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Abstract

Consider the parsing algorithm due to Lempel and Ziv that partitions a sequence of
length 7 into variable phrases (blocks) such that a2 new block is the shortest substring not
seen in the past as a phrase. In practice the following parameters are of interest: number of
phrases, the size of a phrase, the number of phrases of given size, and so forth. In this paper,
we focus on the size of a randomly selected phrase, and the average number of phrases of a
given size (the so called average profile of phrase sizes). These parameters can be efficiently
analyzed through a digital search tree representation. For 2 memoryless source with unequal
probabilities of symbols generation (the so called asymmetric Bernoulli model), we prove
that the size of a typical phrase is asymptotically normally distributed with mean and the
variance explicitly computed. In terms of digital search trees, we prove the normal limiting
distribution of the typical depth (i.e., the length of a path from the root to a2 randomly
selected node). The latter finding is proved by a technique that belongs to the toolkit of
the ”analytical analysis of algorithms®, but which seems to be novel in the context of datla
cOmpression.

Index Terms: Digital search trees, Lempel-Ziv parsing scheme, data compression, phrase
length, typical depth in a digital tree, limiting distributions, average profile, Mellin trans-
form, analytical analysis of algorithms.
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1. INTRODUCTION

The heart of some universal data compression schemes is the parsing algorithm due to
Lempel and Ziv [33]. It partitions a sequence into phrases (blocks) of variable sizes such
that a new block is the shortest substring not seen in the past as a phrase. I'or example,
the string 110010100010001000 is parsed into (1)(10)(0)(101)(00)(01){000)(100). There is
another possibility of parsing, as already noticed in [32], and explored by Grassberger [9]
and Szpankowski [26], that allows overlapping in the course of creating the partition. For
example, for the above sequence the latter parsing leads to (1)(10)(0)(101)(00)(01){000100).
In this paper, we only consider the {ormer parsing algorithm.

These parsing algorithms play a crucial réle in universal data compression schemes
and theirs numerous applications such as efficient transmission of data (cf. {29, 32, 33]),
discriminating belween information sources (cf. [8], [31]), test of randomness (cf. [31]),
estimating the statistical model of individual sequences (cf. [30], [31]), and so forth. The
parameters of interest to these applications are: the number of phrases, the number of
phrases of a given size, the size of a phrase, the length of a sequence built from a given
number of phrases, etc. Some of these parameters have been studied in the past as the
first-order properties, that is, typical behaviors in the almost sure sense. Very few results —
with a notable exception of the paper by Aldous and Shields [1] - are available up-to-date
concerning second order properties such as limiting distributions, large deviation results,
concentration of mean, etc.

Recently, Gilbert and Kadota [8] have presented convincing arguments for the need of
such investigations. The authors of [8] used numerical evaluations to obtain qualitative in-
sights into some second-order behaviors of the Lempel-Ziv parsing algorithm. In particular,
they studied the length of a sequence obtained from the first m phrases, and the length of
the mth phrase. In this paper, among others, we provide for memoryless sources (the so
called Bernoulli model) the limiting distribution for the latter quantity. We obtain these
results by transforming the problem into another one on digital trees (cf. [1], [17]). In
passing, we observe that digital trees have been studied in their own right for more than
twenty years (cf. [17, 18]).

We consider a special type of digital trees, namely a digital search tree (cI. [5], [7], [17],
[18]). This treeis constructed as follows (see also Figure 1). We consider m, possible infinite,
strings of symbols from a finite alphabet ¥ (however, for the simplicity of presentation we
Turther work only with the binary alphabet ¥ = {0,1}). The first string is stored in the root,
while the second string occupies the right or the left child of the root depending whether
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Figure 1: A digital tree representation of Ziv’s parsing for the string 11001010001¢00100. ..

its first symbol is “1” or “0”. The remaining strings are stored in available nodes (that are
directly attached to nodes already existing in the tree). The search for an available node
follows the prefix structure of a string. The rule is simple: if the next symbol in a string
is “1” we move to the right, otherwise move to the left. The resulting tree has m internal
nodes. The details can be found in [17] and [21].

The Lempel-Ziv parsing algorithm can be efficiently implemented using the digital search
tree structure. We assume that the first phrase of the Lempel-Ziv scheme is an empty phrase.
We store it in the root of a digital search tree, and all other phrases are stored in internal
nodes. When a new phrase is created, the search starts at the root and proceeds down the
tree as directed by the input symbols exactly in the same manner as in the digital search
tree construction. For example, for the binary alphabet, “0” in the input string means move
to the left and “1” means proceed to the right. The search is completed when a branch is
taken from an existing tree node to a new node that has not been visited before. Then,
an edge and a new node are added to the tree. Phrases created in such a way are stored
directly in nodes of the tree (cf. Figure 1). In passing, we note that the second parsing
algorithm discussed above (with overlapping between phrases) leads to another digital tree
called the suffix tree (cf. [9], [26], [28]).

We consider the Lempel-Ziv algorithm in a probabilistic framework. We assume that

a string of length = is generated according to the Bernoulli model. That is: symbols are




generuted in an independent manner with “0” and “1” occurring respeciively with probability
pand g=1—p. I p= g =0.5, the the Bernoulli model is called symmelric, otherwise it
is asymmetric.

The Lempel-Ziv algorithm can be analyzed in two different frameworks. Namely, with
a fized number m of parsed words or with a fized length n of a sequence to be parsed. The
former model falls exactly under the digital search tree framework with independent strings,
and we further call it the digital tree model, as it is known for last twenty years [17, 18].
Therefore, any new result in this endouver will lead to a new finding in the area of digital
search trees, and reverse: we can apply many known results of such trees (for a survey sce
Mahmoud [21]) to our problem. The latter problem is harder since by fixing the length of
a string we introduce some dependency among phrases (even if they still do nof overlap!).
Nevertheless, this dependency is not strong enough to spoil the analysis, and we shall prove
that the digital search tree results can be extended to this new situation. We coin a name
Lempel-Ziv model for the latter framework.

