrestricted individual heterogeneity, the second term is not equal to zero. Hence, 

the above is zero if 

ξ2(x, a, u)− ξ1(x, a, u) = λ(x) ∀a, u 

Without loss of generality, we can write the above as ξt(x, a, u) = ξ(x, a, u) + λt(x). D 

Proof (Variation 3.2) 

Recall that E[Yi
x 
2 − Yi1|Xi = (x, x�)] = E[Yi2 − Yi1|Xi = (x, x)] can be written as 

(ξ2(x, a, u2)− ξ1(x, a, u1)− λ(x)) 

( )

× fAi,Ui1,Ui2|Xi
(a, u1, u2|(x, x �))− fAi,Ui1,Ui2|Xi

(a, u1, u2|(x, x)) d(a, u1, u2) = 0. 

By the conditions of this variation, ξ2(x, a, u2) = ξ1(x, a, u2) + λ(x). Plugging this into 

the integrand of the previous equation, it follows that 

(ξ1(x, a, u2)− ξ1(x, a, u1)) 

×(fAi,Ui1,Ui2|Xi
(a, u1, u2|(x, x �))− fAi,Ui1,Ui2|Xi

(a, u1, u2|(x, x))) = 0 

Under unrestricted individual heterogeneity and fAi,Ui1,Ui2|Xi
(.) > 0 by Assumption 3.2, 

the above equals to zero if each term is zero. Hence, for x ∈ {(x, x), (x, x�)}, 

(ξ1(x, a, u2)fAi,Ui2|Xi
(a, u2|x)− ξ1(x, a, u1)fAi,Ui1|Xi

(a, u1|x))d(a, u1, u2) = 0 

The above holds if 

ξ1(x, a, u)fAi,Ui2|Xi
(a, u|x) = ξ1(x, a, u)fAi,Ui1|Xi

(a, u|x) ∀a, u 

which holds if fAi,Ui1|Xi
(a, u|x) = fAi,Ui2|Xi

(a, u|x) ∀a, u, which implies time homogeneity, 
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d
i.e. Ui1|Xi, Ai = Ui2|Xi, Ai. D 

Proof (Variation 3.3)  

Recall the condition in Theorem 3.1  

(ξ2(x, a, u2)− ξ1(x, a, u1)− λ(x)) 

( )

× fAi,Ui1,Ui2|Xi
(a, u1, u2|(x, x �))− fAi,Ui1,Ui2|Xi

(a, u1, u2|(x, x)) = 0. 

Clearly, without restrictions on time heterogeneity and the structural function, the above 

is true if 

fAi,Ui1,Ui2|Xi
(a, u1, u2|(x, x �)) = fAi,Ui1,Ui2|Xi

(a, u1, u2|(x, x)) ∀a, u1, u2. 

D 

Proof (Variation 3.4) For notational convenience, we set ξ1(x, a, u) = ξ(x, a, u). By 

Assumption 3.1(iii), Fubini’s theorem applies as follows, 

(ξ(x, a, u2)− ξ(x, a, u1)− λ(x))d(FAi,Ui1,Ui2|Xi
(a, u1, u2|(x, x �))− FAi,Ui1,Ui2|Xi

(a, u1, u2|(x, x))) 

= (m2(x, a, Xi)−m1(x, a, Xi)− λ(x))d(FAi|Xi
(a|(x, x �))− FAi|Xi

(a|(x, x))), 

where mt(x, a, x) = ξ(x, a, u)dFUit|Xi,Ai
(u|x, a).  

Under arbitrary individual heterogeneity and fAi|Xi
(.|.) > 0, the above is zero if  

(m2(x, a, x)−m1(x, a, x)− λ(x)) = 0 ∀a, x, (59) 

By Assumption 3.3 (i), (ii) and the dominated convergence theorem, ∂(m2(x, a, x) − 

m1(x, a, x))/∂a exists and is continuous. Now note that 

m2(x , a , x �)−m1(x , a , x �)− (m2(x, a, x)−m1(x, a, x)) 

= m2(x , a , x �)−m1(x , a , x �)− (m2(x , a , x)−m1(x , a , x)) 

+ m2(x , a , x)−m1(x , a , x)− (m2(x , a, x)−m1(x , a, x)) 

+ m2(x � , a, x)−m1(x � , a, x)− (m2(x, a, x)−m1(x, a, x)) 
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= m2(x , a , x �)−m1(x , a , x �)− (m2(x , a , x)−m1(x , a , x))  

a ∂(m2(x
�, a, x)−m1(x

�, a, x))  
+ da 

∂a a 

+ m2(x � , a, x)−m1(x � , a, x)− (m2(x, a, x)−m1(x, a, x)) 

∀x, x , a, a , x, x (60) 

where the last equality follows by the first fundamental theorem of calculus and the 

continuity of ∂(m2(x
�, a, x)−m1(x

�, a, x))/∂a. Now if the following conditions hold 

∂(m2(x, a, x)−m1(x, a, x)) 
= 0 ∀a, x (61) 

∂a 
∂̄(m2(x, a, x)−m1(x, a, x)) � = 0 ∀a, x, x (62) 

∂̄(x, x�) 

where ¯ ∂(x, x�) = g(x)− g(x�), (60) yields the following ∂g(x)/ ̄

m2(x , a , x �)−m1(x , a , x �) = m2(x , a, x)−m1(x , a, x) ∀x, x , a, a , x, x (63) 

since a = a� and x = x� for some a� and x�, (63) implies (59) by the arbitrariness of λ(x). 

Note that we can re-write (61) as follows 

∂(m2(x, a, x)−m1(x, a, x)) 
= (ξ(x, a, u2)− ξ(x, a, u1))dFUi1,Ui2|Xi,Ai

(u1, u2|x, a)
∂a 

By Assumption 3.3(ii) and the dominated convergence theorem, 

∂(m2(x, a, x)−m1(x, a, x))  

∂a  
∂(ξ(x, a, u2)− ξ(x, a, u1))fUi1,Ui2|Xi,Ai

(u1, u2|x, a))  
= d(u1, u2), 

∂a  

∂(ξ(x, a, u2)− ξ(x, a, u1))  
= fUi1,Ui2|Xi,Ai

(u1, u2|x, a)d(u1, u2)
∂a 

+ (ξ(x, a, u2)− ξ(x, a, u1))f
a (u1, u2|x, a)d(u1, u2)Ui1,Ui2|Xi,Ai

∂(ξ(x, a, u2)− ξ(x, a, u1)) 
= (u1, u2|x, a)d(u1, u2)

∂a 
fUi1,Ui2|Xi,Ai 

fa  (u1, u2|x, a)Ui1,Ui2|Xi,Ai+ (ξ(x, a, u2)− ξ(x, a, u1)) fUi1,Ui2|Xi,Ai
(u1, u2|x, a)d(u1, u2)

fUi1,Ui2|Xi,Ai
(u1, u2|x, a) 

