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For a Markovian source, we analyze the Lempel-Ziv parsing scheme that partitions se­

quences into phrases such that a new phrase is the shortest phrase not seen in the past. We

consider three models: In the Markov Independent model, several sequences are gener­

ated independently by Markovian sources, and the ith phrase is the shortest prefix of the ith

sequence that was not seen before as a phrase (i.c., a prefix of previous (i - 1) sequences).

In the other two models, only a single sequence is generated by a Markovian source. In the

second model, for which we coin the name Gilbert-Kadota model, a fixed number of phrases

is generated according to the Lempel-Ziv algorithm, thus producing a sequence of a variable

(random) length. In the last model, known also as the Lempel-Ziv model, a string of fixed

length is partitioned into a variable (random) number of phrases. These three models can

be efficiently represented and analyzed by digital search trees that are of interest to other

algorithms such as sorting, searching and pattern matching. In this paper, we concentrate

on analyzing the average profile (i.e., the average number of phrases of a given length), the

typical phrase length, and the length of the last phrase. We obtain asymptotic expansions for

the mean and the variance of the phrase length, and we prove that appropria.tely normalized

phrase length in all three models tends to the standard normal distribution which lead to

bounds on the average redundancy of the Lempel-Ziv code. For Markov Independent model,

this finding is established by analytic methods (i.e., generating functions, Mellin transform

and depoissonization), while for the other two models we use a combination of analytic and

probabilistic analyses.

Index Terms: Lempel-Ziv scheme, Markov source, digital search trees, data compression,

phrase length, depth in a tree, Poisson transform, Mellin transform, analytic depoissonization,

stochastic comparisons.

-This work was paxtially supported by NSF Grants NCR-9415491 and NCR-9804760, and NATO Collab­

orative Grant CRG.950060.
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1 Introduction

The heart of many lossless data compression schemes is the incremental parsing algorithm

due to Lempel and Ziv [24]. It partitions a sequence into variable phrases such that a new

phrase is the shortest substring not seen in the past as a phrase. Revealing its intrinsic

behavior should lead to a better understanding of the internal structure of sequences, and

this is of a broader interest to molecular biology, languages, coding, efficient data transmis­

sion, estimation of entropy, discrimination between information sources, test of randomness,

estimation Df the statistical model for individual sequences, multimedia compression, and so

forth. Fundamental information about the algorithm is contained in such parameters as the

number of phrases, the phrase length, the number of phrases of a given size, and the longest

phrase. Here, for Markovian sources we study the length of a randomly selected phrase

(which is equivalent to the so called average profile defined as the average number of phrases

of a given size) and the length of the last phrase.

In the past, mostly first order analysis of these parameters were available with the ex­

ception of [7, 11, 12, 18] where largely memoryless sources were analyzed. The first order

analysis provides the first order asymptotics (e.g., is the redundancy of a code o(n)?). The

second order analysis attempts to establish the rate of convergence, or even a full asymptotic

expansion, large deviations behavior, deviation from the mean (e.g., central limit theorems),

and so forth. We present here a second order analysis of the (typical) phrase length for the

Lempel-Ziv parsing scheme in a Markovian setting.

One can still wonder why do we need a second order analysis or a second order approx­

imation of information systems. Gilbert and Kadota in [4J and J. Ziv in his 1991 Shannon

Lecture provided some convincing arguments for the need of such investigations. In fact, J.

Ziv presented compelling arguments for "backing off" to a certain degree from the first-order

asymptotic analysis of information systems in order to predict the behavior of real systems

where we always face finite, and often small, lengths (of sequences, files, codes, etc.) One

way of overcoming these difficulties is to increase the accuracy of asymptotic analysis by re­

placing first-order analysis by full asymptotic expansions and more accurate analysis so that

the approximate value of a quantity of interest is closer to the true value even for moderate

and small lengths. On the other hand, Kadota and Gilbert used a numerical evaluation

(instead of a crude first order asymptotic) to obtain qualitative insights into the behavior of

the Lempcl-Ziv algorithm. Some of their results were analytically recovered in [7, 11] where

second order asymptotics were obtained for the quantities studied in [4]. In [4, 7, 11] only

memoryless sources were analyzed, and in this paper we extend the analysis to Markovian

2



sources.

In this paper, we shall analyze three models of the Lempel-Ziv scheme in the Marko­

vian settings. In the first one, called Markov Independent model or shortly MI model,

we assume that there are m independent Markov sources defined on the same underlying

probability space. The parsing is done with respect to the previous sequences. Namely, the

zeroth phrase is an empty phrase, while the first phrase is a one character prefix of the first

sequence. The ith phrase (i ::; m) is defined as the shortest prefix of the ith sequence not

seen as a phrase (prefix) of the previous (i -1) sequences. For example, for m = 4 sequences:

X(I) ~ 000000 ... , X(2) = 1010101. .. , X(3) = 1001101... and X(4) ~ 001100111 ... we can

construct the following Lempel-Ziv sequence: (E)(0)(1)(10)(00) where E is an empty phrase,

and all phrases are shown in parentheses. We shall study two parameters, namely the length,

Dm , of a randomly selected phrase, and the length Im of the last phrase. In addition, one

may investigate the length L m of the Lempel-Ziv sequence. In the example above we have

D4 = I!, I4 = 2 and L4 = 6.

The next two models deal with a single sequences generated by a Markovian source. In the

fixed number of phrases model, we partition the sequence according to the Lempel-Ziv

algorithm until we obtain m full phrases (thus producing a variable and random length of the

Lempel-Ziv sequence). For example, for X = 11001010001000100 ... we can construct m = 5

phrases as follows: (E)(I)(lO)(O)(101)(OO). Such a model was also considered by Gilbert and

Kadota [4], so we call it the Gilbert-Kadota model or shortly GK model. As before, we

will be interested in the typical phrase length Dm and the last phrase length Im . In the above

example, we have Ds = 1~, Is = 2, and in addition the length of the Lempel-Ziv sequence is

L s = 9.

Finally, in the traditional Lempel-Ziv model or fixed length model, a sequence of

fixed length, say n symbols, is partitioned according to the Lempel·Ziv algorithm. For exam­

ple, the ,t,ing X ~ 110010100010 of length n = 12 is pa;sed as (,)(1)(10)(0)(101)(00)(01)(0).

We shall study the length .6.n of the randomly selected phrase (see Section 2 for a precise

definition) and the length I n of the last full phrase. The number of full phrases M n is of

significant interest for this model, but we will not investigate it here. In the example above,

il l2 = 1~, J12 = 2 and M 12 = 6.

The above three models can be efficiently analyzed and uniformly represented by a digital

search tree, a data structure that have been studied by its own right for more than thirty years

(cf. [10, 14]). This tree is used to store strings in its nodes and can be described as follows:

We consider m, possibly infinite, strings of symbols over a finite alphabet A = {1 1 21 ••• , V}

(however, we often restrict our discussions to a binary alphabet A = {a, I}). The root
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Figure 1: Digital tree representations for the MI model (X(I) = 00000, X(2) = 01111, X 3 =

101010, X(4) ~ 111000, X(5) = 110111, X(6) = 111111) aod 'he LZ model (X =

11001010001000100. __ ) of the Lempcl-Ziv algorithm.

contains the empty string E. The first string occupies the right or the left child of the root

depending whether its first symbol is "I" or "0". The remaining strings are stored in available

nodes (that are directly attached to nodes already existing in the tree). The search for an

available node follows the prefix structure of a string. The rule is simple: if the next symbol

in a string is "I" we move to the right, otherwise move to the left. The resulting tree has m

internal nodes. It corresponds to the MI model and the GK model, however, in the latter the

strings are substrings (phrases) of one infinite string We can call such a digital search tree a

suffix search tree (cf. Figure 1).

In the LZ model, we construct an analogous (suffix) digital tree except that the number

of nodes varies and equals to the number of phrases Mn . More precisely, the empty phrase is

stored in the root, and all other phrases are located in nodes. When a new phrase is created,

the search starts at the root and proceeds down the tree as directed by the input symbols

exactly in the same manner as in the digital search tree construction. For example, for the

binary alphabet, "Oll in the input string means move to the left and "1" means proceed to

the right. The search is completed when a branch is taken from an existing tree node to a

new node that has not been visited before. Then, an edge and a new node are added to the
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i = 1,2, ... , V,

tree. Phrases created in such a way are stored directly in nodes of the tree (d. [11]). This is

illustrated in Figure 1.

As mentioned before, in this paper we present second order analysis of the above three

models of the Lempel-Ziv algorithm for a Markovian source. Among others, we compute

precise asymptotic formulre for the mean and the variance of the phrase length in the MI

model. We also show that the appropriately normalized phrase length tends to a normal

distribution with the rate of convergence of O(I(v'lnm). These results - which are at the

heart of our findings - are established by analytic methods. The line of the attack can

be briefly described as follows: We first derive a set of recurrence equations for the ordinary

generating functions of the average profile (conditioned on the first symbol). These recurrence

equations are too complicated to be solved directly, hence we derive a set of differential­

functional equations on the so called Poisson transform of the average profile. In the Poisson

model, the number of sequences m becomes a random variable N distributed as a Poisson

with mean m. This process of replacing the deterministic input m by a Poisson variable is

called poissonization. We shall use analytic poissonization since we replace m by a complex

variable z. A typical sct of differential-functional equations we have to deal with is of the

following form

8J3'(u z) _. (-1 -V)
8z' + B'(z, u) = u B (U,pi,lZ) + ... + B (U,pi,VZ) + a(z, u),

where Bi(z, 'Il) is the Poisson transform (cf. [7, 21]) of the average profile when all strings

start with symbol i E A = {I, 2, ... ,V}, a(z, u) is a given function, and P = {Pij }r.i=l is

the underlying Markov chain. These differential-functional equations are reduced to a simple

matrix functional equations of the Mellin transform Bi(s) with respect to z of Bi(z,u) (d.

[3, 21]). A typical equation of the Mellin transform looks like

B,(s) - (, -1)B,(s-l) ~ B;(s)p" + ... + Bj,(s)piv +a'(s),, , i = 1,2, ... , V.

We can solve exactly this matrix equation in a form of an infinite product of matrices.

However, we develop a method to obtain relevant asymptotics without an explicit solution. It

turns out that such asymptotics depend on singularity points of the matrix Q(s) = (I_P(S))-l

where P(s) = {pij$}Y,j=l for some complex s. Then, through the inverse Mellin transform

we obtain asymptotics of the Poisson transform B'(z, u) for large z. We need to translate

it into the asymptotics of the original generating function B!n(u). This process is called

depoissonization, and we shall use recent results of Jacquet and Szpankowski [9] on analytic

depoissonization. The program just described was recently dubbed analytic information

theory since it applies analytic methods to solve problems of information theory.
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To translate the results of the MI model to GK model and LZ model we shall use a

combination of analytic, combinatorial and probabilistic methods. In particular, we construct

two MI models that upper bound and lower bound stochastically the GK model. This will

allow us to conclude the central limit theorem for the phrase length in the GK model, which

will further lead to a similar result for the LZ model.

Finally, we should mentioned that our MI model is equivalent to the Markov model of

digital search trees studied extensively in computer science. In fact, digital trees appear in a

variety of computer and communications applications including searching, sorting, dynamic

hashing, codes, conflict resolution protocols for multiaccess communications, and data com­

pression (cf, [10, 14]) Thus, better understanding of their behavior is desirable and could lead

to some algorithmic improvements. One parameter that is of interest to these applications is

the depth of a randomly selected node (i.e., the length of the path from the root to the chosen

node), and depth of insertion, which may represent the search time. Clearly, the depth and

the depth of insertion are equivalent to the typical phrase length and the last phrase length

in the MI model. The average profile of the MI model is the same as the average number of

nodes at a given level in the associated digital tree.

