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Consider the parsing algorithm due to Lempel and Ziv that partitions a sequence of
length n into variable phrases (blocks) such that a new block is the shortest substring not
seen in the past as a phrase. In practice the following parameters are of interest: number of
phrases, the size of a phrase, the number of phra.o>es of given size, and so forth. In this paper,
we focus on the size of a randomly selected phrase, and the average number of phrases of a
given size (the so called average profile of phrase sizes). These parameters can be efficiently
analyzed through a digital search tree representation. For a memoryless source with unequal
probabilities of symbols generation (the so called asymmetric Bernoulli mode!), we prove
that the size of a typical phrase is asymptotically normally distributed with mean and the
variance explicitly computed. In terms of digital search trees, we prove the normal limiting
distribution of the typical depth (i.e., the length of a path from the root to a randomly
selected node). The latter finding is proved by a technique that belongs to the toolkit of
the "analytical analysis of algorithms", but which seems to be novel in the context of data
compressIOn.

Index Terms: Digital search trees, Lempel-Ziv parsing scheme, data compression, phrase
length, typical depth in a digital tree, limiting distributions, average profile, Mellin trans­
form, analytical analysis of algorithms.
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L INTRODUCTION

The heart of some universal data compression schemes is the parsing algorithm due to

Lempel and Ziv [33]. It partitions a sequence into phrases (blocks) of variable sizes such

that a new block is the shortest substring not seen in the past as a phrase. For example,

the string 110010100010001000 is parsed into (1)(10)(0)(101)(00)(01)(000)(100). There is

another possibility of parsing, as already noticed in [32J, and explored by Grassberger [9J

and Szpankowski [26], that allows overlapping in the course of creating the partition. For

example, for the above sequence the latter parsing leads to (1)(10)(0)(101)(00)(01)(000100).

In this paper, we only consider the former parsing algorithm.

These parsing algorithms play a crucial role in universal data compression schemes

and theirs numerous applications such as efficient transmission of data (cf. [29, 32, 33]),

discriminating between information sources (cf. [8J, [31]), test of randomness (cf. [31]),

estimating the statistical model of individual sequences (d. [30], [31]), and so forth. The

parameters of interest to these applications are: the number of phrases, the number of

phrases of a given size, the size of a phrase, the length of a sequence built from a given

number of phrases, etc. Some of these parameters have been studied in the past as the

first-order properties, that is, typical behaviors in the almost sure sense. Very few results ­

with a notable exception of the paper by Aldous and Shields [1] - are available up-to-date

concerning second order properties such as limiting distributions, large deviation results,

concentration of mean, etc.

Recently, Gilbert and Kadota [8] have presented convincing arguments for the need of

such investigations. The authors of [8] used numerical evaluations to obtain qualitative in­

sights into some second-order behaviors of the Lempel-Ziv parsing algorithm. In particular,

they studied the length of a sequence obtained from the first m phrases, and the length of

the mth phrase. In this paper, among others, we provide for memoryless sources (the 50

called Bernoulli model) the limltlng distribution for the latter quantity. We obtaln these

results by transformlng the problem into another one on digital trees (cf. [1], [17]). In

passing, we observe that digital trees have been studied in their own right for more than

twenty years (ef. [17,18]).

We consider a special type of digital trees, namely a digital search tree (cf. [5], [7], [17],

[18]). This tree is constructed as follows (see also Figure 1). We consider m, possible infinite,

strings of symbols from a finite alphabet :E (however, for the simplicity of presentation we

further work only with the binary alphabet :E = {D, I}). The first string is stored in the root,

while the second string occupies the right or the left child of the root depending whether

2



(100)

(00)

(000)

Figure 1: A digital tree representation of Ziv's parsing for the string 11001010001000100 ...

its first symbol is "1" or "0". The remaining strings are stored in available nodes (that are

directly attached to nodes already existing in the tree). The search for an available node

follows the prefix structure of a string. The rule is simple: if the next symbol in a string

is "I" we move to the right, otherwise move to the left. The resulting tree has m internal

nodes. The details can be found in [17] and [21].

The Lempel-Ziv parsing algorithm can be efficiently implemented using the digital search

tree structure. We assume that the first phrase of the Lempel-Ziv scheme is an empty phrase.

We store it in the root of a digital search tree, and all other phrases are stored in internal

nodes. When a new phrase is created, the search starts at the root and proceeds down the

tree as directed by the input symbols exactly in the same manner as in the digital search

tree construction. For example, for the binary alphabet, "Oll in the input string means move

to the left and "I" means proceed to the right. The search is completed when a branch is

taken from an existing tree node to a new node that has not been visited before. Then,

an edge and a new node are added to the tree. Phrases created in such a way are stored

directly in nodes of the tree (d. Figu.re 1). In passing, we note that the second parsing

algorithm discussed above (with overlapping between phrases) leads to another digital tree

called the ,ullix tree (d. [9], [26], [28]).

We consider the Lempel-Ziv algorithm in a probabilistic framework. We assume that

a string of length n is generated according to the Bernoulli model. That is: symbols are
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genemted in an independent manner with "0" and "1" occurring respectively with probability

p and q = 1 - p. If p = q = 0.5, the the Bernoulli model is called symmetric, otherwise it

is asymmetric.

The Lempel-Ziv algorithm can he analyzed in two different frameworks. Namely, with

a fixed number m of parsed words or with a fixed length n of a sequence to be parsed. The

former model falls exactly under the digital search tree framework with independent strings,

and we further call it the digital tree model, as it is known for last twenty years [17, 18].