(64) 
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Now the above equals to zero if  

∂(ξ(x, a, u2)− ξ(x, a, u1)) 
fUi1,Ui2|Xi,Ai

(u1, u2|x, a)
∂a 

+ (ξ(x, a, u2)− ξ(x, a, u1))f
a (u1, u2|x, a) = 0 ∀a, u1, u2, x (65) Ui1,Ui2|Xi,Ai

The above is true if the following conditions hold 

∂(ξ(x, a, u2)− ξ(x, a, u1)) 

(u1, u2|x, a)d(u1, u2)¯ Ui1,Ui2|Xi,Ai

∂a 
= 0 ∀a, u1, u2 (66) 

fa 
Ui1,Ui2|Xi,Ai

(u1, u2|x, a) = 0 ∀a, u1, u2, x. (67) 

As for (62), let f̄z(z) = ̄∂f(z)/∂̄(z, z�). 

∂̄(m2(x, a, x)−m1(x, a, x)) 
= (ξ(x, a, u2)− ξ(x, a, u1))f̄

x 

∂x 

The above equals to zero if 

(ξ(x, a, u2)− ξ(x, a, u1))f̄
x 

(u1, u2|x, a) = 0, ∀a, u1, u2, x (68) Ui1,Ui2|Xi,Ai

since (ξ(x, a, u2)− ξ(x, a, u1)) = 0 for some a, u1, u2, it follows that the above is true iff 

f̄
x 

(u2|x, a) = 0 (69) Ui1,Ui2|Xi,Ai

We obtain (i) by noting that (66) is true if 

∂ξa(x, a, u)/∂u = 0. ∀a, u 

Now (67) and (69) are true if fUit|Xi,Ai
(.) = (.), which is equivalent to (ii) by Assump-fUit

tion 3.3(i). D 

Proof (Theorem 3.2) 

c cBy (iii) xt = xτ = x, 

c] 
(i) c)E[Yiτ − Yit|Xi = x = (ξτ (x, a, u)− ξt(x, a, u))dFAi,Uit|Xi

(a, u|x 

(ii) 
= λτ (h(x c)) (70) 
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Note that h(x) = h(xc). 

(i)
E[Yiτ − Yit|Xi = x] = (ξτ (xτ , a, u)− ξt(xt, a, u))dFAi,Uit|Xi

(a, u|x) 

= (ξt(xτ , a, u)− ξt(xt, a, u))dFAi,Uit|Xi
(a, u|x) + λτ (h(x)) 

= βt(xt → xτ |Xi = x) + λτ (h(x)) 

Thus, by (iii) 

βt(xt → xτ |Xi = x) = E[Yiτ − Yit|Xi = x]− E[Yiτ − Yit|Xi = x c] 

D 

Proof (Theorem 3.3) 

E[Yit|Xi = x]− E[Yit|Xi = x c]  

c  = ξt(xt, a, u)dFAi,Uit|Xi
(a, u|x)− ξt(xt , a, u)dFAi,Uit|Xi

(a, u|x c) 

(i) & (ii) c = (ξt(xt, a, u)− ξt(xt , a, u))dFAi,Uit|h(Xi)(a, u|h(x))  

c  = βt(x t → xt|Xi = x)  

c  = βt(xt → xt|Xi = x c) 

D 

B Proofs of Section 4 Results 

Proof (Theorem 4.1) 

In order to show (i) and (ii), we have to show that the following empirical and boot-

strap empirical processes converge to the same tight Brownian bridge. Let Gn|∆Xi=0 and 

Ĝ denote the empirical and bootstrap empirical processes, respectively. n|∆Xi=0 

√ 
Gn|∆Xi=0 = n(F1,n(.|∆Xi = 0)− F1(.|∆Xi = 0)− (F2,n(.|∆Xi = 0)− F2(.|∆Xi = 0))) 

ˆ
√ 

n( ˆGn|∆Xi=0  = F1,n(.|∆Xi = 0)− F1,n(.|∆Xi = 0)− (F̂2,n(.|∆Xi = 0)− F2,n(.|∆Xi = 0))), 
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n nwhere F̂t,n = Mni1{Yit ≤ y}1{∆Xi = 0}/ Mni1{∆Xi = 0}.i=1 i=1 

Since the unconditional cdfs trivially fulfill the Donsker property, it follows that they 

converge to a tight Brownian bridge 

⎛ ⎞ ⎛ ⎞ 

√ F1,n(.)− F1(.) G1 
⎜ ⎟ ⎜ ⎟ 

n 
⎝ ⎠

 
⎝ ⎠ , (71) 

F2,n(.)− F2(.) G2 

where G1 and G2 are each a tight Brownian bridge on L
∞(Y).  

Since P (∆Xi = 0) > 0 and {(Yi, Xi
�)}n is an i.i.d. sequence, Lemma C.3 applies, which  i=1 

implies that 

⎛ ⎞ ⎛ ⎞ ⎛ 
G1√ F1,n(.|∆Xi)− F1(.|∆Xi) + ZF1(., ∆Xi = 0) 

⎜ ⎟ ⎜ P (∆Xi=0) ⎟ ⎜ 
n 
⎝ ⎠

 
⎝ ⎠ ≡ 

⎝ 
G2F2,n(.|∆Xi = 0)− F2(.|∆Xi = 0) + ZF2(., ∆Xi = 0) P (∆Xi=0) 

⎛ ⎞ ⎛ ⎞ 
ˆ√ 

⎜ F1,n(.|∆Xi)− F1,n(.|∆Xi) 
⎟ G1|∆X=0 

⎟⎜ 
n 
⎝ ⎠

 
⎝ ⎠  

F̂2,n(.|∆Xi = 0)− F2,n(.|∆Xi = 0) G2|∆X=0  

√ nwhere n(Pn(∆Xi = 0)−P (∆Xi = 0)) Z, where Pn(∆Xi = 0) = i=1 1{∆Xi = 0}/n. 

By the tightness of Gt for t = 1, 2 and Z, it follows that Gt|∆X=0 is a tight Brownian 

bridge for t = 1, 2. By continuous mapping theorem, it follows that 

G1 −G2
G  + Z(F1(., ∆Xi = 0)− F2(., ∆Xi = 0)) ≡ Hn|∆Xi=0 P (∆Xi = 0)  

Ĝn|∆Xi=0  H. 

where (G1 −G2) is a tight Brownian bridge in L∞(F), where F = {1{Yi1 ≤ y} − 1{Yi2 ≤ 

y} : y ∈ Y}. Thus, H is a tight Brownian bridge. 

