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Abstract—A comparative performance analysis of four geolo-
cation methods in terms of their theoretical root mean square
positioning errors is provided. Comparison is established in two
different ways: strict and average. In the strict type, methods are
examined for a particular geometric configuration of base stations
(BSs) with respect to mobile position, which determines a given
noise profile affecting the respective time-of-arrival (TOA) or time-
difference-of-arrival (TDOA) estimates. In the average type, meth-
ods are evaluated in terms of the expected covariance matrix of
the position error over an ensemble of random geometries, so that
comparison is geometry independent. Exact semianalytical equa-
tions and associated lower bounds (depending solely on the noise
profile) are obtained for the average covariance matrix of the po-
sition error in terms of the so-called information matrix specific to
each geolocation method. Statistical channel models inferred from
field trials are used to define realistic prior probabilities for the
random geometries. A final evaluation provides extensive results
relating the expected position error to channel model parameters
and the number of base stations.

Index Terms—Circular, Cramer–Rao bound (CRB), geoloca-
tion, hyperbolic, location, performance analysis, TDOA, TOA.

I. INTRODUCTION

T IME-OF-ARRIVAL (TOA) and time-difference-of-arrival
(TDOA) measurements are widely used for geolocation

applications [1]–[4]. They play a fundamental role in both
satellite-based Systems such as Global Positioning System
(GPS) GALILEO, and terrestrial-radio-based systems such as
Long Range Navigation (LORAN) and other wireless location
systems. Location techniques based on TOAs are usually
referred to as circular or spherical for 2-D or 3-D location,
respectively, while those based on TDOAs are referred to as
hyperbolic [5].

Some studies (see [6]–[9] and references therein) have fo-
cused on the statistical performance analysis of these location
techniques. In general, an analysis of this kind makes a num-
ber of assumptions about the nature of the available TOA and
TDOA parameters.
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Concerning TOAs, it is important to distinguish between ab-
solute TOAs and pseudo-TOAs. Examples of absolute TOAs are
the time-advance (TA) and round-trip-time (RTT) parameters
computed in network-based systems. In this case, the circular
technique is the only one applicable. The most representative
example of the use of pseudo-TOAs is found in satellite-based
positioning systems, where they are called pseudoranges. In
that case, the receiver clock offset is unknown, and the circular
technique is used by including this parameter into the equations.

It is important to consider the procedure used for the computa-
tion of TDOAs. One possibility is to take the difference between
pairs of pseudo-TOAs, with one particular pseudo-TOA chosen
as a reference. A clear example is encountered in the GPS sys-
tem using the hyperbolic technique [7]. A similar situation is
encountered in the uplink TOA method specified for global sys-
tem for mobile communications (GSM) [8], [10], [11], where
a known signal is sent by the mobile and received by several
base stations which estimate pseudo-TOAs, with respect to the
GPS time. The estimated pseudo-TOAs, along with their time-
stamps, are relayed back to the mobile location center (MLC),
where TDOAs are computed by forming their difference. A
more similar case can be found in any code division multiple
access (CDMA)-based system as in the observed time differ-
ence of arrival (OTDOA) location technique for 3G mobile
communication systems [12], [13] due to the fact that multi-
ple pseudo-TOAs can be measured simultaneously. In all cases,
when the TDOAs are obtained in this way, the measurement
noises of those sharing a common pseudo-TOA measurement
become correlated.

The application of the hyperbolic technique to pseudo-TOA
measurements has been analyzed in the literature. When the
receiver clock offset is modeled as an additional deterministic
unknown parameter, it has been demonstrated in [7] that both
approaches (circular and hyperbelic on TDOA measurements)
yield identical estimates, although their authors considered only
the special case in which all TOA estimates are uncorrelated and
have equal variance. On the other hand, it is demonstrated in [9]
that the Cramér–Rao (CRB) bounds for position accuracy using
TDOA measurements approach those of the spherical navigation
system as the variance in the clock-offset approaches zero and
those of the hyperbolic positioning system as the variance of the
clock offset approaches infinity. Note that clock-offset variance
includes both the inacuracies of the local clock, as well as the
incuracies in the common transmit time of the BSs.

There exists in practice an alternative to the computation
of TDOAs. In the downlink enhanced observed time differ-
ence (E-OTD) [13] scheme, for instance, timing differences are
estimated directly at the mobile station, one at a time, as only
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two RF chains are implemented in mobile terminals. In this
case, different TDOAs are generated at different times, leading
to higher latency and uncorrelated estimates if the estimation
period is longer than the typical coherence time of the mobile
radio channel [8]. It is noted, in that case, that small mobile
movements (on the order of the wavelength) during two consec-
utive TDOA measurements suffice to decorrelate them. How-
ever, in the analysis of this alternative, one can still assume
that the mobile station is essentially stationary during the com-
plete estimation period, which will be N -1 times higher than a
single TDOA measurement time, where N is the number of bea-
cons. This assumption is implied by the fact that the maximum
change of position of the mobile within the complete estima-
tion period is not significant in comparison with the expected
positioning accuracy in the multipath environment. It is finally
noted that, when using only two RF chains, the direct compu-
tation of TDOAs is more practical than that of pseudo-TOAs,
because the computation of pseudo-TOAs at different times re-
quires time stamping due to the receiver clock drift, which is
not necessary for the computation of TDOAs.

Therefore, in the performance analysis of the hyperbolic tech-
nique, the modeling of TDOA errors may depend on the appli-
cation, which has a clear influence on their cross-correlation
structure. The first contribution of this paper is the complete
performance comparison between the circular and hyperbolic
techniques for all aforementioned cases. The second contri-
bution is the analysis of the average performance (and lower
bound) over all the geometric configurations of the base sta-
tions. To our knowledge, this average analysis has never been
reported, and it proves very useful for comparing the expected
accuracy of different location techniques, with independence of
the particular geometric configuration of the base stations. This
analysis is limited to the case where the beacons are uniformly
distributed over the plane, although it can be generalized to three
dimensional distributions.

II. DEFINITION OF GEOLOCATION SCENARIOS

In this paper, the accuracy of each of the four geolocation
methods considered is defined in terms of their position error
covariance matrices

Cst :Circular with known clock

Cst̄ :Circular with unknown clock

Chc :Hyperbolic correlated

Chc̄ :Hyperbolic uncorrelated.

1) Circular technique with known clock offset: In this sce-
nario, the available measurements consist of the absolute
TOAs of the signals transmitted between the mobile and
the beacons. A circular technique is used to compute the
position estimate. The covariance matrix of the position
error is denoted Cst.

2) Circular technique with unknown clock offset: In this sce-
nario, the available measurements consist of the pseudo-
TOAs of the signals transmitted between the mobile and

the beacons. A circular technique is used to compute the
position estimate along with the clock offset. The covari-
ance matrix of the position error is denoted Cst̄.

3) Hyperbolic technique with correlated noise: In this sce-
nario, the available measurements consist of the TDOAs
obtained from differences between pairs of pseudo-TOAs.
A hyperbolic technique is used to compute the position
estimate. The covariance matrix of the position error is
denoted Chc.