Hereafter, we stick to some notation that we shall use throughout the paper. We always
denote by n the length of a single string that is parsed (i.e., Lempel-Ziv model), while m is
always the number of independent strings used to built a digital tree (i.e., digital tree model)
or the number of parsed words used to construct a single string (of a random length!).

In this paper we report two main findings, namely: for both models we prove ithat the
length of a randomly selected phrase (and the average number of phrases of a given size) in
the asymmetric model is normally distributed around its mean with the variance of order
O(logn). We treat separately the symmetric Bernoulli model since the variance in this case
is O(1), and actually the limiting distribution does not exist in this case. However, we
show that the limiting distribution centered around log, n resembles the double exponential
distribution (i.e., 7).

Digital trees, that is, tries, compact tries known also as Patricia iries, and digital search
frees have been extensively analyzed in the past in the case of a fized number of independent
strings (cf. [5, 7, 12, 15, 16, 17, 18, 19, 23, 27]), and in some cases with dependent strings
(cf. analysis of suffix tree in {27, 28]). In particular, the average length of the internal
path length (i.e., the sum of all depths) and the average size of a digital search tree in
the symmetric model was analyzed by Konheim and Newman [18], Knuth [17], Flajolet
and Sedgewick [5], and Flajolet and Richmond [7]. The average depth and the variance of
the depth for the asymmetric Bernoulli model is given in Szpankowski [27] (the symmetric
case was also analyzed in Kirschenhofer and Prodinger [14]), while the variance of the

internal path length in the symmetric Bernoulli model was investigated in Kirschenhofer




et al. [16]. Finally, Louchard [19}, and Aldous and Shields [1] for symmetric Bernoulli
alphabet obtained the limiting distribution of the depth. As mentioned above, in this
paper we directly extend Louchard’s result to asymmetric Bernoulli model, while in another
paper Jacquet and Szpankowski [13] generalize some of the Aldous and Shields [1] results
concerning the limiting distribution of the internal path length.

As mentioned above, for the Lempel-Ziv parsing algorithm mostly only first-order prop-
erties have been investigated, with an exception of the work by Aldous and Shields [1]. It is
well known that for a stationary and ergodic source the number of phrases is almost surely
equal to (nh/logn) where k is the entropy of the alphabet. For the symmetric Bernoulli
alphabet Aldous and Shields {1] proved that the number of phrases is normally distributed
with mean n/log, n and variance O(n/log3 n) (for the coefficient at n/logi » in the vari-
ance see [13], [16]). The first-order property of the phase length in the Lempel-Ziv parsing
algorithm was recently reported by Ornstein and Weiss [22]. Finally, Gilbert and Kadota
[8] analyzed numerically the number of possible messages composed of m parsed phrases,
as well as the length of a phrase in the digital tree model (see [13] for some theoretical
solutions Lo these problems).

The paper is organized as follows. In the next section, we formulate our main results
and present some consequences of them. The proof concerning the limiting distribution of
the depth in a digital tree model is presented in Section 3.1, while the Lempel-Ziv model is
analyzed in Section 3.2

2. MAIN RESULTS

Let us first consider the digital tree model in which the number of parsed words is
[ixed and equal to m. These words are statistically independent and satis{ly the Bernoulli
model. We construct a digital search tree from these m strings or alternatively we build a
sequence {of random length) according to the Lempel-Ziv scheme. Then, the length of a
randomly selected phrase in the Lempel-Ziv sequence composed of m phrases is the same
as the length of a randomly selected depth (i.e., the path from the root to a node) in the
associated digital tree. Traditionally, in the area of digital trees this depth is denoted as
D, and we shall adopt this notation. Let also D,,(7) be the depth of the ith node in the
associated digital tree. Actually, observe that D.,.(i) = D;(¢) for m > i. Clearly, for various
t £ m distributions of D,, () are different, and therefore it makes sense to define a typical
depth Dy, as

1 & :
Pr{D, < z} = ;R—ZPr{Dm(e) <z}. (1)

i=1




Furthermore, we denote by L, the internal path length of the digital search tree, that
is, Ly := 3 ey Din(?). Note that L, is the length of a sequence generated by the Lempel-
Ziv parsing scheme {rom these m parsed words (i.e., in the digital tree model). Finally,
we denote by By, (%) the number of nodes in the digital search tree at level k. Clearly, it
is equal to the number of phrases of length k in the Lempel-Ziv scheme in the digital tree
model.

The situation is similar, but not the same in the Lempel-Ziv model in which a sequence
of a fixed length n is parsed into phrases. Let M, and M, (k) denote the number of phrases
and the number of phrases of size k, respectively, produced by the algorithm. Let also
DLZ(3) be the length of the ith phrase in the Lempel-Ziv model, where 1 < i < M,. By
the typical phrase length D‘{jﬁ or shortly DLZ we denote the length of a randomly selected
phrase. The typical depth D{;Z in the Lempel-Ziv model can be estimated as follows

my
Pr{D2 =k} = >  Pr{DE? = kM, = m}Pr{M, =m} (2)
m=_my,
where mp, and my are lower and the upper bounds for the number of phrases M,. One

easily proves thal for some constants a; and s
my, = a1/n < My, € agn/log,n =: my . (3)

Indeed, the minimum number of phrases occurs only for two strings: either all zeros or all
ones, and then n = 2:};_!,; Do(7) = M,.(Mn + 1)/2, hence the lower bound m; = &(\/n)
follows. For the upper bound, we consider a complete binary tree with the internal path
length equal to ». Thus, n > Z{-":gf Ma=1 joi > (logy My — 2)M,, and the upper bound
my = O(n/log, n) follows.