Digital trees (which include tries, PATRICIA tries and digital search trees) have been

studied extensively in the past for memoryless source (cL [10, 7, 11, 13, 14, 17, 20]). Extension

to Markovian sources are scarce, and to the best of our knowledge only tries were analyzed

(cL [2, 6]). Lempel-Ziv model for memoryless sources was discussed in [7, 11, 12J, while

second order analysis for Markovian sources are basically non-existing. Savari [18] proposed

the redundancy analysis of the LZ code for Markovian sources, but redundancy analysis

requires rather a minor extension of the first order analysis. Wyner [23] derived the limiting

distribution of the phrase length in the other Lempel-Ziv scheme (i.e., LZ'77) which is known

to be considerable simpler for analysis.

This paper is organized as follows. In the next section we present our main results for all

three models, and discuss some of their consequences. The proof for the MI model can be

found in Section 3, while Section 4 presents our analysis of the GK model. The proof of the

LZ model is discussed after Theorem 3 in Section 2.

2 Main Results

We present here our main results for all three models, namely Markov Independent model,

G i 1 b e r t ~ K a d o t a (fixed number of phrases) model, and Lempel-Ziv model. Most of the

proofs are delayed till the next section. Throughout, we assume that a sequence, say
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x = (Xo,Xl, ... ), is generated by a Markov source over a finite alphabet A = {1,2, ... ,V}.

More precisely:

(M) MARKOV SOURCE

There is a Markovian dependency between consecutive symbols in a sequence, that is,

the probability Pij = Pr{Xk+l = jlXk = i} > 0 for all k ~ a describes the conditional

probability of sampling symbol j E A immediately after symbol i E A. We denote by

P = {Pij} Y,j=l the transition matrix, and by 7i' = (1fl,"" 7fv) the stationary vector

satisfying 7i'P =?T. We say that the Markov chain is stationary if Pr{Xk = i} = Jr,
for all k ~ a and i E A. In general, Xk+l may dependent on last r symbols, and then

we have rth order Markov chains, however, hereafter we mostly restraint ourselves to

r = 1.

2.1 Markov Independent Model

Hereafter, we assume that m independent Markov SDurces generate m sequences which are

parsed with respect to previDus ones accDrding to the Lempel-Ziv algorithm, as described

in the IntroductiDn. Equivalently, we build a digital search tree from these m sequences, as

shown in Figure 1. Actually, it is more convenient to think in terms of this associated digital

search tree (in short: DST). In particular, the ith phrase length Ii is also the depth of the

ith node in such a tree (where the depth of a node is understood as the number of nodes

frDm the root to the ith node). When i = m we shall refer to 1m as the depth of inse,·tion or

the last phrase length. The typical depth (typical phrase length) Dm is defined as the length

of a randomly selected depth, that is

1 m

Pr{Dm ~ k} ~ - LPr{I, = k}.
m i=l

Finally, we defined the average profile (in short: profile) B ~ as the average number of nodes

at level k of the DST or the average number of phrases of length k. Observe that B ~ = 0 for

allk"':O

There are simple relationships between just defined parameters. First Df all, we notice

that (cf. [10, 11, 20])
Bk

Pr{Dm ~ k} ~ - - " ' - .
m

This, and the definition of the typical depth, immediately imply

Pr{Im+l = k} = B~+l - B~,

7
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with Pr{Io = O} = 1 and Pr{Io = k} ~ 0 for all k 2: 1.

Throughout, we shall work with generating functions of the above quantities and the so

called Poisson transforms that we define next. The ordinary generating functions are

Dm(u) - E[uDm
) ~ L: Pr{Dm ~ k}u', Do(u) ~ 1,

1.:~O

Im(i) E[u1m
] = L:Pr{Im = k}u" Io(u) ~ 1,

1.:;::0

Bm(u) - LB~uk Bo(u) = 0

1.:2':0

for a complex u such that lui < 1. The Poisson transforms are defined as follows

D(z, u)

B(z,u)

1(z, u)

The Poisson transform can be interpreted as the generating function in the so called Poiso<;on

model in which the deterministic number of sequences m is replaced by a random number of

sequences distributed according to Poisson with mean z = m. We shall assume that z is a

complex variable, and B(z,u) as well as J(z,u) are defined on the whole complex plane. We

should also observe that by (2)

a1(z,u) I-( ) _ aB(z,u)
8z + z,u - 8z . (3)

Since also Dm(u) = Bm(u)/m, we can recover all results on the depth of insertion 1m as well

as on the typical depth from the average profile B ~ . Therefore, hereafter we concentrate on

the analysis of the average profile.

To start the analysis, we derive a system of recurrence equations for the generating TImc­

tion of the average profile. We first need one more notation. Let B:n(u) for i E A be the

ordinary generating function of the average profile when all sequences start with symbol i.

Let also p = (Pi, ... ,pv) be the initial probability vector of the underlying Markov chain,

that is, Pr{Xo = i} = Pi. (For the stationary Markov chain we have p = 71".) Consider now

the generating function Bm+l(u) of the DST in which the root contains an empty string and

the other m independent Markov sequences are stored in V subtrees, which are digital search

trees by themselves but of smaller size. Indeed, the probability that the first subtree contains
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)1 sequences, the second subtree has j2 sequences, and so on until the V subtree stores jv

sequences (out of m sequences) is equal to the multinomial distribution, that is,

(

m ). .. . p{l"'rv_
)1,·· ·)v

But, the ith subtree is again a digital search tree of size ji containing only those sequences

that start with symbol i. Hence, its average profile generating function must be Ell (u). This

leads to the following recurrence equation assuming Eo (u) = a

where j = (il,'" ,jv), UI = jl + ... + jv and for simplicity (j) = (jl,~j)' Clearly, we can

set up similar recurrences for the subtrees. That is,

forall iEA (5)

where B ~ ( u ) = a for i E A.

If we can solve the above recurrences, then we can compute all moments and the distri­

bution of the average profile, and consequently the characteristics of the typical depth and

the depth of insertion. Indeed, after observing that Em(l) = m, the average depth becomes

E[Dml = B;"(I) and

B:;'(I) B;"(I) (B;"(I))'
Var[Dml ~ -- +-- - --

m m m

where B:n(l) and B ~ ( I ) are the first and the second derivatives of the generating function

Bm(u) calculated at u = 1. In passing, we should observe that B:n(l) and B ~ ( l ) satisfy

recurrences equations similar to the ones derived for Bm(u), and we shall discuss them in

details in the next section.

One must say, however, that the above recurrence equations are not easy to solve. Even,

ifin principle, one can write an explicit solution (cf. [11,20] for memoryless sources), it is too

complicated to gain any insights. Therefore, we must retreat to the asymptotic analysis. To

accomplish this, we shall derive a functional-differential equations on the Poisson transforms

jji(z,u), which seem to have a simpler, or at least more compact, form. These functional­

differential equations are next changed into a simple matrix recurrence in terms of the Mellin

transform (cf. [3, 14, 21]). After solving this matrix equation (in fact, for the asymptotic

analysis we do not even need to solve it explicitly), we apply the inverse Mellin transform

9



(3 .-

0" .-

"(-2) .-

(6)

to recover the Poisson transform Bi(z, u) for z -+ 00 in a cone around the real axis_ This

suffices, since by analytic depoissonization (cf. [7, 9]) we can extract asymptotic expression

for the average profile B:n for m -+ 00, which further leads to our final results.

Before we present out findings, we must introduce some more notation. Let s be complex,

and then

Q(s) = 1- P(s), where P(s) ~ {Pij'}G=l

and I is the identity matrix. Let now Q*(s) = adj[Q(s)] be the adjoint matrix of Q(s),

that is, Q*(s) = (-l)i+j{Qj,i(s)h,jEA where Qj,i(s) is the (i,i) cofactor of Q(s) defined as

Q-l(s) = Q'(s)/ det Q(s) (ef. [16]). Furthermore,

[det Q"(s)11.,=-1,

0'(·')1,=-1,
00

L (Q-1(_2) ... Q-1( -i)(Q-1(s»'I,=_i_1 Q-1(_i - 2) ...JK,
i=l

~ .- ,,""(-2),

where

K ,= (IT Q-1(_2 _ i») -1"¢ ,

1=0

'I/J = [1,1,,··, l]'rXl is the column vector consisting of all Is. In the above, we use the

following
. d
x(-2) = ds x(s)I'=_2.

Finally

1 -P12 -PIV

1 1 - P22 -P2V
w:= det

1 -PV2 I-pvv

In addition, we use the standard notation for entropy of a Markov source. In particular,

v V

h = -2: '1l"i 2:Pij lnPij,
i=l j=l

and for a probability vector p = (PI, _. _,PV)

V

hp = -2:Pi lnpi_
i=l

Also, we often use p(s) = [1r1
s,1r2s, ... , trvS

] which becomes 1r when s = -1.
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In Section 3.1 we prove the following main result for MI model for stationary Markov

sources (i.e., p = 11').

Theorem 1 Consider a Markov stationary source with transition probabilities P = {p;j }Y.i=l'

that is, Pr{Xt(f) = k} =1rk for allt = o,1, ... and f= 1,2, ... ,m.

(i) [ TYPICAL DEPTH/PHRASE LENGTH] For large m the following holds

Var[DmJ

_ !. (lnm+ 7 -1 +h- h" - L -D + 01 (lnm)) +0 (lnm)
It 2wh m

~ (_Ii _~"(;f,p - h2) Inm + 0(1)
h3 w w

(7)

(8)

and

(10)i,j = 1,2, ... , V,E (I,

Dm - E[DmJ --; N(O 1) (9)
";VaxDm '

where {) = m<:(-2) and; = 0.577... is the Euler constant. Thefundion lh(x) is afl:uctuating

function with a small amplitude when

lnPij + lnpli ~ Inplj

lnpll

where Q is the set of rational numbers. If (10) does not hold, then limx--+ oo 6t{x) = O.

One can strengthen (9) as follows. If Pm = E[Dm], and am = JVarDm• then for a complex

T the generating function Dm(u) = E[uDm ] becomes

as m ---7 00, thus the rate of convergence to the normal distribution is O(l/vtnm). This

implies the existence of positive constants A and a: < 1 such that

Pr {I Dm
- E[DmJI> k} < A,l (12)

JVarD
m

- -

uniformly in k.

(ii) [DEPTH OF INSERTION/LAST PHRASE LENGTH] The depth of insertion (or equivalently,

the last phrase length) 1m behaves asymptotically as the typical phrase Dm. More precisely,

fOTsomeA>O anda:<l

E[ImJ

Var[ImJ

~ ~ (lnm + 7 + h - h" - 2~h - D+ 02(lnm)) + 0 Cl~m) (13)

Var[DmJ + 0(1), (14)

e': (1+ 0 Cl~J) (15)

11



where 02(X) is a fluctuating function with the same property as 01 (x). In additionl there exist

positive constants A and ex < 1 such that

p, {lIm - E[Im)I> k} < An'
.jVarlm - -

(16)

Remarks. (i) Alternative Representation. We can present main results of Theorem 1 in a

different form which is particularly useful for the proof of the limiting distribution and, more

importantly, can lead to some further generalizatioD."i. This new derivation can be found in

Appendix A. For matrix P(s), we define the principal left eigenvector 1t'(s), the principal

right eigenvector 'IjJ(s) associated with the largest eigenvalue >..(s) as

1I"(S)P(S)

P(,),p(s)

A(S)1I"(S),

A(s),p(,),

(17)

(18)

whe« 1I"('),p(,) ~ 1. Dbse,ve tbat 11"(-I) ~ 11" ~ (11"1,"" nv), ,p(-I) ~ , p ~ (I, ... , I), and

>"(-1) = 1. Also, for an vector x(s) we writex(s) = d~x(s) and x(s) = ~x(s). In Appendix

A we shall prove that

'\(-1)

X(-I)

= 1I"P(-I),p ~ It,

1I"P(-I),p + 2';-(-I)P(-I),p - 2,\(-I)';-(-I),p.

