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Abstract—In this paper, the average achievable rate and error
probability of a reconfigurable intelligent surface (RIS) aided sys-
tems is investigated for the finite blocklength (FBL) regime. The
performance loss due to the presence of phase errors arising from
limited quantization levels as well as hardware impairments at the
RIS elements is also discussed. First, the composite channel contain-
ing the direct path plus the product of reflected channels through
the RIS is characterized. Then, the distribution of the received
signal-to-noise ratio (SNR) is matched to a Gamma random vari-
able whose parameters depend on the total number of RIS elements,
phase errors and the channels’ path loss. Next, by considering the
FBL regime, the achievable rate expression and error probability
are identified and the corresponding average rate and average error
probability are elaborated based on the proposed SNR distribution.
Furthermore, the impact of the presence of phase error due to
either limited quantization levels or hardware impairments on the
average rate and error probability is discussed. The numerical
results show that Monte Carlo simulations conform to matched
Gamma distribution to received SNR for sufficiently large number
of RIS elements. In addition, the system reliability indicated by the
tightness of the SNR distribution increases when RIS is leveraged
particularly when only the reflected channel exists. This highlights
the advantages of RIS-aided communications for ultra-reliable
and low-latency systems. The difference between Shannon capacity
and achievable rate in FBL regime is also discussed. Additionally,
the required number of RIS elements to achieve a desired error
probability in the FBL regime will be significantly reduced when
the phase shifts are performed without error.

Index Terms—Average achievable rate, block error
probability, finite blocklength (FBL), factory automation,
reconfigurable intelligent surface (RIS), ultra-reliable low-latency
communications (URLLC).

I. INTRODUCTION

T
HE fourth industrial evolution or Industry 4.0 is aimed

at digitizing industrial technology towards decentralized

manufacturing of products and automation of tasks with reduced

human involvement in various industrial processes. Industry
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4.0 [2] is powered by Industrial Internet of Things (IIoT) [3]

which interconnects various elements like sensors and other

instruments with industrial management applications through

industrial control networks (ICN) [4] to enable real-time con-

trolling of ubiquitous actuators (AC) and machines across the

smart factory. To this end, traditional wired connections are

being replaced with wireless networks [5] to minimize the

infrastructure expenditure, and achieve higher flexibility. How-

ever, this requires guaranteeing wired connectivity performance

with wireless links. Hence, having an ultra-reliable and high-

precision physical layer communication link is of paramount

importance for future industrial applications to ensure end-to-

end (E2E) improvement in key performance indicators (KPIs)

in a cross-layer perspective and understanding the performance

limits of communication systems [6].

In 5 G new radio (NR), ultra-reliable and low-latency com-

munication (URLLC) [7], [8] is one of the three main service

categories that address the requirements of Industry 4.0 [9].

In URLLC, the high-reliability interprets error probabilities

of less than typically 10−5, and low-latency targets to 1 ms

E2E delay. The main attributes of URLLC are realized e.g. by

leveraging the file contents caching [10], utilization of shorter

transmission time interval (TTI) [11], grant free access [12],

and multi-connectivity. URLLC messages usually carry control

information, hence the packet lengths are generally ultra-short.

As a result, the blocklength of the channel is finite which

necessitates a thorough analysis of achievable rate and decoding

error probability as investigated in [13], [14]. However, the

URLLC transmission demands are not met entirely by the above

solutions as the main challenge to ensure high reliability is

the random nature of the propagation channel mainly due to

multipath fading.

Recently, the reconfigurable intelligent surface (RIS) technol-

ogy [15], [16] is introduced as a means to improve the spectral

efficiency and coverage of wireless communication systems by

influencing the propagation environment. The use of RIS brings

intelligence to the physical channel. The structure of an RIS is

composed of a metasurface where a programmable controller

configures and adjusts the phase and/or amplitude response of

the metasurface to modify the behaviour of the reflection of an

incident wave. The aim of this operation is that the received

signals at a particular receiver location are constructively added
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so that the system performance enhances in terms of increasing

e.g. the signal-to-noise ratio (SNR). Based on leveraging passive

or active elements at each phase shifter, the RISs are classified

into passive and active devices, respectively.

Therefore, the RIS technology can be effectively utilized

in URLLC short packet transmissions under finite blocklength

(FBL) regime in order to improve the IIoT networks’ perfor-

mance in terms of enhancing the received signal quality and

ensuring high reliability. In this paper, our aim is to shed some

light on the average achievable rate, and error probability anal-

ysis of RIS-aided IIoT networks in FBL regime that relies on

only statistical measures of channel response.

A. Related Work

1) RIS Related Studies on Channel Characterization: A

number of studies investigate either the ergodic capacity or

outage probability analysis of RIS-aided systems by identify-

ing the characteristics of the channel response and received

SNR [17]–[32]. In [17] the distribution of the absolute value

of the composite channel containing direct link is considered to

be a Gaussian random variable (RV) for large RIS elements

according to the central limit theorem (CLT) and then the

ergodic capacity is studied. The authors in [18] considered a

phase shift error in RIS elements which is distributed as von

Mises or uniform RV, following which the distribution of the

SNR is approximated to a Gamma RV. Then, the average error

probability in an infinite blocklength channel is analyzed. In [19]

the authors express that the probability density function (PDF) of

the reflected channel response in an RIS-aided non-orthogonal

multiple access (NOMA) network is a Gaussian RV for a large

number of RIS elements. Then, the diversity order analysis was

studied for fully constructive adding of signals in the presence

of phase error at RIS. The composite channel considered in this

paper does not have a direct path between the access point (AP)

and the users. In [20] the distribution of SNR is approximated as

a Gamma RV by employing the moment matching technique and

the ergodic capacity as well as the outage probability is studied

in an infinite blocklength model, i.e., conventional Shannon

capacity formula is considered.

Note that the assumed composite channel contains the direct

link plus the reflected channel from RIS with arbitrary phase

shifts so that only the statistical behavior of the phase shifts was

taken into account. In [21] the analytical PDF of the received

SNR was found in terms of cascade channel characteristics in an

RIS-NOMA network and a transmission design method was pre-

sented based on spatial division multiple access (SDMA). The

impact of RIS phase error is also studied in outage probability

analysis. In [22] the upperbound of the ergodic rate is maximized

under Rician fading channel between the multi-antenna AP and

the user (or RIS). The optimal phase shifts are derived based on

the ergodic rate depending on the phase configuration matrix.

The authors in [23] derived a closed-form approximation for

the ergodic rate of cell-edge users based on Taylor series expan-

sion of logarithmic function. The perfect phase shift assignment

is assumed and the cascade channel distribution was considered

as a normal RV according to CLT. In [24] the upperbound for

the ergodic capacity is derived when perfect phase shift at the

RIS is performed. The upperbound is based on the Jensen’s

inequality for Shannon capacity formula. The authors showed

that employing a decode and forward relay will enhance the

upperbound capacity significantly.