According to (2), one needs to estimate the conditional probability Pr{DL% = k|M, =
m} in order to assess the distribution of DLZ, It is tempting to assume that Pr{DL% =
k|M, = m} = Pr{D,, = k} where the right-hand side of this equation refers to the depth
in the digital tree model. But, this is unirue due to the fact that in the Lempel-Ziv model
we consider only those digital search trees whose internal path length is fixed and equal to
n. Clearly, this restriction affects the depth of a randomly selected node {think of a digital
tree built from the string 11111...111 which is very skewed). Fortunately, we shall prove
in Section 3.2 that Pr{DL?% = k|M, = m} = (1 + O(\/log n/n))Pr{D,, = k}.

We now present results for the digital tree model, and let B,,(k) := EB,(k) be
the average number of internal nodes at level £ in a digital tree built over m independent

strings. As in Knuth [17] (cf. also [26]), we have the following relationship between the




depth D, and the average profile B, (k)
Pr{Dn =k} = . (4)

This follows from the definition (1) of D, and the definition of By, (k).
We shall work initially with the average profile, and we define the generating function
B () = %24 By (k)u® which satisfies the following recurrence (cf. [17], [26])

Br(u) =1+ “i (T)P’ ¢ (Bj(x) + Brm-j(2)) (5)

=0
with Bo(u) = 0. This recurrence arises naturally in our setting by considering the left and
the right subtrees of the root.
A general recurrence of the above type was analyzed in Szpankowski [26] (cf. see also
Flajolet and Richmond [7] {for an interesting extension). A slight modification of Theorem

2.4 in [26] directly leads to the exact solution of (5), namely:

) = m = (1= 0 300 ) Qucal) ©
k=2

where
k+1

Que(w) = [J(1-w —ug’) , Qo(u)=1. ()

i=2

Actually, the derivation of (6) is not too complicated, so we provide a sketch of the
proof. Let us start with multiplying both sides of (6) by 2™/m! to get Bl(z,u) = & +
uB(pz, u)e? + uB(gz, u)e?* where B(z,u) = Y.00_o B (u)ir, and B.(z,u)is the derivative
of B(z,u) with respect to z. We now multiply this functional equation by e~* and introduce
B(z,u) = B(z,u)e*. This leads to a new functional equation, namely 5'(z, v) + B(z, ) =
14+ u(B(zp,u) + B(zq,)). Comparing now the coefficients at z™ one immediately obtains
ﬁmﬂ(u) = b0 — ﬁm(u)(l — up™ — ug™) where 8., is the Kronecker symbol. To prove
(6) it only suffices to note that By, () = ¥ ey (T)Ek(u)

We consider the symmetric and the asymmetric cases separately. I'or the symmetric
model, we exactly compute the coefficients at u* of By, (u) directly from (6). For the asym-
metric model, we use Goncharov’s theorem (cf. [17]) applied to the probability generating
function D,(1) = Br(u)/m to establish normal limiting distribution of D,, (for details see
Section 3.1). In the latter case we need one more result {rom [26] that is provided below

for the reader’s convenience.
Fact 1. (i) The average ED., of the depth becomes as m — oo

1 h
EDp = z (logm+7— 1+ 5%+9+6(m)) + O(log m/m) (8)




where h is the entropy, he = plog®p+ qlog®q, ¥ = 0.577... is the FEuler constant, and
P

o _ i pFtllogp + "l logg
T T4 1o gh

The function 6(z) is a fluctuating function with a small amplitude when logp/logq is ra-
tional, and 6(z) = 0 for log p/log g irrational. More precisely, for logp/logg = r/t where

T,1 are integers,

= T(sh)Q(-2) 27ilr
61(z) = ;:2_; Ot -1) exp (“Elog 33) ; (9)
20

where s§ = —1 + 2mitr/ logp.
(11) The varience of Dy, for large m satisfies

_p2
var Dy = ilz-h-éilogm + A + A(m) + O(log® m/m) (10)
where A is a constant end A(z) is a fluctuating funclion with @ small amplitude. In the

symmelric case, the coefficient at logm becomes zero, and then (cf. [16])

1 1 o
ver Dy = — + —5~ - — —a—f+ A(m) + O(log® m/m) (11)
12 ° log“2
where o . .
a=) 57 ‘6=Z:(2J'—1)2
J=1 _?—1

and the function A(z) is continuous with period 1 and mean zero. W
In Section 3.1 we prove our first main result concerning the limiting distribution of D,,

(hence, also for the average profile B,,(k)) in the digital tree model.

Theorem 1. (i) SYMMETRIC CASE. Let Q) = H;?.;l(l —277), and define P(m) = log, m —

|log, m|. Then, for the symmetric Bernoulli we obtain for any integer K

lim |Pr{D,, < log,m+ K} - 12
a B2
1 & ., 2-(i+1)/2 —(H—y(m)—1—i
2K—¢(m) 1 + E : _1 i+1 8_2 ( "b(m i) — 0 .

The funclion ¥(m) is dense in [0, 1] but not uniformly dense, thus the limiling distribution
of D does not ezist (see Remark 1(i) below).