Since . ∞,Y and . 2,φ are continuous, convex functionals, it follows that H ∞,Y and 

H 2,φ has absolutely continuous and strictly increasing distribution on its support [0, ∞), 

except possibly at zero, by Theorem 11.1 in Davydov, Lifshits, and Smorodina (1998). 

Since F1(.|∆Xi = 0) and F2(.|∆Xi = 0) are non-degenerate, then P ( H ∞,Y = 0) = 0 

and P ( H 2,φ = 0) = 0. Thus, both H ∞,Y and H 2,φ have absolutely continuous 

distributions on [0, ∞). 

⎞ 

G1|∆X=0 
⎟ 
⎠ 

G2|∆X=0 
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Now the critical values of the bootstrap-adjusted KS and CM tests are given by  

KS ĉn = inf{t : P̂n( Ĝn|∆Xi=0 ∞,Y > t) ≤ α}, 

CM ĉ = inf{t : P̂n( Ĝn|∆Xi=0 2,φ > t) ≤ α},n 

where P̂n is the bootstrap probability measure for the sample. Given the above, it follows 

that 

ĉ KS 
n 

p→ c KS = inf{t : P ( H ∞,Y > t) ≤ α}, 

ĉ CM 
n 

p→ c̃ CM = inf{t : P ( H 2,φ > t) ≤ α}. 

Thus, under the null, the bootstrap-adjusted statistics have correct asymptotic size. 

Hence, we have shown (i). By the tightness of the limit process, it follows that ĉKS 
n 

and ĉCM are bounded in probability. Thus, the tests are consistent against any fixed n 

alternative, which proves (ii). D  

Proof (Theorem 4.2)  

In order to show (i) and (ii), we first have to show that the underlying empirical and  

bootstrap empirical processes, given below, converge to the same tight Brownian bridge.  

Once this is established, the proofs of (i) and (ii) follow by similar arguments to Theorem  

4.1.  

We define the empirical and bootstrap empirical processes, Gn|∆Xi=0(Λn) and Ĝn|∆Xi=0(Λ̂n)  

√ 
Gn|∆Xi=0 (Λn) = n(F1,n(.|∆Xi = 0)− F1(.|∆Xi = 0)− (F2,n(., Λn|∆Xi = 0)− F2(., Λ|∆Xi = 0))) 

√
ˆ ˆGn|∆Xi=0 (Λ̂n) = n(F̂1,n(.|∆Xi = 0)− F1,n(.|∆Xi = 0)− (F̂2,n(., Λn|∆Xi = 0)− F2,n(., Λn|∆Xi = 0))) 

Now note that 

K 

F2,n(.|∆Xi = 0) = Pn(Xi1 = Xi2 = x k)F2,n(. + λ(x)|Xi1 = Xi2 = x k) 
k=1 

K 

F2(.|∆Xi = 0) = P (Xi1 = Xi2 = x k)F2(. + λ(x)|Xi1 = Xi2 = x k) (72) 
k=1 

Since Assumption 4.1 holds, it follows that, for x ∈ X , F2(. + λ(x)|Xi1 = Xi2 = x) is 
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Hadamard differentiable tangentially to D × Y by Lemma D.1, where D = {g ∈ L∞(F) : 

g is ρ2-uniformly continuous}, where ρ2 is the variance metric. The Hadamard derivative 

is given by φ� (g, ) = g(.+λ(x))+ f2(.+λ(x)|Xi1 = Xi2 = x), where the subscript F2(.|x),λ(x)

F2(.|x) denotes F2(.|Xi1 = Xi2 = x). Now F1(.|Xi1 = Xi2 = x)−F2(. +λ(x)|Xi1 = Xi2 = 

x) is trivially Hadamard differentiable tangentially to D × L∞(Y)× Y. 

Let Ft|x(.) = Ft(.|Xi1 = Xi2 = x) and Ft|x,n(.) be the sample analogue thereof. Now 

noting that 

⎛ ⎞ ⎛ ⎞ 

F1|.,n(.)− F1|.(.) G1|. 
⎜ ⎟ ⎜ ⎟ √ ⎜ ⎟ ⎜ ⎟ 
⎜ ⎟ ⎜ ⎟n 
⎜ F2|.,n(.)− F2|.(.) ⎟ ⎜ G2|. ⎟ (73) 
⎝ ⎠ ⎝ ⎠ 

Λn − Λ E 

where G1|. and G2|. are each K × 1 tight Brownian bridges on {L∞(Y)}K and E is 

a K-dimensional normal random vector. For the following, we define E(x) as follows, 
√ p

n(λn(x)− λ(x)) → E(x). 

By Theorem 3.9.4 in Van der Vaart and Wellner (2000), it follows that 

√ ( )

n F1|.,n(.)− F2|.,n(. + λn(.))− (F1|.(.)− F2|.(. + λ(.))) �→ G1,2|., (74) 

where G1,2|x = G1|x − φ� 
F2|x

(G2|x, E(x)), which is a tight Brownian bridge. ,λ(x)

To show the weak convergence of the bootstrap empirical process, given below, we have 

to check that the conditions in Theorem 3.9.11 in Van der Vaart and Wellner (2000), 

√ 
n F̂1|.,n(.)− F̂2|.,n(. + λ̂n(.))− (F1|.,n(.)− F2|.,n(. + λn(.))) �→ G1,2|. . (75) 

The conditions in Theorem 3.9.11 include (a) Hadamard-differentiability tangentially to 

a subspace D × L∞(Y) × Y, (b) the underlying empirical processes converge to a sep-

arable limit, and (c) Condition (3.9.9), p. 378, in Van der Vaart and Wellner holds in 

outer probability. (a) follows from the above. Now (b) follows by (73) and tightness, 

since the latter implies separability. Finally, (c) is fulfilled if the conditions of Theo-

rem 3.6.2 hold. We can consider (G1|., G2|., E) as a tight Brownian bridge on L∞(F) × 

L∞(F) × Y, where F = {1{y ≤ t} : t ∈ Y}. Note that E is finite-dimensional, 

it suffices to show that Theorem 3.6.2 applies to F . Since F is clearly Donsker and 
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supf∈F | (f − fdFt(y|Xi1 = Xi2 = x))2dFt(y|Xi1 = Xi2 = x)| < ∞, the conditions in 

Theorem 3.6.2. hold. Thus, (c) holds, which implies (75). 

Now we relate (74) and (75) to Gn|∆Xi=0 and Ĝn|∆Xi=0, respectively. Let F1|x,n(.) ≡ 

F1,n(.|Xi1 = Xi2 = x). 