Therefore, any new result in this endouver will lead to a new finding in the area of digital

search trees, and reverse: we can apply many known results of such trees (for a survey sec

Mahmoud [21]) to our problem. The latter problem is harder since by fixing the length of

a string we introduce some dependency among phrases (even if they still do not overlap!).

Nevertheless, this dependency is not strong enough to spoil the analysis, and we shall prove

that the digital search tree results can he extended to this new situation. We coin a name

Lempel-Ziv model for the latter framework.

Hereafter, we stick to some notation that we shall use throughout the paper. We always

denote by n the length of a single string that is parsed (Le., Lempel-Ziv model), while m is

always the number of independent strings used to built a digital tree (i.e., digital tree model)

or the number of parsed words used to construct a single string (of a random length!).

In this paper we report two main findings, namely: for both models we prove that the

length of a randomly selected phrase (and the average number of phrases of a given size) in

the asymmetric model is normally distributed around its mean with the variance of order

0(1ogn). We treat separately the symmetric Bernoulli model since the variance in this case

is 0(1), and actually the limiting distribution does not exist in this case. However, we

show that the limiting distribution centered around log2 n resembles the double exponential

distribution (Le., e-c '').

Digital trees, that is, tries, compact tries known also as Patricia tries, and digital search

trees have been extensively analyzed in the past in the case of a fixed number of independent

strings (d. [5,7,12,15,16,17,18,19,23,27]), and in some cases with dependent strings

(d. analysis of suffix tree in (27, 28]). In particular, the average length of the internal

path length (i.e., the sum of all depths) and the average size of a digital search tree in

the symmetric model was analyzed by Konheim and Newman [18], Knuth [17], Flajolet

and Sedgewick [5], and Flajolet and Richmond [7]. The average depth and the variance of

the depth for the asymmetric Bernoulli model is given in Szpankowski [27} (the symmetric

case was also analyzed in Kirschenhofer and Prodinger (14]), while the variance of the

internal path length in the symmetric Bernoulli model was investigated in Kirschenhofer
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et al. [16]. Finally, Louchard [19), and Aldous and Shields [1] for symmetric Bernoulli

alphabet obtained the limitiug distribution of the depth. As mentioned above, in this

paper we directly extend Louchard's result to asymmetric Bernoulli model, while in another

paper Jacquet and Szpankowski [13] generalize some of the Aldous and Shields [1J results

concerning the limiting distribution of the internal path length.

As mentioned above, for the Lempel·Ziv parsing algorithm mostly only first-order prop­

erties have been investigated, with an exception of the work by Aldous and Shields [1]. It is

well known that for a stationary and ergodic source the number of phrases is almost surely

equal to (nhflogn) where h is the entropy of the alphabet. For the symmetric Bernoulli

alphabet Aldous and Shields (1] proved that the number of phrases is normally distributed

with mean nj log2 n and variance 0(nj log~ n) (for the coefficient at nj log~ n in the vari­

ance see [13], [16]). The first-order property of the phase length in the Lempel·Ziv parsing

algorithm was recently reported by Ornstein and Weiss [22]. Finally, Gilbert and Kadota

[8] analyzed numerically the number of possible messages composed of m parsed phrases,

as well as the length of a phrase in the digital tree model (see [13] for some theoretical

solutions to these problems).

The paper is organized as follows. In the next section, we formulate our main results

and present some consequences of them. The proof concerning the limiting distribution of

the depth in a digital tree model is presented in Section 3.1, wh.ile the Lempel-Ziv model is

analyzed in Section 3.2

2. MAIN RESULTS

Let us first consider the digital tree model in which the number of parsed words is

flXed and equal to m. These words are statistically independent and satisfy the Bernoulli

model. We construct a digital search tree from these m strings or alternatively we build a

sequence (of random length) according to the Lempel-Ziv scheme. Then, the length of a

randomly selected phrase in the Lempel-Ziv sequence composed of m phrases is the same

as the length of a randomly selected depth (i.e., the path from the root to a node) in the

associated digital tree. Traditionally, in the area of digital trees this depth is denoted as

Dm, and we shall adopt this notation. Let also Dm(i) be the depth of the ith node in the

associated digital tree. Actually, observe that Dm ( i) == Di( i) for m ~ i. Clearly, for various

i::; m distributions of Dm(i) are different, and therefore it makes sense to define a typica.l

depth Dm as
1 m

P,{Dm < x} = - I;P,{Dm(i} < x}.
m ;=1

5
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Furthermore, we denote by L m the internal path length of the digital search tree, that

is, Lm ;= L~l Dm(i). Note that Lm is the length of a sequence generated by the Lempel­

Ziv parsing scheme from these m parsed words (Le., in the digital tree model). Finally,

we denote by Bm(k) the number of nodes in the digital search tree at level k. Clearly, it

is equal to the number of phrases of length k in the Lempel-Ziv scheme in the digital tree

model.

The situation is similar, but not the same in the Lempel-Ziv model in which a sequence

of a fixed length n is parsed into phrases. Let Mn and Mn(k) denote the number of phrases

and the number of phrases of size k, respectively, produced by the algorithm. Let also

D~z(i) be the length of the ith phrase in the Lempel-Ziv model, where 1 S; i :::; Mn • By

the typical phrase length Dkl, or shortly D~z we denote the length of a randomly selected

phrase. The typical depth D~z in the Lempel·Ziv model can be estimated as follows

mu
P,{D~z = k} = L:: P,{D~z = klMn = m}P,{Mn = m}

m=mL
(2)

where mL and mu are lower and the upper bounds for the number of phrases Mn . One

easily proves that for some constants 01 and 02

Indeed, the minimum number of phrases occurs only for two strings: either all zeros or all

ones, and then n = L:~'i Dn(i) = Mn(Mn + 1)/2, hence the lower bound mL = 0(.;n)

follows. For the upper bound, we consider a complete binary tree with the internal path

length equal to n. Thus, n ~ L~:gf Mn-l i2 i ~ (10g2 Mn - 2)Mn , and the upper bound

mu = O(n/ log2 n) follows.