4) Hyperbolic technique with uncorrelated noise: In this sce-
nario, the available measurements consist of uncorrelated
TDOAs obtained at different times. A hyperbolic tech-
nique is used to compute the position estimate. The co-
variance matrix of the position error is denoted Chc̄. Note
that this is the case of downlink E-OTD, as described in
Section I, where TDOA measurements are computed one
at a time to avoid the impact of clock drift.

Finally, note that in scenarios with hardware constraints (fre-
quency division multiple access (FDMA) systems with only
two RF chains, as in GSM), measurements cannot be taken
simultaneously. In this case, the uncorrelated hyperbolic ap-
proach appears in a natural way, where TDOA measurements
are computed one at a time. In these scenarios (two RF chains),
pseudo-TOAs and TOAs can also be measured sequentially, but
clock drift affects performance.

III. REVIEW AND EXTENSION OF PERFORMANCE LIMITS

A. Signal Model for Circular Methods

In the general case, the TOA/pseudo-TOA measurements ob-
tained from N beacons can be expressed as a function of the
mobile position x = [x1, x2]T as follows:

t̂n = t̃n (x, to) + un (1)

= tn (x) + to + un (2)

where 1 ≤ n ≤ N, t̃n (x, to) is defined in the trivial way,
tn (x) = 1

c ‖x − xn‖,xn = [x1,n , x2,n ]T is the nth beacon po-
sition, to is the clock offset, which has the same value for all
n, un are the measurement errors, and c is the speed of light.
Note that to = 0 in the case of absolute TOAs, while it becomes
an unknown parameter in the case of pseudo-TOAs. Note also
that the effect of clock drift of the mobile is inherently not con-
sidered in (1) and (2). This is, in general, an unfair comparison,
since as has been said, the hyperbolic uncorrelated approach is
the single robust approach in terms of clock drift under hard-
ware constraints. It is out of the scope of this paper to show the
effect of such phenomena.

If the time interval used to perform these measurements is
sufficiently large (see [14] and references therein), then, by the
central limit theorem, we can approximate the terms un as jointly
Gaussian. Further, as the present contribution is focused only
on the computation of performance limits, it will be assumed
that the possible bias of the measurements caused by hardware
calibration errors and multipath effects is known, which is equiv-
alent to assuming (as in [8]) that the measurement errors un are
zero-mean. An additional rationale for this assumption is based
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on the fact that we are interested on an average performance
analysis. Therefore, by considering the ensemble of all possi-
ble random biases affecting all measurements t̂n , there always
exists an equivalent variance amplification (of the noise term
un ) producing, on average, an equivalent global effect. This
feature is very appealing, as it allows modeling all error sources
simply as an additional zero mean term with a specified vari-
ance. A similar rationale applies to hardware calibration. For an
analysis of the impact of biased measurements on the accuracy
of position location methods, see [15] and [14].

Let the measurements be stacked into vector t̂. Then, from
(1) and (2)

t̂ = t̃(x, to) + u (3)

= t(x) + to1 + u (4)

where 1 is the all-ones column vector, and the remaining vectors
become defined in a trivial way from (2). The N × N covariance
matrix of the noise vector u is

R = E[uuT ]. (5)

It is assumed throughout the paper that matrix R is known,
which allows the establishment of lower performance bounds.
The statistical distribution of the (diagonal) matrix R has been
obtained from models based on real data [16], and is detailed
in Section VII-B. In practice, R is to be estimated, with the
consequent degradation in the performance predicted by the
bounds derived herein. Nonetheless, they are still valid as lower
bounds.

B. Signal Model for Hyperbolic Methods

The N − 1 TDOA measurements are given by

d̂ = Ht̃(x, to) + v (6)

= Ht(x) + v (7)

with H repersenting any full-rank (N − 1) × N matrix such
that H1 = 0, where 0 is the all-zeros column vector. Note that
this condition implies that the measurement vector d̂ is not
affected by the presence of the nonzero clock offset to in (7).
The most common example of H is

H = [1,−I] (8)

where all TDOAs are obtained with respect to a common
pseudo-TOA. This first (or reference) pseudo-TOA corresponds
to the all-ones column of H. will henceforth be called the pivot
BS. Nonetheless, the analysis in this paper is general for any
H, unless otherwise stated. The (N − 1) × (N − 1) covariance
matrix of the noise vector v is

Rh = E[vvT]. (9)

Note that, only in the “hyperbolic-correlated” scenario, the
TDOAs are computed as d̂ = Ht̂, and then it holds from (4)
that v = Hu, and

Rh = Rhc = HRHT . (10)

However, in the “hyperbolic-uncorrelated” scenario, the struc-
tures of Rh = Rhc̄ and R are not necessarily related in a simple

way. Indeed, in the “hyperbolic-uncorrelated” scenario, matrix
H in (7) only shows how the pairs of BS are selected to obtain
the N − 1 TDOA measurements, but measurements remain in-
dependent. In that scenario, the relationship between Rhc̄ and
R for any H can be expressed as

Rh = Rhc̄ = (HRHT ) � I (11)

where � stands for the component-wise Schur–Hadamard prod-
uct between two matrices. Note that Rhc and Rhc̄ are the spe-
cific versions of Rh for the correlated and uncorrelated version,
respectively, of the hyperbolic approach.

C. Performance Limits

The performance limits are computed as the performance of
the linearized weighted least squares (WLS) estimator, which
coincides with the Cramer–Rao bound in the case of Gaussian
noise.

For circular approaches, the linearization of (4) at the true
position yields

∆t̂ = F∆x + ∆to1 + u (12)

where the N × 2 matrix of partial derivatives F can be calcu-
lated as

[F]n,i =
∂tn (x)

∂xi
=

1
c

xi − xi,n

‖x − xn‖
(13)

=
1
c

xi − xi,n√
(x1 − x1,n )2 + (x2 − x2,n )2

(14)

with i = 1, 2, and where [M]l,l ′ denotes the lth row l′th column
element of a matrix M. The WLS estimator of ∆x and ∆to is
the minimizer of

(∆t̂ − F∆x − ∆to1)T R−1(∆t̂ − F∆x − ∆to1) (15)

which, using standard differential matrix calculus, can be ex-
pressed as [

∆x
∆to

]
=
(
FT

1 R−1F1

)−1
FT

1 R−1∆t̂ (16)

where F1 = [F,1], and the covariance matrix of ∆x is given
by

Cst̄ = TT
(
FT

1 R−1F1

)−1
T (17)

with TT = [I,0]. Following the same procedure, the covariance
matrix of ∆x in the case of known clock to is

Cst = (FT R−1F)−1. (18)

On the other hand, for hyperbolic approaches, we have the
linearization of (7) that can be written as

∆d̂ = HF∆x + v (19)

and the WLS estimator of ∆x becomes the minimizer of

(∆d̂ − HF∆x)T R−1
h (∆d̂ − HF∆x) (20)

given by

∆x =
(
FT HT R−1

h HF
)−1

FT HT R−1
h ∆d̂ (21)
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with covariance matrix

Ch =
(
FT HT R−1

h HF
)−1

(22)

where the subindex inCh andRh stands for a generic hyperbolic
approach. For the uncorrelated hyperbolic approach (11), this
covariance matrix can be expressed as