Then, (7)-(8) of Theorem 1 can be alternatively written as

Var[Dm)

I ( . XH)· )-.- Inm+,-I+),(-I)+. - ~ - 1 I " , p ( - I ) + o l ( l n m )
A(-I) 2),2(-1)

+ 0 C:.m ) , (19)

_ X(-1)-,\2(-I)lnm+O(I). (20)
),3(-1)

In a similar fashion, we can write for [m'

(il) Memoryless Source. Let us compare the findings of Theorem 1 to those obtained for

a memoryless source (cf. [11, 20]). The Markov source becomes a memoryless source if we

assume Pij = 7l"i for i,j = 1,2, ... , V. Observe that then w = 1, f3 = - Eh:l Wi ln2
7l"il h1r = h,

and

Q(,)

Q-l(,)

Q(-j),p

I-,p®p(s),
I

- I p(,),p [(I - p(s),p)! +,p ® p(s)),

(I - p(-j),p ),p,
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where p(s) = (1rI
s, . .. 1 1rVS) , and ® is the tensor product of vectors (e.g., the product 'IjJ®p(s)

is a matrix with the ith column equal to (1riSl ... ' 1riS)T). Thus,

O:1/J ~ (-p'(s)1/J1 + 1/J x p'(s))1/J ~ o.

We can also prove the following commutation laws

for any i, j 2: 2. As a result, we find

00 00

>:(-2) ~ 2:0-1(-i)Q(-i)1/J=2:0- 1 (-i)(l-p(-i)1/J)1/J
i=2 i=2

00 p'( -i)1/J 1/J

~ 1- p(-i)1/J '

and finally
00 "'v k+lln

.0 = . (-2) = _ ""' L..i-l
1r

i 7rj
·v 1rX L...- V k+l 1

k=l 1 - Li=l1ri

which coincides with the findings of [20]. In summary, our results for the Markovian source

reduce to those of [20] when the source becomes mcmoryless.

(iii) Fluctuating Function 6(x). A few words of discussion about the fluctuating function o(x)

is in order. The amplitude of this function is very small
l

however, it increases with V. For

example, for the lmhiased memoryless source IOl(X)1 ::; 10-0 for V = 2 (d. [10, 14]). While

this value may be savely ignored in the first order analysis, it is of prime interest to second

order analysis. For example, the fluctuating function Ol(X) determines the behavior of the

Lempel-Ziv redundancy (cf. [12]). In view of this, one may ask for which Markov sources

condition (10) holds. We know that for memoryless sources (10) becomes

In 1r.
~_I EQ iEA.
In 1rj

But l can we find a non-degenerate Markov source (i.e.
l

which is not a memoryless) that

satisfies (10)7 The answer is positive, and here is an example. Let M(b) = {c-2r.k;j/blY.i=1 for

some integers kij and a positive b where i,j EA. The matrix M(b) is positive definite and its

main eigenvalue >..(b) is real positive with positive right eigenvector r(b) = (rdbO, ... , rv(b)).

Since >"(b) --t 0 as b --t 0 and >"(b) --t V as b --t 00, there exists bo such that >"(bo) = 1. Define

now

13



for i,i EA. Observe that

LPij = _1_ L rj(bo)e-21rk;j/bo = ri(bo) = 1,
jEA ri(bo) jEA ri(bo)

since r(bo) is the right eigenvector of M with A(bo) = 1. There P = {PiihJEA generates a

non-degenerated Markov source for which (10) holds. 0

We now extend the above results into two directions, namely a non-stationanJ Markov

source and the MI model with binomial(m, r) number of independent sources. Both ex­

tensions are crucial for our derivation of results for GK model (i.e., with fixed number of

phrases).

Let us start with a non-stationary Markov source. Observe that our basic set of re­

currences (5) for the conditional generating functions B;,.(u) stays the same, and the only

change in our global recurrence (4) for the cumulative generating function Bm(u) reduces to

replacing the stationary probability 7r by the initial distribution vector p. As we shall see

in Section 3, the asymptotics of the average profile largely depend on the asymptotics of the

conditional average profile. This will translate in the same leading terms of the asymptotic

expansions of the average depth (phrase length) Dm(p), and the depth of insertion (last

phrase length) Im(p). In fact, the difference is exhibited only in the 0(1) term.

We summarize our finding in the following corollary.

Corollary 1 [NON-STATIONARY MARKOV SOURCE] Consider a Markov source with initial

probability vector p = (PI,'" ,pv). Then for large m

E[Dm(p)] ~ (111m + l' -1 + h - hp - 2~h - ~ + 03(lnm)) + 0(lnmm) , (21)

E[Im(p)] - ~(ll1m+1'+h-hp-2~h-~+o1(lnm))+OC':nm), (22)

Var[Im(p)] Var[Dm(p)] + 0(1) ~ h ~ ( -~ - ~rrQ'1,b - h') Inm + 0(1) (23)

with the notation as in Theorem 1, where 03(x) and &4 (x) are fluctuating functions with small

amplitudes. In addition,

Dm(p) - E[Dm(p)] -+ N(O, 1), (24)
JVarDm(p)

Im(p) - E[Im(p)] -+ N(O 1) (25)
JVarlm(p) ,

with the rate of convergence 0(1/ Jln m). Moreover, there exist positive constants A and

a < 1 such that

pr{IDm(P) -E[Dm(p)JI > k} < An',
JVarDm(p) -

14
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uniformly in k.

Pr {IIm(P) - E[Im(p)] I> k} < Act'
JVarlm(p) -

(27)

Finally, we consider the :rvn model in which the number of sources M is a random variable

distributed as B(rn,r) := binomial(m,r), that is,

Let D ~ and II!,. (or D~(r) and I!!,.(T)) denote, respectively, the typical depth and the depth of

insertion in such a model.

Corollary 2 [RANDOM NUMBER OF NON-STATIONARY MARKOV SOURCES] Consider a Markov

source with initial probability vector p = (Pt, ... ,pv) and random number, M, of sources dis­

tributed as the binomial(m, r). Then for large m

E[D;':(p)]

E[I.'.:(p)]

Var[I;':(p)]

.1:. (In(mr) +7 -1 + h - hp - L - ~ + ,,(lnm)) + 0 (lnm) , (28)
h 2wh m

- ~ (In(mr) +7+h -hp - 2~h -~+ '6(lnm)) + 0 ('l~m), (29)

Var[D;':(p)] + 0(1) ~ ':3 (-~ - ~,d,",p - h') In(mr) + 0(1) (30)

where 65(x) and 06(X) are fluctuating functions with small amplitudes. In addition,

D.'.:(p) - E[D.'.:(p)] -+ N(O, 1),

JVarD!f.(p)

I.'.:(p) - E[I.'.:(p)] -+ N(O, 1)

JVarI,~(p)

(31)

(32)

with the rate of convergence O(ljJlnm). Finally, there exist positive constants A and Q' < 1

such that

uniformly in k.

Pc { D.'.:(p) - E[D.'.:(p)] ~ k} 5 Acl,
JVarD[I.(p)

Pr { I.'.:(p) - E[I;':(p)] ~ k} < Act'
JVarI!f.(p)

15
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Proof. Let us only consider the typical depth D:!t. The proof follows immediately from the

fact that the generating function D ~ ( u ) satisfies

where Dk(u) is the generating function ofthe typical depth in the MI model with k Markov

sources. Observe now that the Poisson transform of D ~ satisfies

DB (z, u) = D(zr, u)e-::r

where D(z, u) is the Poisson transform of the MI model with fixed number of sources (and

already presented in Theorem 1 while the analysis can be found in Section 3). The moments

can be also recovered from the following formula recently proved in [8] (interestingly, analytic

depoissoni:o:ation was used to derive it, too)

m (m) 1-r a·L k rk(l_ r)m-k Ink = In(mr) - -- + L-1
k""O 2mr i ~ 2 n

where the coefficients ak are explicitly computable.•

2.2 Fixed Number of Phrases Model - Gilbert-Kadota Model

In this subsection, we present our main findings for the Gilbert-Kadota model in which a

single Markovian source generates (possibly infinite) sequence that is partitioned according

to the Lempel-Ziv algorithm until m full phrases are obtained. As before, we study the

typical phrase length D m and the last phrase length 1m . To avoid confusions, we often

append an upper index M1 or GK to Dm and 1m to denote the typical phrase length and

last phrase length in the MI model and the GK model, respectively. Furthermore, as before,

it is convenient to build a digital search tree out of these m phrases, as shown in Figure l.

We observe, however, that this time the DST is built from suffixes of a single Markovian

sequence, thus we might call it a suffix digital search tree. Clearly, the typical phrase length

D;;'K becomes the typical depth, and the last phrase length I ~ K corresponds to the depth of

insertion in the associated DST.

The GK model introduces additional trickly statistical dependency between phrases. The

recurrence (4) and the differential-functional equation (5) do not hold any more, however,

the relationship (3) between the typical depth and the depth of insertion is still true. To

analyze GK model, we use stocha.c;tic dominance, that is, we (asymptotically) bound in a

stochastic sense define below the depth of insertion I ~ K by the depth of insertion in the

16



modified MI model. More precisely, in the GK model, we delete K phrases, thus making a

"gap" of significant size so that the newly inserted phrase resembles the one in the MI model,

hence results of MI model can be applied.

To present more succinctly our analysis, we introduce some new notation. We say that

I:n stochastically dominates Im and write Im ::;st I:n if for every k we have

In our investigation, however, we also need the so called asymptotic stochastic dominance

that we denote as 1m ::::sL 1:n and define precisely below_

Definition 1 (i) Let X and Y be two integer random variables, and E: > 0_ We say that X

is at distance E: from Y and write it a.'; d(X, Y) ::; E: if for all integers k:

(35)

(ii) We say that the sequence of random variables X m asymptotically dominates Ym or shortly

if

lim 'up max (Pr[Xm 20 k) - Pr[Ym 20 k}) ~ 0 .
m-HlO k

The last definition is illustrated well by the following simple result.

Lemma 1 If X m ::;st Y ~ and limm---)oo d(Ym, Y~J = 0, then X m ::::st Ym.

(36)

Proof. By assumptions, for all integers k and m we have Pr{Xm 2: k} ::; Pr{Y~ 2: k} and

limm-Jo(lO maxk I P r { Y ~ ~ k} - Pr{Ym ~ k}1 = O. Thus, (36) follows_ •

In the next section, we establish certain inequalities between the MI model and the GK

model, that we review briefly here. For some K < m we denote by Im -K+1 the depth of

insertion to a DST tree that is built from any subset of size m - K of m original phrases. It

is easy to see that in both models we have the following (deterministic) inequality

(37)

provided the same phrase is inserted. The left-hand size is quite obvious, while the right-hand

size is a consequence of the fact that a new phrase can be incremented at most by one symbol.

In other words, the DST tree does not have unary nodes (i.e., nodes with degree one).
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In view of this, we can work on Im_K in which K phrases are (conveniently) deleted

smoothing down dependencies. We consider now the MI model such that all phrases start

with a given, but otherwise arbitrary symbol, say a E A. In other words, we consider a

non-stationary model with an initial vector Pa concentrated on symbol a, i.e. contains all

zeros except a 1 on the position corresponding to symbol a. We denote I;[l(Pa) the depth

of insertion in this model. We also consider the GK model conditioned on the fact that the

mth phrase starts with symbol a. We denote I ~ ~ ( P a ) the depth of insertion of the mth

phrase when K phrases are deleted before it. We shall prove in Section 4 that there exists

K = 0(1) such th.,

I M1BI,) ( ) GK () MI ( )
m-K pa ::Sst Im,J( Pa ~ s t I m _ K Pa + K

where I : : ~ : ( r ) ( P a ) is the depth of insertion in the MI model with the binomial(r,m - K)

number of phrases for some 0 < r < 1. Thus, based on our results from the previous section,

we shall be able to prove the following theorem.

