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Abstract

For a Markovian source, we analyze the Lempel-Ziv parsing scheme that partitions se-
quences into phrases such that a new phrase is the shortest phrase not seen in the past. We
consider three models: In the Markov Independent model, several sequences are gener-
ated independently by Markovian sources, and the ith phrase is the shortest prefix of the ith
sequence that was not seen before as a phrase (i.c., a prefix of previous {i — 1) sequences).
In the other two models, only a single sequence is generated by a Markovian source. In the
second model, for which we coin the name Gilbert-Kadota model, a fized number of phrases
is generated according to the Lempel-Ziv algorithm, thus producing a sequence of a variable
{random} length. In the last model, known also as the Lempel-Ziv model, a string of fized
length is partitioned into a variable (random) mumber of phrases. These three models can
be efficiently represented and analyzed by digite! search trees that are of interest to other
algorithms such as sorting, searching and pattern matching. In this paper, we concentrate
on analyzing the average profile (i.e., the average number of phrases of a given length), the
typical phrase length, and the length of the last phrase. We obtain asymptotic expansions for
the mean and the variance of the phrase length, and we prove that appropriately normalized
phrase length in all threce models tends to the standard normal distribution which lead to
bounds on the average redundancy of the Lempel-Ziv code. For Markov Independent model,
this finding is established by analytic methods (i.e., generating functions, Mellin transform
and depoissonization), while for the other two models we use a combination of analytic and
probabilistic analyses.

Index Terms: Lempel-Ziv scheme, Markov source, digital search trees, data compression,
phrase length, depth in a tree, Poisson transform, Mellin transform, analytic depoissonization,
stochastic comparisons.

“This work was partially supported by NSF Grants NCR-9415491 and NCR-9804760, and NATO Collab-
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1 Introduction

The heart of many lossless data compression schemes is the incremental parsing algorithm
due to Lempel and Ziv [24]. It partitions a sequence into variable phrases such that a new
phrase is the shortest substring not seen in the past as a phrase. Revealing its intrinsic
behavior should lead to a better understanding of the internal structure of sequences, and
this is of a broader interest to molecular biology, languages, coding, efficient data transmis-
sion, estimation of entropy, discrimination between information sources, test of randomness,
estimation of the statistical model for individual sequences, multimedia compression, and so
forth. Fundamental information about the algorithm is contained in such paramcters as the
number of phrases, the phrase length, the number of phrases of a given size, and the longest
phrase. Here, for Markovian sources we study the length of a randomly selected phrase
(which is equivalent to the so called average profile defined as the average number of phrases
of a given size) and the length of the last phrase.

In the past, mostly first order analysis of these parameters were available with the ex-
ception of [7, 11, 12, 18] where largely memoryless sources were analyzed. The first order
analysis provides the first order asymptotics (e.g., is the redundancy of a code o(n)?). The
second order analysis attempts to establish the rate of convergence, or even a full asymptotic
expansion, large deviations behavior, deviation from the mean (e.g., central limit theorems),
and so forth. We present here a second order analysis of the {typical) phrase length for the
Lempel-Ziv parsing scheme in a Markovian setting.

One can still wonder why do we need a second order analysis or a second order approx-
imation of information systems. Gilbert and Kadota in [4] and J. Ziv in his 1997 Shannon
Lecture provided some convincing arguments for the need of such investigations. In fact, J.
Ziv presented compelling arguments for “backing off” to a certain degree from the first-order
asymptotic analysis of information systems in order to predict the behavior of real systems
where we always face finife, and often small, lengths (of sequences, files, codes, etc.) One
way of overcoming these difficulties is fo increase the accuracy of asymptotic analysis by re-
placing first-order analysis by full asymptotic expansions and more accurate analysis so that
the approximate value of a quantity of interest is closer to the true value even for moderate
and small lengths. On the other hand, Kadota and Gilbert used a numerical evaluation
(instead of a crude first order asymptotic) to obtain qualitative insights into the behavior of
the Lempel-Ziv algorithm. Some of their results were analytically recovered in [7, 11] where
second order asymptotics were obtained for the quantities studied in [4]. In [4, 7, 11] only

memoryless sources were analyzed, and in this paper we extend the analysis to Markovian




sources.

In this paper, we shall analyze threc models of the Lempel-Ziv scheme in the Marko-
vian settings. In the first one, called Markov Independent model or shortly MI model,
we assume that there are m independent Markov sources defined on the same underlying
prebability space. The parsing is done with respect to the previous sequences. Namely, the
zeroth phrase is an empty phrase, while the first phrase is a one character prefix of the first
sequence. The ith phrasc (i < m) is defined as the shortest prefix of the ith sequence not
seen as a phrase (prefix) of the previous (i — 1) scquences. For example, for m = 4 sequences:
X (1) =000000..., X(2) =1010101..., X(3) = 1001101 ... and X{(4) = 001100111... wec can
construct the following Lempel-Ziv sequence: (e}(0)(1)(10){00) where ¢ is an empty phrase,
and all phrases are shown in parentheses. We shall study two parameters, namely the length,
Dy, of a randomly selected phrase, and the length I, of the last phrase. In addition, one
may investigate the length L, of the Lempel-Ziv sequence. In the example above we have
Dy=1},I;=2and Ly = 6.

The next two models deal with a single sequences gencrated by a Markovian source. In the
fixed number of phrases model, we partition the sequence according to the Lempel-Ziv
algorithm until we obtain m full phrases (thus producing a variable and random length of the
Lempel-Ziv sequence). For example, for X = 11001010001000100. .. we can construct m = 5
phrases as follows: (€)(1)(10){0){101)(00). Such a model was also considered by Gilbert and
Kadota [4], so we call it the Gilbert-Kadota model or shortly GK model. As before, we
will be interested in the typical phrase length D,,, and the last phrase length I,,,. In the above
example, we have Ds = 1%, Is = 2, and in addition the length of the Lempel-Ziv sequence is
L;=9.

Finally, in the traditional Lempel-Ziv model or fixed length model, a sequence of
fixed length, say n symbols, is partitioned according to the Lempel-Ziv algorithm. For exam-
ple, the string X = 110010100010 of length n = 12 is parsed as (¢}(1)(10){0){101}(00){01){0).
We shall study the length A, of the randomly selected phrase {see Section 2 for a precise
definition) and the length J, of the last full phrase. The number of {ull phrases M, is of
significant intercst for this model, but we will not investigate it here. In the example above,
Ny = 1%, Ji12 = 2 and M, = 6.

The above three models can be efficiently analyzed and uniformly represented by a digital
search tree, a data structure that have been studicd by its own right for more than thirty years
{cf. [10, 14]). This tree is used to store strings in its nodes and can be described as follows:
We consider m, possibly infinite, strings of symbols over a finite alphabet A = {1,2,...,V}

{however, we often restrict our discussions to a binary alphabet A = {0,1}). The root




Markov Independent Model Lempel-Ziv Model

Figure 1: Digital tree representations for the MI model (X (1) = 00000, X(2) = 01111, X3 =
101010, X(4) = 111000, X(5) = 110111, X(6) = 111111) and the LZ model (X =
11001010001000100. . .) of the Lempel-Ziv algorithm.

contains the empty string €. The first string occupics the right or the left child of the root
depending whether its first symbol is “1” or “0”. The remaining strings are stored in available
nodes {that are directly attached to nodes already existing in the tree). The scarch for an
available node follows the prefix structure of a string. The rule is simple: if the next symbol
in a string is “1” we move to the right, otherwise move to the left. The resulting tree has m
internal nodes. It corresponds to the MI model and the GK model, however, in the latter the
strings are substrings (phrases) of one infinite string We can call such a digital search tree a
suffix search tree (cf. Figure 1).

In the LZ model, we construct an analogous (suffix) digital tree except that the number
of nodes varics and equals to the number of phrases M,,. More precisely, the empty phrase is
stored in the root, and all other phrases are located in nodes. When a new phrasc is created,
the search starts at the root and proceeds down the tree as directed by the input symbols
exactly in the same manner as in the digital search tree construction. For example, for the
binary alphabet, “0” in the input string means move to the left and “1” means proceed to
the right. The search is completed when a branch is taken from an existing tree node to a

new node that has not been visited before. Then, an edge and a new node are added to the




tree. Phrases created in such a way are stored directly in nodes of the tree {cf. [11]). This is
illustrated in Figure 1.

As mentioned before, in this paper we present second order analysis of the above three
models of the Lempel-Ziv algorithm for a Markovian source. Among others, we compute
precisc asymptotic formulse for the mean and the variance of the phrase length in the MI
model. We also show that the appropriately normalized phrase length tends to a normal
distribution with the rate of convergence of O(1/vInm). These results — which are at the
heart of our findings - are established by analytic methods. The line of the attack can
be briefly described as follows: We first derive a set of recurrence equations for the ordinary
gencerating functions of the average profile (conditioned on the first symbol). These recurrence
equations are too complicated to be solved directly, hence we derive a set of differential-
functional equations on the so called Poisson transform of the average profile. In the Poisson
modecl, the number of sequences m becomes a random variable IV distributed as a Poisson
with mean m. This process of replacing the deterministic input m by a Poisson variable is
called poissonization. We shall use analytic poissonization since we replace m by a complex
variable z. A typical set of differential-functional equations we have to deal with is of the
following form

8B (x, z)
Oz

where Bi(z,u) is the Poisson transform (cf. [7, 21]) of the average profile when all strings

+ Ei(zx 'U.) =u (El(uapl';lz) Fee-t ‘év(uapi,\’z)) +a(z!u): i= 112: ey ‘V,

start with symbol ¢ € A = {1,2,...,V}, a(z,u) is a given function, and P = {pij}}’;,-:l is
the underlying Markov chain. These differential-functional equations are reduced to a simple
matrix functional equations of the Mellin transform B](s) with respect to z of Bi(z,u) {cf.

[3, 21]). A typical equation of the Mellin transform looks like
Bi(s)— (s —1)Bi(s— 1} = Bi(s)p1; +--- + By(s)py +a*(s), i=12,...,V.

We can solve exactly this matrix equation in a form of an infinite product of matrices.
However, we develop a method to obtain relevant asymptotics without an explicit solution. It

turns out that such asymptotics depend on singularity points of the matrix Q{s) = (1—P{s))~!

where P(s) = {p;;’ }-fj=1 for some complex s. Then, through the inverse Mellin transform
we obtain asymptotics of the Poisson transform B*(z,u) for large z. We need to translate
it into the asymptotics of the original generating function Bi (u). This process is called
depoissonization, and we shall use recent results of Jacquet and Szpankowski [9] on analytic
depoissonization. The program just described was recently dubbed analytic information

theory since it applies analytic methods to solve problems of information theory.




To translate the results of the MI model to GK model and LZ model we shall use a
combination of analytic, combinatorial and probabilistic methods. In particular, we construct
two MI models that upper bound and lower bound stochastically the GK model. This will
allow us to conclude the central limit theorem for the phrase length in the GK model, which
will further lead to a similar result for the LZ model.

Finally, we should mentioned that our MI model is equivalent to the Markov model of
digital search trees studied extensively in computer science. In fact, digital trees appcear in a
variety of computer and communications applications including searching, sorting, dynamic
hashing, codes, conflict resolution protocols for multiaccess communications, and data com-
pression (cf, [10, 14]} Thus, better understanding of their behavior is desirable and could lead
to some algorithmic improvements. One parameter that is of interest to these applications is
the depth of a randomly selected node (i.e., the length of the path from the root to the chosen
node), and depth of insertion, which may represent the search time. Clearly, the depth and
the depth of insertion are equivalent to the typical phrase length and the last phrase length
in the MI model. The average profile of the MI model is the same as the average number of
nodes at a given level in the associated digital tree.