Gn|∆Xi=0 

√ 
= n(F1,n(.|∆Xi)− F2,n(., Λn|∆Xi = 0)− (F1(.|∆Xi = 0)− F2(., Λ|∆Xi = 0)))  

K √ 
= n Pn(Xi1 = Xi2 = x k|∆Xi = 0) F1|xk,n(.)− F2|xk,n(. + λn(x k))− (F1|xk(.)− F2|xk(. + λ(x k))) 

k=1 

K√ 
= n P (Xi1 = Xi2 = x k|∆Xi = 0) F1|xk (.)− F2|xk (. + λn(x k))− (F1|xk(.)− F2|xk(. + λ(x k))) ,n ,n 

k=1  

K  

+ (Pn(Xi1 = Xi2 = x k|∆Xi = 0)− P (Xi1 = Xi2 = x k|∆Xi = 0))  
k=1  
√ 

×  n F1|xk (.)− F2|xk (. + λn(x k))− (F1|xk(.)− F2|xk(. + λ(x k))) (76) ,n ,n

K 

P (Xi1 = Xi2 = x k|∆Xi = 0)(G1|xk − φ� (G2|xk , E(x k))) ≡ H(Λ) (77) F2,λ(xk) 
k=1  

since the second term of the last equality converges to zero in probability by the weak 

p
convergence of (76) and Pn(Xi1 = Xi2 = xk|∆Xi = 0) → P (Xi1 = Xi2 = xk|∆Xi = 0) for 

all k = 1, 2, ..., K. Hence, we have shown that the empirical process, Gn|∆Xi=0 converges 

to a tight Brownian bridge. 

Now the bootstrap empirical process can be decomposed as follows 

Ĝn|∆Xi=0 

√ 
ˆ= n F1,n(.|∆Xi = 0)− F̂2,n(., Λ̂n|∆Xi = 0)− (F1,n(.|∆Xi = 0)− F2,n(., Λn|∆Xi = 0))  

K √ 
ˆ= n Pn(Xi1 = Xi2 = x k|∆Xi = 0)  

k=1  

× F̂1|xk,n(. + λ̂n(x k))− F̂2|xk,n(.)− (F1|xk,n(. + λn(x k))− F2|xk,n(.))  
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K√ 
= n P (Xi1 = Xi2 = x k|∆Xi = 0)  

k=1  

ˆ× F1|xk,n(.)− F̂2|xk,n(. + λ̂n(x k))− (F1|xk,n(.)− F2|xk,n(. + λn(x k))) 

K 

+ (P̂n(Xi1 = Xi2 = x k|∆Xi = 0)− P (Xi1 = Xi2 = x k|∆Xi = 0))  
k=1  
√ 

× n F̂1|xk,n(.)− F̂2|xk,n(. + λ̂n(x k))− (F1|xk,n(.)− F2|xk,n(. + λn(x k))) 

H(Λ)  (78) 

where the first term of the last equality follows by continuous mapping theorem and (??). 

The second term converges to zero by (75) and ( P̂n(Xi1 = Xi2 = xk|∆Xi = 0)−P (Xi1 = 

p
Xi2 = xk|∆Xi = 0)) → 0 by Lemma C.1. Thus, the bootstrap empirical process converges  

to the same tight Brownian bridge as the empirical process. (i) and (ii) follow by the same  

arguments as Theorem 4.1. D  

Proof (Theorem 4.3)  

We first have to show that the underlying empirical and bootstrap empirical processes  

converge to the same tight Brownian bridge. Let ml = |{x ∈ Xl : x ∈ X}|, where |S|  

denotes the cardinality of a set S. Our statistics can be written as follows:  

T L ml1  √ 
KSn,Y = Pn(h(Xi) = hl) Pn(Xi = xj |h(Xi) = hl) n{Ft,n(.|xj)− F̄t,n,l(.)} ∞,Y

T 
t=1 l=1 j=1  

T L ml 1  √ 
CMn,φ = Pn(h(Xi) = hl) Pn(Xi = xj |h(Xi) = hl) n{Ft,n(.|xj)− F̄t,n,l(.)} 2,φ. 

T 
t=1 l=1  j=1 

Let (ζ(., x)) be the vector that contains the elements {ζ(., x) : x ∈ X T }.x∈X T 

⎛ ⎞√ 
n (F1,n(.|Xi = x)− F1(.|Xi = x))x∈X T 

⎜ ⎟ 
⎜ √  ⎟ 
⎜ ⎟n (F2,n(.|Xi = x)− F2(.|Xi = x))
⎜  x∈X T ⎟ 
⎜ ⎟ G (79) 
⎜ ⎟ 
⎜  ... 

⎟ 
⎝ ⎠√ 

n (FT,n(.|Xi = x)− FT (.|Xi = x))x∈X T 

Since T < ∞ and |X T | < ∞, the joint distribution of the centered empirical conditional 

cdfs converges to a tight Brownian bridge. Now note that a linear combination of the 
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above yields the empirical process that we use to construct our statistics.  

⎛ ⎞ 
⎛ ⎞√ 

⎜ n(F1,n(.|xj)− F̄1,n,l(.)− (F1(.|xj)− F̄1,l(.))) ⎟ 
⎜ ⎟ 

⎜ ⎟ 
⎜ ⎟ 

⎜ ⎟ 
⎜ ⎟ 

⎜ ... ⎟ H, 
⎜ ⎟ 

⎜ ⎟ 
⎝ ⎠ 

⎝ √ ⎠ 
n(FT,n(.|xj)− F̄T,n,l(.)− (FT (.|xj)− F̄T,l(.))) 

j=1,2,...,ml l=1,2,...,L 

Lwhere H ≡ ((Hj,l)j=1,..,ml
)l=1,..,L. Note that the above process is a (T l=1 ml)×1 vector of 

functionals. Since all of the above processes are defined on a Donsker class, the bootstrap 

empirical process also converges to the same limit process by Theorem 3.6.1 in Van der 

Vaart and Wellner (2000). 

⎛ ⎞ 
⎛ ⎞√ ¯

⎜ n(F̂1,n(.|xj)− F̂1,n,l(.)− (F1,n(.|xj)− F̄1,n,l(.))) ⎟ 
⎜ ⎟ 

⎜ ⎟ 
⎜ ⎟ 

⎜ ⎟ 
⎜ ⎟ 

⎜ ... ⎟ H. 
⎜ ⎟ 

⎜ ⎟ 
⎝ ⎠ 

⎝ √ ⎠ 
n(F̂T,n(.|xj)− F̄̂T,n,l(.)− (FT,n(.|xj)− F̄T,n,l(.))) 

j=1,2,...,ml l=1,2,...,L 

Now we give the limiting statistics as follows, 

T L ml1 
KSY = P (h(Xi) = hl) P (Xi = x|h(Xi) = hl) Hj,l ∞,Y

T 
t=1 l=1 j=1  

T L ml 1 
CMφ = P (h(Xi) = hl) Pn(Xi = x|h(Xi) = hl) Hj,l 2,φ. (80) 

T 
t=1 l=1 j=1 

Since the above is a linear combination of convex continuous functionals, it follows that 

Theorem 11.1 in Davydov, Lifshits, and Smorodina (1998) applies. Thus, the distributions 

of KSY and CMφ are absolutely continuous and strictly increasing on (0, ∞). Since 

Ft(.|Xi = x) is non-degenerate for x ∈ X T and t = 1, 2..., T , it follows that the P (KSY = 

0) = 0 and P (CMφ = 0) = 0. Hence, it follows that their distribution is absolutely 

continuous on [0, ∞). Now it remains to show that KSn,Y and CMn,φ converge to KSY 

and CMφ, respectively. 