Theorem 2 Consider a Markov source with initial probability vector p. Then Jor large m

E[D~[( (p)]

Var[I,';;K (p)]

1
E[~K(p)] + 0(1) = h lum + 0(1), (38)

Var[D,';;I«p)] + 0(1) ~ ~ 3 (_i!- - ~,,(;t'" - h2
) Inm+ 0(1) (39)

h· w w

with the notation as in Theorem 1, and

(40)

(41)

with the rate oj convergence O(l/Vlnm). In addition, the normalized D ~ K ( p ) and I;';'!«(p)

converge in moments to the corresponding moments oj the standard normal distribution.

2.3 Lempel-Ziv Model

Finally, we deal with the Lempel-Ziv model in which a Markov sequence of fixed length n

is partitioned in (a random number) M n of (full) phrases. As before, Ii represents the ith

phrase for 1 ~ i S Mn . We write I n for the last full phrase which also becomes I n = IMn ·

The typical phrase length .6.n is defined as follows:

lv!ma>: 1 m

Pr[lln = k} = L: - L:Pr{I, = k & Mn =m}
m=Mmin m:i=1

18
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where Mmin = O(..jn) is the minimum number of phrases and Mmax = O(njlog2n) is

the maximum number of phrases (cf. [11]). In passing, we should observe that there is a

relationship between the phrase length Ii and the number of phrases M n . Indeed,

m

M n ~ max{m' 'LJfK ~ n}
j;o:;l

where in the above we explicitly show that the phrase length IfK is the one corresponding

to the phrase length in the GK model.

Using Theorem 2, we shall prove below the following result.

Theorem 3 Let a Markov source generates a single sequence of length n. Then, for large n

tin - E[tin) -> N(O 1)
JVarD..n ' ,

In addition, b.71 converges in moments, and in particular

(43)

1
E[J,,] - hln(nh/lnn),

1(f3 2 .• ')Var[JnJ- h3 -;;;-;;;"Q ,p-h In(nh/lnn)

(44)

(45)

urn)

,,(n)

provided the number of phrases Mn converges exponentially to its mean.

Proof. Let

~ !:.In (""-)
h Inn'

2- (_I!- _~"Q',p _ I.') In (nh)
h3 w w Inn

We are going to prove that for any e > 0 and for all set of integers B

lim sup max (Pr{b.n E B} - Pr{DlP+ell'(nJJ E B}) ~ 0
n-l-OO B

and

lim ,up max (P,{D(ll-clplnIJ E H) - P,{tin E H}) ~ O.
n-->oo B

First of all, observe that for any ~ > 0 (cf. [24J)

lim P,{M n ~ ((1 - e),,(n), (1 + e),,(n))) = O.
n~oo

We rewrite (42) as

n 1 m

P,{tin E H} = L: - L:p'{IpK E H & Mn = m}
m;o:;l m l;o:;l

10
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for any set of integers B. Then

m=L(l+e)lI(n»)J 1 m

Pr{L'.n E B} ~ on + L: - L:Pr{IfK E B & Mn ~ m}
m

m=l(l-e)lI(n)J l=l

with On = Pr{Mn ~ «1 - e)l'(n), (1 + e)l'(n))}. We have the following chain of trivial

inequalities

m=l(l+e)tz(n»J 1 l=iL(l+e)lI(n)J

< on+ L: - L: Pr{I,EB&Mn~m}
m

m=r(l-e)J..l(nll l=l

m=l(1+e)JI(n»)J 1 l=l(l+e)lI(n)J

~ on + L: (1- e) (n) L: Pr{IfK E B & Mn ~ m}
m=r(l-e)/J(n)l JL l=l

1
m=l(t+e)J..l(n»)J

+ e '" { GK }< On + (1- c) L..J Pr D l(l+e)lI(n)J E B &Mn = m
m=r(l-e)lI(nn

< On + (~ ~ :) On + (~ ~ :) P r { D m ~ e ) t z ( n ) J E B}

In a similar manner, we prove a lower bound

Pr{L'.n E B} ~ G~ ;) On + G~ ;) Pr{Df<L1-<n)J E B}.

The above two inequalities prove (48) and (49). For the convergence in moments we need

On = O(e-nn ) for some a > 0, which is assumed to hold.•

Remark. Merhav's result [15] allows to conclude that for Markov sources

Pr{Mn ~ l'(n)(l + e))} ~ (1 + o(I))e-nn

for a constant Q' > 0 and c = 0(11 -Ilog n). Unfortunately, we do not see an easy way to

convert Merhav's proof for the left tail of M n . 0

As a consequence of Theorems 2 and 3, we can derive bounds on the average redundancy

rate Rn of the Lempel-Ziv code for Markovian sources. To recall, consider a Markovian

sequence of length n for which the Lempel-Ziv code is en. Then, the redundancy rate is

defined as

Rn= fn-nh.
n

We denote by Rn = E[RnJ the average redundancy rate. Using the approach recently pro­

posed in Louchard and Szpankowski [12], we obtain from Theorem 2 the following bounds

2 - l n r - 7 + h , + b + ~ - 0 3 ( l n n ) (1+0(1)) ~ R.

"
Inn ~

2 - 7 - h + m i n p h p + b + ~ - 0 2 ( l n n ) ( ())
:::;: Inn 1+01
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where r = LllEA mini{Pill} and r is a vector of size V whose jth component is equal to

mindpij}/r (cf. Lemma 11).

3 Analysis of Markov Independent Model

As mentioned before, the analysis of MI model is at the heart of our contribution to analytic

information theory. In view of this, we present here a detailed proof. It is based on such

analytic techniques as: analytic poissonization, Mellin transform, singularities of a complex

matrix, and analytic depoissonization.

3.1 Poissonization and Mellin Transforms: Analysis of Moments

We first consider the stationanj Markov source. The generating function Bm(u) of the average

profile satisfies (4) with the initial vector p = 7L Observe that the conditional generating

functions B:n(u) fulfill the system of recurrence equations (5). We shall first deal with (5).

There is no easy way to solve these recurrences, and therefore, we transform them to the

Poisson model in which m is replaced by a Poisson random variable with mean (complex) z

which becomes m when z is restricted to positive integers. Let

be the Poisson transform of B:n(u). In addition, we shall write B ~ ( z , u) ;= %zBi(z, u) for the

derivative of iii(z, u) with respect to z. After some simple algebra, we have the following

Poissonized differential-functional equations ofrecurrences (4) and (5)

and

- - -1 -"B,(z,u) + B(z,u) = u[B (U'''IZ) + ... + B (u,,,yz)] + 1, (50)

_. _. -1 -v
B;(z, u) + B'(z,u) = u[B (U,PilZ) + ... + B (U,PiYZ)] + 1 for all i E A. (51)

Let us now concentrate on the evaluation of the first two moments of the depth, that

is, we need the first two derivatives of B(z, u) with respect to u at u = 1. We derive the

following two systems of functional equations after taking into account that .8i(z,l) = z,

7ft + -.. + 1JV = 1 and LJ=1 Pij = 1

- - -1 -v
B,"(z, 1) + B"(z, 1) = z + [Bu(l, "IZ) + ... + B" (1, "yz)],
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-y -y
B,.(z, 1) + Bu (z,l)

and

Our goal is now to solve asymptotically (as z --t 00 in a cone around !R(z) > 0) the above

two set of functional equations. It is well known that equations like ~ h e s e are amiable to

attack by the Mellin transform (cf. [3]). To recall, for a function j(x) oheal x, we define its

Mellin transform F'" (s) as

F'(s) ~ MIf(t);sJ = /,00 f(t)t"'-ldt.

In some of our arguments we could use either Mellin transform of a complex variable function

j(z) or an analytical continuation argument. It is known (cf. [7J) that as long as arg(z)

belongs to some cone around the real axis, the Mellin transform F(s) of a function j(x) of a

real argument and its corresponding function of a complex argument is the same. Therefore,

we work most of the time with the Mellin transform of a function of real variable as defined

above. In our case, a direct solution through Mellin transform does not work well, and

therefore we factorize the Mellin transforms of the above functions as follows:

W(s)

B"(s)

Ci(s)

C"(s)

.- M ( B ~ ( z , 1); sJ ~ r(s)x,(s),

.- M(Bu(z, 1); sJ ~ r(s)x(s),

M ( B ~ , , ( z , 1); sJ ~ r(s)v,(s),

.- M(Buu(z, 1); sJ ~ r(s)v(s),

iE A

i EA

(54)

(55)

(56)

(57)

where r(s) is the Euler gamma function, and Xi(S), x(s), Vi(.") and v(s) are unknown. The

lemma below establishes the e x i s ~ e n c e of the above Mellin transforms.

Lemma 2 The Mellin transforms Bi(s), B*(s) and Ci(s), C'"(s) exist for !R(s) E (-2, -1).

In addition,

x,(-2) 1, x(-2) ~ 1,

.,(-2) - 0, v(-2) = O.
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Proof. The proof is quite standard and replies on the Lemma 2 from [13]. We lea.ve the

details to the interested reader.•

Now, we are ready to compute the Mellin transforms of B ~ ( z , 1), B ~ u ( z , 1) (cf. (52) and

(53), respectively) with respect to z. We obtain

-(s -1)B'(s -I) + B"(s) ~ Bi(s)",' + ... + By(s)";;', (58)

-(s -1)Bi(s -I) + Bi(s)

-(., - I)By(s -I) + By(s)

and

-(s - I)C;(, -1) + C;(s)

-(s - I)C;'(., - 1) + C;,es)

2[B;(.'I)Plt + ... + Bv(s)PIJJ + [Cj(s)Plt + ... + Cv(s)PIJJ,

2{Bj(.'I)pV~ + ... + Bv(s)pySvl + [Cj(.'I)Pv~ + ... + Cv(s)pyvl·

In the above, we used the following two properties of the Mellin transform (cf. [3]):

M[f(ax); sJ ­

M[!,(x); sJ

a-'F"(s),

-(s - 1)F"(s - 1).

Unfortunately, the above systems of Mellin transforms do not have simple explicit solu­

tions. But, we may obtain ones in terms of the functions Xi(S) and Vi(S) defined in (54) and

(56) due to the following property of the gamma function: r(s) = (.'I -l)r(s -I). To present

these solution in a compact form, we use from now on matrix notation. Let

Xl (s) VI (s)

xes) ~
x,es)

v(s) ~
V,(s)

xv(s) w(s)

In addition, we define

Bi(s) Ci(s)

b(s) ~
Bits)

c(s) ~
Cits)

By(s) Cy(s)
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Now, the system of equations (58) and (59) become

x(s) - x(s -1)

v(s) - v(s -1)

where P = {pi?}i,jEA. Thus,

P(s)x(s),

2P(s)x(s) + P(s)v(.,),

x(s) - Q-l(s)x(s - 1) = (gQ-l (, - i)) K,

v(s) _ 2Q-l(s)p(s)x(s) + Q-l(S)V(s -1)

(62)

(63)

where Q = I - P and J is the identity matrix, and K is defined in (6). The formula on K

fDllows frDm Lemma 2 (i.e., x(-2) = (1, ... , 1)T) and (62). In the next sectiDn we prDve

the convergence Df the abDve infinite product (cf. Lemma 4), hDwever, we shall nDt use this

explicit infinite product solution anywhere in Dur further analysis.

Thus far we have obtained the Mellin transforms of the conditiDnal generating functiDns

Bi(z, 1). In order tD obtain the composite Mellin transform B-(s) and C·(.o;) of Bu(z, 1) and

B uu (z,1), respectively, we refer to (58) and (59) and, after some algebra, we finally obtain

B'(s)

C'(s)

p(s)b(s) + r(s)x(s -1),

2p(s)b(s) + p(s)c(s) + r(s)v(, - 1),

(64)

(65)

where p(s) = (1l"Is, ... , 1l"yS) in the stationary case and p(s) = (PIs, ... ,PVS) in the nonsta­

tionary case. We shall see that the dominant asymptotics of B*(s) and C-(s) are determined

by asymptotics of b(s) and c(s) which depend on singularities of Q(s) that we discuss next.