Digital trees (which include tries, PATRICIA tries and digital search trees) have been
studied extensively in the past for memoryless source (cf. [10, 7, 11, 13, 14, 17, 20]). Extension
to Markovian sources are scarce, and to the best of our knowledge only trics were analyzed
(cf. [2, 6]). Lempel-Ziv model for memoryless sources was discussed in [7, 11, 12, while
second order analysis for Markovian sources are basically non-existing. Savari [18] proposed
the redundancy analysis of the LZ code for Markovian sources, but redundancy analysis
requires rather a minor extension of the first order analysis. Wyner {23] derived the limiting
distribution of the phrase length in the other Lempel-Ziv scheme (i.e., LZ’77) which is known
to be considerable simpler for analysis.

This paper is organized as follows. In the next section we present our main results for all
three models, and discuss some of their consequences. The proof for the MI model can be
found in Section 3, while Section 4 presents our analysis of the GK model. The proof of the

LZ model is discussed after Theorem 3 in Section 2.

2 Main Results

We present here our main results for all three models, namely Markov Independent model,
Gilbert-Kadota (fixed number of phrases) model, and Lempel-Ziv model. Most of the

proofs are delayed till the next section. Throughout, we assume that a sequence, say




X = (Xo,X1,...), is generated by a Markov source over a finite alphabet A = {1,2,...,V}.
More precisely:

(M) MARKOV SOURCE

There is 2 Markovian dependency between consecutive symbols in a sequence, that is,
the probability pi; = Pr{Xz+1 = 7|Xx =1} > 0 for all k£ > 0 describes the conditional
probability of sampling symbol j € A immediately after symbol 7 € 4. We denote by
P= {pij}:!.,jzl the transition matrix, and by & = (1,...,7y) the stationary vector
satisfying 7P = 7. We say that the Markov chain is stationary if Pr{Xy = i} = =
for all £ > 0 and 7 € A. In gencral, Xy ) may dependent on last r symbols, and then
we have rth order Markov chains, however, hereafter we mostly restraint ourselves to

r=1.

2.1 Markov Independent Model

Hereafter, we assume that m independent Markov sources generate m sequences which are
parsed with respect to previous ones according to the Lempel-Ziv algorithm, as described
in the Introduction. Equivalently, we build a digital scarch tree from these mn sequences, as
shown in Figure 1. Actually, it is more convenient to think in terms of this associated digital
search tree (in short: DST). In particular, the ith phrase length I; is also the depth of the
ith node in such a tree (where the depth of a node is understood as the number of nodes
from the root to the ith node). When ¢ = m we shall refer to I, as the depth of inserfion or
the last phrase length. The typical depth (typical phrase length) D, is defined as the length
of a randomly selected depth, that is

Pr{D,, =k} = %ZPI{I{ = k}.
i=1

Finally, we defined the average profile (in short: profile) BY, as the average number of nodes
at level k& of the DST or the average number of phrases of length &. Obscrve that Bf = 0 for
allk >0

There are simple relationships between just defined parameters. First of all, we notice
that (cf. [10, 11, 20])

Pr{D, =k} = %. (1)

This, and the definition of the typical depth, immediately imply

Pr{lpny1 =k} = B ., — BE, (2)




with Pr{ly =0} =1 and Pr{ly =k} =0forall k& > 1.
Throughout, we shall work with generating functions of the above quantities and the so

called Poisson transforms that we define next. The ordinary generating functions are

Dpm(u) = EpPm)=> Pr{Dn=k}*  Dy(u)=1,

k>0
Im(i) = E[u'™] =Y Pr{ln =k}, Io(u) =1,
k>0
Bm(u) = Y BEF Bo(u) =0
>0

for a complex u such that |u| < 1. The Poisson transforms are defined as follows

_ zm —z
Blaw) = 3 Dmlw) e,
m>0 )

— zm
Blz,u) = Y Balwse,
0 m!

— zm
Hz,u) = ) Im(u)-;n—!-e‘z.
m>0

The Poisson transform can be interpreted as the generating function in the so called Poisson
model in which the deterministic number of sequences m is replaced by a random number of
sequences distributed according to Poisson with mean z = m. We shall assume that z is a
complex variable, and B(z,u) as well as I(z,u) are defined on the whole complex plane. We
should also observe that by (2)

31(6.2 u) +T(z0) = OB{E;, 'u)- 3)
Since also Dy, (u) = By, (u)/m, we can recover all results on the depth of insertion I, as well
as on the typical depth from the average profile BX,. Therefore, hereafter we concentrate on
the analysis of the average profile.

To start the analysis, we derive a system of recurrence equations for the generating func-
tion of the average profile. We first need one more notation. Let B: (u) for i € A be the
ordinary generating function of the average profile when all sequences start with symbol .
Let also p = (p1,...,pv) be the initial probability vector of the underlying Markov chain,
that is, Pr{Xy = ¢} = p;. (For the stationary Markov chain we have p = n.) Consider now
the generating function By,11(%) of the DST in which the root contains an empty string and
the other m independent Markov sequences are stored in ¥ subtrees, which are digital search

trees by themselves but of smaller size. Indeed, the probability that the first subtree contains




J1 sequenccs, the second subtree has j; sequences, and so on until the V' subtree stores jv

sequences (out of m sequences) is equal to the multinomial distribution, that is,

(31: )p’1 pJVY'

But, the ith subtree is again a digital search tree of size 7; containing only those sequcnces
that start with symbol z. Hence, its average profile generating function must be B_;:l (). This

leads to the following recurrence equation assuming By(u) = 0

m+1 (u) =u Z ( ) pJV (B},l (‘U.) +---+ B_;:, (u)) +1 (4)
li|=m
where j = (71,..-,3v), lil = 71 + - -+ + jv and for simplicity (m) = ( ) Clearly, we can

set up similar recurrcnces for the subtrees. That is,

By () = u Z ( )p’l p’v ( +BV (u)) 1, forall :e A (5)
Lil=m
where Bf{u} =0 for i € A.

If we can solve the above recurrences, then we can compute all moments and the distri-
bution of the average profile, and consequently the characteristics of the typical depth and
the depth of insertion. Indeed, after observing that Bp,{1) = m, the average depth becomes
E[Dg] = B/,(1) and

V() = A0, Ball) _(Pl))’
where B/ (1) and B} (1) are the first and the second derivatives of the generating function
B, (u) calculated at 4 = 1. In passing, we should observe that B/ (1) and B (1) satisfy
recurrences equations similar to the ones derived for By, (u), and we shall discuss them in
details in the next section.

One must say, however, that the above recurrence equations are not easy to solve. Even,
if in principle, one can write an explicit solution (cf. [11, 20] for memoryless sources), it is too
complicated to gain any insights. Therefore, we must retreat to the asymptotic analysis. To
accomplish this, we shall derive a functional-differential equations on the Poisson transforms
ﬁ"(z, u), which secm to have a simpler, or at least more compact, form. These functional-
differential equations are next changed into a simple matrix recurrence in terms of the Mellin
transform (cf. [3, 14, 21]). After solving this matrix equation (in fact, for the asymptotic

analysis we do not even need to solve it explicitly), we apply the inverse Mellin transform




to recover the Poisson transform B(z,u) for z — oo in a cone around the real axis. This
suffices, since by analytic depoissonization (¢f. [7, 9])) we can extract asymptotic expression
for the average profile B,fn for 7n — oo, which further leads to our final resulis.
Before we present out findings, we must introduce some more notation. Let s be complex,
and then
Q(s) =1—P(s}, where P(s)= {pi_js}};-ﬂ

and | is the identity matrix. Let now Q*(s) = adj[Q(s)] be the adjoint matrix of Q(s),
that is, Q*(s) = (—1P*9{Q7(s)}:i jc.a where @Q7(s) is the (4,i) cofactor of Q(s) defined as
Q (s} = Q*(s)/ det Q(s) (cf. [16]). Furthermore,

B = [det Q"(s)]|s==1,
Q= Q*(8)|s=—1,

o0
x(-2) = 3 (QH=2)+ @ (D@ ) i Q@ i D)) K
i=1
9 = wx(-2),
where
0o -1
K= (H Q"l(—2—i)) » (6)
i=0
¥ = [1,1,---,1]7,, is the column vector consisting of all 1s. In the above, we use the
following
) d
x(—2) = a—s-x(s)h:_z.
Finally
1 —p2 . —Pv
1 1- . —pov
w:=det | _p22 . 'p
1 —pv2 .. l—-pyy

In addition, we use the standard notation for entropy of a Markov source. In particular,
v v
h==Y"mY pilnp;,
=1 =1
and for a probability vector p = (p1,...,pv)
v
hp = — Zp,- Inp;.
i=1
Also, we often use p(s) = [77°, 75 %, ..., m;°] which becomes 7 when s = —1.

10




In Section 3.1 we prove the following main result for MI model for stationary Markov

sources (i.e., p = &).

Theorem 1 Consider a Markou stationary source with iransition probabilities P = {p;;}},;_,,

that is, Pr{X,(f} = k} =@ for allt=10,1,... and £=1,2,...,m.

(i) [ TypicAL DEPTH/PHRASE LENGTH | For large m the following holds

BlDn) = 3 (lam+y—1+h—hr— g +amm)+0(22) @)
Var{Dn] = % (_g - %WQ“'J’ - hz) Inmm + Q1) , (8)

and
D — BDm] o 1) o

ari),,
where ¥ = wx(—2) and vy = 0.577... is the Buler constant. The funclion §,(z) is a fluctuating
Sfunction with a small amplitude when

Inpi; + Inpy; — Inpy;

eQ ., =12,...,V, 10
lnpll Q 7 ( )

where Q is the set of rationel numbers. If (10) does not hold, then limz_ o0 81(z) = 0.
One can strengthen (9) as follows. If py = B[Dy,), and o, = /VarDy,, then for a comples

T the generating function Dy, (u) = E[uPm] becomes

e—r,um[a'mDm(eT;’a'm) — B% (1 +0 ( 1 )) (11)

Inm

as m —% 0o, thus the rate of convergence to the normal distribution is O(1/v1um). This

implies the ezistence of positive constants A and a < 1 such that

uniformly in k.

(ii) [DEPTH OF INSERTION/LAST PHRASE LENGTH] The depth of inserlion {or equivalently,
the last phrase length) I, behaves asymplolically as the typical phrase D,,. More precisely,
for some A>0anda <1

E(l,] = % (lnm byt h— b — % —9+ Jz(lnm)) +0 ('“?m) (13)
Var[ln] = Var{Dn]+ O(1), (14)
i) - (20

11




where 83(z) is a fluctuating function with the same property as 6,(z). In addilion, there exist

positive constants A and o < 1 such that

Pr{ LH_T%T| > k} < Acd* (16)

Remarks. (i) Alternative Representation. We can present main results of Theorem 1 in a
different form which is particularly useful for the proof of the limiting distribution and, more
importantly, can lead to some further generalizations. This new derivation can be found in
Appendix A. For matrix P(s}, we define the principal left eigenvector m(s), the principal

right eigenvector 7(s) associated with the largest eigenvalue A(s) as
m(s})P(s) = Als)m(s), 17
P(s)¥(s) = Xs)¥(s), (18)

where w(s)¥(s) = 1. Observe that w{—1) = 7 = (my,...,7y), Y(-1) =¥ =(1,...,1), and
A(—1) = 1. Also, for an vector x(s} we write x(s) = disx(s) and x(s) = H%X(S). In Appendix
A we shall prove that

AM~1) = wP(=1)v =1,

M=1) = wP(=1)% + 27 (-1)P(—1)yp — 2A(—1)7(—1)%.

Then, (7)—(8) of Theorem 1 can be alternatively written as

E(Dn] = I(i—n (1nm -1+ A1)+ 2;(!(*-11) —9—wPp(—1) + & (]nm))
+ 0 (1“?’”) , (19)
Var(Dy] = ;"‘(‘1).33(‘_’.\12)(‘1) Inm + O(1). (20)

In a similar fashion, we can write for I,,.

