AVERAGE RENEWAL LOSS RATES!

By M. V. Jouns, Jr. AND R. G. MILLER, JR.
Stanford University

-1. Introduction and summary. Many problems in the theory of decision
processes give rise to an unending sequence of- cycles whose lengths are given by
a sequence of independent and identically distributed positive random variables
X, X,, -+, constituting a renewal process. Typically X; will represent the
number of items passing an inspection point in a production process or the
length of time elapsing in some continuous time process until a decision point
is reached. In'many such problems another sequence of random variables, say
Y, Y,, .-, arises where Y; is the profit or loss associated with the 7th cycle.
Examples of problems having this structure may be found, for instance, in
[1], [3], [6], [9] and [10]. In most cases X; and ¥ will not be independent for the
same index % and in this note we will permit Y; to depend on X, ---, X4,
X for any fixed finite g.

In all such problems the appropriate index of merit for the decision procedure
under consideration is the “average” profit (or loss) per unit time (or per item)
for a large number of cycles. The notion of “average” profit rate can be mathe-
matically defined in four distinct and apparently equally plausible ways, and
it is the purpose of this note to show that the various definitions are not neces-
sarily equivalent and to determine the conditions under which they are equiva-
lent.

First, the profit rate up to time ¢ may be defined in terms of N(£), the number
of cycles completed by time ¢, as (1/t) D<) ¥, . Then the average profit rate
may be defined as either the limit of the expected value of the profit rate, or as
the almost sure limit of the profit rate, as £ — . The use of the expected value
definition is consistent with the principles of utility theory and the notions of
risk that underlie the formulation of problems in decision theory. The almost
sure limit definition has, of course, considerable intuitive appeal. It is shown in
this note that, as an immediate consequence of well-known results from re-
newal theory, both of the above definitions lead to the average profit rate n/u
where EX = p and-EY = 9, assuming that 7 is finite.

Alternately, the profit rate may be defined for n cycles as D 7y Y./ > iy X:
and again the average profit rate may be defined as either the limit of the ex-
pected values, or the almost sure limit of this ratio, as n — . By the strong
law of large numbers the almost sure limit is always 5/u but in Section 2 an
example is given for which the limit of the expected values is not 5/u. In Section
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3 necessary and sufficient conditions are obtained for the limit of the expected
values of the ratios to be n/u if 7 is finite.

2. An example. For the processes {X,, X», -+ } and {Y., Y2, --- } where
the X; are independent, identically distributed with cdf F(F(0+) = 0) and
Y,=1,7= 1,2, .-, with probability one, the profit rate, or in this case re-
newal intensity, is n/t where n is the number of cycles or renewals in time ¢.
For fixed time ¢ the quantity n/¢ is a random variable in the number of renewals,
i.e., N(t)/t, and for a fixed number of renewals it is a random variable in time,
ie., n/T(n). These random variables are defined by

Xi+ -+ Xepy 2t< Xi+ - + Xnyss T(n) =X + -+ + Xa,

Asymptotically these two definitions are equivalent in the senge of a.s. conver-
gence since by the strong law of large numbers n/T(n) — 1/p, a.s., asn — 4 o,
where p = E(X) £ + «, and by Doob [2] N(t)/t — 1/, a.s., as t — + «. For
non-random # the expectation of the rerewal intensity agrees with the a.s. limit;
ie., E[N(t)/f] — 1/u as t — +  (see Feller [4], [5], Doob [2]). However, the
example of this section will show that this is not necessarily so for non-random n;
ie., E[n/T(n)] - 1/pasn — 4. In fact an example will be constructed in
whlch

(2.1) Eln/T(n)] = +«= for all »,
but
(2.2) EIN@®/{] >0 as t— +x;

i.e., in terms of expectation the renewal intensities are at opposite ends of the
scale.

In the example the cdf F will be chosen absolutely continuous with density p.
In this case E[n/T(n)] = n [§ (l/x)p(") (z) dx, where p(") is the n-fold con-
volution of p. For z < exp {—2} let F(z) = (— logz)™" with density p(z) =
[z(log 2)*|”", and for the present let F be unspecified for x > exp {—2}. Dif-
ferentiation readily verifies that in a neighborhood of the origin p is mono-
tonically decreasing so for z in this neighborhood

p®(z) = f p(z — y)p(y) dy > p(2) fzp(y) dy.
0 0 .