3.2 Singularities of the Matrix Q(s)

We study here singularities of the matrix Q(s), which play central role in the asymptotic

analysis of the depth. We prove the following lemma that characterizes the location of

singularities of Q(s).

Lemma 3 Let Q(s) = I - P(s) and P(s) = {PijshJEA. Let Sj denote singularites of Q(s),

where I E Z is an integer. Then:

(i) Matrix Q(s) is nonsingular for lR(s) < -1, and So = -1 is a simple pole.

(ii) If and only if

lnpij + lnPli -lnPlj E (!I,

lnPll
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where Q is the set of rational numbers, matrix Q(s) has simple poles on the line R(s) = -1

which can be written as

Sl = -1 +IOi

where i = v=r and

where integers nl,n2

pnmes_

(iii) Finally,

B- n l l ~ 1
- n2 lnpll '

are such that {In ~ I p (lnPii-lnPli+lnplj)I}V
2 11 l]=l

Q(-l +/Oi) ~ E-'Q(-l)E'

is a set of relative

where E = diag(I, e012i , ... , c81Vi ) is the diagonal matrix with Oil.: = -Olnpik_

Proof. Observe that for R(s) < -1,

11 - piisl ~ 1 -[pitl > 1 - Pii = LPij ~ L Ipi?!,
jici #i

(67)

hence Q(s) is a strictly diagonal dominant matrix, and therefore nonsingular.

Now, we proceed with the proof of part (ii) of the lemma. For b 'I- 0 such that Q(-1 + bi)

is singular, let x = [Xl, X2, ... , XvY 'I- 0 be a solution of Q(-1 + bi)x = 0, where

1-Plle{lli -P12e62i -PIVe{IV i

-P21C6ti 1 - P22e62i -P2Ve{2V i

Q(-l+bi) =
-Pile{,li -Pi2 e{;2 i -PiVe!;w i

-pvle{V\i -PV2 e{V2 i 1- PVVe{vvi

with {ik = -blnpik· Without loss of generality, suppose IXII = max{[xll, jX21, ... , Ixvl} f= 0

(since Q(-1 + bi) is singular). Then

implies

But as in (67)
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and

Thus

1 - Plle6d = 1-Pu,

P12C62ix2!Xl + ... + plvef.lvixv/Xl = P12 + ... +PIV-

This implies

and IXil = IXj I for any i, j = 1,2, "'J V, so that ef.ii i = 1 for all i. Define now (i such that

Xi/Xl = e-6ii = ef.i i , Then,

for any 1 ::; j .::; V. Note that since

-pjI - Pj2 - ... - PjU-I) + 1 - Pjj - "OJ -PjV = 0,

Hence -b(lnpji + lUPlj -IOpti) = 211'nji for some integer nji, and as a consequence (luPij +

Inpli -lnplj)/lnPll is rational for any i,i = 1,2, ... , V.

To prove the inverse part of (ii), suppose b is such that 1 2 ~ ( l n p j i + 1uPtj -lOPtdl are

integers for any i, j = 1,2, "0' V. Then

1 - Pucf.ui -P12Cf.12i -Plvef.lvi

-P21ef.21 i 1- P22Cf.22i -p2Ve6vi

Q(-l Hi)
_Pilcf.id -Pi2ef.i2i -PiVe{;v i

-pvlef.v1i -pv2ef.v2i 1- pvvef.vvi

1-Pu ~ P 1 2 e ( f . l - f . 2 ) i -PIve(6 -f.v)i

_P21 e{f.2-f.l)i I-P22 -P2ve(6-{v)i

-
-Pile(I;;-6)i -Pi2e({;-{2)i -PiVe({;-{v)i

_pn e({v-6)i -PV2e({v -{2)i I-pvv
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[d O (1 -{, -" -'V)]-lQ( l)d" (1 -{, -6 -'V)= lag ,e ,e ""le - lag,e ,e , ... ,e

Since Q(-1) is singular, so Q(-1 + bi) is. Hence s = -1 + bi is a pole of Q(s) if and only

if 1 2 ~ (Inpii + lnPlj - InPli)! are integers for any i, j = 1,2, .. _, V Since { 1 2 ~ (lnpij + Inpli ­

Inplj)Il~=l is a set of relative primes, hence b = 1O for some integer l. Part (ii) is proved.

Part (iii) can be inferred from the above proof. _

Observe that for the memorylcss case, that is, when Pji = '1ri, condition (66) becomes

i ~ : ~ E Q for all i,j. This agrees with previous known results (cf. [7]).,
Finally, as a simple consequence of the above, we prove the convergence of the infinite

product that appears (62).

Lemma 4 The product
=IIQ-l(8 - i)

1=0

converges faT !R(s) < -1, and it can be differentiated with respect to s term by tenn.

Proof. For !R(s) < -1, every factor of the above infinite product is non-singular, and

[IP(s)1I ~ Vp-s, where p = maxi,j{Pij} < 1. For k large enough such that Vpk < ~,

we have IIQ(s - k)lI ~ 1 + 2Vp-..+k. Since L ~ k P - s + i < 00, hence I I1~o Q-l(s - i)1 ~

[]~o IIQ-l (8 - i) II < 00" •

3.3 Asymptotic Expansions for the Moments in the Poisson Model

As outlined above, we seek the asymptotics of Bu(z, 1) and Buu(z, 1) for large z, which further

will lead through depoissonization to asymptotics of the first two moments of the depth. We

derive asymptotic expansions of the moments in the Poisson model by applying the inverse

Mellin transform. In particular,

B.(z, l)

B."(z, l)

1 /-1+'= '()_'
- 27l"i -.:!-ioo B s z ds,,

1 /-.:!+iCO
~ -2. 2 C*(s)z-sds.

7rl - ~ - i o o

The evaluation of the above integrals is quite standard (e.g., see [10, 14]): We extend the

line of integration to a big rectangle right to the integration line, and observe that bottom

and top lines contribute negligibly because the gamma function decreases exponentially with

the increase in the magnitude of the imaginary part. The right side positioned at, say d,
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contributes Izl-d for d -4 00. Thus, the integral is asymptotically equal to minus the sum of

residues positioned right to the line of the integration, that is, (-~ - ioo, - ~ + ioo). But, the

residues of the above depend on the singularities of just studied Q(s) and gamma function.

To estimate them, we expand the function under the integral around these singularities.

Let us start with the dominant singularity at So = -1, and derive the Laurent expansion

of xes) and v(s). By Lemma 3, we can write

1
Q-1(S) ~ --1Q, + Q, + O(s + 1),

s+

where Ql, Q2 are V x V matrices. Since

xes - 1)

r(s)

- </> + x( -2)(8 + 1) + O(s + I)'),
-1

- --1 + l' - 1 + O(s + 1),
s+

we obtain from (54), (62) and (56), (63)

b(s)

c(s)

1 1
r(s)Q-1(s)x(s-I) = ( ),a, +--Ia,+O(I)

s+ 1 s+
- 2r(s)Q-'(s)P(s)x(s -1) +r(S)Q-1(S)V(8 -1),

1 1 ( 1 )
- (8+I)3 f1 + (8+I),f,+0 s+I

(69)

(68)

O"(s)

B"(s)

where al, a2, f1 and f2 are vectors of constants for which explicit formulre are presented

below the next lemma. In addition, by (64), (65) and the fact that xes - 1) = 1 + O(s + 1),

V(8 - 1) = O(s + 1), we bave

( 1 ),11"a1+~1(11"a,+p(-I)a1-I)+0(I),
s+ 1 s +

( 1 )311"f1 + ( 1 )' (p(-I)f, + 11"f, + 211"a,) + 0 (_1_) .
s+l s+l s+l

where p(-1) = :s Is=-IP(S) = (-1rIm 1rl, ... , -:llV In1rv).

To derive explicit expressions for the vectors at, a2, f 1 and f2 we need the following lemma

which proof is standard and is omitted (detailed proof can be found in [22]).

Lemma 5 Let us define

11"1 11", nv

n, n, nv
II= =</>011"

n, n, nv
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and let Q* = {qji}~=l be the adjoint matrix o/Q(S)ls=_l. Then

,,-I1 ~"-, II' = II, II',/> ~ ',/>, (70)

d d
ds det Q(s)ls=-t = ds det Q(s)ls=-l+ib = -wh, qji = Wll"i, Q'" = wIl, (71)

1 ~ fi 1 ~
Q, = -hIl , Q, ~ - wh - 2wh,I1, Q,I'=-l+ib ~ -hE I1E. (72)

2· 1 2· 1
Q, P(-I)',/> = h',/>' Q, P(-I) ~ hIl , (73)

where s = -1 + bi is a pole of Q-l(S).

Using the above, we finally obtain after some tedious algebra

In summary, using (68) we obtain the following expansion of B*(s) around the dominant

pole at So =-1

B"(s) ~ 1 1 + _1_ (_.!.('Y -1) + .!...-,,-Cl"',/> + ~ + .!.,,-x(-2) + h,,- _ 1) +0(1)
(s + 1)2 h s + 1 h wh 2wh2 h h '

while (69) becomes

-2 2 (-h,,- 'Y - 1 fi
C"(s) - h'(s + 1)3 + (s + 1)' h' + h" - wh3

- ~,,-x( -2) - ~,,-cr',/» + 0 (_1_) .
h2 wh2

S + 1

Now, we deal with the asymptotics related to the nondominant poles s/ = -1 + IOi for

l # o. By Lemma 3, we have

-1 1 -1

Q(s) ~ h s + 1-19i x E !IE + 0(1).
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Therefore,

h(s) r(S)Q-l(S)X(., -I)

r(-I+IOi) (-.!cE-1IlEI)X(-2+lOi) I 10" +0(1),
h s+l- 1

-~r(-I + lOi) ("E
l
x(-2 + lOi)) E-

I
1{J s + II lOi + 0(1),

I I
-,/I1{J(I) s + I 10i + 0(1),

c(s) 2r(s)Q-2(s)p(s)x(s -I) + r(s)Q-l(s)v(s -I),

2 ~ 2 r ( - 1 +lOi) ("E
l
x(-2+lOi)) E-

I
1{J (s+ II 10i)' + 0 C+ II_

lOi
),

2 I (I)
- h2PI1{J(l) (s + 1-10i)2 + 0 S + l-lOi .

whe,e PI = r(-I + lOi) ("Elx(-2 + lOi)) and 1{J(l) = E- I 1{J, In snmm"y, by (64) and (65)

at s = -1 + lUi we obtain

BO(s)

CO(s)

- -.!cPIP(-I+lOi)1{J(I) I lOi +0(1),
h s+ 1

= ,2,2P1P(_1 + lOi)1{J(I)(s + II +o( I )
lOi)2 S + I -lOi '

Finally, we handle singularities in the half plane !R(s) > -1. We consider two cases:

-1 < lR(s) :::; aand !R(s) > O. Let Z .. be the set of singularities s" of Q(s) lying in the strip

-1 < !R(s"):::; 0, while Z+ be the set of singularities in !R(s) > O. At the pole s" E Z.

BO(s) = _1_,,(s")r(sO)R(sO)x(sO - I) = _I_r(so)
s-s· s-s"

where R(s·) is the residue matrix of Q-l(s) at s·. Note that s = 0 is the double pole. An

application of the inverse Mellin transform gives for z -4 00,

.!cz Inz + .!c ("Y - I - L - .!c"O°1{J - "x(-2) + h - h,,) z (74)
h h 2wh w

~ I>I"1{J(I)ZI-l8i + L r(s")z-'- + r(O) + L r(s")z-'-
1=0 s"eZ. s"eZ+

- .!czInz+.!c ("Y-I- L - 2."O"1{J -"x(-2) +h - h,,) Z+OI(Z) +O(lnz)
h h 2wh w

where

01(Z) = -~ LPI"1{J(I)zl-lOi + L r(,O)z-'-,
1=0 s·EZ.
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Observe also that r(O) + Ls"EZ+ r(s·)z-s· = O(lnz). In a similar manner, we obtain

- ~zln2z+2- (,-1_L_~1r(t1/J-h1r-1rX(-2))zlnz
h2 h2 wh w

+ ~2 2:>,.,,{I-lOi)1/>{I)zl-IO' lnz + O(z)
1=0

(76)

as z -} 00 in a cone around the real axis.