(ii) Memoryless Source. Let us compare the findings of Theorem 1 to those obtained for

a memoryless source (cf. [11, 20]). The Markov source becomes a memoryless source if we

assume p;; = m; for 2,7 = 1,2,..., V. Observe that thenw =1, 8 = — Z;’;l m;1n% w3, hy = A,
and
Q(S) = |- 1|b ®p(3):
1
Q's) = ———[(1— [+ & p(s)],
() = ool —PEW)N+ v @)

Q=¥ = (1-p(-)¥),

12




where p(s) = (7 °,...,7;,"), and ® is the tensor product of vectors (e.g., the product ¥ ®p(s)

is a matrix with the ith column equal to (x}°,...,n7*)T). Thus,

*ih = (—p'(s)l + 9 x p'(s))3f = 0.

‘We can also prove the following commutation laws
QH(-9)Q7 (=7} = QH=A)Q7 (=), QT(-)QH (1) = QT (-=NQ T (~)

for any ¢,5 > 2. As a result, we find

x(-2) = ZQ H=9)Q(~i)p = ZQ —i){1 - p(=)¥)¥

_ = P9y ”
=2 1-— p(-—-z)‘]r/) ’
and finally -
) el T3 ll]’;rt
§ = mi(~2) = Zz L
'-‘1 i

which coincides with the findings of [20]. In summary, our results for the Markovian source

reduce to those of [20] when the source becomes memoryless.

(iii) Fluctuating Funcition §(z). A few words of discussion about the Auctuating function §{(z)
is in order. The amplitude of this function is very small, however, it increases with V. For
cxample, for the unbiased memoryless source [§1{z)| < 107° for V = 2 (cf. [10, 14]). While
this value may be savely ignored in the first order analysis, it is of prime interest to second
order analysis. For example, the fluctuating function §;(z) determines the behavior of the
Lempel-Ziv redundancy (cf. [12}). In view of this, one may ask for which Markov sources

condition (10) holds. We know that for memoryless sources (10) becomes

In ;

€Q icA

Inar;

But, can we find a non-degenerate Markov source (i.e., which is not a memoryless) that
satisfies (10}? The answer is positive, and here is an example. Let M{b) = {e~27%is/ b}}fjd for
some integers k;; and a positive b where ¢, 5 € A. The matrix M(}) is positive definite and its
main cigenvalue A(b) is real positive with positive right eigenvector r{b) = (r1(80,...,7v (D).
Since A(b) = 0 as b— 0 and A(b) = V as b — oo, there exists by such that A(bg) = 1. Define

now
pis = 100 (bo) —2rki; /b0
v 'f‘; (bo)
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for i,7 € A. Observe that
. —2mkisbo _ Tilbo) _
P r;i{bo i =1
LT )32 e
since r(bg) is the right eigenvector of M with A(bg) = 1. There P = {p;;}i je4 generates a

non-degenerated Markov source for which (10) holds. O

We now extend the above results into two dircctions, namely a non-stalionary Markov
source and the MI model with binomial{m,r) number of independent sources. Both ex-
tensions are crucial for our derivation of results for GK model (i.e., with fixed number of
phrases).

Let us start with a non-stationary Markov source. Observe that our basic set of re-
currences (5) for the conditional generating functions B:,(u) stays the same, and the only
change in our global recurrence (4} for the cumulative generating function By, (z) reduces to
replacing the stationary probability r by the initial distribution vector p. As we shall sce
in Section 3, the asymptotics of the average profile largely depend on the asymptotics of the
conditional average profile. This will translate in the same leading terms of the asymptotic
expansions of the average depth {phrase length) D,,(p), and the depth of insertion {last
phrase length)} I, (p). In fact, the difference is exhibited only in the O(1) term.

We summarize our finding in the following corollary.

Corollary 1 [NON-STATIONARY MARKOV SOURCE] Consider a Markov source with initinl
probability vector p = (p\,...,pv). Then for large m

E[D,(p)] = % (Inm +y—-1+h—hp— 5—5—% -9+ Jg(lnm)) +0 ( ) (21)
E[l.(p)] = % (lnm Fy+h—hy— % — g+ 54(lnm)) +0 (h:nm) )

Varlln(p)] = VarlDn(®)l +0() = 55 (-2 - Zn@'y ) mm+ o) (9

with the notation as in Theorem 1, where 83(z) and 8,(z) are fluctualing functions with small

amplitudes. In addition,
Din(p) — E[Dm(p)]

/NarDo(p) — N{(0,1), (24)
In(p) — E[Im(p)]
/Vorln (o) — N{0,1) (25)

with the rate of convergence O(1/vVInm). Moreover, there ezist positive constants A and

a < 1 such that
pr { D;n(p) — E[Dm(p)]
v/ VarDp, (p)

2!:} < Ad (26)
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In(p) — E[I, P)] :
\/T.r—mm } < Ad® (27)

o

Finally, we consider the MI model in which the number of sources M is a random variable
distributed as B(m,r) := binomial(m, ), that is,

uniformiy in k.

Pr{M =k} = (T) (1 — 7Yk,

Let DB and IZ (or DA™ and I2() denote, respectively, the typical depth and the depth of

insertion in such a model.

Corollary 2 [RANDOM NUMBER OF NON-STATIONARY MARKOV SOURCES] Consider a Markov
source with initial probability vector p = (p1,...,pv) end random number, M, of sources dis-

tributed as the binomial(m,r). Then for large m

E(DE(p)] = % (ln(mr)+’r—-1+h hy —%—ﬁﬁ-ﬁr(lnm)) +0 ( ! ) (28)
E[I%(p)] = % (ln(mr) Gyt h—hy— % —9+ 55(111771]) 40 ('“Fm) )
VarlZ(p)] = VarlDE®) +00) = 55 (-2 - Zary - #2) mimr) + 001)  (30)

where 65(x) and d¢{x) are fluctuating functions with smeall amplitudes. In addition,

D7 (p) — E[D7(p)]

— N(0,1), (31)
\/VarD2(p)
In(p) ~E(a(P) |,
{0,1) (32)
\/ VarIZ(p)

with the rate of convergence O(1/vVInm). Finally, there exist positive constants A and o« < 1
such that

y/ VarDZ(p)
. { 15(p) ~ BUB()| | k} < Aok 50
VVariZ(p)

uniformly in k.
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Proof. Let us only consider the typical depth D;2. The proof follows immediately from the

fact that the generating function D23 (u) satisfies

DEw=3" (’:) (1 = 7)™ ¥ Dy(u)

k=D
where Dy(u) is the generating function of the typical depth in the MI model with & Markov

sources. Observe now that the Poisson transform of D2 satisfies
DB(z,u) = D{zr,u)e™"

where D(z,u) is the Poisson transform of the MI model with fixed number of sources {(and
already presented in Theorem 1 while the analysis can be found in Section 3). The moments
can be also recovered from the following formula recently proved in [8] (interestingly, analytic
depoissonization was used to derive it, too)

Z (T) (1 — 7)™ % Ink = In(mr) — 12— LA |

1
k=0 mro e

where the cocfficients ¢ are explicitly computable. m

2.2 PFixed Number of Phrases Model — Gilbert-Kadota Model

In this subsection, we present our main findings for the Gilbert-Kadota model in which a
single Markovian source generates {possibly infinite)} sequence that is partitioned according
to the Lempel-Ziv algorithm until 7 full phrases are obtained. As before, we study the
typical phrase length Dy, and the last phrase length ;. To avoid confusions, we often
append an upper index M1 or GK to D,, and I, to denote the typical phrase length and
last phrase length in the MI model and the GK model, respectively. Furthermore, as before,
it is convenient to build a digital scarch tree out of these mn phrases, as shown in Figure 1.
We observe, however, that this time the DST is built from suffizes of a single Markovian
sequence, thus we might call it a suffix digital search tree. Clearly, the typical phrase length
D,?;K becomes the typical depth, and the last phrase length IgK corresponds to the depth of
insertion in the associated DST.

The GK model introduces additional trickly statistical dependency between phrases. The
recurrence (4) and the differential-functional equation (5) do not hold any more, however,
the relationship (3) between the typical depth and the depth of insertion is still true. To
analyze GK model, we use stochastic dominance, that is, we (asymptotically) bound in a

stochastic scnse define below the depth of insertion I&¥ by the depth of insertion in the
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modified MI model. More precisely, in the GK model, we delete K phrases, thus making a
“gap” of significant size so that the newly inserted phrase resembles the one in the MI model,
hence results of MI model can be applied.

To present more succinctly our analysis, we introduce some new notation. We say that

I, stochastically dominates I, and write I, < I?, if for every k& we have

Pr{In > k} < Pr{Il, > k}.

In our investigation, however, we also need the so called asymptotic stochastic dominance

that we denote as I, <5 I}, and define precisely below.

Definition 1 (1) Let X and Y be two integer random variables, and € > 0. We say that X
is at distance € from Y and write it as d{X,Y) < ¢ if for all integers k:

|Pr{X >k} —-Pr{Y > k}| <e. (35)
(ii} We say that the sequence of random variables X, asymptotically dominates Y, or shortly

Xm Zat Yon

limsumex (Pe{Xm 2k} —P{Y, > k})=0. (36)

m—o0

The last definition is illustrated well by the following simple result.
Lemma 1 If X, <o Y’ and limp_yo0 d(Yim, Y1) = 0, then Xy <« Yin.
Proof. By assumptions, for all integers £ and m we have Pr{X,, > £k} < Pr{Y}, > k} and
limy, ;o0 maxy, {Pr{Y¥,, > k} — Pr{¥;, > k}| = 0. Thus, (36) follows. m

In the next section, we establish certain inequalities between the MI model and the GK
model, that we review briefly here. For some K < m we denote by In_g41 the depth of
insertion to a DST tree that is built from any subset of size m — K of m original phrases. It

is easy to see that in both models we have the following {deterministic) inequality
Im—x41 £ Imp1 £ In-g41 + K, (37)

provided the same phrase is inserted. The left-hand size is quite obvious, while the right-hand
size is a consequence of the fact that a new phrase can be incremented at most by one symbol.

In other words, the DST tree does not have unary nodes (i.e., nodes with degree one).
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In view of this, we can work on Ir,—x in which K phrases are (conveniently) dcleted
smoothing down dependencies. We consider now the MI modecl such that all phrases start
with a given, but otherwise arbitrary symbol, say a € A. In other words, we consider a
non-stationary model with an initial vector p, concentrated on symbol a, i.e. contains all
zeros except a 1 on the position corresponding to symbol a. We denote IM/(p,) the depth
of insertion in this model. We also consider the GK model conditioned on the fact that the
mnth phrase starts with symbol . We denote Igf}'{(pa) the depth of insertion of the mth
phrase when K phrases are deleted before it. We shall prove in Section 4 that there exists

K = O(1) such that

M) (pg) <t ISKADa) <ot 1M g (Pa) + K

where I,fjgtr)(pa) is the depth of insertion in the MI model with the binomiel{r,m - K)

number of phrases for some 0 < » < 1. Thus, based on our results from the previous section,

we shall be able to prove the following theorem.

Theorem 2 Consider a Markov source with initial probability vector p. Then for large m
1
E[DZ () = BUZ(p)+0(1) = 5 Imm+0(), (38)

Var[ISK(p)] = Var[DS(p)] + O(1) = — ( B2 gy fﬁ) Inm +O(1) (39)

B\ v w
with the notation as in Theorem 1, and
DE¥(p) — E(DS¥ (p)]
y/ VarDEX (p}
IZ¥ (p) — BIS¥ (p)]
J/Varig (p)

with the rate of convergence O(1/vIum). In addition, the normalized DSX (p) and IS (p)

converge in moments Lo the corresponding moments of the standard normal distribution.