Similarly, differentiation of p(zx) (F (z))* verifies that for each k >0 this func-
tion is monotonically decreasing in some neighborhood of the origin so by in-
duction p™ (z) > p(z) (F(z))"" in some neighborhood of the origin. Therefore,
for e in this neighborhood

f 1@ > [ () (qmrmgz) o=

Since z(— log z) "™ — 0 as © — 0 the latter integral is divergent which estab-
lishes (2.1).
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So far F' has been specified only below its median value. To simultaneously
satisfy (2.2) simply choose the density for the upper tail of F so that u = 4 .

3. Equivalence theorems. The example of the last section depended upon the
cdf F placing enough mass near the origin so that E[1/7T(n)] was infinite for all
n. The question naturally arises as to whether the two expectations can have
different finite limits. The answer is that they cannot.

TaEOREM 1. If for someno, E[1/T(no)] < + «, then E[1/T(n)] < + » for all
n > no and lim, 4w E[n/T(n)] = 1/u.

The proof of this theorem depends on the following convergence lemma which
may be found in Johns [7]:

Lemma A. If (R, @, v) is a measure space, {f.} and {g.} are sequences of non-
negative integrable functions, f is an integrable function, and g is a function such
that

(1) liMpewfn = f, a.e.; lim,o g = ¢, a.e.,
(li) gn é— fﬂ ’ all n, - '

(i) im 8UPsaw [fadv < [ fdy,
then g is integrable and 1im, . [ godv = [ g dv.

The extended Lebesgue dominated convergence theorem of Pratt [8] which
could also have been used in this connection is a consequence of this lemma.

Proor or THEOREM 1. The first conclusion of the theorem follows immedi-

ately from T'(n) > T(no); a.s., forn > no.
Let Z; = D ;™% symes1 Xj. Then {Z,, Z,, ---} is a renewal process with
cdf F*”, The assumption of the theorem is that £(1/Z;) < -+ . Since Z; > 0,

(3.1) (i:) 1/z,->(27:3 Z;) zm’ or (—(l/m) ﬁ:) 1/Z,-) = m/Z':) Z,Q

by the Cauchy-Schwarz inequality (i.e., the arithmetic mean is greater than the
harmonic mean). Since ( Y, 1/Z;)/m — E(1/Z), as., as m — + o,

B (/3 2) > 1/B(2) = /ma

as m — =+ by (3.1) and Lemma A. Hence, E[n/T(n)] — 1/u, as n —> +

through the sequence n = kno, k = 1,2, --- .
Convergence for all n is obtained from the simple inequality

(n+1)/T(n+1) = [(n + 1)/n]-n/T(n + 1) = [1 + (1/n)]n/T(n)].
This gives forn ="kno + 1,0 < I < mo,

10+ ) ® (i) = # (1)
E = E(-—
hI—I_o (1 + kno + h T(kno)) = T(n)
ot 1 )“ ( (k + 1)n )
= E
which implies the desired result since the bounding expectations both tend to
1/u and the product terms tend to 1 as k — .




AVERAGE RENEWAL LOSS RATES 399

Consider now the general case of profit-loss rate per unit time, i.e.,
N(t)

DY/ X, or 2 Y,
1 1 1

depending on whether 7 is fixed or a random variable N(¢) defined by the X-
process. It will be assumed that the sequence {¥;, Y., - -+ } is ¢-dependent on
the process {X;, X2, --- }; i.e., Y, is independent of X;, ---, X; 4 and X4y,
Xiy2, - -+, but may be dependent on X; 441, - -+, X;. The sequence variables
Y, are assumed to be identically distributed for ¢ = ¢, and Y; and Y., are
assumed independent. The exact probability structure of Y;, ---, Y,; need
not be specified because of the asymptotic character of the results.