Let Tn with norm . denote either the KS or CM with their respective norms, and let 
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Hn,j,l denote the relevant empirical process 

T L ml1 
Tn = Pn(h(Xi) = hl) Pn(Xi = xj |h(Xi) = hl) Hn,j,l 

T 
t=1 l=1 j=1  

T L ml 1 
= P (h(Xi) = hl) P (Xi = x|h(Xi) = hl) Hn,j,l 

T 
t=1 l=1 j=1  

T L ml 1 
+ Pn(h(Xi) = hl) (Pn(Xi = x|h(Xi) = hl)− P (Xi = x|h(Xi) = hl)) Hn,j,l 

T 
t=1 l=1 j=1  

T L ml 1 
+ (Pn(h(Xi) = hl)− P (h(Xi) = hl)) Pn(Xi = x|h(Xi) = hl) Hn,j,l 

T 
t=1 l=1 j=1 

T 

where T equals KSY and CMφ for the KS and CM statistics, respectively. The conver-

gence follows since the latter two terms converge in probability to zero, since (Pn(Xi = 

p p
x|h(Xi) = hl)− P (Xi = x|h(Xi) = hl)) → 0 and (Pn(h(Xi) = hl)− P (h(Xi) = hl)) → 0, 

and both terms are multiplied by Op(1) terms. 

Now it follows that the tests based on the bootstrap critical values yield correct asymp-

totic size, which gives (i). Since the empirical processes on which the tests are based are 

all tight, the critical values of the tests are bounded in probability. Hence, the tests are 

consistent against any fixed alternatives, which yields (ii). D 

C Supplementary Results: Testing Identifying Re-

strictions 

Theorem C.1 Given two random samples of size n and m from FX(.) and FY (.), respec-

tively, where FX(.) and FY (.) are atomless distribution functions, Dn1,m is distribution-

free, where 

Dn,m = sup |F̂X(z)− F̂Y (z)|, (81) 
z∈Z 

Proof Note that Dn,m = max{D+ , Dn,m
− }, where Dn,m 

+ = supz∈Z [F̂X(z) − F̂Y (z)] and n,m

Dn,m = supz∈Z [F̂Y (z) − F̂X(z)]. Let {Zi}n+m be the combined observations from both i=1 
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samples, and let Z(i) be the i
th order statistic and add Z(0) = −∞ and Z(n+m+1) = ∞. 

n mAlso, ri ≡ {Xj ≤ Z(i)} and si ≡ {Yj ≤ Z(i)}.j=1 j=1

[ J

D+ ˆ
n,m = max sup F1(y)− FX(y)− (F̂2(y)− F2(y)) + FX(y)− F2(y)

0≤i≤n+m Z(i)≤y<Z(i+1) 
    

ri si−1 
= max − inf FX(y)− − sup F2(y)

0≤i≤n+m n Z(i)≤y<Z(i+1) m Z(i)≤y<Z(i+1) 
  

+ max sup (FX(y)− F2(y))
0≤i≤n+m Z(i)≤y<Z(i+1) 

[ Jri si−1 
= max − FX(Z(i))− − F2(Z(i))

0≤i≤n+m n m 
[ ]

+ max FX(Z(i))− F2(Z(i))
0≤i≤n+m 

[ Jri si−1 
= max[ max − FX(Z(i))− − FY (Z(i))

1≤i≤n+m n m 
[ ]

+ max FX(Z(i))− FY (Z(i)) , 0] (82) 
1≤i≤n+m 

By the probability-integral transform theorem and continuity, FX(Z(j)) and FY (Z(j)) are 

both jth order statistics from U(0, 1) variables, for j = 1, 2. hence D+ is distribution-n,m 

free. Similarly, 

[ Jsi ri−1
D− = max[ max − FY (Z(i))− ( − FX(Z(i))) n,m 

1≤i≤n m n 
[ ] 

− min (FX(Z(i))− FY (Z(i))) , 0] 
1≤i≤n 

[ Jsi ri−1
Dn,m = max[ max − FY (Z(i))− − FX(Z(i))

1≤i≤n m n 
[ ]

+max[ max FX(Z(i))− FY (Z(i)) , 
1≤i≤n 
[ Jri si 

max − FX(Z(i))− − FY (Z(i)) ]
1≤i≤n+m n m 

[ ]

+ max (FX(Z(i))− FY (Z(i))) , 0] 
1≤i≤n+m 

D 

pn
Lemma C.1 For an iid sequence of events, {Ai}in =1, P (Ai) > 0, P̂n(Ai) ≡ i=1 Mni1{A}/n → 

P (A) as n → ∞. 
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Proof Note that Mni ∼ Bin(n, n−1) independent of {Ai}n Now, i=1. 

n n  
i=1 i=1  Mni1{Ai} 1{Ai}

E = (83) 
n n 

Now since Mni is not iid across i, we cannot apply a law of large numbers directly. We 

use the Poissonized process, where {MNn,i}n are iid Poisson variables with mean 1. i=1 

n n  
ˆ i=1 i=1  (Mni −MNn,i)1{Ai} MNn,i1{Ai}
Pn(Ai) = + (84) 

n n 

So we can apply a weak law of large numbers to the latter term to show convergence to 

P (Ai), since given {(Yi, X
�)}n and Nni i=1 

n n  
i=1 MNn,i1{Ai} i=1 1{Ai} 

E = (85) 
n n 

Since E[Nn] = n and it is independent of {Ai}in =1 , by the law of large numbers 

n 
pi=1 MNn,i1{Ai} → P (Ai) (86) 