— N(0,1), (40)

- N{0,1) (41)

2.3 Lempel-Ziv Model

Finally, we deal with the Lempel-Ziv model in which a Markov sequence of fixed length n
is partitioned in (a random number) M, of (full) phrases. As before, I; represents the ith
phrase for 1 < ¢ < M,. We write J,, for the last full phrase which also becomes J, = Iy, -
The typical phrase length A,, is defined as follows:

Moax m
Pr{fAp=k}= ), %ZPr{L— =k & M, =m) (42)

m=Mumin =1
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where Mpmin = O(y/n) is the minimum number of phrases and Mmax = O(n/logyn) is
the maximum number of phrases (¢f. [11]). In passing, we should observe that there is a

relationship between the phrase length I; and the number of phrases M,,. Indeed,
m
M, = max{m : ZfiGK <n}
i=1

where in the above we explicitly show that the phrase length I,—G K js the one corresponding
to the phrase length in the GK model.

Using Theorem 2, we shall prove below the following result.

Theorem 3 Let ¢ Markov source generates a single sequence of length n. Then, for large n

A, —E[A;)

N{0,1 43
m — ( ] )l ( )
In addition, A,, converges in moments, and in particular
ElAd] ~ E[J]~ %ln(nh/]nn), (44)
1 ﬁ 2 - _ 2)
Var[Au] ~ VarlZi] ~ o ( £ — 22 — 1) Inrh/ Inn) (45)

provided the number of phrases M, converges ezponentially to its mean.

Proof. Let
1 nh
pr) = pl() (46)
1 g 2 .. 9 nh
o = (-5 orv () (47
We are going to prove that for any ¢ > 0 and for all set of integers B
lim sup max (Pr{An € B} = Pr{D|(14epum € BY) =0 (48)
and
lirrlrl)solépmgx (Pr{D[(l—s},u(n}J € B} -Pr{A, € B}) = 0. (49)

First of all, observe that for any £ > 0 (cf. [24])

Jim Pr{M, ¢ (1= e)u(n), (L+ u(m))} = 0.

We rewrite (42) as

Pr{A,€B}=Y_ %ZPr{IfK € B & M, =m}

m=1 =1

19




for any set of integers B. Then

Pr{A, € B} < 6, + m:uli)ﬂ(nm — iPr{IGK € B & M, =m)}
A s T =T "
with 8, = Pr{M, ¢ ((1 — e}u(n), (1 + e}u{n))}- We have the following chain of trivial
inequalities

m={1+e)u(n))| 4 t=il(1+e)u(n)]

Pr{A, € B} < 6, + >,  Pr{l;e B & M, =m}

m=[(-e)un)] 7 €=
O
< b+ — Pr{If® € B & M, =m}
m=[({1—e)p(n)] (1 —e)u(n) =1
e m=l0rum)
$ bt 2 Pr{D{{figuw; € B &My =m}
m=[(1-)u(n)]
1+¢ 1+¢ CK
< (m) bn + (m) Pr{D\(1+eju(m); € B}

In a similar manner, we prove a lower bound

l1+¢ 1+¢
Pr{A, € B} > (1 ~ 5) b + ( ) Pr{D{ ) € B}-

1-¢

The above two inequalities prove (48} and (49). For the convergence in moments we need

8, = O(e~ "} for some « > 0, which is assumed to hold. m

Remark. Merhav’s result [15] allows to conclude that for Markov sources
Pr{M, > pn)(1 +¢€))} < (1 +o{1))e™"

for a constant @ > 0 and £ = O(1/y/logn). Unforbunately, we do not sce an easy way to
convert Merhav's proof for the left tail of M,. a

As a consequence of Theorems 2 and 3, we can derive bounds on the average redundancy
rate R, of the Lempel-Ziv code for Markovian sources. To recall, consider a Markovian
sequence of length n for which the Lempel-Ziv code is €,. Then, the redundancy rate is
defined as

¢y —nh
R, = —

We denote by R, = E[R,] the average redundancy rate. Using the approach recently pro-

posed in Louchard and Szpankowski [12], we obtain from Theorem 2 the following bounds

2—lnr-—'y+h,.+§£—h+19-63(lnn) E
h

Inn

(1+o(1)) <

< 2=~ htming hp + 555 + 9 — y(lnm)
- Inn

(1 +o(1))
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where r = 37 . smin;{pic} and r is a vector of size V whose jth component is equal to

min;{pi;}/r (¢f. Lemma 11).

3 Analysis of Markov Independent Model

As mentioned before, the analysis of MI model is at the heart of our contribution to analytic
information theory. In view of this, we present here a detailed proof. It is based on such
analytic techniques as: analytic poissonization, Mellin transform, singularities of a complex

matrix, and analytic depoissonization.

3.1 DPoissonization and Mellin Transforms: Analysis of Moments

We first consider the stationary Markov source. The generating function By, (u) of the average
profile satisfics (4) with the initial vector p = . Observe that the conditional generating
functions Bi,(u) fulfill the system of recurrence equations (5). We shall first deal with (5).
There is no easy way to solve these recurrences, and therefore, we transform them to the
Poisson model in which 7 is replaced by a Poisson random variable with mean (complex) z

which becomes m when z is restricted to positive integers. Let

Bi(z,u) = Z ﬁ;(u)%e_z, i €A

n=1

be the Poisson transform of B} (u). In addition, we shall write Bi(z, u) := %ﬁi(z, 1) for the
derivative of Ef(z, u) with respect to z. After some simple algebra, we have the following

Poissonized differential-functional equations of recurrences (4) and (5)
B.(z,u) + B(z,u) = u[BY(u,mz) + - + BY (u, 7y 2)] + 1, (50}
and
gi(z, u) + Bi(z,u) = u[g’1 (u,pnz) +---+ gv(u, pivz)]+1 forall :e A (51})

Let us now concentrate on the evaluation of the first two moments of the depth, that
is, we need the first two derivatives of B(z,u) with respect to » at w = 1. We derive the
following two systems of functional equations after taking into account that éi(z,l) =z,

.ﬂ.l+-..+11'v—_-la-nd Z?:lpU:l

Bau(2,1) + Bu(z,1) = z + [BL(1,mz) + --- + BY (1, 7v2)), (52)
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Bl,(z,1) + Bl(z,1) z+ [BiLpnz) +-- + BY (1, p1v2)]

Bl(z 1)+ B{(2,1) = z+[Bl(Lpv12) +--- + BY (1, pvv2)l,

and

Beuu(2,1) + Buu(z,1) = 2[BY(1,m2) + -+ + BY (L, wv2)] + [BLu(Lmi2z) + -+ BY, (1, 7v2)], (53)

E.}.uu(zl 1) + giu(z! 1) = 2[§l(11pllz) +---+ gr(l;mvz)] + [Ellm(l:pllz) +---+ Eru(]-:prz)]

ﬁ.}.:lu(z: 1) +§ru(3: 1) = 2[§i(11pV12) + gr(lprVz)] + [ﬁiu(lipl"lz) +oe E:::(LPVVZ)]'

Our goal is now to solve asymptotically (as z = cc in a cone around R(z) > 0) the above
two set of functional equations. It is well known that equations like these are amiable to
attack by the Mellin transform (ef. [3]). To recall, for a function f{z) of real =, we define its
Mellin transform F*(s) as

o) = MUl = [ reetar.

In some of our arguments we could use either Mellin transform of a complex variable function
f(z) or an analytical continuation argument. It is known (cf. [7]) that as long as arg(z)
belongs to some cone around the real axis, the Mellin transform F{(s) of a function f(z) of a
real argument and its corresponding function of a complex argument is the same. Therefore,
we work most of the time with the Mellin transform of a function of real variable as defined
above. In our case, a direct solution through Mellin transform does not work well, and

therefore we factorize the Mellin transforms of the above functions as follows:

Bi(s) := M[Bi(z,1);s] =T(s)zi(s), i€ A (54)
B*(s) = M[Bu(z,1);5] =T(s)z(s), (55)
Cr(s) := MI[B. (2,1);s] =T(s)u(s), i€ A (56)
C*(s) = M[Byulz,1);s] =T(s)v(s), (57)

where I'(s) is the Euler gamma function, and =z;(s), z(s), »;(s) and v(s) are unknown. The

lemma below cstablishes the existence of the above Mellin transforms.

Lemma 2 The Mellin transforms B} (s), B*(s) and C7(s), C*(s) ezist for R(s) € (-2, —-1).
In addition,

zi(-2) L, az(=2}=1,

vi(—-2) = 0, o(-2)=0.
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Proof. The proof is quite standard and replies on the Lemma 2 from {13]. We leave the

details to the interested reader. m

Now, we are ready to compute the Mellin transforms of B! (z,1), B, (2,1} (cf. (52) and
(53), respectively) with respect to z. We obtain

—(s —1)B*(s — 1) + B*(s) = Bi(s)n " + -+ + By (s)my,”, (58)

—(s—1)Bi(s - 1)+ B{(s) = Bils)piy +- -+ By(s)piy,

—(s = 1)By(s —1) + Bi{s) = Bi(s)pys+--+ By (s)pvl,
and

—(s=1)C" (s =1} +C (s} =2[Bi(8)7; ° + - - + By (s)a,*| + [CT(s)n; " +---+ Cy (s)m,7], (89)

~(E-DC(s -V +Ci(s) = 2ABi(s)pi’ +--- + By(s)eyl + [CT(s)pr” + - - + Cp(s)py

~s=DCs -1+ Cpls) = 2ABi(s)lpv] + -+ By (s)pyy] + [CT(s)py} + -+ + Co()pyil.
In the above, we used the following two properties of the Mellin transform (cf. [3]):

M|flaz);5] = a °F(s),
M[f'(z);8] = —-(s—1F"(s~1).

Unfortunately, the above systems of Mecllin transforms do not have simple explicit solu-
tions. But, we may obtain ones in terms of the functions z;(s) and v;(s) defined in (54) and
(56} due to the following property of the gamma function: I'(s) = (s —1)T'(s — 1). To present

these solution in a compact form, we use from now on matrix notation. Let

21(s) wi(s)
xt)= | P, v = | O (60)
i :cv'(s) | | ‘Uv-(s) |
In addition, we define
[ Bi(s) | [ C1(s) |
o= | B0 | - (e o
By (s) E2
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Now, the system of equations {568) and (59) become

x(s) - x{s—1} = P(s)x(s),
v(s) —v(s—1) = 2P(s)x(s) + P{s)v(s),

where P = {p;;°}; jea. Thus,

oo
x(s) = Q Ms)x(s—1) = (H Q™ '(s - i)) K, (62)
i=0
v(s) = 2Q Ys)P(s)x(s) + Q }(s)v(s —1) (63)
where Q = | — P and | is the identity matrix, and K is defined in (6). The formula on K
follows from Lemma 2 (i.e., x(—2} = {1,...,1)”)} and (62). In the next section we prove

the convergence of the above infinite product (cf. Lemma 4), however, we shall not use this
explicit infinite product solution anywhere in our further analysis.

Thus far we have obtained the Mellin transforms of the conditional generating functions
B;(2,1). In order to obtain the composite Mellin transform B~(s) and C*(s) of By(z,1) and

Byu(z,1), respectively, we refer to (58) and (59) and, after some algebra, we finally obtain

B*(s) = pls)b(s) +T(s)z(s - 1), (64)
C*(s) = 2p(s)b(s) +p(s)c(s) + T(s)w(s — 1), (65)
where p(s} = (7%, ...,7°) in the stationary case and p(s) = (p7°,...,p;”) in the nonsta-

tionary case. We shall see that the dominant asymptotics of B*(s) and C*(s) are determined

by asymptotics of b(s) and ¢(s) which depend on singularities of Q(s) that we discuss next.