3.4 Analytic Depoissonization

The above asymptotic formulce concern the behavior of the Poisson mean and the second

factorial moment as z -+ 00. More precisely, we had to restrict the growth of z to a linear cone

So = {z: Iarg(z)1 :$ e} for some lei < 11"/2. But, our original goal was to derive asymptotic..'i

of the mean E[Dml and the variance Var[Dml in the 111 model. To infer such a behavior

from its Poisson model asymptotics, we must apply the so called depoissonization lemma.

Tills lemma basically says that mE[Dm] ""' B(u(m, 1) and mE[Dm(Dm - l)J '" Buu(m, 1)

under some weak conditions that will be easy to verify in our case. The reader is referred

to [7, 8, 9J for more details about depoissonization lemma. For completeness, however, we

review some depoissonization results that are useful for our problem.

Let us consider a general problem: For a random variable X n define 9n as a func~ional

of the d i s t r i b u ~ i o n of X n (e.g., gn = E[XnJ or gn = E(X~]), or, in general, assume 9n is a

sequence of n. In some situations (e.g., for limiting distributions we need to consider the

generating function Gn(u) = E[uXnJ (for a random variable Xn) for a complex u which can

be viewed as such a gn (wi~h a parameter u belonging ~ o a compac~ set). Define ~ h e Poisson

transform of 9n as G(z) = L~=o gn ~~ e-z (or more generally: G(z,u) = L~=o Gn(U)~~ e- Z for

u in a compact set). Assume ~ h a t we know the a s y m p ~ o t i c s of G(z) for z large and belonging

to a cone 80 = {z: Iarg(z) I :$ O} for some lei < 11"/2. How can we infer a s y m p ~ o ~ i c s of gn

from G(z)? An answer is given in ~ h e depoissonization lemma below (d. [7, 8, 9]):

Lemma 6 (DEPOISSONIZATION LEMMA)

(i) Let G(z) be the Poisson transform of a sequence gn that is assumed to be an entire junction

of z. We postulate that for 0 < lei < 11"/2 the following two conditions simultaneously hold

for some numbers A,B,{ > 0, f3, and a < 1:

(I) For z E So

(77)

where ¢(z) is a slowly varying function (e.g., ¢(z) = logd z for some d > OJ,
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(0) Forz ~ So

Then, for large n,

or more precisely:

Izi > < => IG(z)e~1 s: Aexp(alzl) .

g" = G(n) + O(n~-l¢(n)) ,

(78)

(79)

g" = G(n) - ~G"(n) + 0(n~-2¢(n)) .

(ii) If the above two conditions, namely (I) and (O), hold for G(z,u) for 'U belonging to a

compact set U, then

G,,(u) = G(n, u) + O(n~-I¢(n)) (80)

for large n and uniformly in u E U.

(iii) Let g(z) be an analytic continuation of a sequence 9n whose Poisson transform is O(z),

and such that g(z) = O(zP) in a linear cone. Then, for some 80 and for all linear cones So

(8 < ()o), there exists Q' < 1 and A> 0 such that

z ~ So IG(z)e'l s: Aeal'l.

In summanj, when 9(Z) has a polynomial growth, then conditions (I) and (O) above are

automatically satisfied and (79) holds.

Now, we are equipped with the tool to depoissonize it(z,1) and Buu(z,I), and ob­

tain asymptotics for the mean E[Dml and the variance Var[Dm]. Observe that E[Dm] =

O(mlnm) and Var[Dml = O(mlog2 m), hence by Lemma 6 we can depoissonize the Poisson

estimates. We obtain

- .!.lnm+.!. (,.,-1 +h- h'IT - L - .!.'ITO·,p - ",«-2)))
h h 2wh w

+ Ot(m) + 0 C:m ).

(81)

To derive the variance, we observe that LS"EZ. r(s"')m- s' = O(m-6) for some t5 > 0, thus

such terms will not appear explicitly in the following formula where only f!(lnm) terms are

considered. Again, by Lemma 6 we arrive at

1 2 2 ( f3 2 Q.' . ( ))-In m+- f-l----7r 'ljJ-h7r -7rx -2 lum
h2 h2 wit w

+ EIDm ) - E(D~J + 0(1)

_ ~ln2m+ 2- (,.,-1 ~ J3..- - ~'ITO',p -h'IT - ",«-2)) lnm+ .!.lnm
h2 h2 wh w h
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2- ln'm- ~ (7-1 + h- hoc - L - ~"Q'.p -",,(-2)) lnm+O(l)
h2 h2 2wh W

_ 2- (_f!- _~"Q'.p _ h') Inm + 0(1). (82)
h3 w W

Thus, (7) and (8) of Theorem 1 are proved.

3.5 Limiting Distribution

Finally, we prove here the limiting distribution of the depth Dm , just finishing the proof of

Theorem 1. We repeat here the system of functional equations (51), that is,

Observe that Bi(z, 1) -z = 0, B(z, 1)-z = 0, Bi(z, u) -z = (u-l)Ai(u,z), and B(z,u)-z =

(u -l)A(u,z), where Ai(U,Z) is a power series ofu and thus analytic function of z. Let

Z;(u, s) ~ M[Bi(z, u) - z; s] = r(s),,(u, s) = (u - I)A,(u, s), i E A

Z'(u, s) = M[B(z, u) - z; s] = r(s),(u, s) = (u - I)A'(u,s)

be the Mellin transforms, where ~ i ( U , s) and ~ ( u , s) are unknown functions.

Lemma 1 The Mellin transforms Z;(u, s), Z"(u, s), Ai'{u, s) and A"'(u, s) exist for !R(s) E

(-2, -1). In addition, Z;(u, -2) = u -1, Ai(u, -2) = 1, Z"(u, -2) = u - 1, A*(u, -2) = 1.

Proof. By the same argument as in Lemma 2 of [13J.•

We proceed along the same lines as before, thus leaving out detailed explanations. After

applying the Mellin transform to the above system of functional equations, we find

Z*(u, s) - (s - l)Z-(u, s -1) = u[Z1'(u, s)1f1
s + ... + Z;'(u, s)1fi/],

Zi(u, s) - (s - I)Zi(u, s - 1) = u[Zi(u, s)pii' + ... + Zv(u, s)p,v]

Zv(u,s) - (s -1)Zv(u,s -1) = u[Zi(u,s)pv~ + ... +Zv(u,s)pv(,].

Let

r(s),(u, s) =

Zi(u, s)

Z2"(u, s)

Zv(u, s)

= (u - 1)
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Then, the above becomes

e(u, s) - e(u, s - 1) ~ uP(s)e(u, s),

that is,

e(u, s) = [I - up(sW'e(u, s - 1).

This leads to

Z"(u,s) = up(s)r(s)[l-up(sW1e(u,s -1) +r(s)e(u,s -1).

Let now set u = et for complex t -+ 0 so that u is in the vicinity of u = 1. We denote by

s,(t), k = 0, ±l, ±2, ... singularities of Q-l(t, s) ~ (1- e'P(s))-l Then, at s ~ sdtl,

Z"(e', sdt)) = e'.".(s,(t))r(sdt))R,e(e', s,(t) - 1) 1 () + 0(1). (83)
S - Sk t

where Rk is the residue matrix of Q-l(U, s) = (I - uP(s)]-l at S = Sk(t). In addition, one

must consider two poles of the gamma function r(s) at S_1 = -1 and So = O. The latter pole

contribute 0(1) while the former -z~(u, -1). But, by Lemma 7 we know that ~ ( u , -1) = 1,

thus thc total contribution of these two poles is -z + 0(1). Therefore, by the inverse Mellin

transform,

00

.8(e', z) = e' L 1I"(s,(t))r(s,(t))R,e(e', s,(t) - l)z-',(') + 0(1)
k=-oo

as z -+ 00 in a conc. As before, the leading contribution to thc asymptotics comes from the

pole so(t).

To obtain an asymptotic expansion for the original generating function Bm(et ) we apply

the depoissonizaUon lemma Lemma 6(ii). Since B(z,e l
) = O(zlogz), we conclude that

Bm(e') = .8(m,e') + O(logm) where

B(m, e') e'p(so(t»)r(so(t»Roe(e', so(t) - l)m-"(')

+ e' L p(s,(t))r(sdt))R,e(u,sdt) -l)m-"(') + 0(1).
k¢.O

Let now as in (8) and (20) (see also Appendix)
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L(s,(t) -1)p(s,(t))R,a(sdet) - I)
k¢O

which is the coefficient at Inn of the Var[DmJ. As in [6] we obtain, after some algebra,

t v2 t2

sort) -I - h - -2- + Ott'),

I
Ro -hII + ott),

h
[(sort)) - -/ + 0(1),

e(so(t) - I) - t1/> +0(t2
),

p(so(t)) - ,,+ ott).

To derive the above, we just observe that the expansion of so(t) is obtained via the Lagrange

inversion of 1 - et ),(s), or better, of function t + log ),(s), at s = -1 which results in t + (s +
I)~( -I) + (s + 1)'(;;I-ll-~;;I-l))') + 0(05 + I)'. We again identify ~ ( - I ) = h. The residue Ro

is computed by using the fact that Q-l(et,s) = (1 - el'\(s))-l'¢(s) ® 7t"(s) + 0(1). Observe

also that

limp(so(t))[(so(t))Roe(et, so(t) -I) = "II1/> ~ 1.
HO

We now set t = ...I..... = O(I/vlnm) for some fixed 'T and am .,fVarDm. Then
Urn

"m-1-so{t) = eTJl.m/ 17m+T(1 + OCt)) and Dm(et ) = B(et)jm leading to

e-TJl.m/17mDm(eT/Un, ,m) = e-T/-lm/Um (eT/-lm/17m+T22 (1 + OCt))

+ e-tm-I-,,(t) 2)u _ I)(s,(t) - l)p(s,(t))R,a(s,(e') _ I, u)m"ltl-',ltl + 0 (log m))
k ~ m

= e'; (I +to ( ~ ( S , ( t ) -1)p(s,(t))R,a(s,(et) -I,U))).
In the above, we use the fact that !R(so(t)) :$; !R(Sk(t)) proved in [6J which allows to bound

]mso(t)-S/i:(t)1 :$; 1. To complete the proof, it suffices to show that the sum appearing above is

0(1). Let sdt) ~ x,(t) + y,(t)i,

< L I(sdt) -1)llIp(s,(t))IIIIR,lllla(s,(et
) -1)11

k¢O

I
oS L -I1M ~ 0(1).

k¢O Yk

Here, we use the fact that Ai(u, z) is infinitely differentiable, thus its Mellin transform satisfies

l i m Y ~ l X l l y l M Ai(u, x + yi) = 0 for any M > D.

In summary, we just shown that
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which completes the proof of Theorem 1.