Furthermore, the study in [25] analyzed the impact of finite

quantization levels on the performance of an RIS-aided trans-

mission by using a tight approximation for the ergodic capacity

without assuming a specific distribution for received SNR. The

best case and worst case channel characteristics are formulated

as a Gamma RV with separate shape and rate parameters for

each case in [26]. In [27] the absolute value of the reflected

channel is considered as a Gamma RV then, the ergodic rate and

outage probability analysis is investigated in terms of total RIS

elements and having discrete phase shifts. Note that the anal-

ysis is performed over infinite blocklength regime without the

presence of the direct channel. Furthermore, the authors in [28]

approximated the composite channel reflected from the RIS as

a Gamma RV by Kullback-Leibler (KL) divergence method.

The asymptotic analysis of outage probability for reciprocal and

non-reciprocal scenarios in a two-way communication system

is elaborated. In [29] the SNR coverage probability is studied

by modeling the SNR as a Gamma RV in an infinite blocklength

regime. In addition, the authors in [30], [31] invoked the Gamma

RV modeling for received SNR while the physical layer security

and secrecy outage probability is studied. Finally, the authors

in [32] considered the optimal SNR derived in [33] and then,

they proposed that the SNR distribution is composed of the

product of three independent Gamma RVs and sum of two scaled

non-central chi-square RVs based on the eigenvalues of the

channel matrices of RIS-AP and RIS-user. The authors compare

the proposed analytical distributions with the case that the SNR

is only approximated with one Gamma RV. The numerical results

showed that there is negligible difference in considering Gamma

distribution for the SNR compared with precise analytical dis-

tributions. Furthermore, to evaluate the average achievable rate,

it is intractable to perform computation of the expectations

concerning SNR distribution when a complex expression is

taken into account. Therefore, assuming the received SNR as

a Gamma RV is tractable and sufficiently accurate.

2) URLLC Studies on Average Achievable Rate and Average

Error Probability: Several papers investigate the performance

analysis of URLLC systems [34]–[41] in finite blocklength

(FBL) channel model. In [34] the authors proposed to em-

ploy massive multiple-input multiple-output (MIMO) systems

to leverage in IIoT networks to reduce the latency. The lower

bound achievable uplink ergodic rates of massive MIMO system

with finite blocklength codes is analyzed by convexifying the

rate formula which holds under specific conditions. The same

authors analyzed secure URLLC in IoT applications [35] and

presented resource allocation problems. The authors in [36],

[37] studied the analysis of ergodic achievable data rate in FBL

regime. In [36] a MISO network is considered and the uplink

channel training was studied instead of downlink training by

deriving the lower bound of the ergodic rate whereas in [37]
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channel state information (CSI) is acquired by downlink chan-

nel training. Then, the optimal number of training symbols is

proposed based on the average data rate expression.

In [38] the downlink MIMO NOMA systems’ average error

probability under Nakagami-m fading model is investigated in

FBL regime. It should be noted that in [38] the ergodic capacity

analysis is not addressed and the average error probability is

studied based on a well-known linear approximation for the Q-

function. In [39] the analysis of lower bound achievable ergodic

rate in URLLC transmission is presented based on convexifying

the achievable rate function where the function is convex on a

specific interval. Grant-free uplink access for an RIS-assisted

industrial MIMO network is studied in [40] as well as outage

probability is done based on numerical Monte Carlo simulations.

The effective capacity which is the maximum transmission rate

under certain delay constraints was studied in [41]. The authors

introduced a closed-form expression for the effective capacity

in a Rayleigh fading channel.

B. Contributions

Even though the aforementioned studies cover the topics of

RIS and short-packet communication, to the best of our knowl-

edge, there is no previous reports on the the performance analysis

of an RIS-aided transmission with/without the presence of phase

noise in an FBL regime for URLLC applications. Motivated

by the above works we aim to elaborate on the analysis of

average achievable rate and block error probability of RIS-aided

factory automation wireless transmissions under FBL model. We

extend our results for the case with errors in the RIS phase shift

adjustments arising due to, e.g., limitation of quantization bits

or hardware imperfections. The contributions of our work are

summarized in the following
� The downlink received signal containing the direct link

plus a reflected signal from the RIS to the AC is identified.

Then, the received SNR is statistically matched to a Gamma

RV with/without the presence of phase noise at the RIS

elements which is due to the quantization error or hardware

impairments at the RIS phase controller.
� The average achievable rate and error probability assuming

FBL regime is mathematically elaborated in terms of the

characteristics of Gamma RV for the SNR.
� Since the results involves computing high-complexity

functions, a tractable and closed-form lower bound formula

for the average achievable rate and error probability under

FBL regime is presented.
� The impact of quantization error and hardware impair-

ments are modeled as a uniform RV in the phase shift

argument. Then, the corresponding modifications due to

these effects on the SNR distributions are studied in detail

and mathematical equations for the mean and the variance

of presented Gamma RV are identified. Furthermore, a

closed-form formula which is useful in design consider-

ations to find total channel blocklength value is studied

in terms of the average rate and dispersion functions as

well as the effect of the phase error on total channel

blocklength.

Fig. 1. The system model.

C. Notations and Structure of the Paper

In this paper, h ∼ CN (0N×1,CN×N ) denotes circularly-

symmetric (central) complex normal distribution vector with

zero mean 0N×1 and covariance matrix C. The operators E[·]
and V[·] denote the statistical expectation and variance, re-

spectively. Also, X ∼ Γ(a, b) denotes gamma random variable

with shape and rate parameters a and b, respectively. A uni-

form distributed random variable with range [a, b] is shown as

Y ∼ U(a, b). The operation [·]H denotes the conjugate transpose

of a matrix or vector.

The structure of this paper is organized as follows. In Section

II, the system model and mathematical identification of the re-

ceived SNR and its distribution is presented. Section III presents

the derivation of average rate and average error probability. In

Section IV we extend our derivations to the case where phase

error occurs. The numerical results are presented in Section V.

Finally, Section VI concludes the paper.

II. SYSTEM MODEL

Consider the downlink of an RIS-aided network consist-

ing of a single antenna AP and AC where the RIS has N =
N1 ×N2 elements as shown in Fig. 1. The channel response

between the AP and AC has a direct path component plus

a reflected channel from the RIS. Let us denote the direct

channel as hAP
AC ∼ CN (0, ηAP→AC) where ηAP→AC denotes the

path loss attenuation due to large scale fading. hAP
RIS ∈ CN×1

and h
RIS
AC ∈ CN×1 represent the vector channels from the AP

to the RIS and from the RIS to the AC, respectively. We

assume a block-fading channel model where the coefficients

are quasi-static in each coherence interval. In addition, under

the assumption of half-wavelength spacing between the RIS

elements, the spatial correlation matrix of the RIS channel

vector is very close to the independent and identically dis-

tributed (i.i.d.) Rayleigh fading in an isotropic propagation [42].