3.2 Singularities of the Matrix Q(s)

We study here singularities of the matrix Q{s), which play central rolc in the asymptotic
analysis of the depth. We prove the following lemma that characterizes the location of

singularities of Q(s).

Lemma 3 Let Q(s) = | — P(s) and P(s) = {p;;"}ijea. Let s; denote singularites of Q(s),

where [ € Z is an integer. Then:
(i) Matriz Q(s) is nonsingular for R(s) < —1, and so = —1 is a simple pole.

(i1) If and only if
Inp;; + Inp); —Inp);

Inpy,

€Q i,jEA (66)
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where Q is the set of rational numbers, mairiz Q(s) has simple poles on the line R(s) = —1
which can be written as

sp=—14+10i

where i = —1 and

2

P!
Inpy)

no

v
where integers ny,no are such that {Im—;:llm(lﬂpij —Inpy; +ll’1;;:i1:,-)|}ij=1 is a set of relative
primes.

(iii) Finally,
Q(-1 +161) = E~'Q(-1)E!
where E = diag(l,e®?i, ..., e®1vY) is the diagonal matriz with 8, = —8Inp;y.
Proof. Observe that for R(s) < —1,
1—p3l 21— Ip5°l > 1 —pu=_pi 2 D_Ip5’l, (67)
J# J#
hence Q(s) is a strictly diagonal dominant matrix, and therefore nonsingular.

Now, we proceed with the proof of part (ii) of the lemma. For b # 0 such that Q{—1 + bi)

is singular, let x = [z, %2, ..., zv]T # 0 be a solution of Q(—1 + bi)x = 0, where

[ 1—pueftt  —ppeft | pyefivi
—parefati 1 — pogefe2l —poyefevi
Q(-1+bi) = _ : .
_p”eful —p,;ge'f"'“ _pivefivl
| —pvietV —pyaefvel L T pyyetvyi
with & = —bInp;. Without loss of generality, suppose |z1| = max{|zi|, 22|, ..., |zv]} # O

(since Q(—1 + bi) is singular). Then
(1 - prie®)z; — praett¥izg — ... — pryetivizy =0,

implies
1 --puef“i = plgefuimg/ml + ... +p1vB£1Fi$V/31.

But as in (67)
11 —puei|>1—py,
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and

|praef @iz oy + ..+ prvesVizy fz| < pra+ ..+ piv =1 —pyg.

Thus
1-ppetti=1—p,

P12z /3y + o+ pryvefVizy fz = pro + .+ piv-

This implics

efui — efliizi/:rl =1

and |z;| = |z;| for any 4,7 = 1,2,...,V, so that ¢% = 1 for all i. Define now §; such that

z;/zy = e~61% = ¢fil, Then,
—pj1etiti — poaelizighel . _ pﬂj_l}efju—l}iefi-li + (1 — py;)ebt — ..., —pvefivietvi = 0
for any 1 € § < V. Note that since
—Pj1 — Pz — - —Pi—1y + 1 =i — ., —pjv =0,
we must have efiilglile=6l =1 and thus
ebiil = g6 &
Hence —b(inp;; + Inp1; — Inp);} = 2mnj; for some integer nj;, and as a consequence (Inp;; +
Inpy; —Inpy;)/ Inpy; is rational for any 4,5 =1,2,...,V.

To prove the inverse part of (ii), suppose b is such that ]%(lnpj,- + Inpy; — Inpy)| are

integers for any ¢, = 1,2,..., V. Then

[ 1-puefiti  —ppefisl L —ppefivi ]
_pme-fﬂi 1 — p22eE22i . _p2v6€2vi
Q(—1 + bi) = . . .
—puekit  —ppetirt L —ppetiv
—pv1efvit  —pyaetval L 1 —pyyefvyl
[ 1—pn —pelfi=Y g elfr=Ev)i
_pzle{&z_fl )i 1 i P22 . _pzve(gi_f\f)i
= _pile(fi_"fl }i —pEQe(EI‘_&Z)i . ._.pive(lfi_'f'lr’]i
| _lee(EV—‘EI)i —pvze(EV*"E?)i . 1 -~ DyVy
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= [dlag(la e_fz H E_Eax e e‘-'zfv )]_IQ(—]')dlag(la e_{za e_‘fa: ey e‘_EV)

Since Q(—1) is singular, so Q{—1 + b1) is. Hence s = —1 + bi is a pole of Q(s) if and only
if |%(lnpj,- + Inpy; — Inpy;)| are integers for any 4,7 = 1,2,..., V. Since {|§9;(lnp,-j +Inpy; —
lnplj)|}};-:1 is a set of relative primes, hence & = [§ for some integer !. Part (ii) is proved.

Part (iii) can be inferred from the above proof. m

Observe that for the memoryless case, that is, when p;; = m;, condition (66) becomes
l'::—;: € Q for all 4, 5. This agrees with previous known results (cf. [7}).
Finally, as a simple consequence of the above, we prove the convergence of the infinite

product that appcars {62).

Lemma 4 The product
o0
[Ha -1
=0
converges for R(s) < —1, and it can be differentinted with respeci to s term by term.

Proof. For (s) < —1, every factor of the above infinite product is non-singular, and
IP(s)Il £ Vp~°, where p = max;;{pi;} < 1. For k large enough such that Vp* < I,
we have ||Q(s — B)|| < 1+ 2Vp~* . Since 332, p 5t < o0, hence |TIR, Qs —3)] <

12 1Q7 (s —9)|| < co. m

3.3 Asymptotic Expansions for the Moments in the Poisson Model

As outlined above, we seek the asymptotics of By(z, 1} and Byy(z, 1) for large z, which further
will lead through depoissonization to asymptotics of the frst two moments of the depth. We
derive asymptotic expansions of the moments in the Poisson model by applying the inverse

Mellin transform. In particular,

-~ 1 —%+ioo . s

By(z,1) = 3% /h%_im B*(s)z " ds,

Buu(z,1) = i/‘_%ﬁm C*(s)z™"ds

! 27 -2 oo '
The evaluation of the above integrals is quite standard (e.g., see [10, 14]): We extend the
line of integration to a big rectangle right to the integration line, and observe that bottom
and top lines contribute negligibly because the gamma function decreases exponentially with

the increase in the magnitude of the imaginary part. The right side positioned at, say d,
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contributes ||~ for d — co. Thus, the integral is asymptotically equal to minus the sum of
residues positioned right to the line of the integration, that is, (—f"—! —ico, —% +ic0). But, the
residues of the above depend on the singularities of just studied Q(s) and gamma function.
To estimate them, we expand the function under the integral around these singularities.

Let us start with the dominant singularity at so = —1, and derive the Laurent expansion
of x(s) and v(s). By Lemma 3, we can write

1
s+1

Q (s) = Q1 +Qz + O{s + 1),

where @, Qg are V x V' maitrices. Since

x(s—1}) = P +x(-2)(s+1)+O(s+1)?),

I'(s) 5:_1+'7—1+O(s+1),

fl

we obtain from (54), (62) and (56), (63)

b(s) = T(s)Q ' (s)x(s—1) az + 0O(1)

1t
T TS

c(s) = 2I{s)Q72(s)P(s)x(s — 1) + T(s)Q (s)v(s — 1),
et e+ 0 ()
(s+1@3 ' 12t s+1

where a;,az,f, and f» are vectors of constants for which explicit formulee are presented
below the next lemma. In addition, by (64), (65) and the fact that z(s — 1) = 1+ O(s + 1),
v(s — 1) = O(s + 1), we have

B(s) = (;Ll—l-)-z-wal + ﬁ (maz + p(—D)a; — 1) + O1), (68)
. 1 1T 1
Cs) = G+ e B D + 7+ 2may) + 0 (H—l) . (69)
where p(—1) = %h:_lp(s) =(-mlnm,...,—7y Inzy).

To derive explicit expressions for the vectors a;, az,f; and f> we need the following lemma

which proof is standard and is omitted (dctailed proof can be found in [22]).

Lemma 5 Let us define

T w2 ... TV
M T ... Ty

M= . ) =@~
m M2 ... TV

28




and let Q* = {q}i}};-ﬂ be the adjoint matriz of Q(s)|s=—1. Then

all =, %=1, Il =1, (70)
d d . .
7; det Qls)ls=—1 = 75 16 QE)s=—1450 = —wh, g5 =wm, Q" =oll, (1)

1 Qe B 1 __
Q= —"]—Z'H, Q= —J - WH, Ql|s=—1+jb = _HE I11E. (72)
QP(-1) =z, QIF(-1) =11, (73)

where s = —1 + bi is a pole of Q1(s).
Using the above, we finally obtain after some tedious algebra

a = —Qp= %’4’,
ay = ( ~1)Qu9p — QzTP Qlff( )

h = —2Q%¢ = Fﬂ:,
& = 2((r- QI — (Q1Q2 + QQY — APy +Px(~2)))
L2 W NV B
2 (Lo - (M0 + Q') - o — Q3P + Px(-2)
L e (o T o ) PR W _i-_)
2 (Lo - 5@y + Q) - Loy — 2y Lnix(-2)
—oofYzi_ B L 1 ) _ 2 mQre 4
- 2( R wd R R Y- QY+ Q).
In summary, using (68) we obtain the following expansion of B*(s) around the dominant
pole at sp = —1
o 1 1.1 /1 s, 1 har
B(s)_(s+1)2h+s+l( h(’y 1) + 'JTQ'!,0+2 w2 h‘n’x( 2) + h 1)+O(1)1
while (69) becomes
o -2 2 [(—hx v-1 g
C6) = mrrpt (s+1)2 ( RE T TR T R
1
- a2 - ) +0 (7).
Now, we deal with the asymptotics related to the nondominant poles s; = —1 + I8 for

[ # 0. By Lemma 3, we have

i 1 e
Qs) = 77775 ¥ EIE+0(1).
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Therefore,

b(s)

c(s)

I(s)Q1(s)x(s — 1)

1
- __E-f Ef) - ) P
I( 1+191)( 5 ITE" } x( 2+191)s+1—£9i
1

—2D(=1+161) (=E'(~2 + 161) ) '

+0(1),
svi—m oW

1 1
P )y + O,

20(s)Q2(s)P(s)x(s — 1) + [(s)Q™ ! (s}v(s — 1),
2%1‘(—1 +163) (E'x(~2 + 161)) -'¢(—1~——— 10 (;) ,

161)? s+1-10i
2 1 1
PelatdOF oy puyre iy (s +1 —lﬂi) '

where p; = T(—1 -+ I6i) (n’E‘x( 2+16i)) and 9(t) = E~'%. In summary, by (64) and (65)

at s = —1 + 161 we obtain

B*(s)

1
s+1-16i

_%plp(_1 + 16i) (1) +0(1),

C'(s) = R+ MO + 0 (-5 )

{s+1—18i)2 s+1-—16i

Finally, we handle singularities in the half plane R(s) > —1. We consider two cases:
—1 < R(s) <0 and R(s) > 0. Let Z, be the set of singularities s* of Q(s) lying in the strip
~1 < R(s*} <0, while Z; be the set of singularities in R(s) > 0. At the pole s* € Z,

where R(s") is the residue matrix of @~1(s) at s*. Note that s = 0 is the double pole. An

application of the inverse Mellin transform gives for z — oo,

By(z,1)

where

1
5—38

B*(s) =

—ls* w(s")(s") B(s")x(s* — 1) = -7(s")

1 1 1
—Ezlnz-l-z ( —1—%*;17()‘1‘!) x(— 2)+h—h.-n-)z (74)
—me’gb(l)zl 01 4 Z r(s™)z™% 4 r(0) + Z r{s™)z %"
s"EZ. STEZL
1 : ]
%zlnz-{- 7 (')' —~1- % - ;WQ'T’I) —x(—~2)+h - hﬂ') z+§1{z) + O(In z) ,
hiz)=—— me'n,b(l 1-161 4 Z r(s*)z™% . (75)

s"EZ.
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Observe also that 7(0) + 3-,.cz, 7(s")z~* = O(Inz). In a similar manner, we obtain

~ 1 2 2 . )
Buu(z,1) = h—zzlnzz + 2 ( -1- ;% — ;ﬂ'Q*'t,b —hg — 7rx(—2)) zlnz
2 . — i
+ Z;pm'(l — 100z Inz + O(2) (76)

as 7 — oo in a cone around the real axis.