According to (2), one needs to estimate the conditional probability Pr{D~Z = klMn =

m} in order to a.<:isess the distribution of D~z. It is tempting to assume that Pr{D~Z ;::::

klMn = m} = Pr{Dm = k} where the right-hand side of this equation refers to the depth

in the digital tree model. But, tills is untrue due to the fact that in the Lempel-Ziv model

we consider only those digital search trees whose internal path length is fixed and equal to

n. Clearly, tills restriction affects the depth of a randomly selected node (think of a digital

tree built from the string 11111 ... 111 willch is very skewed). Fortunately, we shall prove

in Section 3.2 that P'{D~Z = klMn = m} = (1 +O(vlogn/n})P,{Dm = k).

We now present results for the digital tree model, and let Bm(k) := EBm(k) be

the average number of internal nodes at level k in a digital tree built over m independent

strings. As in Knuth [17] (cf. also [26]), we have the following relationship between the
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depth D= and the average profile Bm(k)

Pr{Dm = k} = Bm(k)
m

(4)

(6)

(7)

This follows from the definition (1) of Dm and the definition of Bm(k).

We shall work initially with the average profile, and we define the generating function

Bm(u) = L~o Bm(k)uk which satisfies the following recurrence (cf. [17J, [26])

Bm+1 (u) = 1 +u f: (m)piqm-i(Bi(U) +Bm_i(u)) (5)
j=O J

with Bo(u) = O. This recurrence arises naturally in our setting by considering the left and

the right subtrees of the root.

A general recurrence of the above type was analyzed in Szpankowski [26] (d. see also

Flajolet and Richmond [7] for an interesting extension). A slight modification of Theorem

2.4 in [26] directly leads to the exact solution of (5), namely:

Bm(u) = m - (1- u)f,HJ'(7) Q,_,(u)

where
k+l

Q,(u) = II(I-.pi - uqi) , Qo(u) = 1.
j=2

Actually, the derivation of (6) is not too complicated, so we provide a sketch of the

proof. Let us start with multiplying both sides of (6) by zm jm! to get B~(z, u) = e:: +
uB(pz, u)eq;: +uB(qz, u)ePZ where B(z, u) = L~=o Bm(u)~~, and B~(z, u) is the derivative

of B(z, u) with respect to z. We now multiply this functional equation by e-Z and introduce

B(z, u) = B( z, u)e-z . This leads to a new functional equation, namely jjf(Z, u) +B(z, u) =

1 + u(iJ(zp, u) + B(zq, u)). Comparing now the coefficients at zm one immediately obtains

B=+!(u) = lim,o - Bm(u)(1- upm - uq=) where 8o,m is the Kronecker symbol. To prove

(6) it only suffices to note that Bm(u) = L:k=O (k)Bk(U).
We consider the symmetric and the asymmetric CMes separately. For the symmetric

model, we exactly compute the coefficients at uk of Bm(u) directly from (6). For the asym­

metric model, we use Goncharov's theorem (d. [17]) applied to the probability generating

function Dm(u) = Bm(u)jm to establish normal limiting distribution of Dm (for details see

Section 3.1). In the latter case we need one more result from [26] that is provided below

for the reader's convenience.

Fact 1. (i) The average EDm of the depth becomes as m --+ 00

1 ( h, )EDm = h logm +, - 1 + 2h +e+ '(m) +O(logm/m)

7
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where h is the entropy, h2 = Plog2 P+ qlog2 q, "I = 0.577 ... is the Euler constant, and

00 pk+11ogp +qk+11og q
() = - L 1 _ pk+1 _ qk+I .

k=l

The function o(x) is a fluctuating function with a small amplitude when log pi log q is m­

tional, and o(x) := 0 for log pi log q irrational. More precisely, for log pi log q = rlt where

T, t are integers,
o( )_ ::;... f(sS)Q( -2) (_ 2~i£T I )

1 X - L.. Q(' I) exp J ogx
1=_00 So - og P
'#0

where Sb = -1 +2'ii"i£rI logp.

(9)

(ii) The variance of Dm for large m satisfies

h2 - h2
2

vaT Dm = h' logm + A +~(m) +o(Jog m/m) (10)

where A is a constant and 6.(x) is a fluctuating function with a small amplitude. In the

symmetric case, the coefficient at logm becomes zero, and then (ef. [16])

1 1 ,,2
vaT D = - +--. - -" -.B +~(m) + O(log' m/m) (11)

m 12 log22 6

where
00 1 00 1

,,= L 2; _ I .B =L (2; - I)'
j=l J=l

and the function .6.(x) is conlinuous with period 1 and mean zero.•

In Section 3.1 we prove our first main result concernlng the limiting distribution of D m

(hence, also for the average profile Bm(k)) in the digital tree model.

Theorem 1. (i) SYMMETRIC CASE. Let Qk = nj=l(l- 2-j ), and define 'I/;(m) = IOg2 m­

llog2 mJ. Then, for the symmetric Bernoulli we obtain for any integer J(

lim IPl{Dm < log, m +K} - (12)
m-oo

(
I 00 2-;F+l)!' ) I2K-o.{I(m) 1 +-_2:(_1);+1 . e_2-(K-1/J(ml-l-i) = O.

2Qoo ;=0 QI

The function 'I/;(m) is dense in [0,1] but not uniformly dense, thus the limiting distribution

of Dm does not exist (see Remark 1(i) below).