Therefore, all channel coefficients are assumed to be mutually

independent and are modeled as circularly-symmetric Gaussian

random variable random variables due to isotropic scattering.1

1It is worth noting that in practice the covariance matrices of reflected channel
vectors may not be diagonal, however, for the sake of analytical tractability we
assume diagonal covariance matrices and leave the more practical case as a
future research topic.
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The channel vector hAP
RIS is distributed as CN (0N×1,η

AP→RIS
N×N )

whereηAP→RIS = diag(ηAP→RIS
1 , . . ., ηAP→RIS

N ) is a diagonal ma-

trix including the path loss coefficients from the AP to the RIS

elements. Similarly, the channel between the RIS and AC is

distributed as h
RIS
AC ∼ CN (0N×1,η

RIS→AC
N×N ) where η

RIS→AC =
diag(ηRIS→AC

1 , . . ., ηRIS→AC
N ) denotes the covariance matrix in

this case. Since, our aim is to obtain the upper bound perfor-

mance of an RIS-aided URLLC systems, we assume that the

direct path channel coefficients and the reflected channel vectors

are perfectly available at the AP. Nevertheless, the channel

estimation at the RIS-aided systems is thoroughly investigated

in the literature, e.g., in [43]–[45]. For example, in [43] a general

two-stage framework based on combined bilinear sparse matrix

factorization and matrix completion is presented to extract the

vector channel responses which consist of transmitter (AP) to

RIS and RIS to receiver (AC). In addition, a channel estimation

strategy based on compressed sensing and deep learning by

activation of a number of RIS elements is proposed in [45].

Furthermore, in factory automation environments each actuator

is almost in a fixed location and there is approximately low

velocity in different modules. Therefore, the quasi-static chan-

nel fading model can be applied here. We assume that there

is no interference for simplicity and leave the analysis in an

interference network as future work.

This work assumes a single-shot transmission [46], [47] which

means that the transmitter has to meet the target reliability/block

error rate (BLER) without any retransmissions. Such an as-

sumption allows us to analyze the lower bound of URLLC

performance since retransmissions improve reliability, albeit at

the cost of additional latency [48]. Here, we assume that the

transmission slot is at least equal to the latency budget plus

propagation and processing delay. The received signal at the AC

is given by

y(t) =
(

hAP
AC + h

RIS
AC

H
Θh

AP
RIS

)

s(t) + n(t), (1)

where s(t) is the transmitted symbol from the AP with

E[|s(t)|2] = p in which p is the transmit power, and n(t) is the

additive white Gaussian noise with E[|n(t)|2] = N0W where

N0, W are the noise spectral density and the system bandwidth,

respectively. The complex reconfiguration matrix ΘN×N indi-

cates the phase shift and the amplitude attenuation of RIS which

is defined as

ΘN×N = diag(β1e
jθ1 , β2e

jθ2 , . . ., βNejθN ),

βn ∈ [0, 1], ∀n ∈ N
θn ∈ [−π, π), ∀n ∈ N (2)

where N = {1, 2, . . ., N}. Note that in our model we have

assumed that the RIS elements have no coupling or there is no

joint processing among elements [15]. Hence, the phase shifts

and amplitude control are done independently. The phase align-

ment error of the RIS is defined as φn = ∠hAP
AC − ∠[hRIS

AC ]n +
∠[hAP

RIS]n + θn which occurs due to hardware limitations and/or

finite number of quantization levels available at RIS phase

shifters. More precisely, without considering hardware impair-

ments the phase discrete set is selected from the following set

θn ∈ Θ

= {−π,−π +∆,−π + 2∆, . . .,−π + (Q− 1)∆} , ∀n ∈ N
(3)

where Q = 2b is the number of quantization levels, b denotes

the number of bits assigned to a discrete and quantized phase

and ∆ = π
2b−1 is the quantization step.

Based on the received signal at AC and denoting the number

of information bits L2 that can be transmitted with target error

probability ε in r channel uses (r ≥ 100) the maximal achievable

rate over a quasi-static additive white gaussian channel (AWGN)

is given by [13]

R∗(γ, L, ε) =
L

r
= C(γ)−Q−1(ε)

√

V(γ)

r
+O

(
log2(r)

r

)

,

(4)

where C(γ) = log2(1 + γ) is the Shannon capacity formula

under infinite blocklength assumption. The dispersion of the

channel is defined as V(γ) = (log2(e))
2(1 − 1

(1+γ)2 ). Note that

Q−1(·) is the inverse of Q-function which is defined as Q(x) =
1√
2π

∫∞
x e−ν2/2dν and

γ = ρ
∣
∣
∣hAP

AC + h
RIS
AC

H
Θh

AP
RIS

∣
∣
∣

2

, (5)

where ρ = p
N0W

denotes the instantaneous SNR. The approxi-

mate of r in terms of ε can be expressed as [47]

r ≈ L

C(γ)
+

(
Q−1(ε)

)2
V(γ)

2 (C(γ))2
+

(
Q−1(ε)

)2
V(γ)

2 (C(γ))2

×
√

1 +
4LC(γ)

(Q−1(ε))2
V(γ)

, (6)

Note that the term O( log2(r)
r ) in (4) is neglected throughout

this paper as it is approximately zero for r ≥ 100 channel uses.

The decoding error probability at the AC for a packet of size L
transmitted via r symbols is written as

ε = Q (f(γ, r, L)) , (7)

where f(γ, r, L) =
√

r
V (γ) (log2(1 + γ)− L

r ). It is observed

from (4) when the blocklength approaches infinity the rate

will be

lim
r→∞

R∗(γ, L, ε) = log2

(

1 + ρ
∣
∣
∣hAP

AC + h
RIS
AC

H
Θh

AP
RIS

∣
∣
∣

2
)

,

(8)

which is the conventional Shannon capacity formula.

To determine the achievable average rate, we need to identify

the distribution of γ. In the following, we present the related

theorems and derive a closed-form and tractable approximation

for the average rate.

2It should be noted that L that is the size of packets is assumed the same for
actuator and access point.



10324 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 10, OCTOBER 2021

Theorem 1 (SNR distribution): Let X = |hAP
AC +

h
RIS
AC

H
Θh

AP
RIS|2 and given N >> 1, the distribution of X

is approximately matched to a Gamma random variable with

the following parameters [20], [26]

X ∼ Γ(α,′ β′), (9)

where α and β are given in terms of first and second order

moment of X as

α′ =
(E[X])2

E[X2]− (E[X])2
, (10)

β′ =
E[X]

E[X2]− (E[X])2
, (11)

where E[X] and E[X2] are given in (45) and (50), respectively

when phase error occurs (φn �= 0, ∀n ∈ N ) and are given in

(51) and (52) when φn = 0, ∀n ∈ N . For SNR distribution we

have γ = ρX . Therefore, E[γ] = ρE[X] and E[γ2] = ρ2E[X2]
which implies that γ ∼ Γ(α, β) with the same α as in (10) and

β = β′

ρ .

Proof: The detailed proof is given in Appendix A in the

presence of phase error, i.e., φn �= 0, ∀n ∈ N and Appendix

B when φn = 0, ∀n ∈ N . �

Remark 1: For sufficiently large number of RIS elements

N the parameters α and β in γ ∼ Γ(α, β) asymptotically

converge to

lim
N→∞

α = lim
N→∞

(E[γ])2

V[γ]
= lim

N→∞

O
(
N 4

)

O (N 3)
→ ∞, (12)

lim
N→∞

β = lim
N→∞

E[γ]

V[γ]
= lim

N→∞

O
(
N 2

)

O (N 3)
→ 0. (13)

where the above result is obtained regardless of with or without

presence of the phase noise. In addition, it is inferred that when

N approaches infinity, the average value of the modeled SNR

E[γ] = α
β asymptotically grows withO(N 2). It should be noted

that the asymptotic analysis, in this case, is valid when the

practical value for the number of RIS elements N is sufficiently

large enough to ensure that the direct path loss is comparable

with the reflected path coefficients.