3.4 Analytic Depoissonization

The above asymptotic formulee concern the behavior of the Poisson mean and the second
factorial moment as z — oo. More precisely, we had to restrict the growth of z to a linear cone
Sp = {z: |arg(z)| < 0} for some |8] < 7/2. But, our original goal was to derive asymptotics
of the mean E[Dy] and the variance Var[Dp,] in the MI model. To infer such a behavior
from its Poisson model asymptotics, we must apply the so called depoissonization lemma.
This lemma basically says that mE[Dp] ~ B{,{m,1) and mE[Dy{Dy — 1)] ~ Buy(m,1)
under some weak conditions that will be easy to verify in our case. The reader is referred
to [7, 8, 9] for more details about depoissonization lemma. For completeness, however, we
review some depoissonization results that are uscful for our problem.

Let us consider a general problem: For a random variable X, define ¢, as a functional
of the distribution of X,, (e.g., gn = E[X;] or g, = E{X2]), or, in general, assume g, is a
sequence of n. In some situations (e.g., for limiting distributions we need to consider the
generating function G, (u) = E[u*"] (for a random variable X,,) for a complex u which can
be viewed as such a g, (with a parameter  belonging to a compact set). Define the Poisson
transform of g,, as G(z) = ol gn%e“" (or more generally: G(z,u) = 52, Gﬂ(u);—’:e_z for
¢ in a compact set). Assume that we know the asymptotics of G(z) for z large and belonging
to a cone Sy = {z: |arg(z)| < 8} for some |8] < n/2. How can we infer asymptotics of g,

from G(z)? An answer is given in the depoissonization lemma below (cf. (7, 8, 9)):

Lemma 6 (DEPOISSONIZATION LEMMA)
() Let G(z) be the Poisson transform of a sequence g, that is assumed to be an entire funciion
of z. We postulate that for 0 < |8| < =n/2 the following two conditions simulteneously hold
for some numbers A, B,£ >0, B, and o« < 1:
(I ForzeGy

2l >¢ = |G(z)| < Blz’4(i2l) (77)

where ¢(z) is a slowly varying function (e.g., ¢(z) = log® z for some d > 0),
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(O) Forzé¢ Sy
2| >¢ = [G(2)e"| < Aexp(alz]) - (78)

Then, for large n,
g, = G(n) + O(n~'¢(n)) , (79)

or more precisely:
gn = () — 56"(n) + O(~24(m)

(ii) If the above two conditions, namely (I) and (0), hold for G(z,u) for u belonging to a
compact set U, then

Culu) = G(n,u) + O~ $(n)) (80)
for large n and uniformly in v € Y.

(iil) Let g{z) be an anelylic continuation of a sequence g, whose Poisson transform is é(z),
and such that g(z) = O(z") in a linear cone. Then, for some 8y and for all linear cones Sy

(0 < 8y), there exists & < 1 and A > 0 such that
z¢Sy =  |G(z)e?| < Aeclh,

In summary, when g(z) has a polynomial growth, then conditions (I} and (O} ehove are
automatically satisfied and (79} holds.

Now, we are equipped with the tool to depoissonize éu(z,l) and E’uu(z, 1}, and ob-
tain asymptotics for the mear E[D,,] and the variance Var[D,,]. Observe that E[D,,] =
O(mInm) and Var[D,,] = O(mlog? m), hence by Lemma 6 we can depoissonize the Poisson
estimates. We obtain

1 1 1 .. ;
E[Dm] = H Inm + ?1- (7— 1+h—hg— % - ;?TQ P — 'ﬂ'x(—z))) (81)

+ &(m)+0O (‘l‘?f) -

To derive the variance, we observe that 3 ,.cz. r(s*)m™" = O(m~%) for some é§ > 0, thus
such terms will not appear explicitly in the following formula where only Q(Inm) terms are

considered. Again, by Lemma 6 we arrive at

1 2 .
Var[D,] = 3 In®m + %) ( —-1- ﬁ - gqu"'t,b — hg — 11-:':(—2)) Inm
+ E[Dn) - E[DZ) + 0(1)
1,2 B2 ., _ 1
= hzln m+h2 (qr-—l——ﬁ ;wQ ¢—h7r—ﬂx(—2))h1m+hlnm
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1 2 1 . .
- 3 In?m — 2 (’r ~1+h—hyg— % - ;’n’Q'i‘b - 11'::(—2)) Inm + 0(1)
- % (_g _ gﬂd'ﬁ, - hz) Inm + O(1). (82)

Thus, (7) and (8) of Theorem 1 are proved.

3.5 Limiting Distribution

Finally, we prove here the limiting distribution of the depth D, just finishing the proof of

Theorem 1. We repeat here the system of functional equations (51), that is,

Bl(z,u) + BY(z,u) = u[B(puz,uw)+---+ BY(p1vz,u)] +1

BY(z,u) + BY(z,u) = u[B'(pv1z,u)+---+ BV (pyvz,u)] +1

Observe that Bi(z,1)—z =0, B(z,1)—z = 0, B¥(z,u) —z = (u—1)A;(», 2), and B(z,u)—z =

(u — 1)A(x, z), where A;(u, z) is a power series of « and thus analytic function of z. Let

Zi(,s) = M[BY(z,u) - 2] =T(s)i(u,s) = (u—1)4j(n,s), icA
Z*(u,5) = MI[B(z,u) - 7] = [(s)(u, ) = (u— 1)A7(x, )

be the Mellin transforms, where &;{u, s) and &(u, s) are unknown functions.

Lemma 7 The Mellin transforms Z7(u, s), Z*(u,s), Af(u,s) and A"(u,s) ezist for R(s) €
(—2,-1). In addition, Z7(u,—2)=u—1, A (u,-2) =1, Z*(u,-2)=u—1, A*(u,—-2) = 1.

Proof. By the same argument as in Lemma 2 of [13]. &

We proceed along the sainc lines as before, thus leaving out detailed explanations. After

applying the Mellin transform to the above system of functional equations, we find
Z*(u,s) — (s = 1)2"(u, s — 1) = u[2](u, 8)7]° + ... + Zy(u, s)7y7),

Zi(u,s) — (s = 1) 27 (u,5 = 1) = u[Z{u,s)p] + - + Z3(u, s)pT)

Zy(u,8) ~ (s ~1)ZH(u,5 - 1) = wfZ}(u,s)py] +- - + Zy(u, slpyy).

Let _ i _ -
Z3(u,s) Af(u,s)
Z3(u, s Ak(u, s
L(s)&{u,s) = 2(_ ) =(u—1) 2(: ) = (u — 1)a(u, s).
] Zy(u,s) | i A {u, s) |
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Then, the above becomes

E(‘U., S) - ‘E(ua 5= 1) = uP(s)ﬁ(u, 5):

that is,
&(u,5) = [| - uP(8)} 7 € (u, 5 — 1).
This leads to

Z*(u, 5) = up(s)0(s){| — uP()] '€, 5 — 1) + T{(s)E (u, s — 1).

Let now set u = e* for complex £ —+ 0 50 that % is in the vicinity of » = 1. We denote by
se(t),k =0,%1,+2,. .. singularities of Q7!(¢,5) = (I — 'P(s))~!. Then, at s = sx(t),

Z7(e!, 5i(t)) = et (s(8)T (s (B)ReE (s se(t) — 1)3_—;(]5) +0(1). (83)

where Ry is the residue matrix of Q~!(x,s) = [l — uP(s)]™! at s = s,(¢). In addition, one
must consider two poles of the gamma function I'(s) at s_; = —1 and sg = 0. The latter pole
contribute O(1) while the former —z£(u, —1). But, by Lemma 7 we know that £(u, —1) = 1,
thus the total contribution of these two poles is —z +4- O(1). Therefore, by the inverse Mellin
transform,

(o2

Bez)=¢ 3 m(se(®))T(se(t))Re(e’, si(t) — 1)z~ + O(1)

k=—co
as z = o0 in a conc. As before, the leading contribution to the asymptotics comes from the
pole sp(t).
To obtain an asymptotic expansion for the original generating function By, (e?) we apply
the depoissonization lemma Lemma 6(ii). Since B(z,e') = O(zlogz), we conclude that
Bp(et) = B(m,e!) + O(logm) where

B(m,e') = e'p(so(t))D(s0(t})Roé(e", s0(t) — 1m0

+ €'Y psi(t))T(sk () Rek (1, st (t) — 1)m™+3 1 O(1).
k#0

Let now as in (8) and (20) (see also Appendix)

v:i(—l)—i%l)_i( p_2

B(-1) B\ w w

Qe — hF)
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which is the coefficient at In7 of the Var[Dy,]. As in [6] we obtain, after some algebra,

t 22

Sn(t) = -1- H - T -+ O(ta),
R = —%H +0(0),
solt) = —i—" + o),

E(soft) —1) = ty+0(t%),
p(so(t)) = w+O0(1).

To derive the above, we just observe that the expansion of sg(t) is obtained via the Lagrange
inversion of 1 — e*A(s), or better, of function ¢ -+ log A(s), at s = —1 which results in ¢ + (s +
DA(=1) + (s + 1)2(5—‘(_—1%5‘—(_—1)):) + O(s + 1)3. We again identify A(—1) = A. The residue Rp
is computed by using the fact that Q7 1{e?,s) = (1 — etA(s))146(s) ® w(s) + O(1). Observe
also that

lim p(so(¢))T'(so(£)}Ro(e", s0(t) — 1) = llsp = 1.
We now set ¢ = = = O(1/VInm) for some fixed 7 and o, = VarD,,. Then

Tm

m—1-5{t) = e”‘"‘f"”“"z;(l + O(t)) and Dp(e*) = B(et)/m leading to

2
e THm I D (€717, m) = ¢~ THm (e”‘“" T (L4 0))

+emtm ™o 3w — 1)(s(8) — Dp(se(8)Rea(s(e)) — Lujmo@-50 1.0 (li’"))
k0

= €7 [1+10 > (s (t) — Dp(se(tHRealse(e’) — 1,4) | | .
k#0
In the above, we use the fact that R(sp(2}) < R(sr(t)) proved in [6] which allows to bound

]m""“)_sk(‘” < 1. To complete the proof, it suffices to show that the sum appearing above is
O(1). Let sx(t) = zx(t) + y(2)i,

> (se(t) — 1)p(sk(t))Rea(si(et) — 1)

k50

< D16 = Dillese @) IRk Nlalsk(e) — 1

k=40

Here, we use the fact that 4;{x, z) is infinitely differentiable, thus its Mellin transform satisfies
limy oo [y|M Al (u, = + yi) = 0 for any M > 0.

In summary, we just shown that

2 1
¢ /om D (e717m) = ?(”O(\/_))
(e )=e Inm
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which completes the proof of Theorem 1.