In the asymmetric case, the limiting distribulion of Dm is normal,(ii) ASYM METRIC CASE.

that is,
D m - EDm -+ N(O, 1)
..;Yar D m

8
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(14)

where ED7Tl and VaT Dm are given by (8) and (10), respectively, and the moments of Dm

converge to the appropriate moments of the normal distribution. More generally, for any

complex {} such that !R(1?) > 0

e-I1CllogmE(efJDm) = eC2'022logm (1+0( 1 ))
y'logm

(ill) In the asymmetric case, there exist positive constants A and Q < 1 such that

Pr {IDm - Cdogml > k} ~ Aci
VC2 10g m

uniformly in k for large m .•

(15)

Remark 1. (i) The limiting distribution for the symmetric case was obtained before by

Louchard [19] by a different method than the one presented in Section 3.1. Actually, we

can wrIte (12) alternatively as

I
2' ( 1 = . 2-;«+3)/2 . ) Ili'." ,up Pr{Dm~x}-- 1+-

2Q
2)-1)'+' Q. exp(-mT(,-l-,») =0

moo", m OOi=O '

(16)

where x is any real number. Moreover, in the symmetric model we can, following Louchard,

also give exact distribution of the depth, that is,

1 ( . j (_I)i-k+1 2(i-k)(i-k+1J/2 )
Pr{D m ~ j + I} = - 2,H - 1 +I: 2' (1 _ T')m-l

m k=l Qi-kQk-l

for all integers j 2:: 1.

(17)

(li) One may wonder why the limiting distribution in the symmetric case is not normal,

and actually what kind of "known" distribution it resembles. First of all, the central

limit theorem holds in the asymmetric case since by definition (1) the indicator function of

the typical depth could be viewed as the average sum of indicator functions of all depths.

Thus, after proper normalization (i.e., ";VarDm ) one may expect normal distribution of Dm

provided VarDm -Jo 00 as m -+ 00. This holds in the asymmetric case (indeed, VarDm ::::

O(logm)) but not in the symmetric model where VarDm = 0(1). To predict the behavior

of the limiting distribution for the symmetric model, one should have a closer look at the

definition of Dm ( i). Let Gij be the length of the longest common prefix of the ith and jth

strings. Then,

9



(18)

It suggests that the depth Dm(m) is a maximum over (m -1) dependent random variables.

If those random variables would be independent, one should expect "double exponent1al"

(i.e., e-C
"') limlting dlstribut10n for Dm(m). Actually, the limlting dlsLribution of Dm is

a combination of double-exponential dlstributions as can be verified by inspecting carefully

fmmula (12).

(ill) We observe that the large deviat10n result (iii) of Theorem 1 is a direct consequence

of (14) from Theorem 1(ii). Clearly, it follows from the Markov inequality along the same

lines as in Flajolet and Soria [6]. 0

Now, we turn our attention to the Lempel-Ziv model. Before we present OUI main

find.lng, we rev1ew some known results for the number of phrases M n , which we further need

to analyze the depth D~z.

Fact 2. (i) (Aldous and Shields [1]) In the symmetric Bernoulli model

M n - EMn ~ N(O, 1)
"';VarMn

where N(O, 1) denotes the standard normal distribution, with EMn '" nj log2 nand VarMn '"

0(njlogjn).

(ii) (Jacquet and Szpankowski [13]) In the asymmetric Bernoulli model

Mn - EMn ~ N(O, 1) (19)
"';VarMn

where EMn '" nhjlogn and VarMn '" c2h3njIog2n. Moreover, all moments oj Mn con­

verge to the appropriate moments oj the normal distribution.•

Remark 2. Actually, using Kirschenhofer et at. [16J and the approach from Jacquet and

Szpankowski [13] one can estimate the coefficient at njIog~n in the variance of Mn in the

symmetric case. After some algebra, we derives (cf. [16])

n
VarMn ~ (C + ,(log, n))-3­

log2 n
(20)

where 6(x) 1s a fluctuating continuous function with period 1, mean zero, and amplitude

smaller than 10-6 • The constant C has an explicit, but complicated formula as derived 1n

[16], and its numerical value 1s C = 0.26600... with all five digits significant. 0

We are now ready to present our result concerning the Lempel-Z1v model. The proof

can be found in Section 3.2.

10



(22)

Theorem 2. SYMMETRIC CASE. (i) Let ?/Jt(n) = log2(n/log2 n) - 1l0g2(n/ log2 n)J, and

let J( be an integer. Then, the asymptotic distribution for the length of a randomly selected

phmse for the symmetric Bernoulli model becomes

The function ?/Jl(n) is dense in [0,1] but not uniform dense, hence the limiting distribution

of D~z does not exist.

(ii) ASYMMETRIC MODEL. For the asymmetric Bernoulli model the typical depth D~Z lS

normally dist1ibuted, t.e.,

D~Z-cl1og(nh(logn) ()
--+ N 0,1 .

vic,log(nhflog n)

More precisely, for some complex iJ with R(v) > 0

e-1Jc1 VIog(nh/Iog n)E (el9D~Z r.jIOg(nh/l0g n») = e C2l92 / 2(1 +0(1/ Jlog n)) . (23)

Furthermore, the above implies the existence of two positive constants A and 0: < 1 such

that
pr{ID!:..Z -C1IOg(nk/10gn)! > k} < Ao:k

VC21og(nh(logn) -

uniformly in k for large m .•

(24)

Remark 3. (i) Markovian Model. It is plausible that our analysis can be extended to

Markovian model in which the next symbol in a sequence depends on a finite number of

previous ones. Such an extension was already obtained for the depth D m in another digital

tree, namely trie (cf. Jacquet and Szpankowski [12]).