Chc̄ =
(
FT HT R−1

hc̄ HF
)−1

(23)

Chc̄ =
(
FT HT [(HRHT ) � I]−1HF

)−1
(24)

and, in the specific case that the TDOAs are computed as differ-
ences between pseudo-TOAs (correlated hyperbolic approach),
it holds from (10) that Rh = Rhc = HRHT , and the corre-
sponding covariance matrix is given by

Chc =
(
FT HT R−1

hc HF
)−1

(25)

Chc = (FT HT (HRHT )−1HF)−1. (26)

IV. COMPARISON CRITERIA

Strict and average comparison are carried out in this paper.
Such comparison between two methods can be established in
terms of the positive definite character of the respective co-
variance matrices, or in a less restrictive sense, in terms of their
trace. By strict, we mean a comparison between two geolocation
methods for a specific geometry of the base stations with respect
to the mobile station, and for a specific noise profile affecting
either TOA or TDOA measurements. By average, we mean a
comparison between the expected covariance matrices over a
joint ensemble of geometries and noise profiles. Thus, a geolo-
cation method A is said to be strictly better than (or superior
to) a geolocation method B when the respective covariance ma-
trices fulfil CA ≤ CB (i.e., CB − CA is nonnegative definite)
for any geometry or noise profile. If two geolocation methods A
and B cannot be guaranteed to fulfill the strict superiority con-
dition, comparison must be established in terms of their average
behavior, i.e., EGCA ≤ EGCB , in terms of the expectation over
the geometry and noise profile ensemble (G). Then, “strictly”
is dropped, and we state that the geolocation method A is better
than the geolocation method B. Hence, strict superiority implies
(average) superiority, but not vice-versa. The choice of imple-
menting a geolocation method A over a method B must nec-
essarily be governed by an average superiority criterion, which
will guarantee a global improvement for a number of scenar-
ios, although for some specific geometries, B may outperform
A. Average performance analysis will require (Section VI) the
definition of a reasonable probability density function for the
random geometries and noise profiles.

V. STRICT COMPARISON OF LOCATION TECHNIQUES

This section establishes the relationship among the four ge-
olocation methods previously described in terms of strict supe-
riority. We establish the following results:

A) Cst̄ = Chc;
B) Cst̄ ≥ Cst;

C) the relationship between Chc and Chc̄ depends on the spe-
cific geometry and noise profile. Comparison must be es-
tablished in terms of the respective averages (Section VI).

A. Equality Between Cst̄ and Chc

According to (17) and (26), C−1
st̄ and C−1

hc can be expressed
as

C−1
st̄ =

(
TT

(
FT

1 R−1F1

)−1
T
)−1

(27)

C−1
hc = FT(HT(HRHT )−1H)FT. (28)

Several manipulations will show that they are indeed equal. We
start forming the product FT

1 R−1F1 in C−1
st̄ , then

FT
1 R−1F1 =

[
FT

1T

]
R−1[F 1]

=
[
FT R−1F FT R−11
1T R−1F 1T R−11

]
(29)

Using block matrix inversion [17], [18] in (29)

(
FT

1 R−1F1

)−1
=
[
B11 b12

bH
21 β

]

B11 =
[
FT R−1F − FT R−111T R−1F

1T R−11

]−1

but we also have from (27) that

C−1
st̄ =

[
[I 0]

(
FT

1 R−1F1

)−1
[

I
0T

]]−1

= B−1
11

B−1
11 = FT R−1F − FT R−111T R−1F

1T R−11

= FT

(
R−1 − R−111T R−1

1T R−11

)
F. (30)

Therefore, comparing (28) and (30), and using the fact that

R−1 − R−111T R−1

1T R−11
= HT (HRHT )−1H (31)

is true for any matrix H that fulfills H1 = 0 (see Appendix F),
we have that

Cst̄ = Chc (32)

which generalizes the work presented in [7], in the sense that
(32) is valid for any R.

B. Strict Superiority Between Cst̄ and Cst

We want to compare the matrices defined in (17) and (18)

Cst̄ = TT
(
FT

1 R−1F1

)−1
T

Cst = (FT R−1F)−1

to prove that Cst̄ > Cst for any geometry or noise profile. We
know from (30) that

C−1
st̄ = FT

(
R−1 − R−111T R−1

1T R−11

)
F. (33)
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Hence

C−1
st̄ = C−1

st − qqT (34)

where

q =
FT R−11√
1T R−11

. (35)

Using the matrix inversion lemma in (34), we see that Cst̄ is
more positive definite than Cst (i.e., Cst̄ − Cst is a positive
definite matrix),

Cst̄ = Cst +
qqT

1 + qT Cstq
≥ Cst (36)

and we conclude from (36) that absolute TOA measurements
generate a Cst strictly contained in Cst̄ for any geometry or
noise correlation. Note, however, thatCst andCst̄ are not simply
related by a scaling factor.

C. Relationship Between Chc and Chc̄

We show in this section that strict comparison is not possible
between Chc and Chc̄, as some scenarios will deliver better
performance for Chc and others will not. The judgement as
to what method is better, and to what extent, will require the
average performance analysis in Section VI for an ensemble
of geometries and noise profiles. The derivation here is rather
involved, and most of it is developed in the appendices (see
Appendices A and B. The relationship between Chc and
Chc̄ depends on the way in which the TDOAs are obtained,
as this determines the respective noise profile. Hence, the
measurement noise correlation matrices will be defined first.
The TOA noise correlation matrix R is defined by

R = diag
(
h2

1, h
2
2, . . . , h

2
N

)
= σ2Dc

σ2 =
N∑

i=1

h2
i

Dc = diag(s2
1, s

2
2, . . . , s

2
N )

s2
i = h2

i /σ2 (37)

where σ2 constitutes the global noise power and s2
i the compo-

nents of the noise profile, with
∑N

i=1 s2
i = 1. The uncorrelated

hyperbolic correlation matrix Rhc̄ associated with the noise
profile of R and defined in (11) depends on how pseudo-TOA
differences are taken. Indeed, this is the role of matrix H in
(11). For differences taken using H = [1,−I], which is the most
common case in real implementations, we set Rhc̄ from (11) as

Rhc̄ = diag
(
h2

c̄ ,1, h
2
c̄ ,2, . . . , h

2
c̄ ,N −1

)
= σ2

hc̄Dc̄ (38)

σ2
hc̄ =

N −1∑
i=1

h2
c̄ ,i

h2
c̄ ,i = h2

1 + h2
i+1 (39)

Dc̄ = diag
(
s2

c̄ ,1, s
2
c̄ ,2, . . . , s

2
c̄ ,N −1

)
s2

c̄ ,i = h2
c̄ ,i

/
σ2

hc̄ =
σ2

σ2
hc̄

(
s2
1 + s2

i+1

)
(40)

where the noise for each TDOA is the addition of the respective
pseudo-TOA noise components. It is assumed here that each
pair of pseudo-TOA measurements used to determine a single
TDOA are not performed simultaneously, as would be the case
for Rhc. Instead, each pair of TDOA measurements are carried
out in different time intervals, such that the offdiagonal terms
of Rhc̄ are necessarily zero for lack of correlation, as shown
in (11). Hence, generally σ2

hc̄ is on the order of 2σ2. This will
set an absolute criterion for comparing both methods. Now, it
is shown in Appendix A that Chc and Chc̄ can be expressed as