III. AVERAGE RATE AND AVERAGE ERROR PROBABILITY

A. Average Achievable Rate

In the previous section, we have modeled the SNR distribu-

tion, and the related Gamma distribution parameters α and β
are obtained for two cases with/without phase errors at RIS.

Next, to compute the average rate, the instantaneous achievable

rate should be averaged over the SNR distribution which we

investigate in the next theorem.

Theorem 2: The exact average achievable rate of the actuator

in the RIS-aided URLLC transmission given the distribution of

SNR γ ∼ Γ(α, β) is expressed as

R̄(L, ε) = C1 −
Q−1(ε)√

r
C2

=
βα

Γ(α) ln 2

∞∑

k=1

1

k
Γ(k + α)U(k + α, 1 + α, β)

− Q−1(ε)βα

√
r ln 2

∞∑

k=0

(
1
2

k

)

(−1)kU(α, 1 − 2k + α, β),

(14)

where C1 and C2 are given in (21) and (26), respectively and

U(a, b, z) =
∫ ∞

0
(1+u)b−a−1ua−1e−zu du

Γ(a) denotes the confluent hy-

pergeometric Kummer U function [49, Eq. (9.211)], and the

Gamma function is denoted by Γ(α) =
∫∞

0
yα−1e−y dy.

Proof: The instantaneous rate is given by

R∗(γ, L, ε) ≈ C(γ)−Q−1(ε)

√

V(γ)

r
, (15)

where O( log2(r)
r ) is ignored. To calculate the expected value of

(15) in terms of the distribution of γ we should compute the

following

R̄(L, ε) =

C1
︷ ︸︸ ︷

E[log2(1 + γ)]− Q−1(ε)√
r

C2
︷ ︸︸ ︷

E[
√

V(γ)], (16)

where we have used the linearity rule of the expectation. We

investigate the two terms C1 and C2 involved in (16) separately.

According to (16), C1 is defined as

C1 = E[log2(1 + γ)] =

∫ ∞

0

log2(1 + u)fγ(u) du, (17)

where fγ(u) =
βαuα−1e−βu

Γ(α) . Therefore, by evaluating the inte-

gral in (17) and after mathematical manipulations it yields

C1 = E[log2(1 + γ)] =

∫ ∞

0

log2(1 + u)
βαuα−1e−βu

Γ(α)
du

=
βα

(
−β2

)−α

Γ(α) ln 2
{(−β)α [βΓ (α− 1) 2F2 (1, 1; 2, 2 − α;β)

+Γ(α) (ψ(α)− log2(β))] + πβα csc(πα)

× [Γ(α)− Γ(α,−β)]} , (18)

where /prescriptpFq(a; b; z) is the generalized hypergeometric

function [49, Eq. (9.1)] and ψ(α) = Γ′(α)
Γ(α) gives the digamma

function where they are standard built-in functions in most of

the well-known mathematical software packages. However, we

aim to write a more tractable solution for the C1 which involves

simple computational complexity in terms of few diverse func-

tions. To do so, first consider the following series representation

for natural logarithm [49]

ln(1 + x) =

∞∑

k=1

1

k

(
x

x+ 1

)k

, x ≥ 0 (19)

then, by substituting in (17) we will have
∫ ∞

0

log2(1 + u)
βαuα−1e−βu

Γ(α)
du

a
=

1

ln 2

∞∑

k=1

1

k

∫ ∞

0

(
u

u+ 1

)k
βαuα−1e−βu

Γ(α)
du
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b
=

βα

Γ(α) ln 2

∞∑

k=1

1

k
Γ(k+α)

∫ ∞

0

(1 + u)−kuα+k−1e−βu

Γ(k + α)
du,

(20)

where a is done by exchanging the summation and integral and

in b a constant factor of Γ(k + α) is multiplied in numerator

and denominator. We observe that the integral inside the sum-

mation of the last step is defined as the confluent hypergeometric

Kummer U function U(a, b, z) [49, Eq. (9.211)] therefore

C1 =
βα

Γ(α) ln 2

∞∑

k=1

1

k
Γ(k + α)U(k + α, 1 + α, β), (21)

where the summation can be truncated to a finite number in prac-

tical numerical situations, e.g. 103 with negligible mismatch. It

should be noted that (21) computes only the confluent hyper-

geometric function and, well-known gamma function at each

iteration of the summation, henceforth has less computational

complexity in comparison with (18).

In the following we evaluate the expectation associated with

C2 which is given by

C2 = E[
√

V(γ)] =
1

ln 2

∫ ∞

0

√

1 − 1

(1 + u)2
fγ(u) du, (22)

to compute the above integral, we adopt the binomial expansion

of the channel dispersion which is given by

√

V(γ) =
1

ln 2

(

1 − 1

(1 + γ)2

) 1
2

=
1

ln 2

∞∑

n=0

(−1)n
(

1
2

n

)

(1 + γ)−2n, (23)

where
( 1

2
n

)
= 0.5(0.5−1)...(0.5−n+1)

n! for n �= 0 and
( 1

2

0

)
= 1. Plug-

ging (23) in (22) yields

C2 =
1

ln 2

∫ ∞

0

∞∑

n=0

(−1)n
(

1
2

n

)

(1 + u)−2nfγ(u) du, (24)

where by replacing the integral and summation as well as sub-

stituting the definition of fγ(u), C2 can be rewritten as

C2 =
1

ln 2
βα

∞∑

n=0

(−1)n
(

1
2

n

)∫ ∞

0

1

Γ(α)

× (1 + u)−2nuα−1e−βu du, (25)

we observe that the integral inside the summation can be re-

formulated in terms of confluent hypergeometric Kummer U

function U(a, b, z) defined earlier, henceforth

C2 =
1

ln 2
βα

∞∑

n=0

(
1
2

n

)

(−1)nU(α, 1 − 2n+ α, β). (26)

consequently, if we substitute the mathematical expressions

obtained in (21) and (26) in the average rate formula in (16),

the final result will be obtained which completes the proof. �

It is worth mentioning that the average rate given in

Theorem 2 involves evaluating high-computational complexity

functions as well as infinite summations which may not be ben-

eficial in practical situations and resource allocation algorithms.

Therefore, we propose a tractable lower bound approximation

for the average rate in the following corollary.

Corollary 1: A tractable and closed-form approximate lower-

bound expression for the average rate R̄(L, ε) is given by

R̄LB(L, ε) ≈ C̃1 −
Q−1(ε)√

r
C̃2

= log2

(

1 +
α2

β(α+ 1)

)

− Q−1(ε)

2 ln 2
√
r

×
(
2 − β + eββ(α+ β − 1)Eα(β)

)
, (27)

where En(z) is the exponential integral function [49, Eq.