3.6 Non-Stationary MI Model

Here, we show how to adopt the above derivations to the non-stationary model in which the
initial distribution is p instead of . First of all, observe that p appears in equation (4) while
the conditional generating functions B? () still satisfy (5). Thus, in (50) we must replace
m; by p;, but again (51) stays unchanged. This leads to the following Mellin transforms of

By(z,1) and By,(z,1)} in the non-stationary casc

B*(s) = p(s)b{s}+T(s)z(s - 1), (84)
C*(s) = 2p(s)b(s) + p(s)e(s) +(s)u(s —1) (85)

where p(s) = (p{",...,p;"). Observe, however, that b(s} and ¢(s) are exactly the same as
in the stationary MI model. Since, as we discussed before, the asymptotics of the mean and
the variance in the Poisson model depend mostly on the asymptotics of b(s) and c(s), we

may expect similar asymptotics results for the non-stationary model. Indeed, we obtain the

following expansions of B*(s) and C*{s) around the dominant pole sg = —1
“(s) = — 1 _L "~y —
B (3) - (S + 1)2133-1 + s+ 1 (P3~2 +p ( 1)&1 l) + O(l), (86)
1 1 1
- = —_— fa+2 7
) = Pt e @A +pht2ma) +0 (). @D

In view of the above, we conclude that the only term effected by the non-stationarity
assumption is related to p’(—1} (and also the fluctuating function) which is responsible for
replacing hqr by hp in the final results. Similar conclusions hold for the limiting distribution.

This proves Corollary 1.

4 Analysis of Fixed Number of Phrases (GK) Model

In this section we prove Theorem 2 using a combination of probabilistic and analytic tech-
niques. We start our discussion with the introduction of the so called tree-path that plays a
crucial role in the analysis. We study its property in Section 4.1, and in Section 4.2 we make
a connection between the tree-path and the depth (i.e., phrase). Finally, in Section 4.3 we
obtain the limiting distribution for the phrase while in Section 4.4 we establish the existence

of the moments, thus proving Theorem 2.
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4.1 Tree-Path in Digital Search Trees

We consider a DST tree T.» built over m strings regardless of the model of strings generation
(e.g., MI, GK, or hybrids). For £ < m we denote by It{(7m) the depth of insertion of the kth
phrase in tree 7. (Observe that I1.(7;) = I (7)) If the tree Ty, is known from the context,
we often simplify the notation and write Ij.

We introduce now the so called iree-path. Let w = z1z3-- -z be a finite string whose
length we also denote as |w| = k. We write (w); for the prefix of w of length 7, that is,
{(w); = 2132 - - - ;. Assume now that 7y, is given. The tree-path Cp,(w) associated with w is
a “trace” (path) in 7, when one follows symbols of w along a path in the tree 7;, until the

paths split. More precisely:

Definition 2 The tree-path Cn(w) associated with a given string w in T, is the largest
integer £ < |w} such that there exist k < m which satisfies (i) (w), is the prefiz of phrase k,
and (i) I (Tn) = €. In other words, it is the number of nodes minus one contained in this
path.

We now outline some properties of the distribution of the tree-path when DST is random.

The next lemma shows that the tree-path distribution satisfies a simple recurrence.

Lemma 8 (i) Consider any model of phrase generations. Then, for all integers m > 1
Pr{Cn(w) > k} = Pr{Cn_1(w) 2k} + (88)
+ Pr{Cn_i1(w) =k —1 & (w); is prefix of mth phrase}
for all k > 0.

(i} If the sirings ere generated nccording to the MI model, then (88) becomes
Pr{CH (w) > k} = Pr{CM (w) > k} + Pr{CHM (w) = k — 1}pz, P21z, - Pry_,z,  (89)

where p = (py,...,pv) is the initinl probability of generating the first symbol of the string

w=z1---zlwl.

Proof. To prove (88) we observe that the tree-path in 7, is greater equal than & if and only
if either 1t is greater equal than k in 75—, (i.e., the mth insertion does not follow (w);) or
the m insertion traces the word w up to & — 1 and the kth prefix of w is a prefix of the 7nth
phrase. K.

We need a simple technical lemma whose proof requires pathwise comparison of two

stochastic processes (trees).
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Lemma 9 Letw be a finite siring. Consider two random DST trees T,h and T2, of respective
size my and my, with tree-paths CL, (w) and C2,(w), respectively. We assume that for all
w € Al

Cll}ll ('HJ) Ssh CE-;.Z('{U)

If we insert o both irces the same independent phrase (siring), then the corresponding tree

paths Cp, . (w) end CZ, . (w) still satisfy

Cr]1'11+1 (Tﬂ) Sst Cr?’u-l-l ('LU)
for all w.

Proof. We remark that we cannot use Lemma 8 since there is no easy way of bounding
Pr{Cm(w} = k —1}. Thus, we shall rely on another approach, namely stochastic dominance
in which the independence assumption plays a central role.

Let us fix a given string w. By the pathwise stochastic dominance theorem [19], there

exists a probabilistic space on which a pair of DST trees ('f,lu ) '722) satisfies

e For i =1, 2 the tree-path distribution of é;nl(w) on ﬁi, is the same as the tree-path

distribution of C%,.(w) on the original trees T
o CL  (w) £ 6,2,12 {w) for every random event.

Now, we insert into both trees ’j’",,lu and ﬁz the same independent random phrase. The path
distribution after insertion becomes, respectively, (—f,lm_,_l (w) and C?

T
check via Lemma 8 that the distribution of C¥

,+1(w). It is easy to
.+1(w) will be the same as the distribution of
CE . 1{w). We consider two cases, namely: either CL, (w) < €2, (w)—1or CL, (w) = C2,, (w)
for every w. In the first casc we must have 6'%11 (w) < 5’,2,12 4+1(w) after the insertion since
the insertion of the new phrase can only increment by one unit the tree-path. In the second
case, we also have 5’,1,11“(1:1) = 6’,%12_!_1(10) = k since the insertion of the new phrase can
either increment by one unit the tree-pathes of w on both trees or change nothing on both

tree-paths, depending whether (w) is the £th length prefix of the new phrase. B

In a typical application of this lemma, we shall assume that for any word w and sizes m,
and mz the following
GK MI
le (w) SSL Cmg
implies

GK+MI MI
Cot (W) Sst Cpa
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where Cgfﬁ;‘i“ ! denotes the tree path in the GK model in which a new independent phrase

is Inserted.

Now, we are in a position to establish main results of this subsection, namely lower and
upper bounds on the tree path. Let CS% (aw) and C¥!(aw) denote the tree-paths in the GK
and MI models, respectively, when the associated words aw starts with a given symbol, say

a. The following lemma presents an upper bound on C5* (aw) with respect to CM!(aw).

Lemma 10 The tree path CS¥ (aw) in the GK model is stochastically bounded from the above
by the tree path CMI(aw) in the MI model in which aoll the m phrases starts with symbol a
(i.e. p = pa), that is,

CE¥ (aw) <o CM (aw) (90)

for alt we A and a € A.

Proof. The proof is by induction on m. The property is true for m = 1. We now suppose
it is true for m — 1. Let us comsider the path CSX(aw) in the GK model. We obtain by

Lemma 8§
Pr{CE¥X (aw) > k + 1} = Pr{CSEX (aw) > k + 1}

1%
+ Z Pr{C'gi(l (ew) = k & (m — 1)th phrase ends with b}ppapaz, Pz z; - S
=1

Since pp, < 1, and

=V
> Pr{Cm-1(aw) = k — 1 & (m — 1)th phrasc ends with b} = Pr{Cp,_, (aw) = k — 1}
b=1

we obtain
Pr{CgK(aw) >k+1} < Pr{Cgﬂ (aw) > k+1} +
+ Pr{cgi(l (aw) = k}Paz, Pay 2z Pogoyai
= Pr{CG¥**M(qw) > k+ 1}

The last cquality directly follows from Lemma 8 with p, = 1. Therefore CgK (aw) <g
CSE+MI{a2). To complete the proof, we use the fact that

CEEAMI(gay) <o CM (aw) (91)

which is a consequence of the induction hypothesis, C$X, (aw) <¢ CM!, (aw) and Lemma 9.
Indeed in both models, GK 4+ M and M1, the last phrase is statistically independent of the

m — 1 first phrases and therefore meets the conditions of Lemma 9. u
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Finally, we derive a lower bound on the tree path in the GK model. Below, we shall write
r(a) = mini{pie} and r = 3, 4 7(e). We denote by CXIB{r)(w) the path length in the MI
model with binomially(m,r) distributed number of phrases. We denote r the probability
vector consisting of -r—(fl for all a € A.

Lemma 11 The tree path CS* (w) in the GK model is stochastically bounded from the below
by the tree path CMIB(r)(aw) in the MI model in which the first symbol of all phrases is
distributed according to r, and the number of phrases (sirings) are generated according to the

binomial distribution with paremelers m and r < 1, that is,

Cr 77 (w) < CFF(w) . (92)

Proof. The proof is by induction, and we shall imitate our proof of Lemma 10 with a few
changes. The property is true for m = 2, i.¢., the second phrase starts with symbol a with
a probability smaller than r(e) regardless of the actual value of the first phrase. We now

suppose the property is truc for m — 1 and let us take an arbitrary symbol a € A. We have
Pr{CSf(aw) > & + 1} = Pr{CEX (aw) > k+ 1} +
+ ZPr{ (aw) =k —1 & (m — 1)th phrase ends with b} x

x PbaPuz1Pz1=2 Pz zy

>  Pr{CCK (aw) > k} + Pr{CSX (aw) =k — 1}r x rla }pmz- Py 15
=) pr{CGK+MIBI) gy > Kk + 1}
>B  P{CM' B0 (qw) > k+1}.

Equation (A) follows from Lemma 8 after noticing that the line above could be interpreted
as the MI model in which the 7n phrase is inserted with probability r and the initial symbol
of every phrase ahs distribution r{e)/r. The inequality (B) is a consequence of the induction
assumption and Lemma 9. Observe that we omit the first phrase (so we have (m — 1) in the
last line of the above) since it does not fall under our assumptions, i.e., its first symbol is not

distributed according to r. W

4.2 Bounds on the Phrase Length and Depth of Insertion

In this subsection, we translate the bounds on the tree path Cj,(w) into bounds of the depth

of insertion I, in the GK model. We start with a simple observation which relates the depth
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of insertion with the tree-path. We have

Pr{l;m =|w| & w is a prefix of the mth phrase}
= Pr{Cp_1{w) =|w| — 1 & w is a prefix of the mth phrase}

which further implies

Pr{l, > k} = Z Pr{Cp-1{w) > k — 1 & w is a prefix of the mth phrase}. (93)
lw|=k

This and Lemma 9 lead immediately to the following useful result.

Lemma 12 Consider two random DST irees T, and T2,, of respective size my and my,
with iree-paths Cy, (w) and C2,_{w), and depths of insertion I}, and IZ,,, respectively. If for
all w

CL, () S G2, w),

then en independent phrase inserted into both trees leads to the following inequality

1 2
Imy}—l SSt Im2+l'
on the depths of insertion.

Before we proceed with a formal derivation of the bounds on Ip,,, we present here a “guided
tour” through the proof. The first step of establishing a bound for IS in the GK model is to
break a strong dependency between phrases so that the precise results of the MI model can -
be applied. We accomplish it by dcleting the last & phrases before inserting a new phrasc.
We denote by Igf,f{ the depth of insertion in the GK model when K last phrases are deleted.
In order to make this idea useful, we need an inequality rclating the depth IGX and the depth i
Ig‘f}} But, in (37)) of Section 2 we prove such a result which we repcat here for reader’s
convenience

I e <L <INk + K. (94)

Unfortunately, we could not establish an easy bound on Ig,{,{{ But, in the previous section

we proved a lower bound and an upper bound on the tree path that through Lemma 12 will

lead to bound on Igf}'“ ! where Igf;” T denotes the depth of insertion in the GK model

when one inserts an independent phrase. The last step is to show that distributions of Iﬁff(

IGK-{-MI
m—K

and are within distance &,;, — 0.

K

We start the analysis by showing that Ig‘ % is within distance &; — 0 from Igf_{}M d

which is crucial to our analysis.