(ii) AsYMMETRIC CASE. In the asymmelric case, the limiting distribution of D,, is normal,

that is, D
Dm -F m

VVar D,,

8

— N(0,1) (13)




where EDy, and Var Dy, are given by (8) and (10), respectively, and the moments of D,,
converge to the appropriale moments of the normal distribution. More generally, for any
complez ¥ such that R(F} > 0

e—ver long(eﬂDm) — 2% - logm (1 + O( o )) (14)

where ¢; = 1/h and ¢2 = (hy — h2)/h3.
(iil) In the asymmelric case, there ecist positive constants A and o < 1 such that

P {Dm—cllogm
re|=m =106 ™
vezlogm

> k} < Aa* (15)

uniformly in k for large m. B

Remark 1. (i) The limiting distribution for the symmetric case was obtained before by
Louchard [19] by a different method than the one presented in Section 3.1. Actually, we
can write (12) alternatively as

9z —i(i43)/2
thm sup | Pr{D,, €z} - — ( 2Q Z( :+13—Q—exp( —my—(z-1- :}J)‘
= ® =0 '

(16)
where z is any real number. Moreover, in the symmetric model we can, following Louchard,

also give exact distribution of the depth, that is,

(—1)i-FH10l-R)i-k+1)/2
@5-5Qr

i
Pr{Dm < j+1} = % (2:+1 I oY _ 2Hk)m_1) an

for all integers 5 > 1.

(ii) One may wonder why the limiting distribution in the symmetric case is not normal,
and actually what kind of "known* distribution it resembles. First of all, the central
limit theorem holds in the asymmetric case since by definition (1) the indicator function of
the typical depth could be viewed as the average sum of indicator functions of all depths.
Thus, after proper normalization (i.e., v/VarD,, ) one may expect normal distribution of Dy,
provided VarD,;, — o0 as m — 00. This holds in the asymmetric case (indeed, VarD,, =
O(logm)) but not in the symmetric model where VarD,,, = O(1). To predict the behavior
of the limiting distribution for the symmetric model, one should have a closer look at the
definition of Dy, (7). Let C;; be the length of the longest common prefix of the ith and jth
strings. Then,

Dp(1) = max{min{Ci;, Dp,(1)}, ..., min{Ci;i_1, Din(i — 1)}} .




It suggests that the depth D,,(m) is a maximum over (m — 1) dependent random variables.
If those random variables would be independent, one should expect "double exponential®
(ie., e7¢") limiting distribution for Dn(m). Actually, the limiting distribution of Dy, is
a combination of double-exponential distributions as can be verified by inspecting carefully
formula (12).

(iii) We observe that the large deviation result (iii) of Theorem 1 is a direct consequence
of (14) from Theorem 1(ii). Clearly, it follows from the Markov inequality along the same

lines as in Flajolet and Soria [6]. O

Now, we turn our attention to the Lempel-Ziv model. Before we present our main
finding, we review some known results for the number of phrases M, which we [urther need

to analyze the depth DLZ,

Fact 2. (i) (Aldous and Shields [1]) In the symmetric Bernoulli model
M, - EM,
v/ VarM,
where N(0, 1) denoles the standard normal distribution, with EM,, ~ n/logy, n and VarM,, ~
BO(n/log3 n).

— N(0,1) (18)

(i) (Jacquet and Szpankowski [13]) In the asymmetric Bernoulli model

Mn_ - EMn

Varil, — N(0,1) (19)

where EM,, ~ nh/logn and VarM, ~ e:h®n/log® n. Moreover, all moments of M, con-

verge Lo the appropriale moments of the normal distribution.

Remark 2. Actually, using Kirschenhofer et al. [16] and the approach from Jacquet and
Szpankowski [13] one can estimate the coefficient at n/log3n in the variance of M, in the

symmetric case. After some algebra, we derives (cf. [16])

n

VarMy ~ (C + §(logy n)) (20)

log3 n

where §(z) is a fluctuating continuous function with period 1, mean zero, and amplitude
smaller than 1076, The constant C has an explicit, but complicated formula as derived in
[16], and its numerical value is C' = 0.26600... with all five digits significant. O

We are now ready to present our result concerning the Lempel-Ziv model. The proof

can be found in Section 3.2.
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Theorem 2. SYMMETRIC CASE. (i) Let ¥1(n) = logy(n/log, n) — {log,(n/ log, n)|, and
let K be an integer. Then, the asymptotic distribulion for the length of a randomly selected

phrase for the symmelric Bernoulli model becomnes

Tim |Pr{DfZ < log,(n/logyn) + K} — (21)
o—i(i+1)/2 2t (")_1_‘_))

® =D

=0.

The function ¥, (n) is dense in [0, 1] but not uniform dense, hence the limiting distribution

of DLZ does not exist.

(ii) AsYMMETRIC MODEL. For the asymmetric Bernoulli model the typical depth DL% is
normally distributed, i.e.,
DLZ _ ¢, log(nh/logn)
vezlog(nh/ logn)

More precisely, for some compler 9 with R(v) > 0

o Per Velh 10671 1 (GIDEX 1/ ToR ) ) = o2/2(1 4. 0(1/vogm)) . (29)

— N(0,1). (22)

Furthermore, the above implies the existence of two posilive constantis A and o < 1 such

that
Pr {

untformly in k for large m. B

DLZ — ¢1log(nh/ logn)
Vealog(nh/logn)

> k} < Ad* (24)

Remark 3. (i) Markovian Model. It is plausible that our analysis can be extended to
Markovian model in which the next symbol in a sequence depends on a finite number of
previous ones. Such an extension was already obtained for the depth D,, in another digital

tree, namely trie (cf. Jacquet and Szpankowski [12]).