C−1
hc = FT

u IN −1Fu (41)

C−1
hc̄ = FT

u

(
σ2

σ2
hc̄

Λ
)

Fu (42)

where

σ2

σ2
hc̄

tr{Λ} = tr{IN −1} = N − 1 (43)

and where IN −1 is the N − 1 × N − 1 identity matrix, and Fu

is a geometry-dependent matrix obtained from F (see Appendix
A) as Fu = WT F, with W a geometry-independent matrix of
rank N − 1. (σ2/σ2

hc̄)Λ is a positive definite diagonal matrix
with N − 1 nonzero eigenvalues, such that some are larger than
1 and some smaller than 1 to fulfill the trace constraint (43).
We can see from this that according to each specific geometry
and noise profile, depending on how F is projected onto the
subspace spanned by the vectors of W, the Euclidean norm of
each column in Fu will be affected in a different way in (41)
and (42). So, nothing in terms of the strict superiority between
the matrices Chc and Chc̄ can be stated.

An alternative way to show that Chc is not stricly superior to
Chc̄ or vice versa is by checking that Chc − Chc̄ is neither pos-
itive nor negative definite (i.e., it has both positive and negative
eigenvalues). This can be easily checked in terms of the dif-
ference between their inverses because if C−1

hc − C−1
hc̄ has both

positive and negative eigenvalues, then, so does Chc − Chc̄. 1

C−1
hc − C−1

hc̄ = FT
u

[
IN −1 −

(
σ2

σ2
hc̄

Λ
)]

Fu (44)

= FT
u Λ′Fu. (45)

Since from the constraint in (43) ((σ2/σ2
hc̄)Λ) is a diagonal ma-

trix with positive elements larger and smaller than one, Λ′ must
be a diagonal matrix with positive and negative elements. Hence,
it is proved that C−1

hc − C−1
hc̄ and, consequently, Chc − Chc̄,

have positive and negative eigenvalues (they are neither positive
nor negative definite). This can be mathematically expressed as

Chc �> Chc̄ (46)

Chc �< Chc̄. (47)

1This results from the following property regarding two positive definite
matrices A1 and A2 : A1 ≥ A2 if and only if A−1

1 ≤ A−1
2 . Therefore, if

A1 −A2 has positive and negative eigenvalues, A−1
1 −A−1

2 must as well.
Otherwise, a contradiction with the previous property would occur.
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VI. AVERAGE COMPARISON OF LOCATION TECHNIQUES

Strict performance comparison of circular and hyperbolic ge-
olocation in terms of the covariance matrix of the position error
has been developed in Section V. It has also been shown that
at least one case exists (uncorrelated hyperbolic geolocation)
where two methods do not compare in the strict sense, due to
their dependence on each particular geometry. In this and other
cases, comparison may be established only in terms of the ex-
pected performance over a random geometry.

This section presents an efficient procedure for comparing
algorithms in terms of their average covariance matrix, as well
as an analytical lower bound in the positive definite sense. The
placement of BSs is defined according to a uniform random dis-
tribution on a circular area centered at the true mobile position,
and depending on a density parameter ρ (BS/km2).

A. Fundamentals of Average Performance Analysis

From (18), (24), and (26), the covariance matrices of the four
geolocation algorithms can be expressed as

C = (FT AF)−1 (48)

where A is termed the information matrix. As defined in Section
II, we have that for each geolocation algorithm

Ast = R−1 (49)

Ast̄ = HT (HRHT )−1H

Ahc = Ast̄

Ahc̄ = HT [(HRHT ) � I]−1H. (50)

In (48), geometrical information is included in matrix F and
in the noise power distribution defined by the measurement
covariance matrix R. From (13), the rows of F constitute the
directive cosines of the vectors aligned with the paths from the
mobile to the base stations (or generic references) with respect
to the coordinate axes. Then

F = F(α) =
1
c




cos(α1) sin(α1)
cos(α2) sin(α2)

cos(αN ) sin(αN )


 (51)

with α = [α1, α2, . . . , αN ]T , and αn the angle with respect to
the horizontal coordinate axis of the vector from the mobile
to the nth BS. The diagonal of R contains the noise power
of all individual pseudo-TOA measurements, which depends
mainly on the distance between the mobile and each BS. So,
the specific position of the BSs affects the covariance matrix C
in two different ways: in their angular distribution implicit in
F, and in their distance distribution implicit in R. Hence, the
geometry-independent average of the position error covariance
matrix can be expressed as

C̄ = EG [(FT AF)−1] = ENEα[(FT AF)−1] (52)

with EG the expectation operator with respect to all possible
geometry scenarios, which can be split into the expected value
with respect to the angles α, (Eα), and the expected value with
respect to the power distribution (EN ) (related with the distance

distribution). Its analytical computation is too involved due to
the particular way in which geometry affects the covariance
structure. So, the expression derived in the sequel exploits a
rotational property of the 2-D location case in such a way that the
structure of (52) can be studied without analytically computing
its expected value.

For convenience, let us define the expectation with respect to
the angles in (52) as CN

C̄ = ENCN (53)

where

CN = Eα[(FT AF)−1]. (54)

Here, the angles α are independent, uniformly distributed
random variables in [0, 2π] due to the uniform random place-
ment of BSs in the coverage area of the mobile. Thus, the infinite
set of all possible angular configurations of the BSs can be di-
vided into an infinite number of subsets within which angular
configurations differ in a rotation. That is

[α1, α2, . . . , αN ] = α1 · 1T + [0, α2 − α1, . . . , αN − α1]
(55)

with the rotated angles αi − α1, 2 ≤ i ≤ N a set of mutually
independent random variables2 uniformly distributed in [0, 2π]
and also independent of the equally uniformly distributed lead-
ing angle α1. Then, the expectation (Eα ) in (54) can be ex-
pressed as the composition of two expectations: the expectation
over the rotation α1 applied to the expectation over the subset of
rotated angles SS = {αi − α1, 2 ≤ i ≤ N}. From this division
into subsets of the geometry, (54) becomes

CN = ESSEβ

[(
FT

SS,βAFSS,β

)−1
]

(56)

where FSS,β denotes F for a particular rotation angle β = α1

and subset configuration. From (55), we can express the generic
subset FT

SS,β matrix as

FT
SS,β = GβFT

SS (57)

where FT
SS = FT

SS,0 denotes the canonic F matrix of the subset
in the specific case β = 0, and Gβ is a unitary-rotation matrix
defined as

Gβ =
[

cos(β) sin(β)
− sin(β) cos(β)

]
. (58)

Now, applying (56)–(57), we have

CN = ESSEβ

[(
GβFT

SSAFSSGT
β

)−1
]

(59)

and, as Gβ is unitary

CN = ESSEβ

[
Gβ

(
FT

SSAFSS
)−1

GT
β

]
.