41




Lemma 13 The random variable Ig“f( is within distance €, = O(m1%6#) from JCKEMI
where p < 1 is the mizing coefficient of the underlying Markov process. (We shall use a
shorl-hand notetion IGK 4 IGKEMI 4 O(em) in such a situaiion.)

Proof. We shall use the fact that a Markov process over a finite space is a ¢-mixing process
with exponentially decreasing mixing coefficient {cf. [1]). More precisely, let for some d and ¢
two events, say A and B, be defined on the sigma-algebras F¢ Lo and Fg3,, respectively (i.e.,

there is a gap of £ symbols between the events). Then, if the underlying process is Markov

over a finite space, then there exists p < 1 such that
|Pr{A&B} — Prt{A}Pr{B}| < p’Pr{A}Pr{B}

We now associate the event A with first 7n — K — 1 phrases and the event B with the mth
phrase. Actually, we consider Igff{ which can be viewed as event A&EB while Igf;”’ is
composed of two independent events, A and B. That is, if £ denotes the event that K last

phrascs are of length at least ¢ symbols, then for any set D of integers
IPr{ISX. € D | &} — Pr{ISKEMT € D | &} < p*Pr{ISFEMT € D | &)

Let us now fix £ = KBlogm for some 8 > 0. In Lemma 14 below we prove that Pr{not &} <
K exp(—Am®) for a > 0, hence

|Pr{ISK € D} —Pr{ISX}M € D} < em
with g,, = pTBlos™ 1 K exp(—Am®) = O(m? K 198#) where /> 0.

Lemma 14 There exist A > 0, @ > 0 and § > 0 such that for all m > 0, Pr{IGK <
Blogm} < exp(—Am®)

Proof. By (93) we have

Pr{IGf >k} 21— 3 Pr{Cp1(w) <k-—1}. (95)
|w|=&

Thus, we need an estimate for Pr{Cp,—_;(w)} < k — 1}. Observe that by Lemma 8§

1l

Pr{Cp(w) =k | Copomy(w) =k — 1} Z Pr{last phrase ends with a}P(e(w)x)

acA

Pr{Cr(w)=k—-1| Cp_i(w)=k—-1} = Z Pr{last phrase ends with a}(1 — P(a(w)g-1))
acA
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where P(aw) denotes the probability of the string aw induced by the underlying probabilistic
model. Let now g = mingpc 4{pap} > 0. Then, the above implies
Pr{Cp{w) =k | Cp1{w) =k -1} < Pla(w)) <1
Pr{Cp(w) =k —1| Cpy(w) =k -1} < 1—pktL

L—l—l)m -k

But then Pr{Cp(w) = k) < (3)(1 - , and hence

i)
Pr{Cm{w) < k} < k( ) ptrhymk < k( L) exp(—p*(m — k).

Set now k = [—1%5™], Since (5 < mk—f, the above becomes

2logn
Pr{Conlw) < K} <k (’:) exp (—4*(m — £)) = exp(—ny/m)

where 7 > 0 is a constant. Finally, returning to (95) with k = [—%—%1 and noticing that in

this case 3 =k 1 < m? for some B > 0, we obtain
Pr{ICX >k} > 1 — mP exp(—nvm)

which completes the proof. m

Finally, we are in a position to establish an upper bound {cf. Theorem 4) and a lower
bound (cf. Theorem 5) on the depth of insertion IGK.

Theorem 4 Let IS¥, (a) be the depth of insertion in the GK model when the mth phrase
starts with symbol a, and IXEK(Pa) be the depih of insertion in the MI model with the initial
probability veclor p, = (0,...,1,...,0) where 1 is af position a € A (i.e., all strings start with
symbol a). Then, for any 8 > 0, there ezists K such that IG%(a) is stochastically dominated
by a random variable that is within distance O(n™P) from M1, (p.) + K

Proof. Let K be a fixed integer. We have from ({94)
IS¥ () < 18K (a) + K .

We also have
I5% (@) & IS (@) + Olem)

as a consequence of Lemma 13. Lemma 10 implies
I+M
1558 (@) <ot I e (Pa)
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which completes the proof. ®

The proof of a lower bound on IS¥ follows the same footsteps as above, so we only sketch
it here. As before, we shall write L‘?{rm(r)(r) for the depth of inscrtion in the MI model in
which first symbol in each phrase distributes according to vector r and the number of phrases
is distributed according the the ¥inomial(m,r) for some r < 1 The probability r and the

probability vector r are defined above Lemma 11.

Theorem 5 For any B > 0, there ezists K such that IS% (a) stochastically dominates a

random wariable that is within distance O(n=?) from IM_IE{T) (r) for some r < 1.

Proof. We have the following chain of incqualities
d MIB
155(a) 2 I (a) £ ISEH(0) + Olem) o Il (1)

which completes the proof. m

4.3 Establishing the Limiting Distribution

We prove now that appropriately normalized IS% converges in distribution to the standard
normal distribution. Similar conclusion about the typical depth DEX will follow directly via
the Cesaro limit.

To simplify notation, let Ly, = 82 and Vi, = (_g — 2xQ*yp - hﬂ) Inm. We will
prove that for all z = O(1)

IGK _f, 1 G 2
lim Pr{2—" >z =—f Y244,
w2 =g,
By Theorem 4, there exist 8 > 0 and K such that the following upper bound holds for all &

and m:
Pr{IS¥ > k | last phrasc starts with a} < Pr{IM/ . (p,) > k— K} + O(n?) (96)
Thus,

Pr{ISK >k} = > Pr{IS¥ > k | last GK phrase starts with a}
acA
x Pr{last GK phrase starts with a}

> Pr{I}(p.) > k — K}Pr{last GK phrase starts with a} + O(n~")
acAd

Fa

By Corollary 1 we know that

: I (Pa) — Lm 1 =
A e 2 = g [ e

—t/24.
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Now, observe that Ly, g = Lnp + O(1/m) and V,_x = Vi, + O(1/m). Also, obviously
>-eca Pr{last GK phrase starts with a} = I, which finally leads to

im su Pr{f—’c’?{_—% >z} < lim Lfm e~ 2t = L/m et 12y (97)
m—w-op 3/ Vm - om0 2 z—0Q(1/m}) Va2n Jz '

A similar argument works for the lower bound, however, this time we shall use Theorem 5

and Corollary 2 and we do not need to split over symbols a. Certainly,
Pr{IS¥ >k} > Pr{IM' BN (1) > k} + O(n~P) .

But, by Corollary 2, (Iﬂm(r}(pﬂ) —L)/ Vi —d>N(0, 1), hence by a similar line of rcasoning

as above we conclude that

GK
— 1 [+ o]
linrnmfpr{u >z} / e~y
m—roo T

N 2 Vo

which completes the proof for the limiting distribution of I,E’:K .

4.4 EBstablishing the Convergence of Moments

Finally, we prove the existence and convergence of moments of (IS — L,,)//V;, where, as
before, L,, = Eﬁﬂ and Vi, = 511_; (—g - %ﬂ'Q“'(,b - hz) Inn. We accomplish this by showing

that there exist constants 4; and a3 < 1 such that uniformly for all integers £
ng’ — Lm

Pr{ Vi

Indeed, above will prove the existence of the moments exist and by uniform dominated

> e} < Aoyt (98)

theorem their convergence to the moments of the normal distribution. Notice that in any
model I, cannot be greater than m and therefore there is no need to check the inequality
for values of £ beyond m.

Below, we present details of the derivations only for the case Pr{IgK — L 2 &/V}
since the case Pr{IGK — L, < —£+/V,} can be handled in a similar manner.

By (94) we know that IGX < Igf}} + K for a fixed K. But, Lemma 13 asserts that Igf}’(
is within distance e, = O(m*°6#), where p < 1, from Igf;”’. More precisely, for any set
of integers B

Pr{IS% € B} < (1 +&n)Pr{ISKEM € B} + O(e™™V™)

for # > 0. From Theorem 4 we know also that
IGKEMI(0) <g TN (Do),
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where above we indicated that phrases starts with symbol ¢. Finally, Corollary 1 implies

that there are constants A and o < 1 such that

Pr Ir‘};“(Pﬂ) — Ly
VVin

Putting everything together, we obtain

> e} < Ad.

Pr{IGH > Ly + &/} < (L+em) Y Pr{In (pa) 2 k— K}
oA

Pr{last GK phrase starts with ¢} + O(e”"™V™)
< A1+ Em)ae + O{eh”‘/ﬁ) < Ala}ﬁ

b4

since £ cannot be greater than m and therefore O(e~"V™) can be dominated by Ala}ﬁ
term. This prove the existence and convergence of moments which completes the proof of

Theorem 2.
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Appendix A: Alternative Representation of Theorem 1 Results

In this appendix, we show how to prove our alternative representations {19)-(20) for the
mean E[Dp,] and Var[D,]. Instead of presenting a detailed derivations, as in Section 3, we

rather sketch here the proof.
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We concentrate on evaluating the mean. The starting point is {62), that is,
o0
x(s) = Q7 x(s - 1) = Z P¥(s)x(s — 1).
k=0

Before we apply the spectral representation to P*(s), we need some notation. Let us denote
by A{s),p2(s), ..., uv(s) the eigenvalues of P(s) with |A(s)| > |p1(s)] = -+ > |uv(s)|. The
correspondinging left eigenvectors are m(s), wa(s), ..., 7y {s) while the right eigenvectors are
P(s), Pa(s),..., 3Py (s). Asin [6], we adopt an optional notation for the scalar product of
vectors, namely, we either write as before xy for product of vectors x and y or {x,y). The
latter notation is convenient when scalar products are often used, as in this appendix.

By spectral representation (cf. [16]), matrix P(s) can be represented as

Vv
P*(s)x(s — 1) = X(s)(m(s), (s — 1))sp(s) + Z:uf(S)(m(S)ax(S — 1)) (s).

Thus b(s) = I'(s)x(s) becomes

Dls}m(s), x(s — 1)(s) = Pls)(mals), x(s — 1))apils)
b(s) = + . 99

(=) YA 2 e (59)

In order to obtain leading asymptotics of B*(s) = p{s)b(s) +'(s)z(s—1) (cf. (64)), we need
Laurent’s cxpansion of the above around the roots of A(s) = —1. Observe that the second
term of (99) contributed o(m) since A(s) is the largest eigenvalue (cf. [6]), hence we further

ignore this negligible term in our derivations. To simplify the presentation, we only deal here

with the root sp = —1. We use our previous expansions for x(s — 1) and I'(s) together with
1 -1 1 A(-1)
= = - + O(s + 1),
T-xs) -~ Mons+1 ' zrey TOET

Y(s) = ¢ +p(-1)(s+1)+O((s+1)%).

This finally leads to
it SRS S
A=1) (s +1)?
1 (hihﬂ)_7—1+@FUﬁGﬂL+iFU__
s+1\ M-1)  A(-1) A-1) 2X2(—1)

B (s) =

1) + o0

After finding the inverse Mellin transform of the above and depoissonizing, we prove the
alternative representation (19).

Finally, we turn our attention to the second factorial moment and the variance. We need
to study c(s) = T'(s)v(s) where v(s) = 2Q~!(s)P(s)x(s) + Q1 (s)v(s — 1). As before, we
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obtain

ofs) = 2I‘(8)(7r(s),x(s(—l i));zggjg,P(s)qb(s))zp(s) ‘0 ((1 _ ,\(s))_l).

Similar algebra as above leads to

-2 1
A2(—1) (s +1)3

1 (i(—l) 27-1-(«»‘:(—2»—(p(—l),«b(~1)>—ix(—1))
(s +1)% \ 2X3(-1) A2(—1)

O(sil)'

This is sufficient to prove (20), after some tedious algebra that was helped by MAPLE.

c(s) =
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