(ii) Almost Sure Behaviors. Surprisingly enough, the almost sure behavior of D,, and DZ%
are not implied by Theorems 1 and 2. In fact, D,/ logm and DEZ/logn do not converge
almost surely. The same applies to the length of the last phrase, or the depth of insertion,
which we denote as £,. Indeed, this is a consequence of the profound results of Pittel
[23] concerning digital trees. He proved, among other things, that £,/logm converges

in probability to 1/k, but does not converge almost surely. Let ppmin = min{p, ¢} and
Pmax = max{p, ¢}. Then,
4 -1 £n -1

l_i i f L = 5. ]_1 = .
e logm  log pmin (a.s.) nrzn—?;lop logm  1og pmax

(25)

11




The same is true for D,, and DLZ (cf. [13, 27, 28]).

(i) Average Profile. The average profile B, (k) directly follows from Theorem 1 and (4).
The limiting distribution of the profile B,,(&) is harder to obtain. Aldous and Shields [1]
established it for the symmetric case. In the asymmetric case the limiting distribution is
unknown. Tor the digital tree model it is easy to establish a recurrence for B, (k). Define
B (4) = EuB~¥). Then (cf. [13])
: = {m 1ok -
Bra(e)=3 (3 )qum "B (0) B ()
=0

with BJ(z) = 1. Let now Bf(z,u) =32, B,ﬁl(u);—": Then, the above becomes

OB*(z,v)

oz

with B%(z, ) = u(e* — 1)+ 1. We conjecture that for k = O(log m) the limiting distribution

of BE is normal with mean B, (k) established in Theorem 1.

= B*(pz,4)B* (g7, )

(iv) Eztensions and Open Problems. One may consider an extension of digital search trees
called b-digital search trees, and its corresponding Lempel-Ziv parsing scheme. In a b-digital
search tree every node can store up to b strings {7, 21] (with possible exception of the root).
Based on this generalization, one can extend the Lempel-Ziv parsing scheme as follows: We
postulate that the next phrase in the generalized Lempel-Ziv algorithm is the longest phrase
seen in the past by at most b—1 phrases. For example, the sequence from Figure 1 is parsed
as follows: (1)(1)(0)(0)(10)(10)(00)(100)(01)(00). Note that the number of distinct phrases
(the ones that count in the possible extension of the data compression scheme) is equal to
six compared to eight in the original Lempel-Ziv parsing scheme. What is the length of a
randomly selected phrase in such a generalization? What is the distribution of the number
of phrases? Etc. Those and other questions possibly can be answered if onre solves the
b-digital search tree model as we did in this paper for b = 1. As pointed out in Flajolet and
Richmond [7] (cf. also [17]) the analysis of b-digital search trees is not that simple. Indeed,

our basic recurrence equation (5) becomes now for m > 0
m ki) . .
Bryp(u)=b+u), (J,,-)P’qm (Bj(w) + Bm-;(u)) (26)
i=0

with Bi(u) = ¢ for i < b. As in the case of & = 1, to solve the ahove we introduce
the exponential generating function B(z,u) = Y o Bm(u)f‘n% that satisfies the following
differential-functional equation

0°B(z, )

e a(z) + uB(pz,v)e?” + uB(zq, v)e"
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where a(z) is a poly-exponential function. This functional equation and the recurrence
(26) do not have closed-form solutions as in the case of b = 1. Thus, the general solution
from [26] cannot be applied. Another approach is needed, and possibly the one suggested
by Flajolet and Richmond [7] should lead to a solution. We address this problem in a
forthcoming paper. O

3. ANATLYSIS

In this section we prove Theorem 1 (cf. Section 3.1} and Theorem 2 (cf. Section 3.2).
Those proofs, as it turns out, require quite different approaches, and they might be useful

in the analysis of other problems on data compression.
3.1 Digital Search Tree Model

We study a digital search tree built [rom m independent strings generated according to
the Bernoulli model. We consider separately the symmetric model and the asymmetric one

since they require quite different techniques.
A. SYMMETRIC BERNOULLI MODEL

We pick our analysis where we left it in Section 2, that is, from recurrence (5) which

has solution (6), that is,

Ba(w) = m— (1 - %) 3 (~1)" (T)Qk-z(u) (21)
k=2
where .
Qr(u) = _1:[(1 — u279) (28)

with Qg(u) = 1. Since the formula for Qi (u) is relatively simple, we can extract coefficients
of B (u) ”by hand”.

Note that Qr(t) = Qoo(v)/Qeo(127%), and by Euler’s identities (cf. [17]) as in Louchard
[19],

1 0 i oo o
where
L 1yg 272
R;=(-1) o (30)
with @; = Q;(1). Let now [«*]f(u) denote the coefficient at u* of f(u). Then,
n =, R
[w"]Qx—2(u) = -~ Z;Q,Tkin :

13




Hence, applying this to our basic solution (27) we obtain

) Il 5ip,
W)Ba(e) = 3 ”é% (1 -2 = 1= m/2)
i=0
i olp.
-y 2 g-’“ ((1 e m/2) ,
1=0 !

Finally, after some tedious algebra one obtains (17) as in Louchard [19], and taking m — oo
we easily derive part (i) of Theorem 1 (see also Mahmoud [21], Ex. 6.12).

B. ASYMMETRIC BERNOULLI MODEL

In this case, we rather work with the probability generating funclion D, (u) for the
depth which is equal to By, (x)/m, that is,

D) =1 - 22 314 (™) Quiata) - (31)
k
k=2

m

Let g = EDy, and o2, = VarDy,. Fact 1 implies pi,, ~ ¢1logm and 02, ~ cologm
where ¢; = 1/h and ¢z = (hy —h?)/h®. We use Goncharov’s theorem to establish the normal
distribution of D,, by showing that

lim e"g“mf”mDm(e‘g"”m) = /2 (32)

mM—Cco

where 7 = ¢z for imaginary ¢. However, below we prove a stronger result, namely we
show that (32) holds for any complex @ (with #(#) > 0), and hence this will automatically
establish convergence of moments (since every analytical function has its derivatives).