Nn 

n (Mni−MNn,i)1{∆Xi=0}
It remains to show that the residual term i=1 converges to zero in n 

probability. From the proof of Theorem 3.6.2. in Van der Vaart and Wellner (2000), we 

have that 

P max |MNn,i −Mn,i| > 2 → (87) 
1≤i≤n 

So we can write 

n n  
i=1 i=1  |MNn,i −Mni| |MNn,i −Mni|

1{max |MNn,i −Mn,i| > 2}+ 1{max |MNn,i −Mn,i| ≤ 2}
n 1≤i≤n n 1≤i≤n 

n ∞
1 

= op(1) + 1{|MNn,i −Mni| ≤ j}1{max |MNn,i −Mn,i| ≤ 2} (88) 
n 1≤i≤n 

i=1 j=1 

Now we can write the difference between the bootstrap empirical process and the Pois-
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sonized process as follows  

n (Mn,i −Mni)1{∆Xi = 0}i=1

n 
n |Mn,i −Mni|1{∆Xi = 0}i=1 ≤ 

n 
n  
i=1  |MNn,i −Mni|

= 1{max |MNn,i −Mn,i| > 2}1{∆Xi = 0}
n 1≤i≤n  

n  
i=1  |MNn,i −Mni|

+ 1{max |MNn,i −Mn,i| ≤ 2}1{∆Xi = 0}
n 1≤i≤n 

n ∞
1 ≤ op(1) + 1{|MNn,i −Mni| ≤ j}1{max |MNn,i −Mn,i| ≤ 2}
n 1≤i≤n 

i=1 j=1 
⎛ ⎞ 

∞ j1 #In 1 
= op(1) + ⎝ 1{∆Xi = 0}⎠ 

n n j#Inj=1 ji∈In 

2 j n1 #I n 1{∆Xi = 0}n i=1 ≤ op(1) + n n n i=1 1{|MNn,i −Mn,i| ≥ j} n 
j=1  

1/2) Op(n
= op(1) + Op(1) = op(1) (89) 

n 

jwhere In = {i ∈ {1, 2, ..., n} : |MNn,i − Mni| ≥ j}. Now the penultimate equality follows 

jfrom #In ≤ |Nn −n| = Op(n
1/2) for all j. Now the second term follows by the law of large 

numbers and P (|MNn,i − Mn,i| = τ , ˜ = 1 − 2 , such that P (|MNn,i − Mn,i| = j) > 00, ˆ τ)

for j = 0, 1, 2. D 

Lemma C.2 Given Assumption 4.1, ρ2(s + , s) ≤ K| |. 

Proof (Lemma C.2) 

ρ2(s + , s) = E[(G(s + ) −G(s))2] 

= E[G(s + )2| ] + E[G(s)2]− 2E[G(s + )G(s)] 

= |F (s + )(1 − F (s + )) + F (s)(1− F (s))− 2{F ({s + } ∧ s)− F (s + )F (s)}| 

≤ |F (s + )(1 − F (s + )) − {F ({s + } ∧ s)− F (s + )F (s)}| (90) 

+ |F (s)(1− F (s))− {F ({s + } ∧ s)− F (s + )F (s)}| (91) 
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Now for (90)  

|F (s + )(1 − F (s + )) − {F ({s + } ∧ s)− F (s + )F (s)}|  

= |F (s + )(1 − F (s + )) − F ({s + } ∧ s)(1− F ({s + } ∨ s))}|  

≤ |F (s + )(F ({s + } ∨ s)− F ({s + } ∨ s)) + |(F (s + ) − F ({s + } ∧ s))(1− F ({s + } ∨ s))|  

≤ |F ({s + } ∨ s)− F (s + )|+ |F (s + ) − F ({s + } ∧ s)|  

≤ f(s){|max(s + , s)− (s + )|+ |s + −min(s + , s)|  

= f(s){|max(0, − )|+ |min(0, )|}  

≤ 2|f(s)|| |  

where f(s) is the density of F . Similar manipulation of (91) yields 

|F (s)(1− F (s))− {F ({s + } ∧ s)− F (s + )F (s)}| ≤ 2|f(s)|| n| 

Assumption 4.1 delivers the result with K = 4 sups∈R |f(s)|. D 

√ 
We need to introduce some notation for the following lemma. Let Gn ≡ n(Fn(.)−F (.)). 

√ √ 
GnA 

≡ n(Fn(.|Ai) − F (.|Ai)) and ĜnA 
≡ n(F̂n(.|Ai) − Fn(.|Ai)). Gn G, a P-

Brownian bridge in L∞(Y), where Y is the support of Yi. Clearly, 

Lemma C.3 Given {Yi, Ai}ni=1 an iid sequence, where Ai is an event with P (Ai) > 0, 

then 

H(i) Gn|A GA = P (Ai) 
+ ZF (., Ai) 

(ii) Ĝn|A GA 

where H is P-Brownian bridge in L∞(F), where F = {1{y ≤ t}1{Ai} : t ∈ Y}, and 
√ 

n((Pn(Ai))
−1 − (P (Ai))

−1) Z. 

61  



 

� � ��

 

 

  

    

  

 

 

  

n
Proof For (i), let Pn(A) ≡ 1{Ai}.i=1 

√ 
GnA 

= n(Fn(.|A)− F (.|A)) 

= 
√ 

n 
Fn(., A)− F (., A) 

Pn(A) 
+ F (., A) 

1 

Pn(A) 
− 1 

P (A) 

H 
+ ZF (., Ai) ≡ GA

P (Ai) 

The result for the first term follows by the Donsker property of F and Slutzky’s theorem. 

The latter trivially follows by P (Ai) > 0 and the continuous mapping theorem. 

nFor (ii), let P̂n(A) ≡ i=1 Mni1{Ai}/n 

√
ĜnA 

= n(F̂n(.|Ai)− Fn(.|Ai)) 

√ F̂n(., Ai) Fn(., Ai) 
= n − 

P̂n(Ai) Pn(Ai) 

ˆ√ Fn(., Ai)− F (., Ai) 1 1 
= n + Fn(., Ai) − 

P̂n(Ai) P̂n(Ai) Pn(Ai) 

Ĝn √ 1 1 
= + Fn(., Ai) n − 

ˆ ˆ Pn(Ai)Pn(Ai) Pn(Ai) 

H − F (., Ai)Z (92) 
P (Ai) 

where the weak convergence of the first term follows by the Donsker property of F , which 

implies that Theorem 3.6.1 of Van der Vaart and Wellner (2000) applies. The second 

term follows by the Glivenko-Cantelli property of F (., Ai) and the continuous mapping 

theorem. D 

D Paired-Sample Problem 

We observe an iid sequence {Yi1, Yi2}n We are interested in testing the equality of i=1. 