(8.211)], C̃1 and C̃2 are given in (30) and (33), respectively.

Proof: First, we study the term involving Shannon capacity,

i.e., C1 = E[log2(1 + γ)]. Invoking Jensen’s inequality [50] we

have

C1 = E[log2(1 + γ)] ≥ log2

(

1 +
1

E[γ−1]

)

, (28)

where to arrive in a lower-bound we should elaborate the right-

hand of (28). To continue, we apply Taylor series expansion of
1
γ then, take average from both sides which yields

E[γ−1] ≈ 1

E[γ]
+

V[γ]

E[γ]3
=

E[γ2]

E[γ]3
, (29)

substituting (29) in (28) yields

C1 ≥ C̃1 = log2

(

1 +
E[γ]3

E[γ2]

)

= log2

(

1 +
α2

β(α+ 1)

)

,

(30)

where E[γ]3 and E[γ2] can be evaluated straightforward from

the SNR distribution γ ∼ Γ(α, β) such that E[γ] = α
β and

E[γ2] = α(α+1)
β2 where α and β are investigated in Theorem 1.

It is worth mentioning that another approximation for C1 can be

written based on truncated Taylor series expansion of ln(1 + γ)
as given by

ln(1 + γ) ≈ ln(1 + γ0) +
1

1 + γ0

(γ − γ0)

− 1

2(1 + γ0)2
(γ − γ0)

2, (31)

then, by replacing γ0 = E[γ] and taking average from both sides

which yields

C1 = E[log2(1 + γ)] ≈ log2(1 + E[γ])− V[γ]

2(1 + E[γ]) ln 2
,

(32)

however, using the above expression does not give either lower-

bound or upperbound for C1 therefore, for comparison purposes

the lowerbound given in (30) is advantageous.

Next, we investigate C2 in (22). To do so, we apply the trun-

cated binomial approximation (1 + x)ϑ ≈ 1 + ϑx for |x| < 1,

|ϑx| < 1 to approximate the channel dispersion as
√

V(u) =
1

ln 2

√

1 − 1
(1+u)2 ≈ 1

ln 2
(1 − 1

2(1+u)2 ).



10326 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 10, OCTOBER 2021

By substituting the approximate dispersion expression in (22)

we will have

C̃2 = E[
√

V(γ)] ≈ 1

ln 2

∫ ∞

0

(

1 − 1

2(1 + u)2

)

fγ(u) du

=
1

ln 2

∫ ∞

0

(

1 − 1

2(1 + u)2

)
βαuα−1e−βu

Γ(α)
du

=
1

ln 2

(

1 − βα

2

∫ ∞

0

1

(1 + u)2

uα−1e−βu

Γ(α)
du

)

a
=

1

2 ln 2

(
2 − β + eββ(α+ β − 1)Eα(β)

)
. (33)

where a is obtained through integrating by part and some

manipulations. Finally, by replacing (30) and (33) in (16) the

approximate result will be obtained. Note that since C1 is lower

bounded by C̃1 and C2 ≤ C̃2 the achievable rate will attain its

lower bound because of negative sign in C2 in (27). �

B. Average Decoding Error Probability

In order to compute the average decoding error probability

one needs to evaluate the following

ε̄ ≈ E

[

Q

(√
r

V (γ)

(

log2(1 + γ)− L

r

))]

, (34)

where the expected value is taken over the distribution of γ and,

still r is large enough to have a better accuracy. It should be noted

that directly computing (34) is intractable to achieve a closed-

form solution. Therefore, we adopt a linear approximation to the

function inside the the expected value as

Q

(√
r

V (γ)

(

log2(1 + γ)− L

r

))

≈ g(γ) (35)

where g(γ) is given by [51]

g(γ) =

⎧

⎪⎨

⎪⎩

1, γ ∈ [0, κ0)
1
2
+ ξ0(γ − ξ1), γ ∈ [κ0, κ1]

0. γ ∈ [κ1,∞)

(36)

where ξ0 = −
√

r

2π(2
2L
r −1)

, ξ1 = 2
L
r − 1, κ0 = ξ1 +

1
2ξ0

and

κ1 = ξ1 − 1
2ξ0

. Consequently, the average error probability de-

fined in (34) will be

ε̄ =

∫ ∞

0

Q

(√
r

V (u)

(

log2(1 + u)− L

r

))

fγ(u) du

≈
∫ κ0

0

fγ(u) du+

∫ κ1

κ0

(
1

2
+ ξ0(u− ξ1)

)

fγ(u) du

=

(
1

2
+ ξ0ξ1

)

Fγ(κ0) +

(
1

2
− ξ0ξ1

)

Fγ(κ1)

+ ξ0

∫ κ1

κ0

ufγ(u) du

=
ξ0

βΓ(α)

(

β(κ0 − κ1)Γ(α)− βκ0Γ(α, κ0β)+βκ1Γ(α, κ1β)

+ Γ(α+ 1, κ0β)− Γ(α+ 1, κ1β)

)

, (37)

whereFγ(γ) =
γ(α,β)
Γ(α) is the cumulative distribution function of

the SNR that is investigated in Theorem 1 and γ(a, b), Γ(a, b)
are the lower and upper incomplete gamma functions, respec-

tively [49]. Consequently, (37) gives a closed form formula for

the average error probability.

C. The Required Number of Channel Blocklengths

By solving a quadratic equation in terms of ̟ =
√
r in (4)

and ignoring the higher order terms O( log2(r)
r ), an estimate of

the average number of channel blocklengths r̄ = E[r] in terms

of number of RIS elements N and phase shifts will be obtained

as follows

r̄ ≈ L

C1

+

(
Q−1(ε)C2

)2

2C2
1

+
Q−1(ε)C2

√

(Q−1(ε)C2)
2 + 4C1L

4C2
1

,

(38)

therefore, r̄ can be evaluated straightforwardly after determining

C1 and C2 that were investigated in earlier sections. �

Remark 2: The average channel blocklength r̄ is a decreasing

function in terms of the total number of RIS elements N .

Proof: Please refer to Appendix C.

Consequently, according to Remark 2, the average channel use

r̄ in (38) reduces with respect to increase in the RIS elements

N that results in less required channel blocklengths for trans-

mission. In other words, given the channel blocklength which is

defined as r = TW (whichT is the transmission duration andW
denotes the available bandwidth) we can expect that when total

the number of RIS elements increases the required blocklength

to transmit the symbols will be reduced. This results in lower

transmission time as well as less power consumption at the AP

which highlights the suitability of RIS at URLLC systems in the

FBL regime.

IV. IMPACT OF PHASE ERROR

In this section we investigate the performance loss due to the

presence of phase error in RIS elements which may occur due to

quantization of the RIS elements’ phase according to the number

of bits assigned to each discrete phase by the controller or

hardware impairments [15], [16]. Considering either hardware

impairments or quantization error the resultant impact will be on

the distribution of φn, ∀n ∈ N . Therefore, the SNR parameters

namely α and β are needed to recompute. Henceforth, we pro-

pose a general framework to have a clear understanding of this

effect. Different distributions can be analyzed as straightforward

without loss of generality.

Let us assume that there are only Q quantization levels in

which b = log2(Q) bits are assigned to each discrete phase shift.