We now derive an asymptotic expansion for the probability generating function D{u)
around © = 1. We assume z = ¢*, and due to o, = O(vlogm), we define v = 9/g,, — 0.
Hereafter, we use the complex variable v that tends to zero as m — oo.

Note that 1 — D,,(u) given in (31) has the form of an alternating sum. Such a sum can
be handled either by Rice’s method (cf. {5]) or by the Mellin-like approach (cf. [17], [25]).

The Mellin-like approach is recalled below for the reader convenience.

Lemma 3. (Szpankowski [25]). Lel fi be any sequence such that it has an analytical
continuation f(s) (i.e., f(k) = fi) in the complez plane right to the line (—2 —ioco, —34ic0)
such that f(s) does not grow faster than ezponential for large s (for details see [25]). Then

m m —3/2+ico
Z(—l)k(k)f"" 1 f " () f(-sym s + e (33)
k=2

% —3/2—ioo
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where I'(s) is the gamma funclion, and the error term e, is of order magnitude smaller

than the leading term as shown in (35).

Proof. For completeness, we present a sketch of the prool. Details can be [ound in [25)].
Let

Sm = i(—l)k (T) fr s
k=2

and define {m; s] = I'(m + 1)/T(m + 1 + s). We shall first prove that
1 —3/2+4ico

Sm =5 /_ o T (=)l slds (34)
To evaluate the above integral, we use the Cauchy residue theorem [10]. Consider a large
rectangle R, g with corners at (3 — 8 % ia) and (—32 % a) left to the line of integration
(-2 — i00,—2 4 io0). Then, the integral in (34) is the sum of of residues in R, g minus
the integrals on the bottom, top and left lines of 12, g. Since f(-) cannot grow faster than
any exponential function, we can prove that the integrals on the bottom, top and left lines
of the rectangle vanish as o, — oo. Thus, we must estimate the residues to the left of
the line (—3 — i00, -2 + ico). But, I'(s) has singularities with residue of value (—1)*/k!
at s = —k, where % is an integer (£ > 2), and [m; —k] = m!/(m — k)!, thus by the residue
theorem we immediately prove (34). To establish (33) we observe that by Stirling’s formula
[m; 8] = m™*(1 4+ sO(1/m)) (cf. [10]). Then,

—3/24ico

em = O(1/m) - sI(sym™ f(—s)ds , (35)

—3/2—ico
as desired. B
We use Lemma 3 to obtain precise asymptotics of D{u). (In fact, we can use it to
re-derive the average FD,, and the variance VarD,, of D,, given in Fact 1.) To do so,

however, we need an analytical continuation of @x(u). Denote it as Q(u,s), and observe
that (cf. [5], [26])

LR

where P(u,s) = [132,(1 - up*ti — ug*ti).

Using now Lemma 3 we obtain

1—u f—3f2+|'m

1-D =
m(®) m2mi J_3/2—i0

I'(s)m™°Q(u,—s — 2)ds + en , (37)

where e, = O(1/m*) |_ H.'°° sim ™ s (u, —8 — 2)ds, and as we s see e, = O(1/m),
h 0(1/m?) [T Q ds, and hall

so we can safely ignore it in further computations (see for example [12] for more details).
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We now evaluate the integral in (37) by the residue theorem. However, this time we
compute residues right to the line of integration in (37). More precisely, as in the proof of
Lemma 3, we consider a large rectangle right to the line of integration, and after observing
that the integral over bottom, right and top lines are small, we are left with residues right
to the line of integration.

The gamma function has its singularilies at s_; = —1 and sy = 0, and in addition we
have infinite number of zero .s‘i_('u) (7=2,3,..,k=0+1,42,...) of P(e’,—5 — 2) of the
denominator of @(e”,—s — 2) where we substituted v = ¢ with R(v) > 0. More precisely,

si(v] are zeros of
P—.s—2+j + q—s—2+j —e V. (38)

It turns out {cf. [5], [12], [17], [21], [26]) that the dominating contribution to the asymptotics
comes from 3%(1;). Indeed, the contributions of the first two singularities at s_; and sp are
respectively —(1 — u)@(u,—1) and (1 — v)@(u,—2)/m. They can be safely ignored after
we multiply everything by e=9#m/om — ¢=Ologm), Thus, now we concentrate on the
contribution coming from sj(w). In this case, one can solve equation (38) (cf. [11] and [12})

to derive

d=i-a-3-1(2- 1) o oo

for integer j > 2 and v — 0. We also note that E}(si(*u)) #0for k#0.