(ii) Almost Sure Behaviors. Surprisingly enough, the almost sure behavior of D m and D~z

are not implied by Theorems 1 and 2. In fact, Dm / log m and D~z/log n do not converge

almost surely. The same applies to the length of the last phrase, or the depth of insertion,

which we denote as £m' Indeed, this is a consequence of the profound results of Plttel

[23] concerning digital trees. He proved, among other things, that £m/logm converges

in probability to l/k, but does not converge almost surely. Let Pmin = min{p, q} and

P<nax = max{p,q}. Then,

li . f em _---'1'----mm -- =;-
m.....co log m log pm..in

(a.s.)

11

li
£m -1

msup-- =
m-+oo log m log Pmax

(25)



(26)

The same is true for Dm and D~z (eL [13,27,28]).

(m) Average Profile. The average profJle Bm(k) directly follows from Theorem 1 and (4).

The limiting distribution of the profile Bm.(k) is harder to obtain. Aldous and ShieldS [1]

established it for the symmetric case. In the asymmetric case the limiting distribution is

unknown. For the digital tree model it is easy to establish a recurrence for Bm(k). Define

Bt;,(u) = EuBm(k) , Then (d. [13])

B k () ~ (m) I m-I Bk-l( )Bk-1 ( )m+l u = ~ I p q I u m-I u ,

with Bg(u) = 1. Let now Bk(z,u) = E~=o B~(u)~. Then, the above becomes

8B
k
(z,u) Bk-l( )Bk- 1( )8z = pz,U qz,u

with BO(z, u) = u(e'" - 1) +1. We conjecture that for k = D(log m) the limlting dlstribution

of B~ is normal with mean Bm(k) established in Theorem 1.

(iv) Extensions and Open Problems. One may consider an extension of digital search trees

called b-dlgital search trees, and its corresponding Lempel-Ziv parsing scheme. In a b-dlgital

search tree every node can store up to b strings [7, 21] (with possible exception of the root).

Based on this generalization, one can extend the Lempel-Ziv parsing scheme as follows: We

postulate that the next phrase in the generalized Lempel-Ziv algorithm is the longest phrase

seen in the past by at most b-l phrases. For example, the sequence from Figure 1 is parsed

as follow", (1)(1)(0)(0)(10)(10)(00)(100)(01)(00). Note that the numbe, of di,tinct ph,ase,

(the ones that count in the possible extension of the data compression scheme) is equal to

six compared to eight in the original Lempel-Ziv parsing scheme. What is the length of a

randomly selected phrase in such a generalization? What is the distribution of the number

of phrases? Etc. Those and other questions possibly can be answered if one solves the

b-digital search tree model as we did in this paper for b = 1. As pointed out in Flajolet and

Richmond [7] (cf. also [17]) the analysis of b-digital search trees is not that simple. Indeed,

our basic recurrence equation (5) becomes now for m ;::: 0

Bm+b(u) = b+u f: (~)~qm-;(B;(U) +Bm_;(u))
;=0 J

with B;(u) = i for i ::; b. As in the case of b = 1, to solve the above we introduce

the exponential generating function B(z, u) = L::=o Bm(u):;:; that satisfies the following

differential-functional equation

8'~~' u) = a(z) + uB(pz, u)eO' + uB(zq, u)eP'

12



where a(z) is a poly-exponential function. This functional equation and the recurrence

(26) do not have closed-form solutions as in the case of b = 1. Thus, the general solution

from [26] cannot be applied. Another approach is needed, and possibly the one suggested

by Flajolet and Richmond [7] should lead to a solution. We address this problem in a

forthcoming paper. 0

3. ANALYSIS

In this section we prove Theorem 1 (d. Section 3.1) and Theorem 2 (d. Section 3.2).

Those proofs, as it turns out, require quite different approaches, and they might be useful

in the analysis of other problems on data compression.

3.1 Digital Search Tree Model

We study a digital search tree built from m independent strings generated according to

the Bernoulli model. We consider separately the symmetric model and the asymmetric one

since they require quite different techniques.

A. SYMMETRIC BERNOULLI MODEL

We pick our analysis where we left it in Section 2, that is, from recurrence (5) which

has solution (6), that is,

(27)

where

(28)

(29)
=

Q=(u) = - 'L;U'Hi
i=O

k

Qk(U) = II(I- uT;)
j=l

with Qo(u) = 1. Since the formula for Qk(U) is relatively simple, we can extract coefficients

of Bm(u) "by hand".

Note that Qk(U) = Qoo(u)/Qoo(u2-k), and by Euler's identities (cr. [17]) as in Louchard

[19],

where
. 2-;(;+1)/2

Hi = (_1)'+1 =----,Q,.-,-

with Qi = Q;(l). Let now [uk]f(u) denote the coefficient at uk of f(u). Then,

(30)

[unIQk_'(u) = - t Q~I(~I,)
1=0 I

13



Hence, applying this to our basic solution (27) we obtain

Finally, after some tedious algebra one obtains (17) as in Louchard [19], and taking m --+ 00

we easily derive part (i) of Theorem 1 (see also Mahmoud [21], Ex. 6.12).

B. ASYMMETRIC BERNOULLI MODEL

In this case, we rather work with the probability generating function Dm(u) for the

depth which is equal to Bm(u)/m, that is,

(31)

Let Jlm = EDm and a~ = VarDm • Fact 1 implies Jim '" cdogm and a;' rv c2logm

where Cl = 1/hand C2 = (h 2 - h2 )/h3 . We use Goncharov's theorem to establish the normal

distribution of D m by showing that

lim e-fJp.m/rrm D7T1(efJ/rrm) = efJ2 / 2
m-oo

(32)

where {) = ix for imaginary i. However, below we prove a stronger result, namely we

show that (32) holds for any complex {) (with R({}) > 0), and hence tills will automatically

establish convergence of moments (since every analytical function has its derivatives).