The RIS chooses each phase shift from the following set

θn ∈ Θ = {−π,−π +∆,−π + 2∆, . . .,−π + (Q− 1)∆} ,
∀n ∈ N (39)
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where ∆ = π
2b−1 . It should be noted that a linear quantizer has

an error e which spans uniformly over −∆
2

≤ e ≤ ∆
2

. Let us

denote the phase error as φn ∼ U(−ǫπ, ǫπ), ∀n ∈ N where ǫ =
1

2b
∈ (0, 1]. Additionally, the phase errors of each element are

independently distributed. In this case, we should compute the

expected values of (45) and (50) in terms of the phase error

distribution. Therefore, the following expressions are needed

for ∀n �= m �= n′

E[cos(φn)] = sinc(ǫ), (40a)

E[cos2(φn)] =
1

2
+

sinc(2ǫ)

2
, (40b)

E[cos(φn − φm)] = sinc2(ǫ), (40c)

E[cos2(φn − φm)] =
1

2
+

sinc2(2ǫ)

2
, (40d)

E[cos(φn) cos(φn − φm)] = sinc(ǫ)

(
1

2
+

sinc(2ǫ)

2

)

,

(40e)

E [cos(φn − φm) cos(φn′ − φn)] =
1

2
(1 + sinc(2ǫ)) sinc2(ǫ),

(40f)

consequently, the average rate and error probability will be

achieved after substituting (40a)–(40f) in (45) and (50) which

yields

E[γ] = ρ

(

ηAP→AC +NηAP→RISηRIS→AC

+
π2 sinc2(ǫ)N(N − 1)

16
ηAP→RISηRIS→AC

+
Nπ sinc(ǫ)

4

√

πηAP→ACηAP→RISηRIS→AC

)

, (41)

and E[γ2] is given in (42) as shown at the bottom of this

page. Note that as in Appendix A we have ς = ηAP→AC, ̺ =
ηAP→RIS and ϑ = ηRIS→AC. By noting that γ ∼ Γ(α, β) where

α = (E[γ])2

E[γ2]−(E[γ])2 , β = E[γ]
E[γ2]−(E[γ])2 the average rate and error

probability can be evaluated simply using Theorem 2 and (37),

respectively.

Remark 3: For sufficiently large number of RIS elements

N >> 1, the mean value and variance of γ will be approximated

TABLE I
SIMULATION PARAMETERS

as

E[γ]N>>1 ≈ ρς +
ρ

16
N 2̺ϑπ2 sinc2(ǫ),

V[γ]N>>1 ≈ 64N 3ρ2̺2ϑ2π2 sinc2(ǫ) (8 + sinc(2ǫ)

+ π2 sinc2(ǫ)
)

+ ρ2ς2 +
1

4
Nπ1.5ς1.5(̺ϑ)1.5 sinc(ǫ)

+O (Nn0ςn1̺n2ϑn3) .

where n1 + n2 + n3 > 3, n0 ∈ {1, 2} indicate the power ex-

ponents of non-dominant terms. As a special case we have

V[γ]no direct channel << V[γ]with direct channel. Since the direct chan-

nel path loss is slightly lower than the cascaded channel path loss,

i.e., ς >> ̺ϑ.

V. PERFORMANCE EVALUATION

In what follows, we evaluate the proposed derivations and

mathematical expressions numerically. Table I shows the cho-

sen default values for the network parameters and geometry.

Since the carrier frequency is 1900 MHz a typical antenna

size will be around 15 cm. Therefore, the far-field assumption

holds true in all simulation scenarios for the given network

geometry.

E[γ2] = ρ2

[

2ς2 +Nς̺ϑ

(

4 + 2 sinc(2ǫ) +
3π2(N − 1)

8
sinc2(ǫ)

)

+
√

ς3̺ϑ

(
3π

√
πN

4
sinc(ǫ)

)

+N̺2ϑ2

(

N + 3 +
π2

16
(N − 1)(2N + 5) sinc2(ǫ) + (N − 1) sinc2(2ǫ)

+
π2

8
(N − 1)(N − 2) sinc2(ǫ)(1 + sinc(2ǫ)) +

π4

28
sinc4(ǫ)(N − 1)(N − 2)(N − 3)

)

+N
√

ς̺3ϑ3 sinc(ǫ)π
√
π

(
8N + 1

8
+

(N − 1)

2

(

sinc(2ǫ) +
(N − 2)π2

16
sinc2(ǫ)

))]

, (42)
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Fig. 2. The CDF curves of SNR and illustration of matched Gamma RV with Monte Carlo simulations. (a) SNR CDFs without direct link. (b) Comparison of
SNR CDFs (N = 1024).

In Fig. 2(a) and Fig. 2(b) the cumulative distribution function

(CDF) of the received SNR is illustrated for two cases namely as

in the presence of the direct channel between the AP and the AC

and the case where there is no direct link. Besides, the results

are shown when perfect phase alignment is performed at the RIS

which is referred to as φn = 0, ∀n ∈ N and comparison is made

with uniform distributed phase noise at the RIS as a benchmark.

As can be observed from Fig. 2(a), Monte Carlo simulations con-

form to the matched Gamma distribution for SNR. Furthermore,

the impact of quantizer noise is shown in Fig. 2(a). Although

there is a performance gap between leveraging n-bit quantizer

(n = 1, 2, 3) and the optimal case, a 2-bit quantizer provides a

good trade-off between performance and training overhead as

the gap is 0.9 dB (compared to 3.9 dB gap with 1-bit) [52]. The

3-bit quantizer is more closer to the perfect case with small SNR

degradation. It can be inferred that utilizing a lower-bit quantizer

leads to reduction in RIS expenditure since higher bits means

higher capacity requirement of the control signalling exchange

for phase adjustment of the RIS elements, and hence higher

control overhead. Henceforth, acquiring lower bit quantizers is

mandatory.

In Fig. 2(b) a comparison is shown between three scenarios,

I) no direct link and the RIS acts as a simple reflector, II) no

direct link with phase adjusted RIS and III) with direct link

and phase adjusted RIS. As we observe, the only case which

has a sharp slope and higher tightness is scenario II. It means

that the values of SNR that we expect to receive in scenario II

are almost in the same range whereas the range of fluctuations

in cases I and III which are denoted as intervals of ∗ and ∗∗,

respectively, is noticeable that results in eroding the perception

of reliability. Therefore, though the SNR value is higher with

the direct link, the variation in the SNR implies that the channel

is less deterministic compared to case II. Hence the RIS is

beneficial in guaranteeing a high reliability even if the direct

link is absent (e.g., blocked). Furthermore, we observe that in

the presence of the direct channel there is negligible difference

Fig. 3. The average rate in terms of changing the total RIS elements without
direct channel.

between leveraging a 1-bit quantizer with a 2-bit in Fig. 2(b).

This is because the direct channel is several orders of magnitude

stronger than the reflected channel so that the effect of reflected

channel is not dominant.

By evaluating the average achievable rate as well as taking into

account the channel dispersion, a 2-bit quantizer is compared

with a 1-bit quantizer in Fig. 3 along with a optimal phase setting.