3.6 Non-Stationary MI Model

Here, we show how to adopt the above derivations to the non-stationary model in which the

initial distribution is p instead of 1T. First of all, observe that p appears in equation (4) while

the conditional generating functions B:n(u) still satisfy (5). Thus, in (50) we must replace

7rj by Pi, but again (51) stays unchanged. This leads to the following Mellin transforms of

B,,(z, l) and B",,(z, 1) in the non-stationary case

B"(s)

C"(8)

p(s)b(s) +r(8)X(S -I),

2p(s)b(s) + p(8)C(S) + r(s)v(s - 1)

(84)

(85)

where p(s) = (PIs, ... ,Pv·'). Observe, however, that b(s) and c(s) are exactly the same as

in the stationary MI model. Since, as we disclL."ised before, the asymptotics of the mean and

the variance in the Poisson model depend mostly on the asymptotics of b(s) and c(s), we

may expect similar asymptotics results for the non-stationary model. Indeed, we obtain the

following expansions of B*(s) and C*(s) around the dominant pole So =-1

B"(s)

C"(s)

(s: I)'pat + s~ 1 (pa, + p'(-I)at -1) + 0(1),

(s: I)3 Pft + (s: I)' (p'(-I)ft + pf, + 2rrat) + 0 C~ 1) .

(86)

(87)

In view of the above, we conclude that the only term effected by the non-stationarity

assumption is related to p'(-I) (and also the fluctuating function) which is responsible for

replacing h1T by hp in the final results. Similar conclusions hold for the limiting distribution.

This proves Corollary 1.

4 Analysis of Fixed Number of Phrases (GK) Model

In this section we prove Theorem 2 using a combination of probabilistic and analytic tech­

niques. We start our discussion with the introduction of the so called tree-path that plays a

crucial role in the analysis. We study its property in Section 4.1, and in Section 4.2 we make

a connection between the tree-path and the depth (Le., phrase). Finally, in Section 4.3 we

obtain the limiting distribution for the phrase while in Section 4.4 we establish the existence

of the moments, thus proving Theorem 2.
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4.1 Tree-Path in Digital Search Trees

We consider a DST tree Tm built over m strings regardless of the model of strings generation

(e.g., MI, GK, or hybrids). For k ~ m we denote by h(Tm ) the depth of insertion of the kth

phrase in tree Tm. (Observe that Id1k) = h(Tm )). If the tree Tm is known from the context,

we often simplify the notation and write h.

We introduce now the so called tree-path. Let w = Xl x2 - - . Xk be a finite string whose

length we also denote as Iwl = k. We write (W)i for the prefix of W of length i, that is,

(W)i = X1x2··· Xi· Assume now that Tm is given. The tree-path Cm(w) associated with W is

a lCtrace" (path) in Tm when one follows symbols of W along a path in the tree Tm until the

paths split. More precisely:

Definition 2 The tree-path Cm(w) associated with a given string w in Tm is the largest

integer £ ~ Iwl such that there exist k ~ m which satisfies (i) (W)f is the prefix of phrase k,

and (ii) h(Tm) = e. In other words, it is the number of nodes minus one contained in this

path.

We now outline some properties of the distribution of the tree-path when DST is random.

The next lemma shows that the tree-path distribution satisfies a simple recurrence.

Lemma 8 (i) Consider any model of phrase generations. Then, for all integers m > 1

Pr{Gm(w) ::> k} - Pr{Gm_1(w)::> k} +

+ Pr{Cm-t{w) = k - 1 & (W)k is prefix of mth phrase}

fOT all k ~ O.

(ii) If the strings are generated according to the MI model, then (88) becomes

(88)

where p = (PI, ... ,PV) is the initial probability of generating the first symbol of the string

w = x1···xlwj.

Proof. To prove (88) we observe that the tree-path in Tm is greater equal than k if and only

if either it is greater equal than k in Tm_ 1 (i.e., the mth insertion does not follow (w)d or

the m insertion traces the word w up to k - 1 and the kth prefix of w is a prefix of the mth

phrase. •.

We need a simple technical lemma whose proof requires pathwise comparison of two

stochastic processes (trees).
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Lemma 9 Let w be a finite string. Consider two random DST trees TrA} and ~ 2 of respective

size ml and m2, with tree-paths Ginl (w) and G ~ 2 ( W ) , respectively. We assume that for all

wEAlwl

If we insert to both trees the same independent phrase (string), then the corresponding tree

paths Ginl+l(W) and C ~ 2 + 1 ( W ) still satisfy

for all w.

Proof. We remark that we cannot use Lemma 8 since there is no easy way of bounding

Pr{Gm(w) = k -I}. Thus, we shall rely on another approach, namely stochastic dominance

in which the independence assumption plays a central role.

Let us fix a given string w. By the pathwise stochastic dominance theorem [19], there

exists a probabilistic space on which a pair of DST trees ( ' r ~ l ' 7;;2) satisfies

• For i = 1, 2 the tree-path distribution of G:ni(w) on 7%i' is the same as the tree-path

distribution of C:n
i
(w) on the original trees ~ i j

• Gin t (w) :$ G~2(W) for every random event.

Now, we insert into both trees Tdi1 and 7;;2 the same independent random phrase. The path

distribution after insertion becomes, respectively, Cinl+l(W) and C ~ 2 + 1 ( W ) . It is easy to

check via Lemma 8 that the distribution of 15:,1;+1 (w) will be the same as the distribution of

C:n.+1 (w). We consider two cases, namely: either Gin! (w) ::; C~2 (w) -lor Ginl (w) = G~2 (w)

for every w. In the first case we must have Cin1+l(W):$ C~2+1(W) after the insertion since

the insertion of the new phrase can only increment by one unit the tree-path. In the second

case, we also have Cin1+tCW) = C;12+l(W) = k since the insertion of the new phrase can

either increment by one unit the tree-pathes of w on both trees or change nothing on both

tree-paths, depending whether (W)k is the kth length prefix of the new phrase.•

In a typical application of this lemma, we shall assume that for any word wand sizes m 1

and m2 the following

implies
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where C ~ ~ + 1 M J denotes the tree path in the GK model in which a new independent phrase

i ~ inserted.

Now, we are in a position to establish main results of this subsection, namely lower and

upper bounds on the tree path. Let C ~ K (aw) and C/i!l(aw) denote the tree-paths in the GK

and MI models, respectively, when the associated words aw starts with a given symbol, say

a. The following lemma presents an upper bound on C;;'K (aw) with respect to C/;! I (aw).

Lemma 10 The tree path C;;"K (aw) in the GK model is stochastically bounded/rom the above

by the tree path C~Jl (aw) in the MI model in which all the m phrases starts with symbol a

(i.e. P = Pa), that is,

for all w E Alwl and a E A.

CGK(aw) < CM1(aw)m _st m (90)

Proof. The proof is by induction on m. The property is true for m = 1. We now suppose

it is true for m - 1. Let us consider the path C,?tK (aw) in the GK model. We obtain by

Lemma 8

Pr{C:;;K (aw) ? k + I} ~ Pr{C;';J(, (aw) ? k + I}

v
+L Pr{C~::l (aw) = k & (m -l)th phrase ends with b}PbaPaXIPX1:l:2 ... PXIc_IX/c .

b=l

Since Pba ~ 1, and

b=V

L Pr{Cm_1(aw) ~ k -I & (m - I)'h phrase ends with b) ~ Pr{Cm_1(aw) = k -I}
b=l

we obtain

Pr{C;';K(aw)?k+l} < Pr{C;';J(I(aw)?k+I}+

+ Pr{C~~l(aw) = k}Pax1Pxlx2 ···P:l:k_1:l:k

= Pr{C~I(+MI(aw) ~ k+ I}

The last equality directly follows from Lemma 8 with Pa = 1. Therefore C;;'K(aw) ~ s t

C;;'K+MI(aw). To complete the proof, we usc the fact that

C ~ K + M I (aw) ::;Sl C:::J(aw) (91)

which is a consequence of the induction hypothesis, C ~ ~ t C a w ) ::;st C;:[.!.l(aw) and Lemma 9.

Indeed in both models, GK +MI and MI, the last phrase is statistically independent of the

m - 1 first phrases and therefore meets the conditions of Lemma 9. •
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Finally, we derive a lower bound on the tree path in the GK model. Below, we shall write

r(a) = mini{Pia} and r = EaEAr(a). We denote by C:[IB(r)(w) the path length in the MI

model with binomially(m,r) distributed number of phra.ses. We denote r the probability

vector consisting of r(;) for all a E A.

Lemma 11 The tree path C ~ K ( w ) in the GK model is stochastically bounded from the below

by the tree path C : : : ~ ~ ( T ) ( a w ) in the MI model in which the first symbol of all phrases i.<;

distributed according to r, and the number of phrases (strings) are generated according to the

binomial distribution with parameters m and r < 1, that is,

C .,18(,)( ) < CGK( )
m-l w _sl Tn W . (92)

Proof. The proof is by induction, and we shall imitate our proof of Lemma 10 with a few

changes. The property is true for m = 2, i.e., the second phrase starts with symbol a with

a probability smaller than r(a) regardless of the actual value of the first phra.sc. We now

suppose the property is true for m - 1 and let us take an arbitrary symbol a E A. We have

Pr{C,<;;K(aw) > k + I} = Pr{C,<;;~,(aw) 2 k + I} +
v

+ L Pr{C:;;~daw) = k - 1 & (m - l)th phrase ends with b) x
b=l

X PbflPflX1PXP;2 ••• PXk_IXk

{
GK ( GK r(a)> Pr Cm_1 awl ~ k} + Pr{Cm_ 1(aw) = k - l}r x --PXIX2 ••• PXk_1Xk

r

=(A) Pr{C:;;K+M1B(r)(aw) ~ k + I}

>(8) P r { C : ~ f ( ' ) ( a w ) 2 k+ I}.

Equation (A) follows from Lemma 8 after noticing that the line above could be interpreted

as the MT model in which the m phrase is inserted with probability r and the initial symbol

of every phrase ahs distribution r(a)fr. The inequality (B) is a consequence of the induction

assumption and Lemma 9. Observe that we omit the first phrase (so we have (m -1) in the

last line of the above) since it does not fall under our assumptions, Le., its first symbol is not

distributed according to r .•

4.2 Bounds on the Phrase Length and Depth of Insertion

In this subsection, we translate the bounds on the tree path Cm(w) into bounds of the depth

of insertion 1m in the GK model. We start with a simple observation which relates the depth
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of insertion with the tree-path. We have

Pr{1m = Iwl & w is a prefix of the mth phrase}

Pr{Cm_1(w) = Iwl-1 & w is a prefix of the mth phrase}

which further implies

Pr{Im ~ k} = L Pr{Cm_1(w) ~ k -1 & w is a prefix of the mth phrase}. (93)

Iwl=!.:

This and Lemma 9 lead immediately to the following useful result.

Lemma 12 Consider two random nST trees T ~ I and T,;,2' of respective size ml and m2,

with tree-paths Ginl (w) and C;'2 (w), and depth.'i of insertion I ~ I and 1;112' respectively. If for

all w

then an independent phrase inserted into both trees leads to the following inequality

on the depths of insertion.

Before we proceed with a formal derivation of the bounds on 1m , we present here a "guided

tour" through the proof. The first step of establishing a bound for IiftJ( in the GK model is to

break a strong dependency between phrases so that the precise results of the MI model can

be applied. We accomplish it by deleting the last J( phrases before inserting a new phrase.

We denote by I ~ I f < . the depth of insertion in the GK model when K last phrases are deleted.,

In order to make this idea useful, we need an inequality relating the depth IgI< and the depth

I;;:If<.. But, in (37)) of Section 2 we prove such a result which we repeat here for reader's,

convenience

I
GK IGK I GK K
m+l,J( S m+l S m+l,K + . (94)

Unfortunately, we could not establish an easy bound on I ~ I f < . But, in the previous section,

we proved a lower bound and an upper bound on the tree path that through Lemma 12 will

lead to bound on I ~ / ! . j ( A n where I ~ l 5 . 1 < M I denotes the depth of insertion in the GK model

when one inserts an independent phrase. The last step is to show that distributions of 1;;5<
and I ~ l 5 . i < M I are within distance em -7 O.

We start the analysis by showing that I ~ ~ < is within distance em --l' 0 from I ~ l 5 . j ( M I

which is crucial to our analysis.
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Lemma 13 The random variable IZ,~ is within distance em = O(mKlogp) from I ~ ~ 1 < M [ ,

where p < 1 is the mixing coefficient of the underlying Markov process. (We shall use a

short-hand notation Iz';k- 4: I~~1<MI + O(em) in such a situation.)