We now derive an asymptotic expansion for the probability generating function D(u)

around u = 1. We assume u = ell
, and due to am = O(JIogm), we define v = {}/am --+ O.

Hereafter, we use the complex variable v that tends to zero as m -t 00.

Note that 1 - D m(u) given in (31) has the form of an alternating sum. Such a sum can

be handled either by Rice's method (cr. [5]) or by the Mellin-like approach (cr. [17], [25]).

The Mellin-like approach is recalled below for the reader convenience.

Lemma 3. (Szpankowskl [25]). Let!k be any sequence such that it has an analytical

continuation f(s) (i.e., f(k) = !k) in the complex plane right to the line (-~ -ioo, -~+ioo)

such that f(s) does not grow faster than exponential for large s (for details see [2S}). Then

m (m) 1 j-3/2+;00L;(-lJ' k !k = -. . r(s)f( -s)m-'ds + em
k=2 21it -3/2-100

14
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Let

where res) is the gamma function, and the error term em is of order magnitude smaller

than the leading term as shown in (35).

Proof. For completeness, we present a sketch of the proof. Details can be found in [25].

8m = £:(-1)" (7)!k ,
k=2

and define [m; s] = rem + l)jr(m +1 +s). We shall first prove that

1 1-3/ 2+;008m = -. r(s)f(-s)[m;s]ds.
211"t -3/2-ioo

(34)

(35)

To evaluate the above integral, we use the Cauchy residue theorem [10]. Consider a large

rectangle R rx ,{3 with corners at (t - {J ± io:) and (-~ ± io:) left to the line of integration

(-i - ioo, -~ + ioo). Then, the integral in (34) is the sum of of residues in Rrx ,f3 minus

the integrals on the bottom, top and left lines of R rx ,f3. Since f(·) cannot grow faster than

any exponential function, we can prove that the integrals on the bottom, top and left lines

of the rectangle vanish as 0:, {J --.,. 00. Thus, we must estimate the residues to the left of

the line (-~ - ioo, -~ + ioo). But, res) has singularities with residue of value (-ll jk!

at 8 = -k, where k is an integer (k ;:: 2), and [m; -k] = m!j(m - k)!, thus by the residue

theorem we immediately prove (34). To establish (33) we observe that by Stirling's formula

[m;sJ = m-'(l + sO(l/m)) (cf. [10]). Then,

1
-3 / 2+;CO

em = O(l/m) sr(s)m-' f( -s)ds ,
-3/2-i<XJ

as desired.•

We use Lemma 3 to obtain precise asymptotics of D(u). (In fact, we can use it to

fe-derive the average EDm and the variance VarDm of D m given in Fact 1.) To do so,

however, we need an analytical continuation of Qk(U). Denote it as Q(U,8), and observe

that (d. [5J, [26])
Q(u s) = P(u,O) = Q=(u)

, P(u,s) P(u,s)

where P(u,s) = TIj;2(1- ups+i - uqs+i).

Using now Lemma 3 we obtain

1 - u 1-3/2+;00
1- Dm(u) = --. r(s)m-'Q(u, -s - 2)ds +em ,

m2n -3/2-;00

(36)

(37)

where em = O(ljm2) J~:/:~: r(s)m-ssQ(u, -8 - 2)ds, and as we shall see em = O(ljm),

so we can safely ignore it in further computations (see for example [12] for more details).

15



We now evaluate the integral in (37) by the residue theorem. However, this time we

compute residues right to the line of integration in (37). More precisely, as in the proof of

Lemma 3, we consider a large rectangle right to the line of integration, and after observing

that the integral over bottom, right and top lines are small, we are left with residues right

to the line of integration.

The gamma function has its singularities at 8-1 = -1 and So = 0, and in addition we

have infinite number of zero s{(v) (j = 2,3, ..., k = 0 ± 1, ±2, ...) of P(eV
, -5 - 2) of the

denomlnator of Q(eV
, -5 - 2) where we substituted u = eV with R(v) > O. More precisely,

s{(v) are zeros of
-11-2+; + -11-2+; _ -vp q _ e . (38)

It turns out (cf. [5], [12], [17], [21], [26]) that the dominating contribution to the asymptotlcs

comes from s~(v). Indeed, the contributions of the first two singularities at S_1 and So are

respectively -(1- u)Q(u,-I) and (1- u)Q(u,-2)jm. They can be safely ignored after

we multiply everything by e-{)p.m!Um = e-Oevlogm). Thus, now we concentrate on the

contribution coming from ~(v). In this case, one can solve equation (38) (cf. [11] and (12])

to derive
i(). v 1(1 h'), ( 3)So V = J - 3 - h - 2" h - h3 v +a v (39)

for integer j ~ 2 and v ----t O. We also note that zr(sHv)) ¥- 0 for k #- O.