The results also confirm that Monte Carlo simulations approxi-

mate to the derived analytical expressions for the average rate in

Theorem 2. As it is observed, when the number of bits assigned to

each discrete phase at the RIS increments, the average rate curve

is very close to the optimal phase alignment case. Once more,

this shows that to achieve satisfactory accuracy, a few numbers

of available bits will be sufficient instead of high precision

and high complexity quantizers. Moreover, it is proved that to

reach full diversity in RIS-aided communications the number of

quantization levels must be Q ≥ 3 [53] that holds when b ≥ 2.
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Fig. 4. Average error probability versus RIS elements N without direct
channel.

Furthermore, the Shannon capacity and the gap with FBL regime

is illustrated in Fig. 3. We observe that the gap is increased

until some saturation value. This is because of asymptotically

converging the channel dispersion to its upperbound when the

number of RIS elements increases which results in improving

the SNR in other words limγ→∞ V(γ) = (log2(e))
2.

Next, we show the results for average error probability given

in Fig. 4 when there is no direct channel. As we observe, to

achieve a desired error probability the required number of RIS

elements is much higher when there is phase error at the RIS

compared with optimal phase setting. This shows the importance

of phase alignment precision in the RIS particularly in URLLC

applications. For instance, when we desire to reach an error

probability of 10−9, the number of RIS elements satisfying this

condition should be at least 190 elements in a perfect phase

alignment scenario whereas in case of having phase errors the

required number of RIS elements should be at least 290 elements

in a 1-bit quantizer and about 200 with 2-bit quantizer. On the

other hand, one may interpret these curves as a baseline for

design considerations of how many RIS elements should be

installed to reach sufficiently low bit error rate.

In Fig. 5 the average error probability results are illustrated

for d ∈ [5, 95], where RIS is located at (d, 10) on the 2D plane

(cf. Table I) (close to AP → close to AC). The number of

RIS elements, N = 512. We observe that the error probability

behavior is somewhat symmetric with respect to the distance

from either the AP or the AC. The error probability degrades

as the RIS moves further away from either the AP or the AC,

with the worst performance observed for the case when it is

equidistant from both. This is because the path loss, which is

proportional to the product of the RIS distances from the AP

and the AC, is the highest when the two distances are equal.

In Fig. 6(a) the average achievable rate is illustrated for

d ∈ [5, 95], where RIS is located at (d, 10) and there is direct

channel between AP and AC for N = 1024. The curves are

shown for different path loss exponents (PLE) in direct path

to assess the impact of PLE on the accuracy of the proposed

Fig. 5. Average error probability performance in terms of changing the RIS
location at (d, 10) for N = 512.

lowerbound for average FBL rate. In contrast to the active

relaying schemes where locating in the middle of transmitter

and the receiver usually is an optimal choice to maximize the

performance, we observe that the average achievable rate in the

FBL regime will be maximized when the RIS is either close to

transmitter or receiver. Additionally, there is a gap between the

lower bound and exact value for all curves. Nevertheless, the

gap does not change as the number of quantizer bits or the RIS

location at (d, 10) change which confirms the suitability of the

presented lower bound for comparison purposes and resource

allocation algorithms.

The average rate performance without direct channel is il-

lustrated in Fig. 6(b) where as shown in the curves there is

a perfect match between the lower bound rate and the Monte

Carlo simulations. Furthermore, the impact of phase error on

the average rate improvement is the same. To have a similar

analysis of rate variation we see that when d = 50 is changed

to d = 95 or d = 5 the average rate is increased from 0.5 (1.0)

bpcu to 4.3 (5.3) bpcu for 2-bit (1-bit) quantizer.

In Fig. 7 the required number of channel uses as a function

of RIS elements is illustrated in terms of quantizer bits at the

RIS when target error probability is set to 10−9. It is observed

that, when the number of bits increases, the average channel

blocklength will be reduced and asymptotically converges to

the lower curve which is the case without noise at the RIS.

There is a significant reduction when the number of quantization

bits increases from one to two bits. This shows that in system

level design considerations choosing a 2-bit quantizer will be

beneficial and satisfactory than the complicated higher bit quan-

tizers. Furthermore, given the channel blocklength r = TW
when the number of RIS elements increases the required number

of channel blocklength to transmit the symbols will be reduced.

This means that as N increases, the transmission duration T is

reduced given a fixed bandwidth W . Thus, RIS can be leveraged

to achieve low latency transmissions for URLLC applications,

demonstrating the applicability of RIS in FBL regime commu-

nications.
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Fig. 6. The impact of changing the RIS location at (d, 10) on the average rate. (a) With direct channel. (b) Without direct channel.

Fig. 7. The average number of channel uses versus total number of RIS
elements N .

Finally, the asymptotic behavior of the average square root of

the channel dispersion, as well as the binomial approximation

accuracy, is investigated in Fig. 8. As it is shown, the channel

dispersion and its binomial approximation are well-matched

when no phase error exists. The situation is different for the

case when phase error exists and in a lower number of RIS

elements, the accuracy is lower. Nevertheless, it can also be

inferred that the channel dispersion asymptotically approaches

to its upperbound when we have a sufficient number of RIS

elements (N approximately greater than 150) in both cases. This

is because the received SNR increases so that the square root of

channel dispersion will approach log2(e).

VI. CONCLUSION

This paper analyzes the applicability of RIS for ensuring

URLLC with FBL transmissions in a factory automation sce-

nario. We have presented the analytical derivation of the average

Fig. 8. Average square root of channel dispersion (E[
√

V (γ)]) and its

asymptotic behaviour for large number of N .

achievable rate and we have analyzed the average error probabil-

ity based on matching the received SNR to a Gamma RV. First,

the analytical derivations of matching the SNR to a Gamma RV is

presented whose parameters depend on the statistical mean and

variance of the instantaneous SNR. Then, the average achievable

rate is investigated for the FBL regime based on computing the

related expectation with respect to proposed SNR distribution.

The same analysis is performed to evaluate the average block

error probability and channel blocklength. Next, the impact of

phase error resulting from either quantization noise or hardware

impairments is investigated in modeled SNR distribution pa-

rameters. The numerical results have shown that the RIS can

be effectively employed in factory automation environments

to ensure high reliability and reduce the error probability as

a measure of reliability as well as the transmission latency as

required by many URLLC applications. Furthermore, RIS is

also found to significantly improve the average achievable rate.
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As a future work, the analysis results in this paper can be lever-

aged for resource allocation problems in RIS-assisted URLLC

networks to ensure systems reliability and maximizing average

rate relying only on statistical measures of the channel. On the

other hand, as the size of the RIS grows, the identification of

several energy/power consumption/dissipation sources, e.g., the

utilized power at digital signal processing capabilities and the

surface configuration power will be of paramount importance

which are interesting future research topics. Furthermore, the

delay violation probability, distribution of the delay in URLLC

systems and specifically the distribution of the channel uses as

a function of the number of RIS elements are interesting future

research directions where the RIS technology plays a critical

role toward realizing URLLC systems’ KPIs which highlights

its applicability in factory automation environments.