The expectation over β is derived in Appendix C. Hence

CN =
1
2
ESStr

{(
FT

SSAFSS
)−1

}
· I (60)

2Note that the inherent wrapping operation in the modular difference of angles
make these new random variables statistically independent.
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Although, in (60), the expectation over geometries is only par-
tially solved, we may now see that only the average of a trace
suffices to compute the geometry-independent performance of
a location algorithm. It is also important to note from (53) and
(60) that the average covariance matrix is always proportional
to the identity matrix due to the rotational properties of the ge-
olocation problem for uniformly distributed BSs. Similar results
can be found in the case of a 3-D problem.

B. Average Performance Analysis

Applying (60) in (53) to the four algorithms associated with
the information matrices A defined in (49), we obtain

C̄st =
1
2
EN ,SStr

{(
FT

SSR
−1FSS

)−1
}
· I (61)

C̄st̄ =
1
2
EN ,SStr

{(
FT

SSH
T (HRHT )−1HFSS

)−1
}
· I

(62)

C̄hc = C̄st̄ (63)

Chc̄ =
1
2
EN ,SStr

{(
FT

SSH
T [(HRHT ) � I]−1HFSS

)−1
}
· I

(64)

Performance analysis based on these expressions will be carried
out in Section VII. The next section presents a lower bound to
(61)–(64) to eliminate the ESS operation.

C. Lower Bound on the Average Covariance Matrix

It has been shown in (53) that C̄ = ENCN , where

CN = Eα [(FT AF)−1]. (65)

We can define the auxiliary term C−1
N as

C−1
N = Eα [(FT AF)] (66)

The advantadge of this new definition is that, as shown in
Appendix G

CN > [C−1
N ]−1 (67)

and, as proved in Appendix D, the new term C−1
N presents a

closed-form expression as

C−1
N =

1
2c2

tr{A} · I (68)

So, from (53), (67), and (68), we have

C̄ > 2c2EN tr−1{A} · I (69)

which is a lower bound for all the covariance matrices associ-
ated with the four geolocation methods. Finally, from (69) and
applying the information matrix definitions in (49), we can write
the lower bound for the four geolocation algorithms as follows:

C̄st > 2c2EN tr−1{R−1} · I (70)

C̄st̄ > 2c2EN tr−1{HT (HRHT )−1H} · I (71)

C̄hc = C̄st̄

Chc̄ > 2c2EN tr−1{HT [(HRHT ) � I]−1H} · I. (72)

The important remark in these expressions is that the angle
distribution of the sources has been removed from the origi-
nal exact expressions, while the expectation EN over the noise
power distribution remains.

One further approximation is possible for this lower bound:
it is shown in Appendix E that for a large number of BSs, the
random noise power distribution tends to be nonrandom if the
components of the diagonal matrix R are sorted. It can also be
easily shown that the order of the elements in R affects neither
the performance of the circular algorithms nor the correlated
version of the hyperbolic approach. In the particular case of
the uncorrelated version of the hyperbolic approach, only the
position of the reference BS affects the general performance of
the algorithm. Then, the best and worst cases can be studied by
assigning the smallest and the largest value of the sorted matrix
R to the reference BS, respectively. Under this approximation,
the EN in expressions (70)–(72) can be removed if the random
covariance matrix R is replaced by the nonrandom matrix R̃.
(See Appendix E for more details about the computation of R̃
for a large number of BSs.) Finally, the following closed form
expressions result:

C̄st > 2c2tr−1{R̃−1} · I (73)

C̄st̄ > 2c2tr−1{HT (HR̃H)−1H} · I (74)

C̄hc = C̄st̄

Chc̄ > 2c2tr−1{HT [(HR̃HT ]) � I]−1H} · I. (75)

These expressions will be used only as approximations to the
true simulations in Section VII.

VII. COMPARISON RESULTS

A. Base Stations Distribution

One of the most important points in the evaluation of any
location algorithm is the specific distribution of the BSs. In order
to perform a fair comparison between methods, we will assume
a completely random uniform distribution of the BSs in the
visibility circle of the mobile. To see the effect of extremely bad
dilution of precision conditions (i.e., unfortunate positioning of
BSs), some histograms and cumulative histograms will be also
presented.

In all the simulations presented here, it will be assumed that
the mobile can observe BSs within a radius of R m where BSs are
uniformly distributed with a certain density of ρ BS/km2. The
effect of these two parameters will be studied in the simulations.

B. Noise Profile

The noise profile of time measurements is another important
point in the evaluation of location algorithms. We have chosen
the most common distribution presented in the literature based
on real measurement campaigns.

Let d be the distance from the mobile to a randomly selected
beacon. Then, the probability density function (pdf) of d is given
by pd(d) = 2d/R2 for 0 ≤ d ≤ R [16]. On the other hand, the
delay spread, which constitutes the principal phenomenon that
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disturbs the TOA measurements, is given by [16] as

σ = T1d
εy (76)

where T1 is the mean value of σ at d = 1 km, ε is an exponent
between 0.5 and 1.0, and y is a log-normal random variable
generated by y = 10Y /10, where Y is Gaussian with standard
deviation σY in the interval between 2 and 6 dB.

The performance results shown hereafter assume that the
TOA covariance matrix R is diagonal, i.e.,

R = diag
([

σ2
1 , σ2

2 , . . . , σ2
N

])
(77)

with σn samples of the random variable σ modeled in (76) for
the nth beacon.

In all the simulations presented here, T1, ε, and σY of (76)
have been chosen for the suburban environment following [16].
That is, T1 = 0.4 µ, ε = 0.5, and σY = 4 dB.

C. Numerical Simulations I

In this section, the performance of the four geolocation al-
gorithms defined in (61)–(64) is evaluated. As the strict equiv-
alence between the hyperbolic correlated and circular with un-
known clock approaches has been established, only one is tested
under the label hyperbolic correlated. Then, the three algorithms
to be evaluated are

1) circular with known clock (or simply circular);
2) hyperbolic correlated (or simply hyperbolic);
3) hyperbolic uncorrelated.
In the case of the uncorrelated hyperbolic approach, the or-

der of the variances in the diagonal of R is relevant in the EN
expectation operation, as discussed in Section VI. In the simu-
lations, the best and worst cases are tested, which correspond to
choosing the BSs with minimum and maximum pseudo-TOA,
respectively, as the reference BS used to compute the TDOAs.

The simulations shown in this section follow the random
averaging process explained in Section VI, according to the
scenario defined in Sections VII-A and B.

First, the average performance of the three algorithms, as in
(61), (62), and (64), is compared. Note that as these covariance
matrices are proportional to the identity matrix, only a scalar
need be plotted. Two different comparative analyses have been
selected: In Fig. 1, the mean performance comparison can be
observed for different visibility ranges R assuming a constant
BS density ρ = 0.25 BS/Km2 (scenario A). On the other hand,
Fig. 2 shows also the same comparison but for several BS density
values assuming a constant visibility range R = 3 km (scenario
B). Note that for a better understanding of these figures (and also
in the subsequent ones), the actual value of N , corresponding to
the total number of beacons used, is indicated at each point in the
curves. The value of N is that associated with the given BS den-
sity ρ and visibility range R, in the sense that N = πR2ρ. The
comparison provided in Figs. 1 and 2 shows the evolution in per-
formance of the algorithms with respected to improvements in
mobile technology (the visibility range), or to improvements in
the network (an enhanced density of references). Although both
trends increase the number of available references to be used for
positioning, the noise power distribution that corrupts the TOA

Fig. 1. Mean performance with a constant BS density of ρ = 0.25 BS/km2

(Scenario A).