Proof. We shall use the fact that a Markov process over a finite space is a ¢-mixing process

with exponentially decreasing mixing coefficient (d. [1]). More precisely, let for some d and e
two events, say A and B, be defined on the sigma-algebras f ~ o o and fd+e' respectively (i.e.,

there is a gap of esymbols between the events). Then, if the underlying process is Markov

over a finite space, then there exists p < 1 such that

IP,{A&B} - h{A}P,{B}I :': P'P,{A}P,{B}

We now associate the event A with first m - K - 1 phrases and the event B with the mth

phrase. Actually, we consider I;;} which can be viewed as event A&B while I ~ r : . 1 < M [ is

composed of two independent events, A and B. That is, if Ee denotes the event that K last

phrases are of length at least esymbols, then for any set D of integers

IP,{IGK ED I £ } - Pr{IGK+M1 E D I £ }I < p1p,{IGf<+MI E D I £ }m,K e m-K e _ m-K e

Let us now fix e= K [3 log m for some [3 > O. In Lemma 14 below we prove that Pr{not Ed <

K exp( -AmO) for a: > 0, hence

IP,{IGK ED} - P,{IGK+M1 E D}I < em,I< m-K _ m

with em = p[<{Jlogm + K exp( -AmO) = O(m{J'Klogp) where [3' > o.•

Lemma 14 There exist A > 0, a: > °and [3 > 0 such that for all m > 0, Pr{ IZ,[< <

{Jlogm}:': exp(-Am")

Proof. By (93) we have

P'{I:i;K ~ k} ~ 1- L: P,{Gm-l(w) :': k -I}.

Iwl=k

Thus, we need an estimate for Pr{Cm_1(w) :5. k -I}. Observe that by Lemma 8

(95)

P,{Gm(w) = k I Gm_l(w) ~ k -I} - L: P,{I""t phI""e ends with a}P(a(w)kl
oeA

P,{Gm(w) ~ k -11 Gm_l(w) ~ k -I} - L: P,{I""t phr""e ends with a}(l- P(a(w)k_ll)
oeA
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where P(aw) denotes the probability of the string aw induced by the underlying probabilistic

model. Let now J.L = mina,bEA{Pab} > O. Then, the above implies

Pr{Cm(W) ~ k I Cm-I(w) = k -I} < P(a(w)kl,; 1

Pr{Cm(w) ~ k -1 I Cm_l(w) = k -I} < 1_/,'H

But then Pr{Cm(w) = k) ::; (';:)(1- J.Lk+l)m-k, and hence

Pr{Cm(w) ,; k} ,; k(7) (1 _/,'+1)"'-' ,; k(;) exp(-,/(m - k)).

Set now k = r- ~~~g: 1. Since (7:) ::; ~~ , the above becomes

where 1] > 0 is a constant. Finally, returning to (95) with k = r-~~~::, 1and noticing that in

this case Elwl=k 1 ::; m B for some B > 0, we obtain

Pr{IZI< ~ k} ~ 1 - m B exp(-ryvm)

which completes the proof. •

Finally, we are in a position to establish an upper bound (cf. Theorem 4) and a lower

bound (cf. Theorem 5) on the depth of insertion IgK.

Theorem 4 Let I ~ ~ K ( a ) be the depth of insertion in the GK model when the mth phrase

starts with symbol a, and I;;;.!.K(Pa) be the depth of insertion in the MI model with the initial

probability vector Pa = (0, ... ,1, ... ,0) where 1 is at position a E A (i.e., all strings start with

symbol a). Then, for any f3 > 0, there exists K such that IgK(a) is stochastically dominated

by a random variable that is within distance O(n-.B) from I;;;.!.K(Pa) + K

Proof. Let K be a fixed integer. We have from (94)

I{;.K (a) ::; I~;k(a) + K .

We also have

IGI< (a) ~ IGI+MI(a) + 0(, )m,K m-j( m

as a consequence of Lemma 13. Lemma 10 implies

IGI+MI(a) < I MI (p)m-K _st m-K a
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which completes the proof. •

The proof of a lower bound on I ~ K follows the same footsteps as above, so we only sketch

it here. As before, we shall write I ~ I B ( T ) ( r ) for the depth of insertion in the MI model in

which first symbol in each phrase distributes according to vector r and the number of phrases

is distributed according the the binomial(m, r) for some r < 1 The probability T and the

probability vector r are defined above Lemma 11.

Theorem 5 For any (3 > 0, there exists K such that I ~ K ( a ) stochastically dominates a

random variable that is within di.<;tance O(n-.B) from I : ~ ~ ( T ) ( r ) for some r < 1.

Proof. We have the following chain of inequalities

which completes the proof. _

4.3 Establishing the Limiting Distribution

We prove now that appropriately normalized I ~ K converges in distribution to the standard

normal distribution. Similar conclusion about the typical depth D ~ K will follow directly via

the Cesaro limit.

To simplify notation, let L m = I07l
m and Vm = ~ (-~ - ~7rQt-"" - h2

) lnm. We will

prove that for all x = 0(1)

lim p r { I i / , . ~ L m ~ x} = ~ roo e-t2/2dt.
m---)oo Vm v 211" II;

By Theorem 4, there exist {3 > 0 and K such that the following upper bound holds for all k

andm:

Pr{IZr< '" k I last phrase starts with a} ~ Pr{I':;!r«po) '" k - K} + O(n-
p

) (96)

Thus,

P r { I ~ K ~ k} L Pr{I;;;K ~ k ] last GK phrase starts with a}
oEA

x Pr{last GK phrase starts with a}

< L Pr{I;{':K(Pa) ~ k - K}Pr{last GK phrase starts with a} + O(n-.B)
oEA

By Corollary 1 we know that

I" p {I':;/(po) - Lm >} 1 100

-"I'dtImr x=-- e "
m---)co ~ - .j2; x
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(97)

Now, observe that L m - K = Lm + O(l/m) and Vm-K = Vm + O(l/m). Also, obviously

LaEA Pr{last GK phrase starts with a} = 1, which finally leads to

]GK - L 1 100
, 1 100

,
limslIpPr{ m ~ m ~ x}::; lim tr>= e-l !2dt = tn= e- f /2dt.

m-4OO Vm m-l"OO V 211" x-O(ljm) V 2'1l" :t:

A similar argument works for the lower bound, however, this time we shall use Theorem 5

and Corollary 2 and we do not need to split over symbols a. Certainly,

But, by Corollary 2, (I::fIB(r)(Pa)-Lm)/Vm.!!tN(O, 1), hence by a similar line of reasoning

as above we conclude that

rGK
- L 1 100

,liminfPr{ m ~ m ;::: x} ~ fiC e- t j2dt,
m-l-OO Vm V 2rr x

which completes the proof for the limiting distribution of I;;'K.

4.4 Establishing the Convergence of Moments

Finally, we prove the existence and convergence of moments of (I;;'K - Lm)/vv;;. where, as

before, L m = lo~m and Vm = -& (-g - ~1f'Ct,p - h2) lnm. We accomplish this by showing

that there exist constants At and al < 1 such that uniformly for all integers P.

(98)

Indeed, above will prove the existence of the moments exist and by uniform dominated

theorem their convergence to the moments of the normal distribution. Notice that in any

model 1m cannot be greater than m and therefore there is no need to check the inequality

for values of P. beyond m.

Below, we present details of the derivations only for the case Pr{1ZK - L m ~ P.~}

since the case Pr{1ZK - L m ::; - P . ~ } can be handled in a similar manner.

By (94) we know that 1ZK
::; 1;;5< + K for a fixed K. But, Lemma 13 asserts that 1;;5"<

is within distance em = O(mKlogp), where p < 1, from 1;;/!JMI. More precisely, for any set

of integers B

for 1] > O. From Theorem 4 we know also that

JGK+MI(a) < [MI (p)
m-K _sl m-K a,
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where above we indicated that phrases starts with symbol a. Finally, Corollary 1 implies

that there are constants A and a < 1 such t h a ~

Putting everything together, we obtain

P,{I,';;K ~ Lm + ev'i7,;;} < (1 + Em) I: p,{I:::lK(p.) ~ k - K}
.EA

X Pr{last GK phrase starts with a} + O(e-1h!m)

< A(1 + crn)al + O(e-17Vffl) ::; Alaf

since £ cannot be greater than m and therefore O(e-IJJTii) can be dominated by Alar

term. This prove the existence and convergence of moments which completes the proof of

Theorem 2.
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Appendix A: Alternative Representation of Theorem 1 Results

In this appendix, we show how to prove our alternative representations (19)-(20) for the

mean E[Dm ] and Var[Dml Instead of presenting a detailed derivations, as in Section 3, we

rather sketch here the proof.
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We concentrate on evaluating the mean. The starting point is (62), that is,

00

xes) ~ Q-l x (S -1) = L pk(s)x(s -1).
k=;O

Before we apply the spectral representation to pk (s), we need some notation. Let us denote

by '\(S),1'2(S), ... ,1'V(s) the eigenvalues 01 pes) with 1'\(s)1 > 11'1(s)1 '" ... '" Il'v(s)l. The

correspondinging left eigenvectors are 7r(."), 1t'2(S), ... ,1t'y(s) while the right eigenvectors are

""(s), 1/J2(S)' ... ' ""y(s). As in [6], we adopt an optional notation for the scalar product of

vectors, namely, we either write as before xy for product of vectors x and y or (x,y). The

latter notation is convenient when scalar products are often used, as in this appendix.

By spectral representation (cf. [16]), matrix P(s) can be represented as

V

pk(s)x(s -1) = ,\k(s)(1I"(s),x(s -1)),p(s) + Ll'f(s)(1I"'(s),x(s -1)),p,(s).
i=;2

Thus b(s) = f(s)x(s) becomes

be,) ~ r(s)(1I"(s),x(s -l)),p(s) +:t r(.')(1I"'(s),x(s -1)),p,(s). (99)

1 '\(s) '=2 1 I"(s)

In order to obtain leading asymptotics of Boo(s) = p(s)b(s) +r(s)x(s-l) (cf. (64)), we need

Laurent's expansion of the above around the roots of )..(s) = -1. Observe that the second

term of (99) contributed o(m) since )..(s) is the largest eigenvalue (d. [6]), hence we further

ignore this negligible term in our derivations. To simplify the presentation, we only deal here

with the root So = -1. We use our previous expansions for x(s -1) and r(s) together with

This finally leads to

1

1- '\(s)

,pes)

-I I ;(-1)
-.---+. +O(s+l)
,\(-I)s+1 2,\2(-1) ,

,p +,p(-I)(s + 1) + Orcs + 1)2).

B"(s) ~
-1 1

'\(-1) (s + 1)2

+
_1_ (11",,,(-2)) _ ,-I (p(-I),,p(-I)) ;(-1) _) 0(1). . +. + . 1 + .
s+l '\(-1) '\(-1) '\(-1) 2,\2(_1)

After finding the inverse Mellin transform of the above and depoissonizing, we prove the

alternative representation (19).

Finally, we turn our attention to the second factorial moment and the variance. We need

to study c(s) = r(s)v(s) whem yes) = 2Q-l(s)p(s)x(s) + Q-l(S)V(S - 1). As belme, we
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obtain

( )
~ 2I'(s)(rr(s),x(s -I))(rr(s), P(s)"b(s))"b(s) 0((1- A( ))-1)

cs (I-A(s))2 + s.

Similar algebra as above leads to

c(s)
-2 1

- ),2(_I)(s+I)3

+ 1 (AH) +2,-I-(rr,X(-2))-:-(P(-I),,j,(-I))-),(-I))
(s + 1)2 2A3(-I) A2(_I)

+ OC~J
This is sufficient to prove (20), after some tedious algebra that was helped by MAPLE.
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