APPENDIX A

COMPUTING E[X] AND E[X2] WHEN φn �= 0 FOR ∀N ∈ N
Let us rewrite the random variable X as

X =

∣
∣
∣
∣
∣

∣
∣hAP

AC

∣
∣+

N∑

n=1

∣
∣[hAP

RIS]n
∣
∣
∣
∣[hRIS

AC ]n
∣
∣ ejφn

∣
∣
∣
∣
∣

2

, (43)

where [.]n denotes the nth element of a vector and φn = ∠hAP
AC −

∠[hRIS
AC ]n + ∠[hAP

RIS]n + θn. In order to obtain the parameters of

matched Gamma distribution, we should determine the shape

and rate parameters. To do so, we first calculate the expected

mean value of RV X noting that for a RV h ∼ Rayleigh(σ) it

holds E[h] =
√

π
2
σ which is given by

E[X] = ηAP→AC +

N∑

n=1

ηAP→RIS
n ηRIS→AC

n

+
π2

16

N∑

n=1

N∑

m=1
m �=n

ηRIS→AP
n ηAC→RIS

m cos(φn − φm)

+
π

4

√

πηAP→AC

N∑

n=1

√

ηRIS→AP
n ηAC→RIS

n cos(φn),

(44)

where we assumed the channel responses are mutually indepen-

dent. By neglecting the impact of RIS surface dimensions on

large scale fading we will have

E[X] = ηAP→AC +NηAP→RISηRIS→AC

+
π2

16
ηRIS→APηAC→RIS

N∑

n=1

N∑

m=1
m �=n

cos(φn − φm)

+
π

4

√

πηAP→ACηRIS→APηAC→RIS

N∑

n=1

cos(φn), (45)

where ηAP→AC = ηAP→AC
n , ηAP→RIS = ηAP→RIS

n and ηRIS→AC =
ηRIS→AC
n ∀n ∈ N .

In what follows we continue by computing the expected value

of X2 which is defined as

E[X2] = E

⎡

⎣

∣
∣
∣
∣
∣
|hAP

AC|+
N∑

n=1

∣
∣[hAP

RIS]n
∣
∣
∣
∣[hRIS

AC ]n
∣
∣ejφn

∣
∣
∣
∣
∣

4
⎤

⎦ , (46)

for notation simplicity we define

c0 := |hAP
AC|, (47a)

an :=
∣
∣[hAP

RIS]n
∣
∣, (47b)

bn :=
∣
∣[hRIS

AC ]n
∣
∣. (47c)

The binomial expansion of the expression inside expectation

yields

E

[
∣
∣
∣c0 +

N∑

n=1

anbne
jφn

∣
∣
∣

4

]

= E

[

c4
0 + 2c2

0

N∑

n=1

a2
nb

2
n

×(1 + 2 cos2(φn))+2c2
0

N∑

n=1

N∑

m=1
m �=n

anbnambm(cos(φn − φm)

+ 2 cos(φn) cos(φm)) + 4c3
0

N∑

n=1

anbn cos(φn)

+ 4c0

N∑

n=1

anbn cos(φn)
N∑

n=1

N∑

m=1
m �=n

anbnambm cos(φn − φm)

]

,

(48)

since E[c0] =

√
πηAP→AC

2
, E[an] =

√
πηAP→RIS

2
and E[bn] =√

πηRIS→AC

2
and also noting that for a RV h ∼Rayleigh(σ) we

have

E[h] =

√
π

2
σ, (49a)

E[h2] = 2σ2, (49b)

E[h3] = 3

√
π

2
σ3, (49c)

E[h4] = 8σ4. (49d)

Based on above, and after some mathematical manipulations the

(48) will be written as given in (50) as shown at the top of the

next page.

where E[c2
0] = ηAP→AC = ς , E[a2

n] = ηAP→RIS = ̺ and

E[b2
n] = ηRIS→AC = ϑ.

APPENDIX B

COMPUTING E[X] AND E[X2] WHEN φn = 0 FOR ∀N ∈ N
In a special case where the phase adjustment is perfectly done

at the RIS we have φn = 0, ∀n ∈ N which yields

E[X] = ηAP→AC +NηAP→RISηRIS→AC

+
π2N(N − 1)

16
ηAP→RISηRIS→AC
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E

[
∣
∣
∣c0 +

N∑

n=1

anbne
jφn

∣
∣
∣

4

]

= 2ς2 + ς̺ϑ

(

2N + 4

N∑

n=1

cos2(φn) +
π2

8

N∑

n=1

N∑

m=1
m �=n

(cos(φn − φm) + 2 cos(φn) cos(φm))

)

+
3π

4

√

πς3̺ϑ

N∑

n=1

cos(φn) + ̺2ϑ2

(

N(N + 3) +
π2(2N + 5)

16

N∑

n=1

N∑

m=1
m �=n

cos(φn − φm)

+ 2

N∑

n=1

N∑

m=1
m �=n

cos2(φn − φm) +
π2

8

N∑
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N∑

m=1
m �=n

N∑

n′=1
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+
π2

8
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N∑
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N∑
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+
π4
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N∑

m=1
m �=n
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N∑
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cos(φn − φm) cos(φn′ − φm′)

)

+
√

ς̺3ϑ3π
√
π

(
4N + 5

8

N∑

n=1

cos(φn) +
1

2

N∑

n=1

N∑

m=1
m �=n

cos(φn − φm) cos(φn)

+
1

2

N∑

n=1

N∑

m=1
m �=n

cos(φn − φm) cos(φm) +
π2

32

N∑

n=1

N∑

m=1
m �=n

N∑

n′=1
n′ �=n,m

cos(φn − φm) cos(φn′)

)

, (50)

+
πN

4

√

πηAP→ACηAP→RISηRIS→AC, (51)

and

E[X2] = E

⎡

⎣

∣
∣
∣
∣
∣
c0+

N∑

n=1

anbn

∣
∣
∣
∣
∣

4
⎤

⎦

= 2ς2 + ς̺ϑN

(

6 +
3(N − 1)π2

8

)

+
3Nπ1.5

4

√

ς3̺ϑ+
̺2ϑ2N

256

(
π4(N − 3)(N − 2)

× (N − 1) + 48π2(2N − 1)(N − 1) + 768N + 256
)

+
√

ς̺3ϑ3
Nπ1.5

32

(
π2(N − 2)(N − 1) + 48N − 12

)
.

(52)

where ς = ηAP→AC, ̺ = ηAP→RIS and ϑ = ηRIS→AC.

APPENDIX C

PROOF OF REMARK 2

If we define A := C1

C2Q−1(ε) =
E[log2(1+γ)]

Q−1(ε)E[
√

V(γ)]
the average

channel use is reformulated as follows

r̄ =
L

C1

+
1

4A2
+

1

2A

√

1

A2
+

4L

C1

, (53)

then, noting that A is an increasing function in terms of number

of RIS elements (this can be readily proved by firstly noting that

the SNR γ increases with respect to RIS elementsN secondly by

computing the first derivative of f(γ) = log2(1+γ)√
V(γ)

with respect

to γ which is f ′(γ) ≥ 0), all the terms in the expression given in

(53) will correspond to be decreasing. This completes the proof.
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