Let now R{(v) denote the residue of (1- eVp-sf,-2+; +eVq-si-2+;)-1 at s{(v), and let

g(s) = f(s)Q(u,-s - 1). In the sequel, we use the following expansion which derivation

can be found in [26]

Q(u, -, - 2)

where w = s - sMv). Then,

Cauchy's theorem we obtain

1 . Qoo(u)
1-u(p '+q ,) P(u,-s-l)

w-1 8 h2 8h2 2
----+-+w-+O(w)

h h 2h2 2h2

after some straightforward calculations as in [12, 26], by

00

1- Dm(e") = Ri(v)g(si(v))(l- e")m-lm-'~H+L: Ri(v)g(si(v))(l- e")m-lm-'~(")
;=3

00 00

+ L: L:Ri(v)g(si(v))(1- e")m-1m-'(("1 +0(1).
k=_oo;=2
kf;o

We consider now the above three terms separately:

16
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(a) j = 2 and k = 0

Set v = ~/am = ~/Jc210gm with !l(~) > O. Then by (39)

'II (~logm ~2)m-.sov =mexp - --+-
h C2 2

In addition, the following holds: Ri(v) =-IIh +O(v), and g( si(v)) = -hlv +0(1),
and finally 1- e-v = v +0(1) (d. [12]). Therefore, we obtain

(b) j ;:, 3 and k = 0

In this case we can repeat the analysis from case (a) to get

(41)

so tills term is of order magnitude smaller than the first term in (tlO).

(c) k i 0

Fix j = 2. Then, as in Jacquet and Szpankowski [12] we can prove that

=L R[(v)g(s%(v))(I- e")m-'m-'lC") = O(vm-~('li"))) .

But, we also know ([11), [12]) that !l(s%(v)) ;:, s6(!l(v)), so finally by (39) the above

sum becomes

=L RUv)g(s%(v))(l- eV)m-1m-sI(v)
"=_00
k¢O

m -!R(8~ (v)) O(vm!R(.9~(V»-8~{!R:( u)))

for some f3. Finally, consider general j ~ 3. As in the case (b), we note that m-s{(v)

contributes O(m2- i ), so this term is negligible.

Putting everything together: we note that as v -+ 0 or m --+ 00 we have e-~~mlam(l_

Dm(e"!um)) "" _e-iJiJm!UmDm(e{}!Um) for R(v) > 0, and finally

which proves part (ii) of Theorem 1.
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3.2 Lempel-Ziv Model

We now prove Theorem 2. To assess the distribution of D~z we need to estimate the

conditional probability Pr{D~Z :::: k[Mn :::: m} (cf. (2». We have pointed out before that

Pr{D~Z :::: k[Mn :::: m} of Pr{Dm :::: k} where D m is the depth in the digital tree model

already estimated in Theorem 1. Nevertheless, we show that these probabilities are not far

away.

In the sequel we prove the following two facts that suffice to establish Theorem 2:

A. For large n

B. For the asymmetric alphabet when n ---+ 00

(45)

(46)

(47)

that is, the limiting distribution of D~z is asymptotically the same as the limiting

distribution of the depth in the digital tree model with m :::: Lnh/lognJ nodes. A

similar statement is also true for the symmetric model.

A. REDUCING TO THE DIGITAL TREE MODEL

Let us first fix the number of phrases m. Then, as in the digital tree model Pr{Dm ::::

k} ~ Bm(k)/m, and by Theorem I

Bm(k) _ m exp (_ (k - ClIOgm)2)
J27fC2 log m 2c2log m

for k:::: O(logm), where as before Cl :::: 1/h and C2:::: (h2 - h2 )lh3 • Furthermore, we define

Zm(k) ::::: Bm(k) - Bm(k) that represents a deviation of Bm(k) around its mean.

Clearly, the number of nodes at level k is related to the internal path length L m by

Lm :::: Lk=1 kBm(k). From Jacquet and Szpankowski [13] we know that

Lm - clmlogm N( )
- 0,1.

';c2m1og m

Actually, the above is an archi-fact used to prove Fact 2(li) through the renewal theorem

(c!. Theorem 17.3 in [2]).

Consider now the Lempel-Ziv model. We must estimate the average number of internal

nodes at level k under the condition that Lm :::: n. As the first step, let us vary the number

of nodes m by introducing it parameter t such that mlogmlh:::: nt. Clearly,

m = I
nht

(I + lo~logn +O(I/logn))
ogn ogn

18
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and by (47)
L! - nt X

tr:::-::: ~ " (49)
V hc2n

where X t IS a Gaussian non-Markovian process with EXt = 0 and VarXt = t. In passing,

we note that Xl '" 2:k=O kZt(k)/Vhc2n.

In order to capture properties of the Lempel-Ziv model, we introduce a random variable

T which represents the first time Lt attains level n. More precisely, T = min{t: L! 2': n}.

Equivalently, T can be defined as (cf. Fig. 2)

T = min{t: X,? cvn(l - tll ,

where c = Ij.../hc2. Then, for T = to

(50)

(51)

We need to estimate EBto(k) := E{BT(k)IT = to}. Let Xl = y and X r = x. From

Figure 2 we see that

Y '" cvn(l- r) n ---) 00 I

x cvn(l- T) .

(52)

(53)

Hence, by (52) T is asymptotically normal with Er = 1 and Var T = hcz/n (i.e, T = 1

(pr.)). As a direct consequence of the above, we aJso re-discover that EMn '" nhj IognE'T '"

nhjlogn and VarMn '" (h2n2{log2 n ). VaT T '" nh3cz/log2n.

Now, we wrestle with the computation of EBto(k). Note that conditioning on T = to is

equivalent to conditioning on X-r = x. Hence,

E{B'o(k)IXT = x) = B'o(k) +E{ZT(k)IXT = x}.

Moreover, since to = 1 +O(l/V10

B'o(k) - B, (k) = D(n/ log'f' n)

(54)

(55)

where the right-hand side ofthe above follows from (46).

To assess the error we need to estimate E{Z-r(k)[X-r = x}. For this we need a more

precise estimate of T. The following lemma is well known (d. [20]).

Lemma 4. Consider an ordinary Brownian motion B(t). Define

T = inf{t: p.t + B(t)u/vn = a}.
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T

evn(l - t)

X,

y .

fL''''-I------''-----+-----------r I
t=1

Figure 2: illustration to the analysis.