Fig. 2. Mean performance with a constant visibility range of 3 km
(Scenario B).

measurements is to be reckoned with. This shows that location
performance is more sensitive to enhanced network density than
to enhanced mobile technology, although the available number
of references can be the same.

In order to compare the mean performances with the theoret-
ical limits, Figs. 3 and 4 show the ratio between the actual mean
performances and the theoretical limits shown in (70), (71), and
(72). Again, Fig. 3 shows this ratio for several values of the vis-
ibility range R assuming a constant BS-density ρ (scenario A),
and Fig. 4 shows the ratio for several values of the BS density ρ
assuming a constant visibility range R (scenario B).

Finally, it is also interesting to compare the actual mean per-
formance shown in Figs. 1 and 2 with respect to the approximate
lower bounds presented in (73)–(75) analytically computed us-
ing fixed noise profiles. This comparison is presented in Fig. 5
for scenario A and Fig. 6 for scenario B.
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Fig. 3. Ratio between actual rms position error and its associated lower bound
assuming a constant BS density of ρ = 0.25 BS/km2 (Scenario A).

Fig. 4. Ratio between actual rms position error and its associated lower bound
assuming a constant visibility range of 3 km (Scenario B).

D. Numerical Simulations II

The next suite of simulations shows the different perfor-
mances achieved by a certain algorithm with a different number
of BSs and the cumulative histograms of the mean position er-
ror. These simulations allow us to show the sensitivity of all
the presented approaches to a bad dilution of precision (bad
distribution of BSs) for a particular number of BSs.

First, the histogram and the cumulative histogram of the po-
sition error is studied. As results are quite similar for the four
approaches, only the circular with known clock case is shown.
In Figs. 7 and 8, the cumulative histogram and the histogram of
the root mean square (rms) position error with different number
of BSs can be observed, respectively.

Finally, in Figs. 9 and 10, the performances of the different
approaches are compared in terms of its histogram and cumula-

Fig. 5. Ratio between actual rms position error and its associated approxi-
mate lower bound (fixed noise profile) assuming a constant BS-density of ρ =
0.25 BS/km2 (Scenario A).

Fig. 6. Ratio between actual rms position error and its associated approximate
lower bound (fixed noise profile) assuming a constant visibility range of 3 km
(Scenario B).

tive histogram for a fixed number of BSs (=5) in scenario with
a density of ρ = 0.25 BS/km2. It can be observed that similar
results are obtained for the correlated hyperbolic, and the best
case of the hyperbolic (uncorrelated).

E. Complexity

We provide a brief sketch on complexity and latency issues
for the four geolocation methods analyzed, wherein the rela-
tive computational cost between two methods may be defined
in terms of the required number of multiplications and addi-
tions to deliver a position estimate from the TOA or TDOA
measurements, at a fixed number of position estimates per sec-
ond. On these terms, circular and hyperbolic locations present
similar and reduced complexity as, in fact, they are based on a
linearized weighted least squares solution of an error equation
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Fig. 7. Cumulative histogram of position error in the circular approach.

Fig. 8. Histogram of position error in the circular approach.

Fig. 9. Comparison between cumulative histograms of the position error using
five base stations (N = 5).

Fig. 10. Comparison between histograms of the position error using five base
stations (N = 5).

[see (2) and (4)], which is endorsed by numerous publications
on TOA and TDOA methods [19]–[24].

Two stages are identified: 1) a matrix vector product that com-
putes the position estimate ∆x̂ from the measurements ∆x̂ (or
∆t̂) as ∆x̂ = W∆t̂, with matrix W defined from (16) and (21)
and 2) the previous computation of matrix W, involving the ef-
ficient evaluation of a matrix inverse. Due to the dependence of
W on F (geometry matrix), W is not generally a sparse ma-
trix, so that the complexity of the 1) stage is practically equal
for the four methods (taking into account that for circular and
hyperbolic methods, N TOA and N − 1 TDOA measurements
are required, respectively). The computation of the estimation
matrix W is very similar for the four methods. For hyperbolic
methods, more additions are necessary to perform matrix mul-
tiplication by the sparse H (TOA difference) matrix and, in
particular, the correlated hyperbolic method requires inversion
of the sparse correlation matrix Rh (10).

We should also be reminded that the circular with known
or unknown clock and correlated hyperbolic methods are ca-
pable of processing simultaneous timing measurements, which,
in a possible CDMA scenario, requires parallel despreading
of signals from different BSs. In this sense, the uncorrelated
hyperbolic method is less demanding of hardware as timing
measurements are obtained sequentially. Consequenltly, latency
(excluding computational delays of the operation ∆x̂ = W∆t̂)
is higher for the uncorrelated hyperbolic method, in contrast
to the other three methods where all TOA measurements are
performed simultaneously.

VIII. CONCLUSION

A comparative analysis of the accuracy of various location
techniques has been performed. Four representative schemes
have been identified: the circular (TOA-based) approach with
and without knowledge of the receiver clock and the hyperbolic
approach, computing the TDOAs at the same or at different
time instants.
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Strictly equal performance has been shown for the “circular
unknown clock” and the “hyperbolic correlated” methods. This
statement is general, with independence of the statistical prop-
erties of the error sources affecting the measurements, and of
the beacon pairs used to estimate each TDOA. This is a gen-
eralization of some previous work for uncorrelated errors of
equal variance. It has also been shown that the “circular known
clock” method is strictly better than the two other methods, in a
measure defined by the specific configuration of the beacons.

We have also analyzed the expected location accuracy aver-
aged over an ensemble of realistic random geometries. First, it
has been found that the “circular unknown clock” and “hyper-
bolic correlated” methods yield an average performance that
asymptotically approaches that of the best “circular known
clock” method, when the number of beacons is high. That is, the
knowledge of the receiver clock yields significant improvement
of the average accuracy only when a small number of beacons
is used. Second, average analysis applied to the “hyperbolic
uncorrelated” case has shown this method to yield the worst-
case average performance and, contrary to the other methods, it
proves very sensitive to the selection of the beacon pairs used to
compute the TDOAs, especially when the number of available
beacons is high. Best performance is obtained for the “hyper-
bolic uncorrelated” method if the beacon associated with the
minimum measurement error is chosen as a reference. In con-
clusion, our analysis shows that for the hyperbolic uncorrelated
method, the reference beacon should always be chosen as that
with the minimum timing error variance (best case) if optimum
performance is to be achieved. To determine the criticality of
this choice, the worst case (the reference beacon has maximum
timing error variance) has also been evaluated. In the simulation
results, the gap between the best and worst case curves indicates
how critical the correct selection of the best beacon is. The im-
pact of transferring to a new reference beacon is negligible in
terms of computational complexity, because it only determines
the inputs to the algorithm, although it may lead to nonnegligible
hardware complexity if a specific best-beacon selection mecha-
nism in terms of the timing error variance of the measurements
were to be designed. It is interesting to note that this mechanism
could instead be based on the natural handover mechanism im-
plemented in the mobile station. We should also be aware that
the selection of the most powerful signal (associated with the
handover process) should be highly (although not exactly) cor-
related with the minimum timing error variance. For this reason,
if in the hyperbolic uncorrelated method the reference beacon
used for the TDOA computation is the reference station used in
the handover process, the actual performance will be close, in
practice, to the best case curves.