¯the distribution of the demeaned variables Wi,n = {Yi1 − λn, Yi2}, where λn = Y1,n = 

n 
i=1(Yi1 − Yi2)/n. Now we will introduce some notation. Let F1(.) and F2(.) denote the 

distributions of Yi1 and Yi2, respectively. The following are their empirical versions 

n n
1 1 

F1,n(t, λn) = 1{Yi1 − λn ≤ t} F2,n = 1{Yi2 ≤ t} (93) 
n n 

i=1 i=1 
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and their bootstrap empirical versions  

n n
1 1ˆ ˆF1,n(t + λ̂n) = Mni1{Yi1 − λ̂n ≤ t} F2,n(t) = Mni1{Yi2 ≤ t} (94) 
n n 

i=1 i=1 

Now we need to show weak convergence of the following empirical process 

√ 
Hn(λn) = n(F1,n(. + λn)− F2,n(.)− (F1(. + λ)− F2(.))) (95) 

and its bootstrap empirical counterpart, 

Ĥn(λ̂n) = 
√ 

n(F̂1,n(. + λ̂)− F̂2,n(.)− (F1,n(., λ)− F2,n(.))). (96) 

Now to show weak convergence of the above process, we need to show that the delta 

method applies here to the above empirical process, such that we can use the convergence 

of the following: 

⎛ ⎞ ⎛ ⎞ 

F1,n(.)− F1(.) G1 
⎜ ⎟ ⎜ ⎟ √ ⎜ ⎟ ⎜ ⎟ 
⎜ ⎟ ⎜ ⎟n (.)− F2(.) (97) 
⎜ F2,n ⎟ ⎜ G2 ⎟ 
⎝ ⎠ ⎝ ⎠ 

λn − λ E 

The main complication is due to the evaluation of the distribution function at Yi1 after 

imposing a location shift. Let Y denote the support Yi1. We first proceed to showing that 

the map φ : L∞(Y)×Y �→ L∞(Y), which is given below, is Hadamard differentiable. Let 

G denote some distribution and γ a location shift. 

φ(G, γ) = G(. − γ) (98) 

We need to impose that the underlying distribution has a bounded density. For a Gaussian 

process, G, define ρ2(s, t) = E|G(s)−G(t)|2 and D ≡ {h ∈ L∞(Y) : h is ρ2-uniformly continuous}. 

Lemma D.1 Assume that the distribution function F has a bounded density, φ(F, λ) : 

L∞(Y)×Y �→ L∞(Y) is Hadamard differentiable at (F, λ) tangentially to D ×Y with the 
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following derivative  

φ� = g(. − λ)− f(. − λ),F,λ(g, ) 

for (g, ) ∈ D × R.  

Proof Note that φ� (g, ) is clearly linear and continuous in g and . Now we need to  F,λ

show that  

φ(F + τngn, λ + τn n)− φ(F, λ)  → φ� n → ∞ (99) F,λ(g, )τn  

for all converging sequences τn � 0, gn → g ∈ D, and n → ∈ R. 

  

 φ(F + τngn, λ + τn n)− φ(F, λ)  

 − φ� 
 

 
F,λ(g, )

 τn ∞ 
  

 (F + τngn)(. − λ − τn n)− F (. − λ)  

  = − (g(. − λ)− f(. − λ))
  τn ∞ 
  

 F (. − λ − τn n)− F (. − λ)  

  ≤ + f(. − λ) + gn(. − λ − τn )− g(. − λ) 
 τn  

∞ 
n ∞ 

(100) 

For the first term of (100),

  

 F (. − λ − τn n)− F (. − λ)  

  + f(. − λ)
  τn ∞ 
  

 F (. − λ − τn n)− F (. − λ) F (. − λ − τn )− F (. − λ) 
  ≤ − 
  τn τn ∞ 
  

 F (. − λ − τn )− F (. − λ)  

  + + f(. − λ)
  τn ∞ 

F (t − λ − τn )− F (t − λ)≤ sup |f(t)|| n − |+ | | sup − f(t − λ) 
t∈R t∈R τn 

= sup |f(t)|| n − |+ | | sup |f(w)− f(t − λ)| w ∈ (t − λ − τn , t − λ) (101) 
t∈R t∈R 

≤ sup |f(t)|| n − |+ | δ| (102) 
t∈R 

The penultimate equality follows by the Mean Value Theorem.38 The second term of the 

38By the Mean Value Theorem, uniform continuity is equivalent to uniform differentiability. 
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last equality follows by uniform continuity implied by Assumption 4.1, which implies that  

for |w − t − λ| < |τn | < ν, there is a δ that bounds the second term in (101) uniformly in 

t. Now as τn → 0 and n → , both terms converge to zero. 

As for the second term of (100) 

gn(. − λ − τn n)− g(. − λ) ∞ 

≤ gn(. − λ − τn n)− g(. − λ − τn n) ∞ + sup |g(t − λ − τn n)− g(t + λ)|
t∈R 

≤ gn(. − λ − τn n)− g(. − λ − τn n) ∞ + sup |g(t − λ − τn n)− g(t − λ)|
ρ2(t−λ−τn�n,t−λ)

→ 0 τn → 0, n → , gn → g (103) 

where the first term follows by weak convergence for all g ∈ D. As for the latter term, 

by Lemma C.2 τn → 0 implies that ρ2(t − λ − τn n, t − λ) → 0. Since g ∈ D, which is 

uniformly ρ2-continuous, the result follows. D 

Theorem D.1 Assume that the distribution function F1 has bounded density, 

(i) Hn(λn) H(λ), 

(ii) Ĥn(λ̂n) H(λ) 

where H(λ) is a tight Brownian bridge in L∞(Y). 

Proof (i) Note that 

⎛ ⎞ ⎛ ⎞ 

F1,n(.)− F1(.) G1 
⎜ ⎟ ⎜ ⎟ √ ⎜ ⎟ ⎜ ⎟ 
⎜ ⎟ ⎜ ⎟n (.)− F2(.) G2 (104) 
⎜ F2,n ⎟ ⎜ ⎟ 
⎝ ⎠ ⎝ ⎠ 

λn − λ E 

where G1 and G2 are tight Brownian bridges in L
∞(Y) and E is a normal scalar random 

variable. 

Now let φ(F, λ) = F1(. − λ). By Lemma D.1, φ : L∞(Y) × R �→ L∞(R) is Hadamard 

differentiable at F, λ tangentially to D × R. Thus, by Theorem 3.9.4. in Van der Vaart 

and Wellner (2000), the delta method applies and 

⎛ ⎞ ⎛ ⎞ 

√ φ(F1,n, λn)− φ(F1, λ) 
⎟ φF,λ

� (G1, E) 
⎟⎜ ⎜ 

n 
⎝ ⎠ ⎝ ⎠  

F2,n − F2 G2  
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The result follows by the continuous mapping theorem.  

(ii) It suffices to check the conditions of Theorem 3.9.11 in Van der Vaart and Wellner 

(2000), which are that the empirical process in (104), where (G1, G2, E) are separable and 

in D ×L∞(Y)×Y. Since G1 and G2 are tight Brownian bridges and E is a scalar normal 

random variable, which implies that the limiting process is separable and by assumption 

it is in D × L∞(Y)× Y. 