Without loss of generality it may be assumed that the Y, are non-negative
random variables since the profit-loss rate can be written as

(3.2) ;Yi/‘IEXi=;Yf/Zl:X¢+ IEYT/ZI:X“
or a corresponding expression with denominator ¢, where Y7 = max {0, Y} and
Y: = min {0, Y;}. The arguments. to be presented below for non-negative

random variables can be applied separately to the two ratios on the right in
(3.2) to yield the combined result. Also, without loss of generality it can be
assumed that ¢ = 1;ie., {¥;, Y,, ---} is 1-dependent on {X;, X, -+ }. The
profit rate can be written as

ZYi/EXi= Y1+ Y+ )/ZXz
+ (Yot Yo+ )/ X4+ (Yo Yoo+ -+ )/ 2 X,

or with denominator ¢. Since the sums Z5¥ = » 554% (i1 X; form a renewal
process for each £ = 1, 2, -.- | g, the arguments given below can be applied
to each of the ratios with proper handling of the initial ¥ and X variables.

By the strong law of large numbers as n — 4+, 2.7 Yo/ .1 Xi — 1/u, a8,
where n = E(Y) is henceforth assumed to be finite. By a trivial adaptation of
Doob’s argument [2], D17 Y./t — n/u, a.s., a8 t — 4 so the a.s. limits agree
with what would be expected.

It is known (see, for example, [1]) that the standard renewal equation results

can be adapted to the profit rate case. Let

N(D)

V() = E{; Yi} , W) = /ot E{Y:1| X1 = u} dF (u).

Then the expected profit function V satisfies the renewal equation V(f) =
W) + ff) V(t — u) dF (u). The unique solution of this equation is

W) «[1 + M(®)]

where M (t) = Zi" F'™(¢) and (%) denotes convolution, and it is well-known
that lim,, ., V(t)/t = W(+®)/u = n/u, (see Feller [4], [5], Doob [2], Smith
[11]). Thus, the limiting expected profit rate for fixed ¢ agrees with the a.s.
limits.
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That the limiting expectation for non-random 7 also agrees with this limit is
established in the following theorem. The only condition imposed on the X-
process is that E[1/T(no)] < +c for some no and in view of the preceding
section this is a necessary condition.

TaeoreM 2. If n = E(Y) < 4+ and for some ng, E[1/T(ny)] < + o, then

tim B {3 7/% Xi} = n/u

n->00

Proor. If E[1/T(m)] < + «, then

{22 Y,/ZX} {Z Y/TZX}+E{ZZ Yffx}

no+1

<5{3 VY% X+ B { > ¥y/3 X} = 2nanBll/T(m)] < + 0.

notl

All subsequent ratio expectations are finite from the inequality

B{SvySxd s B{SvyEx} = p{Ev/Ex +asl/ren - 1)

Let Zi = 3;2(1_1),.04.1 Xj and Si =, Ej=2(i_1)no+1 Yj . The processes
{Zi,Z2, -} and {8, &%, ]
are renewal processes, and the S-process is 1-dependent on the Z-process. Since
Z; > 0,

m m

(33) /5 s (/m) 3 ) (/m) 3 1/z),

1

[

(see (3.1)). Asm — 4o, > Si/m — 2non, a.s., (2 1/Z,-)/m — E[1/T(2n0)],
a.s., and

B35 '<T—z<;-‘zi,.>} - LS sn) s @ sm)

E(S/Z) + ( 1) 2n9nE[1/T(2n)] — 2nonE[1/T(2n)].
Therefore, By (3.3) and Lemma A, E’{ DD DI X,«} — n/u, a8 1 — +©

through the sequence n = 2kno, k = 1,2, - - - . Convergence for all n is obtained
from '

2kn g ékno -1 n n
E { RN X} 0 % H/T(2kno + W) 2 B {2 0> X}
2(k4+1)ng 2(k+1)ng 2n9—1
> E{ ; Y./ ; X.-} -9 h; E[1/T(2kno + h)],

forn = 2kno + I, 0 < I < 2n,, since by Theorem 1 E[1/T(n)] = O(1/n) as
n— +o,
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