These methods have been evaluated for realistic propagation
channel models characterizing the delay spread associated with
different environment conditions. For each method, we have
analyzed the effect of increasing the BS density and the effect
of enhancing the mobile terminal hearability of distant base-
stations. The former is shown to yield slightly better results
than the latter.

Finally, this paper has derived a performance lower bound for
the average performance of location techniques, which proves

to be very accurate for a sufficiently high number of beacons.
Future work will focus on the derivation of more accurate per-
formance bounds that are valid for any number of beacons.

APPENDIX A

COVARIANCE OF HYPERBOLIC METHODS

In this Appendix, we examine the relationship between the
covariance matrices Chc = Cst̄ and Chc̄ in (17) and (24), re-
spectively:

Chc = TT
(
FT

1 R−1F1

)−1
T

Chc̄ =
[
FT

(
HT R−1

hc̄ H
)
F
]−1

(78)

From (30), (32), and (37), we have

C−1
hc = C−1

st̄ = FT

(
R−1 − R−111T R−1

1T R−11

)
F

=
1
σ2

FT

(
D−1

c − D−1
c 11T D−1

c

1T D−1
c 1

)
F

=
1
σ2

FT D−1/2
c

(
I − D−1/2

c 11T D−1/2
c

1T D−1/2
c D−1/2

c 1

)
D−1/2

c F.

Now, we let

Fc = D−1/2
c F, ac = D−1/2

c 1. (79)

Hence

C−1
hc =

1
σ2

FT
c

(
I − acaT

c

aT
c ac

)
Fc. (80)

We now consider the second covariance matrix Chc̄. From (24)
and (38), we have

C−1
hc̄ = FT

(
HT R−1

hc̄ H
)
F (81)

=
1

σ2
hc̄

FT
(
HT D−1

c̄ H
)
F (82)

=
1

σ2
hc̄

FT
c HT

c̄ Hc̄Fc (83)

where Fc was defined in (79), and Hc̄ is defined as Hc̄ =
D−1/2

c̄ HD1/2
c . Note that

Hc̄ac= D−1/2
c̄ H1 = 0. (84)

Now, considering (80) and (83), we find that both inverse co-
variance matrices can be expressed as FT

c AFc for some matrix
A. The respective matrices A fulfill the following properties
(see proofs in Appendix B):

tr
(
HT

c̄ Hc̄

)
=

σ2
hc̄

σ2
tr
(
I − acaT

c

aT
c ac

)
= (N − 1)

σ2
hc̄

σ2

(85)

span
〈
HT

c̄ Hc̄

〉
= span

〈
I − acaT

c

aT
c ac

〉
= span 〈ac〉⊥ (86)

Hc̄ = Hc̄

(
I − acaT

c

aT
c ac

)
. (87)
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Using these properties, to fulfill the trace constraint in (85),
some eigenvalues of (σ2/σ2

hc̄)H
T
c̄ Hc̄ need to be superior to 1,

and some need be inferior (note that all the nonzero eigenvalues
of (I − (acaT

c /aT
c ac)) are unitary). We also have

1
σ2

hc̄

HT
c̄ Hc̄ =

1
σ2

hc̄

(
I − acaT

c

aT
c ac

)
HT

c̄ Hc̄

(
I − acaT

c

aT
c ac

)
.

Hence, from (83), C−1
hc̄ can be expressed as

C−1
hc̄ = FT

c

1
σ2

hc̄

(
I − acaT

c

aT
c ac

)
HT

c̄ Hc̄

(
I − acaT

c

aT
c ac

)
Fc.

In turn, from (80), and using the idempotent property of projec-
tion operators, C−1

hc can be expressed as

C−1
hc = FT

c

1
σ2

(
I − acaT

c

aT
c ac

)(
I − acaT

c

aT
c ac

)
Fc.

So by setting Fc,a = (I − (acaT
c /aT

c ac))Fc, we have

C−1
hc = FT

c,a

I
σ2

Fc,a

C−1
hc̄ = FT

c,a

(
1

σ2
hc̄

HT
c̄ Hc̄

)
Fc,a. (88)

Now, from the eigenvalue decomposition HT
c̄ Hc̄ = UΛUT ,

with U a unitary matrix (UUT = I) and Λ diagonal, and taking
Fu = (1/σ)UT Fc,a, we can recast (88) into

C−1
hc = FT

u Fu, C−1
hc̄ = FT

u

(
σ2

σ2
hc̄

Λ
)

Fu (89)

where Fu = WT F, with W = (1/σ)UT (I − (acaT
c /aT

c ac))
D−1/2

c . Hence, the relationship between the covariance of both
methods is obtained, where using tr(HT

c̄ Hc̄) = tr(Λ), and the
property in (85) yields

σ2

σ2
hc̄

tr(Λ) = N − 1.

APPENDIX B

PROPERTIES OF Hc̄

We will first evaluate the trace of HT
c̄ Hc̄. The proof is simple

but lengthy. Using the definition of Hc̄ and the trace property
tr(AB) = tr(BA), we have

tr
(
HT

c̄ Hc̄

)
= tr

((
D−1/2

c̄ HD1/2
c

)T

D−1/2
c̄ HD1/2

c

)
(90)

= tr
(
D1/2

c HT D−1/2
c̄ D−1/2

c̄ HD1/2
c

)
(91)

= tr
(
HT D−1

c̄ HDc

)
. (92)

We proceed to evaluate the matrix product within the trace for
H = [1,−I] using the definitions in (37)–(40). Only nonzero

components are shown:

D−1
c̄ HDc

=
σ2

hc̄

σ2




s2
1

s2
1+s2

2
− s2

2
s2
1+s2

2

...
. . .

s2
1

s2
1+s2

N

− s2
N

s2
1+s2

N


 (93)

diag
(
HT D−1

c̄HDc

)

=
σ2

hc̄

σ2

[
s2
1

N −1∑
l=1

1
s2
1 + s2

l+1

,
s2
2

s2
1 + s2

2

, . . . ,
s2

N

s2
1 + s2

N

]T

. (94)

Hence

tr
(
HT D−1

c̄ HDc

)
(95)

=
σ2

hc̄

σ2

(
N −1∑
l=1

s2
1

s2
1 + s2

l+1

+
N −1∑
l=1

s2
l+1

s2
1 + s2

l+1

)
(96)

= (N − 1)
σ2

hc̄

σ2
(97)

and

tr
(
HT

c̄ Hc̄

)
= (N − 1)

σ2
hc̄

σ2
=

σ2
hc̄

σ2
tr
(
I − acaT

c

aT
c ac

)
(98)

as the eigenvalues of the projection operator I − (acaT
c )/aT

c ac)
are N − 1 1s and one 0. The subspace spanned by the rows of
the following matrices is the same for the orthogonality property
Hc̄ac= 0 in (84):

span
〈
HT

c̄ Hc̄

〉
= span

〈
I − acaT

c

aT
c ac

〉
= span 〈ac〉⊥

hence we necessarily have

Hc̄ = Hc̄

(
I − acaT

c

aT
c ac

)

as I − (acaT
c /aT

c ac) is the projector onto the subspace orthog-
onal to ac.