Furthermore, we need condition (3.9.9), p. 378, in Van der Vaart and Wellner (2000) to 

hold in probability. Theorem 3.6.2 implies that (3.9.9) holds almost surely, and hence in 

probability, if F is Donsker and P (f − Pf) F < ∞. Since F = {1{y1 ≤ t} − 1{y2 ≤ 

t : t ∈ Y}, it is clearly Donsker. The second condition is also trivially fulfilled, since 

supt∈Y | {1{y1 ≤ t} − 1{y2 ≤ t} − (F1(t)− F2(t))}dF (y)| ≤ 2. D 
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Table 1: Monte Carlo Results: KS and CM Tests, S = 1000  

n 
α 

1000 
0.025 0.05 0.10 

1500 
0.025 0.05 0.10 

2000 
0.025 0.05 0.10 

Model (A) 
KS nt 0.024 0.052 0.110 0.026 0.054 0.104 0.036 0.068 0.103 

pt 0.013 0.022 0.055 0.020 0.041 0.068 0.020 0.031 0.074 
gt 0.009 0.021 0.048 0.016 0.022 0.047 0.012 0.023 0.045 
excl 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

CM nt 0.025 0.053 0.113 0.026 0.046 0.086 0.029 0.045 0.116 
pt 0.022 0.042 0.091 0.026 0.052 0.084 0.028 0.052 0.094 
gt 0.024 0.049 0.094 0.024 0.039 0.082 0.031 0.048 0.091 
excl 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Model (B) 
KS nt 0.985 0.996 0.998 0.998 1.000 1.000 1.000 1.000 1.000 

pt 0.014 0.023 0.054 0.020 0.041 0.067 0.020 0.030 0.074 
gt 0.009 0.021 0.046 0.015 0.022 0.046 0.011 0.021 0.044 
excl 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

CM nt 0.861 0.919 0.951 0.971 0.991 0.997 0.993 0.998 1.000 
pt 0.023 0.043 0.090 0.030 0.053 0.081 0.028 0.050 0.092 
gt 0.025 0.052 0.095 0.030 0.043 0.083 0.030 0.047 0.092 
excl 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Model (C) 
KS nt 0.979 0.987 0.997 1.000 1.000 1.000 1.000 1.000 1.000 

pt 0.941 0.966 0.982 0.992 0.996 0.998 1.000 1.000 1.000 
gt 0.009 0.021 0.048 0.015 0.020 0.045 0.012 0.023 0.045 
excl 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

CM nt 0.428 0.588 0.775 0.669 0.805 0.921 0.871 0.937 0.977 
pt 0.474 0.626 0.762 0.734 0.848 0.930 0.893 0.952 0.979 
gt 0.025 0.048 0.096 0.030 0.039 0.081 0.031 0.048 0.092 
excl 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Model (D) 
KS nt 0.990 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

pt 0.672 0.771 0.861 0.894 0.941 0.975 0.974 0.986 0.995 
gt 0.416 0.521 0.658 0.731 0.821 0.920 0.901 0.954 0.985 
excl 0.038 0.073 0.124 0.042 0.064 0.103 0.036 0.065 0.125 

CM nt 0.965 0.979 0.994 1.000 1.000 1.000 1.000 1.000 1.000 
pt 0.047 0.073 0.121 0.048 0.092 0.177 0.073 0.125 0.212 
gt 0.051 0.111 0.203 0.110 0.185 0.309 0.157 0.259 0.423 
excl 0.035 0.064 0.116 0.030 0.051 0.103 0.025 0.048 0.099 
s.e. 0.005 0.007 0.009 0.005 0.007 0.009 0.005 0.007 0.009 
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Table 2: Descriptive Statistics  

1983 1984 1985 1986 1987 
Race 0.12 
Age 21.84 

(2.22) 
HGC 12.34 12.45 12.57 12.57 12.61 

(1.77) (1.83) (1.94) (1.94) (1.98) 
South 0.29 0.30 0.30 0.30 0.30 
Urban 0.76 0.77 0.76 0.77 0.76 
Log Hourly Wage 6.31 6.39 6.50 6.61 6.72 

(0.48) (0.49) (0.49) (0.49) (0.50) 

Table 3: P-Values for Testing the Time Homogeneity up to a Time Effect 

KS CM F 

LOG Hourly Wage  
1983-84 0.50 0.74 0.11 
1984-85 0.11 0.87 0.09 
1985-86 0.40 0.72 0.25 
1986-87 0.43 0.17 0.46 
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Table 4: APE Results for Log Hourly Wage  

Grade Subs APE S.E. t-Stat  
1983 1984  
11 
12 
13 
14 
15 
All Movers 
1984 

12 
13 
14 
15 
16 

1985 

26 
24 
28 
19 
20 
122 

0.052 
-0.120 
-0.069 
-0.037 
0.141 
-0.012 

0.089 
0.133 
0.061 
0.035 
0.131 
0.043 

0.576 
-0.904 
-1.124 
-1.045 
1.073 
-0.267 

11 
12 
13 
14 
15 
All Movers 
1985 

12 
13 
14 
15 
16 

1986 

6 
14 
12 
17 
17 
73 

-0.010 
-0.080 
0.295 
0.011 
0.263 
0.095 

0.032 
0.067 
0.247 
0.063 
0.111 
0.055 

-0.318 
-1.191 
1.194 
0.178 
2.379 
1.723 

11 
12 
13 
14 
15 
All Movers 
1986 

12 
13 
14 
15 
16 

1987 

3 
12 
11 
14 
11 
58 

0.457 
0.148 
0.206 
0.052 
0.601 
0.226 

0.278 
0.113 
0.170 
0.106 
0.112 
0.060 

1.644 
1.311 
1.214 
0.496 
5.345 
3.737 

13 14 9 0.030 0.119 0.250 
14 15 8 -0.125 0.168 -0.743 
15 16 11 0.167 0.099 1.695 
All Movers 41 -0.012 0.068 -0.179 

Note: Results are listed for subpopulations 
with subsample size of 5 and above. 

Table 5: Returns to Schooling: ANACOVA Results 

Full Sample 1983-1984  
RF X A RF X A  

Grade -0.0688 0.0772 0.0714 -0.2343 -0.0196 -0.0097 
(0.1308) (0.0152) (0.0148) (0.1502) (0.0194) (0.0184) 

Grade2 -0.0070 -0.0005 -0.0013 0.0006 

Age2 
(0.0048) (0.0004) 
-0.0030 -0.0001 

(0.0060) (0.0005) 
-0.0023 0.0006 

Grade ∗ Ag
(0.0005) 

e 0.0134 
(0.0003) (0.0009) 

0.0113 
(0.0004) 

Union 

(0.0015) 
0.1397 0.1423 0.1424 

(0.0032) 
0.1642 0.1642 0.1643 

(0.0162) (0.0163) (0.0163) (0.0152) (0.0152) (0.0152)  
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