Let now Ri(v) denote the residue of (1 — epmH ¢ e'q™ %~ 2t)1 at &l (v), and let
g(s) = T(s)Q(u,—s — 1). In the sequel, we use the [ollowing expansion which derivation
can be found in [26]

1 o Qoo(w)
1-u(p=+¢) Pz,—s-1)
wl 8 hy  6hy

- _= ¥ te et 2
= 5~ o tuge tOW)

Q(“: —5= 2)

where w = 5 — sé(’u). Then, after some straightforward calculations as in [12, 26], by

Cauchy’s theorem we obtain

1= D(e”) = RA)g(m)1 - e)m'm30) + 3 Ri(o)g(A(0))(1 - e)m~tm=®

+2 2 R@a(si(e)(1 - m T tm ) 1 0(1) (40)
o

We consider now the above three terms separately:

16




(a)

(b)

j=2and k=0
Set v = #/0,, = 9/+/ealogm with R(JF) > 0. Then by (39)

—s3(v) ? flogm 92
m ToVY = mexp A . 4 EE R
2

In addition, the following holds: R3(v) = —1/h + O(v), and g(s3(v)) = —h/v 4+ O(1),
and finally 1 — e~ = v + O(1) (cf. [12}). Therefore, we obtain

e~ m/7m R3(0)g(s3(0))(1 — €™ )m %) — /2 (41)

jz3and k=0

In this case we can repeat the analysis [rom case (a) to get
e l7n RY()g(si(0))(1 — e™)m ™) — O(m?~ie1?) (12)
so this term is of order magnitude smaller than the first term in (10).

k#0
Fix § = 2. Then, as in Jacquet and Szpankowski [12] we can prove that

3 Bi(0)g(si(0))(1— eym~ m=%0) = O(umREW)

k=—co

k£0

But, we also know ([11], [12]) that R(s2(2)) > s3(R(#)), so finally by (39) the above

sum bhecomes

3 R2(0)g(s2(m))(1 - e)m lm R = REO)O(pm RN ®R(1))
k=—oo

E#0
- m—*(sg(v}}o(vm—ﬁu’)
for some #. Finally, consider general j > 3. As in the case (b), we note that m_’i{")

contributes O(m?~7), so this term is negligible.

Putting everything together: we note that as » — 0 or m — 0o we have e~ ?#m/om(] _
Dn(€%/9m)) ~ —e=%m/om D (e3/7m) for R(v) > 0, and finally

g~ tumlomp_(e97m) = 7121+ O(vm™#7) + O(1/m)) — 12 (43)

which proves part (ii) of Theorem 1.
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3.2 Lempel-Ziv Model

We now prove Theorem 2. To assess the distribution of DLZ we need to estimate the
conditional probability Pr{D%% = k[M, = m} (cf. (2)). We have pointed out before that
Pr{DEL% = k|M, = m} # Pr{D,, = k} where D,, is the depth in the digital tree model
already estimated in Theorem 1. Nevertheless, we show that these probabilities are not far
away.

In the sequel we prove the following two facts that suffice to establish Theorem 2:
A. For large n
Pr{DE? = tM = m} = (14 O(y/logn/m)) Pr{Dm = 1} (44)
B. For the asymmetric alphabet when n — o
EeiﬂD,{‘z ~ Ee"ng"h“DEF‘J , (45)
thal is, the limiting distribution of DZ% jis asymptotically the same as the limiting
distribution of the depth in the digital tree model with m = |nh/logn| nodes. A
similar statement is also true for the symmetric model.

A. REDUCING TO THE DigiTAL TREE MODEL

Let us first fix the number of phrases m. Then, as in the digital tree model Pr{D,, =
k} = Bwm(k)/m, and by Theorem 1

= m (k — ¢; logm)?
Bom(k) 27z logm exp (_ 2¢qlog m (46)

for k = O(log m), where as before ¢; = 1/h and ¢3 = (kg — h2)/h3. Furthermore, we define
Zm(k) := By (k) — By(k) that represents a deviation of B,(k) around its mean.
Clearly, the number of nodes at level % is related to the internal path length L,, by
Ly =Y Bn(k). From Jacquet and Szpankowski [13] we know that
Ly, —cymlogm
Veamlogm

= N(0,1). (47)

Actually, the above is an archi-fact used to prove Fact 2(ii) through the renewal theorem
(cf. Theorem 17.3 in [2]).

Consider now the Lempel-Ziv model. We must estimate the average number of internal
nodes at level &k under the condition that L., = n. As the first step, let us vary the number
of nodes m by introducing a parameter ¢ such that mlogm/h = nt. Clearly,

nht

_ loglogn
m= (1 + L, O(l/logn)) (48)
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and by (47) I .
[—n

Vheon

where X; is a Gaussian non-Markovian process with £X, = 0 and VarX; = #. In passing,
we note that X; ~ Y it o kZ;(k)//hean.

In order to capture properties of the Lempel-Ziv model, we introduce a random variable

— Xt ) (49)

T which represents the first time L, attains level n. More precisely, + = min{t : L; > =n}.

Equivalently, 7 can be defined as (cf. Fig. 2)
r=min{t: X, > ev/n{1l - 1}}, (50)

where ¢ = 1/+/hce. Then, for 7 = 1p

_ E{B(R)lr =t}

Pr{DL% = k| M, = m} (51)

We need to estimate EBy (k) := E{B,(k)|r = to}. Let X1 = ¢ and X, = z. From

Figure 2 we see Lhal
¥y ~ e/o(l-7) n-o oo, (52)
z = e/n(l-7). (53)

Hence, by (52) 7 is asymptotically rormal with E7 = 1 and Var 7 = hea/n (ie, 7 = 1
(pr.)). As a direct consequence of the above, we also re-discover that EM,, ~ nh/lognET ~
nh/logn and VarM, ~ (h®n?/log?n) - Var 7 ~ nh3cy/ log® n.

Now, we wrestle with the computation of EB,, (k). Note that conditioning on 7 = #43 is

equivalent to conditioning on X, = z. Hence,
E{By(K)X- = v} = By (k) + E{Z ()| X, =z} . (54)
Moreover, since 1o = 1+ O(1//n)
By (k) ~ Bi(k) = O(n/ log"? ) (55)

where the right-hand side of the above follows from (46).
To assess the error we need to estimate Z{Z,(k)[X, = z}. For this we need a more

precise estimate of . The following lemma is well known (cf. [20]).