APPENDIX C

ROTATIONAL AVERAGING

It is proved here that for symmetric matrix A, it holds that

B = Eβ

[
GβAGT

β

]
=

1
2
tr{A} · I (99)

where Eβ denotes the expectation operation over β. A is a 2× 2
matrix

A =
[

a11 a12

a21 a22

]

and Gβ is the previously defined unitary rotation matrix

Gβ =
[

cos(β) sin(β)
− sin(β) cos(β)

]
.



64 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 55, NO. 1, JANUARY 2006

Then, the expectation in (99) over the uniformly distributed
random variable β can be expressed as

Eβ

[
GβAGT

β

]
=
[

b11 b12

b21 b22

]
.

Now, taking the expectation over the uniform distribution of β,

b11 =
a11 + a22

2
, b12 =

a12 − a21

2

b21 =
a21 − a12

2
, b22 =

a11 + a22

2
.

For A a symmetric matrix, we finally obtain

Eβ

[
GβAGT

β

]
=
[

a11+a22
2 0
0 a11+a22

2

]
=

1
2
tr{A} · I

APPENDIX D

AVERAGING OVER DIRECTIVE COSINES

This Appendix proves that C−1
N , defined in (66), presents a

closed-form solution as

C−1
N = Eα[(FT AF)] =

1
2c2

tr{A} · I (100)

We have ?<>dtex><?CDATA

FT AF =
∑
k,k ′

[A]k,k ′fk fT
k ′ (101)

EαFT AF =
∑
k,k ′

[A]k,k ′Eαfk fT
k ′ (102)

where [A]k,k ′ is the kth column and k′th row element of A,
and where fk is the kth row of F defined from (51) as

fk =
1
c

[
cos(αk )
sin(αk )

]
. (103)

So from (102), we need only evaluate Eαfk fT
k ′ . If independent

uniformly distributed angles are assumed for the BSs

EαFT AF =
∑
k �=k ′

[A]k,k ′(Eαfk )(EαfT
k ′ ) +

∑
k

[A]k,kEαfk fT
k

Eαfk = 0

EαFT AF =
∑

k

[A]k,kEαfk fT
k

so that only the diagonal components of A are important, on av-
erage. Holding that αk are uniformly distributed, the following
equality is true:

Eαfk fT
k =

1
c2

Eαk

[
cos2 αk cos αk · sin αk

cos αk · sin αk sin2 αk

]

=
1

2c2
I

and we obtain the final expression

C−1
N = EαFT AF =

∑
k

Ak,k
1

2c2
I =

1
2c2

tr(A) · I. (104)

APPENDIX E

APPROXIMATION OF R FOR LARGE N

In this Appendix, we show that the random matrix R̃, the
sorted version of R defined as

R̃ = diag
(
sort

[
σ2

1 , σ2
2 , . . . , σ2

N

])
= diag

([
σ̃2

1 , σ̃2
2 , . . . , σ̃2

N

])
has stochastic convergence to a deterministic matrix, where the
elements of its diagonal can be expressed as

σ̃n = F−1
( n

N

)
(105)

where F−1(p) is the inverse cumulative function of fσ (σ).
For a given n, let us define σ̃

′2
n such that σ̃n≤σ̃′

n ≤ σ̃n+1. The
probability that σ < σ̃′

n is

prob (σ < σ̃′
n ) = F (σ̃′

n ) =
∫ σ̃ ′

n

−∞
fσ (σ)dσ.

By the law of large numbers, the nth position of σ̃2
n in

[σ̃2
1 , σ̃2

2 , . . . , σ̃2
N ] can be expressed as a function of the previ-

ously described probability as follows:

F (σ̃′
n ) = lim

N →∞

n

N
. (106)

Taking into account that limN →∞σ̃n = σ̃′
n = σ̃n+1, we obtain

(105) from (106), as we wanted to prove.

APPENDIX F

PROOF OF (31)

We show here that if H1 = 0, it holds that

R−1 − R−111T R−1

1T R−11
= HT (HRHT )−1H.

Proof: If Ξ is a matrix and G is any Gram matrix, the
matrix G⊥

Ξ is a projection matrix

G⊥
Ξ = G − GΞ[ΞT GΞ]−1ΞT G

that fulfills

G⊥
ΞΞ = GΞ − GΞ[ΞT GΞ]−1ΞT GΞ = 0.

Hence, for G = R and Ξ = HT , we have

R⊥
HT = R − RHT [HRHT ]−1HR

and R⊥
HT HT = 0. Conseguently, R⊥

HT has rank one (because
H is almost full rank) and R⊥

HT = λaaT , with Ha = 0. There-
fore, a = 1 fulfills the required orthogonality with the columns
of H and

R−RHT [HRHT ]−1HR = λ11T .

Multiplying by R−1 on both sides

R−1 − HT [HRHT ]H =λR−111T R−1.

Now, as H1 = 0, multiplication by 1T and 1 on both
sides yields 1T R−11 = λ1T R−111T R−11. Thus, λ =
(1T R−11)−1, and

R−1 − HT [HRHT ]−1H =
R−111T R−1

1T R−11
.
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APPENDIX G

DERIVATION OF (67)

In this Appendix we prove (67)

CN >
[
C−1

N

]−1

. (107)

From the definition of CN and C−1
N in (54) and (66), respec-

tively, we have

CN = Eα[(FT AF)−1] = ESSEβ [(FT AF)−1] (108)

C−1
N = Eα[(FT AF)] = ESSEβ [(FT AF)] (109)

where applying the result obtained in Appendix C, we have

CN =
1
2
ESStr

{(
FT

SSAFSS
)−1

}
· I (110)

C−1
N =

1
2
ESStr

{(
FT

SSAFSS
)}

· I (111)

We may now perform the singular value decomposition (SVD)
of (FT

SSAFSS) so that(
FT

SSAFSS
)

= USS∆SSUH
SS (112)[(

FT
SSAFSS

)]−1
= USS∆−1

SSU
H
SS (113)

where, if ∆SS = diag(µ1, . . . , µP ), we have

CN = ESS
1
2

P∑
p=1

µ−1
p · I (114)

C−1
N = ESS

1
2

P∑
p=1

µp · I. (115)

The harmonic-arithmetic mean inequality establishes that

1
P

P∑
p=1

µ−1
p >

[
1
P

P∑
p=1

µp

]−1

. (116)

so for the 2-D case, this is P = 2, using ESS {x} ≥ 1/ESS {x},
we have

CN >
[
C−1

N

]−1

. (117)
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