Let T = T - a/p,. Then, the asymptotic density f(t) for T becomes

vn!"3/' (nt'!"3) ( )f(t) = J27i'Q~ exp -2a~' 1 + C,t + O(t') (56)

Furthermore, T = 0(,*) (pr.) and the relative error in the density with respect to the

Gaussian density is also 0(*).

Proof. By a classical result, the density feu) for T is given by

f( ) avn (-n(a -!"U)')u = exp
a...j2;u3/2 2ua2

20
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Let T:= T - a/J.L. Setting t;= u - a/tt, and expanding (57) around t = 0, we derive (56).

Obviously, T;::: 0(,*) (pr.) since the density ofT is of order O(e- Ant';!). In addition, the

relative error in the density is also OC*') .•

To apply Lemma 4, we refer to Durbin [3] from whom we conclude that around T the

process X t behaves locally like a Brownian motion. In our case, a/Jl ;::: 1 , a = a/e and

the crossing time X r ;::: x and T are related by x;::: -c..{iiT c;::: 1/Jhc2. Hence, by (56) of

Lemma 4 we see that the density [(x) of the crossing value X r ;::: x is given by

(58)

In order to assess EBto(k) we need to estimate I~oo f(x)E{Z,,(k)IX, = x}dx as sug­

gested by (54). First of all, we observe that Theorem 1 and (54) imply for every k

100 e=f-
=E{Z,(k)IX, = y}dy = 0 .

-co V21T

Moreover, since during T at most O(njTlIlogn) phrases can be generated (cf.

following two estimates arc easy to establish:

ZT(k) = Z,(k) +O(nITI/ logn) = Z,(k) + O(y'nx/ logn) ,

(59)

(8)), the

(60)

and y ;::: Xl becomes

(61)

where C is a constant and ~ a random variable distributed according to the standard normal

distribution. Note that T;::: O(l/..{ii), hence x ;::: y - ..jY~/nl/~ +o(l/y'ii).

Putting everything together. From (58), the density f( x) in terms of y becomes

Then, by (59) and the above

1: J(X)E{ZT(k)IXT = x} - 1: ,pry) (E{Z,(k)IX, = y} + O(y'ny/logn») dy

O(y'n/logn). (62)

This completes the proof of (44) since B to ;::: 0(nj1og3/2 n), as noticed in (55).

B. FINISHING THE PROOF
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We first consider the asymmetric alphabet, and prove part (ii) of Theorem 2. From

Theorem 1 (cf. (14) and (43)) we conclude that for some real 0 (for simplicity we consider

1) = if} but as easy to see our proof works for any complex 1) such that iR(1)) > 0)

E(."Dm) = .xp (iO.,log m- (1/2)0'., log m) (1+ 0 (0/ y'iog m)) , (63)

where Dm is the depth in the digital tree model. Let now f(n) = ylog(nh(logn). Define

F(O) = EeiOD~ZIf(n). Then, from the above

F(O) = E {exp (iO.,log Mn/ fen) - (1/2)0'., log Mnlf'(n) ) (1 +O(O/v'log Mn)} . (64)

Let <n ,= (Mn-EMn)/VVarM., and oh,oeve that Ee"'·/,(n) ~ exp(-0' /(2g'(n))) foe

some real 0 and real-valued function g(n) (cf. Fact 2). Note that log M n = log(nh(log n) +
log(l + <nc(..fii'J for some constant c, due to EMn ...... nh(logn and VarMn ...... cn(log2 n .

Therefore, from (63), (64) and the above one obtains

F(O) exp(iO., Ilog(nhflog n) - (1/2)0'.,)

E (eofu 10,(1+(.'/0') (I + 0(1/ y'iog Mn)))

where 9(~) = dn)(1 + O(I/f(n). But, ac.ording to (3) O(VnJ ~ Mn ~ O(n/log,n),

hence log(1 +~nc(..fii'J = 0(1). Therefore, by the bounded convergence theorem (cf. (4]) we

immediately obtain EeC-Dlg(nlllog(lHnc/y'n) -+ 1, and finally

e-;O,,,/Io,(nh/lo,n) F(O) = e-"" /'(1 +0(1/ v'log n») , (65)

which completes the proof of part (ii). Clearly, the above is true if if} is replaced by a

complex 1) such that R(1?) > O.

Now, we turn our attention to the symmetric alphabet, and establish part (i) of Theorem

2. Since in this case we have exact distribution for Dm (cf. (17)) we can easily by-pass

most of analytical difficulties. Therefore, we rather present a sketch of the proof leaving

most of the details to the interested reader. We consider the limiting distribution (12) as

a conditional distribution with M n = m. Ignoring for a moment 'lbl(n), we need only to

investigate 2xe- 2->:-I-i where x = j -log2 M n for some integer j. Note that for such x the

above expression becomes 2xe-2 ->:-I-i = (2;(Mn)e-aMn where ex = 2-;+1+ i . By the result

of Aldo"' and ShIeld, [IJ (e!. Fad 2(i))

Mn = -In +<nO (In/log;n) = -In (1 +<nO(I/v'nlogn») (66)
og2 n og2 n
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where €n ---7 N(O, 1). To complete the proof it suffices to estimate the following

e-cm/log2 n 1= e-o:t"O(";n/lo~ n) e-on/log2 n(l+O(I/log2 n»
"--;-=""'-;r."l="dF,(x) = (1 + o(lflog' n))nflog,n -00 1 + xO(I/Jn log n) nflog,n

where F((x) is the standard normal distribution function. Clearly, the above proves part

(1), and this completes the proof of Theorem 2.
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