Lemma 4. Consider an ordinary Brownian motion B(t). Define
T=inf{t: pt+ B(t)e//n=a}.
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A}
Figure 2: Illustration to the analysis.
Let T =7 — afpu. Then, the asymptotic density f(1) for T becomes
VA ;
) =
HOR Sy~ v (1+Cut+0(%)) (56)

Furthermore, T = O(%J) {pr.) and the relative error in the densily with respect to the
Gaussian densily is also O(ﬁ)

Proof. By a classical result, the density f(u) for 7 is given by

flu) = #ﬁfaﬁe)(p (”‘(;“u—;;“‘)) (57)
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Let T := 7 — afp. Setting ¢t := v — &/, and expanding (57) around ¢ = 0, we derive (56).
Obviously, T' = O(ﬁ-) (pr.) since the density of T is of order O(e~#™"). In addition, the
relative error in the density is also 0(71;-) |

To apply Lemma 4, we refer to Durbin [3] from whom we conclude that around 7 the
process X; behaves locally like a Brownian motion. In our case, afu = 1, ¢ = a/c and
the crossing time X, = z and T are related by z = —¢/aT ¢ = 1/4/hcs. Hence, by (56) of

Lemma 4 we see that the density f(z) of the crossing value X, = z is given by

:‘2

T

e~ = (e )
In order to assess £B, (k) we need to estimate [, f(z)E{Z,(k)|X, = z}dz as sug-

gested by (54). First of all, we observe that Theorem 1 and (54) imply for every k

14 C, (58)

‘2

\/—

Moreover, since during T' at most O(»|T]/logn) phrases can be generated (cf. (8)), the

=yldy=0. (59)

following two estimates arc easy to establish:
Z:(k) = Z1(k) + O(n|T|/ logn) = Z1(K) + O(v/nz/logn) , (60)

and ¥ = X, becomes

y:XT+\/ﬁ§=$+Cﬁ§, (61)

where C' is a constant and £ a random variable distributed according Lo the standard normal
distribution. Note that T' = O(1/+/n), hence z = y — \/g€/n'/" + O(1/ /7).
Putting everything together. From (58), the density f(z) in terms of ¥ becomes

3{25
zb(y)fvf(ucq 71 +Cz\/—) :

Then, by (59) and the above

[ I@EZ®IX =3} ~ [ 90) B0 = 3} + Oy loga)) dy
= O(v/n/logn) . (62)

This completes the proof of (44) since By, = O(n/log®?z), as noticed in (55).

B. I'INISHING TIIE PROOF
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We first consider the asymmetric alphabet, and prove part (ii) of Theorem 2. From
Theorem 1 (cf. (14) and (43)) we conclude that for some real & (for simplicity we consider
¥ = i# but as easy to see our proof works for any complex ¥ such that () > 0)

E (emD”‘) = exp (it’a‘cl log m — (1/2)8%c; log m) (1 +0 (fo/'log_m)) , (63)

where D, is the depth in the digital tree model. Let now f(n) = \/log(nh/logzn). Define
F(8) = EePa”/1(n), Then, from the above

F(8) = E {exp (i1 log My / f(n) — (1/2)8%c2 log Ma/ £(n)) (1 + O(6/\log M)} . (64)

Let &, 1= (M, — EM,)/+/VarM,, and observe that Ee®%a/9(") _; exp(—62/(2¢%(n))) for
some real § and real-valued function g(n) (cf. Fact 2). Note that log M, = log(nh/logn) +
log(1 + €nc/+/n) for some constant ¢, due to EM, ~ nh/logn and VarM, ~ cn/log’n.
Therefore, from (63), (64) and the above one obtains

F(8) = exp(ifery/log(nh/logn) — (1/2)6%¢3)

B (Ea%log(wfnd\/f_‘) (1 + ou/@ﬂ)

where g(l—n) = f—{lﬂ(l + 01/ f(n)). But, according to (3) O(v/n) < M, < O(n/log, n),
hence log(1 + &,c/+4/n) = ©(1). Therefore, by the bounded convergence theorem (cf. {4]) we
immediately obtain Ee(9/9(n))log(1+énc/\/m) _, 1, and finally

e—iﬂcl\/log(nhllogn]F(g) — e—c282.f2(1 1 O(l/\/@)) , (65)

which completes the proof of part (ii). Clearly, the above is true if 8 is replaced by a
complex ¥ such that R(J) > 0.

Now, we turn our attention to the symmetric alphabet, and establish part (i} of Theorem
2. Since in this case we have exact distribution for D, (cf. (17)) we can easily by-pass
most of analytical difficulties. Therefore, we rather present a sketch of the proof leaving
most of the details to the interested reader. We consider the limiting distribution (12) as
a conditional distribution with M, = m. Ignoring for a moment #;(n), we need only to
investigate 2%¢=2"" "'~ where z = j — log, M,, for some integer j. Note that for such z the
above expression becomes 272" = (2 /M,)e=Mn where o = 2=#+14+ By the result
of Aldous and Shields [I] (cf. Fact 2(i))

M, = i +£,0 (\/n/logg n) = n (1 + {nO(I/\/nIogn)) (66)

log, 1 logy n
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where &, — N(0,1). To complete the proof it suffices to estimate the following

e—anflogam  poo e—u:O(Vﬂ“os‘; n) IF e—on/log; n(14+0(1/ log? n})fl 01/ Tos?
n] 0By J-co T+ 20(1/VrTogm) 60 = g (14 0(1/10g? n))

where F¢(z) is the standard normal distribution function. Clearly, the above proves part

(1), and this completes the proof of Theorem 2.
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